Топологические тензорные представления алгебры Ли эндоморфизмов счетномерного векторного пространства

Франческо Эспозито, Иван Пенков

 \mathbb{C} , V, $\mathfrak{g} = \operatorname{End} V - \operatorname{Lie algebra}$

Conjecture: The only simple countable-dimensional \mathfrak{g} -modules are (up to isomorphism) $\mathbb{S}_{\mu}(V)$, where \mathbb{S}_{μ} denotes the Schur functor for a partition μ .

Let
$$\mathbf{V} = \operatorname{Hom}(V, \mathbb{C}) = V^* : \operatorname{thin} V, \text{ fat } \mathbf{V}$$

Category $\mathbb{T}_{\mathfrak{g}}$: its objects are subquotients of finite sums of modules $V^{\otimes p} \otimes \mathbf{V}^{\otimes q}$, homs are homomorphisms of \mathfrak{g} -modules.

The category $\mathbb{T}_{\mathfrak{g}}$ has been studied by Serganova, P. [PS] and A. Chirvasitu, [C].

Main facts

(i) for a fixed basis $v_1, v_2, ...$ of V, the functor $(\cdot)^{wt} : \mathbb{T}_{\mathfrak{g}} \to \mathbb{T}_{gl(\infty)}$ is an equivalence of categories (Chirvasitu)

$$M^{wt} = \bigoplus_{\lambda \in \mathfrak{h}^*} M^{\lambda}, \ M^{\lambda} = \{ m \in M \mid h \cdot m = \lambda(h)m \}$$

$$\mathfrak{h} = \bigoplus_{i} ((\mathbb{C}v_i) \otimes (\mathbb{C}v_i^*))$$

The objects of the category $\mathbb{T}_{gl(\infty)}$ are $gl(\infty)$ -modules isomorphic to subquotients of direct sums of modules $V^{\otimes p} \otimes (V_*)^{\otimes q}$, where

$$V_* = \text{span}\{v_1^*, v_2^*, ...\} \subset V$$

- (ii) The category $\mathbb{T}_{gl(\infty)}$ has been studied (relatively) well [DPS]. In more detail:
 - objects have finite length
 - simple objects are $V_{\lambda,\mu}$ where λ , μ are partitions,

$$V_{\lambda,\mu} := \operatorname{soc}(\mathbb{S}_{\lambda}(V) \otimes \mathbb{S}_{\mu}(V_*))$$

- equivalent definition: finite-length absolute weight modules
- equivalent definition: finite-length weight modules (for fixed \mathfrak{h}) satisfying the LLAC (local large annihilator condition)
- the modules $V^{\otimes p} \otimes (V_*)^{\otimes q}$ are injective (consequently also $\mathbb{S}_{\lambda}(V) \otimes \mathbb{S}_{\mu}(V_*)$ as direct summands of injectives)
- $\mathbb{T}_{gl(\infty)}$ has no projectives
- The category $\mathbb{T}_{gl(\infty)}$ has a universality property as a symmetric tensor category.
- the socle filtration of $V^{\otimes p} \otimes (V_*)^{\otimes q}$ (consequently also of $\mathbb{S}_{\lambda}(V) \otimes \mathbb{S}_{\mu}(V_*)$) is described explicitly in [PStyr] and [DPS].

Examples:

$$\begin{array}{c|c} V_{\emptyset;\,\emptyset} & (k) = & & & & & & & & & & & & & & & & & \\ \hline \vdots & & & & & & & & & & & & & & & & & \\ \hline \hline V_{(k-1);\,(k-1)} & & & & & & & & & & & & & & & \\ \hline V_{(k);\,(k)} & & & & & & & & & & & & & & & & \\ \hline \hline V_{(1);\,(1)} & & & & & & & & & & & & & \\ \hline V_{(1);\,(1)} & & & & & & & & & & & & \\ \hline V_{(1);\,(1)} & & & & & & & & & & \\ \hline V_{(2);\,(1,1)} \oplus V_{(2);\,(2)} & & & & & & & & \\ \hline V_{(3);\,(2,1)} & & & & & & & & \\ \hline \end{array}$$

$$\frac{V_{(1);\,\emptyset}}{V_{(1,1);\,(1)}\oplus 2V_{(2);\,(1)}}\\ = \frac{V_{(2,1);\,(1)}\oplus V_{(2,1);\,(2)}\oplus V_{(3);\,(1,1)}\oplus V_{(3);\,(2)}}{V_{(3,1);\,(2,1)}}$$

$$V = \lim_{\longrightarrow} (\operatorname{span} \{v_1, ..., v_n\} = V_n), \ \mathbf{V} = \lim_{\longleftarrow} V_n^*$$

V is discrete, \mathbf{V} is linearly compact = inverse limit of finite-dimensional vector spaces, open neighborhoods of zero are $p_n^{-1}(0_n)$, where $0_n \in V_n^*$ and $p_n : \mathbf{V} \to V_n^*$ is the projection

We have $V^* = V$ (the continuous dual of a linearly compact vector space is discrete)

More generally, a vector space W is pro-discrete if $W = \lim_{\longleftarrow} W_n$, where W_n are discrete. The topology of W is defined in the same way as above.

Now set $\mathbf{V}^{\widehat{\otimes} p} = (V^{\otimes p})^* = \operatorname{Hom}(V^{\otimes p}, \mathbb{C})$. Then the vector space $\mathbf{V}^{\widehat{\otimes} p}$ is linearly compact since $V^{\otimes p} = \lim_{\longrightarrow} (V_n^{\otimes p})$.

