Finite multiplicities beyond spherical pairs

Dmitry Gourevitch Weizmann Institute of Science, Israel http://www.wisdom.weizmann.ac.il/~dimagur Lie Groups and Invariant Theory seminar, Moscow j.w. Avraham Aizenbud arXiv:2109.00204

October 2021

- **G**: reductive group over \mathbb{R} , **X**:= algebraic **G**-manifold, $\mathfrak{g} := Lie(\mathbf{G})$, $\mathcal{N}(\mathfrak{g}^*)$:=nilpotent cone, $G := \mathbf{G}(\mathbb{R})$, $X := \mathbf{X}(\mathbb{R})$,
- S(X) := infinitely smooth functions on X, flat at infinity (Schwartz).
- **X** is called spherical if it has an open orbit of a Borel subgroup $B \subset G$.
- X is called real spherical if it has an open orbit of a minimal parabolic subgroup P₀⊂G.
- Major Goal: study $L^2(X)$, $C^{\infty}(X)$, S(X) as rep-s of G.

Studied by Bernstein, Delorme, van den Ban, Schlichtkrull, Kroetz,

Kobayashi, Oshima, Knop, Beuzart-Plessis, Kuit, Wan,...

Theorem (Kobayashi-Oshima, 2013)

Let $\mathbf{X} = \mathbf{G}/\mathbf{H}$. Then

- **(**) **X** is spherical $\iff S(X)$ has bounded multiplicities.
- 0 X is real-spherical $\iff \mathcal{S}(X)$ has finite multiplicities.

 $m_{\sigma}(\mathcal{S}(X)) := \dim \operatorname{Hom}(\mathcal{S}(X), \sigma), \quad m_{\sigma}(\mathcal{S}(G/H)) = \dim(\sigma^{-\infty})^{H}$

Today: finite multiplicities for "small enough" representations in wider generality.

Ξ -spherical spaces

 $\forall x \in \mathbf{X}$, have action map $\mathbf{G} \to \mathbf{X}$, thus $\mathfrak{g} \to T_x \mathbf{X}$, and $T_x^* \mathbf{X} \to \mathfrak{g}^*$. This gives the moment map $\mu : T^* \mathbf{X} \to \mathfrak{g}^*$. For $\mathbf{X} = \mathbf{G}/\mathbf{H} : T^* \mathbf{X} \cong \mathbf{G} \times_{\mathbf{H}} \mathfrak{h}^{\perp}$ and $\mu(g, \alpha) = g \cdot \alpha$

Definition

• For a nilpotent orbit $\mathbf{0} \subset \mathcal{N}(\mathfrak{g}^*)$, say \mathbf{X} is $\mathbf{0}$ -spherical if

 $\dim \mu^{-1}(\mathbf{O}) \leq \dim \mathbf{X} + \dim \mathbf{O}/2$

 For a G-invariant subset Ξ⊂N(g*), say X is Ξ-spherical if X is O-spherical ∀O⊂Ξ.

For $\mathbf{X} = \mathbf{G}/\mathbf{H}$, \mathbf{X} is \mathbf{O} -spherical $\iff \dim \mathbf{O} \cap \mathfrak{h}^{\perp} \leq \dim \mathbf{O}/2$. For parabolic $\mathbf{P} \subset \mathbf{G}$, $\mathbf{O}_{\mathbf{P}}$:=the unique orbit s.t. $\mathfrak{p}^{\perp} \cap \mathbf{O}_{\mathbf{P}}$ is dense in \mathfrak{p}^{\perp} .

Theorem 1 (Aizenbud - G.)

X is $\overline{\mathbf{O}_{\mathbf{P}}}$ -spherical \iff **P** has finitely many orbits on **X**.

 $\forall x \in \mathbf{X}$, have action map $G \to X$, thus $\