Next, consider the space

$$\mathbf{V}^{p,q} := V^{\otimes p} \otimes \mathbf{V}^{\widehat{\otimes} q}$$

This space is ind-linearly compact and complete.

 $\mathbf{V}^{p,q}$ can be represented as a countable direct sum of linearly compact spaces W_i (for this it is enough to choose a basis in $V^{\otimes p}$), and subspaces of the form $\bigoplus_i U_i \subset \bigoplus_i W_i$, where U_i are open in W_i , constitute a basis of open neighborhoods of 0 in $\mathbf{V}^{p,q}$

Also, we have a canonical inclusion $V^{\otimes p} \otimes \mathbf{V}^{\otimes q} \hookrightarrow \mathbf{V}^{p,q} = V^{\otimes p} \otimes \mathbf{V}^{\widehat{\otimes} q}$

The category $\mathbf{T}_{\mathfrak{g}}$ is the abelian category of all \mathfrak{g} -modules isomorphic to topological subquotients of finite direct sums of the form $\mathbf{V}^{p,q}$. (Topological subquotients are quotients M/N where $N \subset M \subset \mathbf{V}^{p,q}$ are closed submodules)

Modified categories $\mathbb{T}'_{\mathfrak{g}}$ and $\mathbf{T}'_{\mathfrak{g}}$: their objects are isomorphic to submodules of $V^{\otimes p} \otimes \mathbf{V}^{\otimes q}$ and $\mathbf{V}^{p,q}$ respectively

Fact: $\mathbb{T}'_{\mathfrak{g}}$ and $\mathbf{T}'_{\mathfrak{g}}$ are abelian and are equivalent to $\mathbb{T}_{\mathfrak{g}}$ and $\mathbf{T}_{\mathfrak{g}}$ respectively. This follows from the yoga of ordered Grothendieck categories developed in [CP].

There are well-defined functors

$$\mathbb{T}'_{\mathfrak{g}} \xrightarrow{\text{completion}} \mathbf{T}'_{\mathfrak{g}}$$
intersection with
$$\bigoplus_{p,q} (V^{\otimes p} \otimes \mathbf{V}^{\otimes q})$$

which we prove to be mutually inverse equivalences. The proof reduces to $gl(\infty)$ via the functor $(\cdot)^{wt}$

Corollary. The categories $\mathbb{T}_{\mathfrak{g}}$ and $\mathbf{T}_{\mathfrak{g}}$ are equivalent.

Finally, we define our main object of study, the category $\widehat{\mathbf{T}}_{\mathfrak{g}}$: its objects are continuous duals M^* of $M \in \mathbf{T}_{\mathfrak{g}}$ and morphisms are continuous homomorphisms of \mathfrak{g} -modules. The objects of $\widehat{\mathbf{T}}_{\mathfrak{g}}$ are pro-discrete vector spaces.

Example:

$$(V \otimes \mathbf{V})^* \simeq \mathfrak{g} = \operatorname{End} V$$

$$\qquad \qquad \qquad \cup$$

$$(v \otimes \varphi \mapsto \varphi(\alpha(v))) \qquad \longleftarrow \qquad \alpha$$

$$V \otimes \mathbf{V} = \lim_{\stackrel{\longleftarrow}{i}} \lim_{\stackrel{\longleftarrow}{j}} V_i \otimes V_j^* \qquad (V \otimes \mathbf{V})^* = \lim_{\stackrel{\longleftarrow}{i}} \lim_{\stackrel{\longrightarrow}{j}} V_i^* \otimes V_j$$
$$\lim_{\stackrel{\longleftarrow}{}} (V_i^* \otimes V) = \operatorname{End} V$$

All submodules of EndV have been found in [HZ].

Theorem. The functors

$$\mathbf{T}_{\mathfrak{g}} \stackrel{()^*}{\longleftarrow ()^*} \widehat{\mathbf{T}}_{\mathfrak{g}}$$

are well-defined anti-equivalences of abelian categories.

Moreover, $\widehat{\mathbf{T}}_{\mathfrak{g}}$ is a tensor category:

$$M\widehat{\otimes}N = (M^* \otimes N^*)^*$$

Corollary: all above mentioned properties of the category $\mathbb{T}_{\mathfrak{g}} \simeq \mathbb{T}_{gl(\infty)}$ hold for the category $\widehat{\mathbf{T}}_{\mathfrak{g}}$ with the arrows reversed.

References

- [PS] I. Penkov, V. Serganova, Tensor representations of Mackey Lie algebras and their dense subalgebras, in Developments and Retrospectives in Lie Theory: Algebraic Methods, Developments in Mathematics, vol. 38, Springer Verlag, 291-330
- [C] A. Chirvasitu, Three results on representations of Mackey Lie algebras, in Developments and Retrospectives in Lie Theory: Algebraic Methods, Developments in Mathematics, vol. 38, Springer Verlag
- [DPS] E. Dan-Cohen, I. Penkov, V. Serganova, A Koszul category of representations of finitary Lie algebras, in Advances of Mathematics 289 (2016), 250-278
- [PStyr] I. Penkov, K. Styrkas, Tensor representations of infinite-dimensional root-reductive Lie algebras, in Developments and Trends in Infinite-Dimensional Lie Theory, Progress in Mathematics 288, Birkhaüser, 2011, pp. 127-150
- [CP] A. Chirvasitu, I. Penkov, Ordered tensor categories and representations of the Mackey Lie algebra of infinite matrices, in Algebras and Representation Theory 22 (2019), 249-279
- [HZ] W. Holubovski, S. Zurek, Lie algebra of column-finite infinite matrices: ideals and derivations, arXiv: 1806.01099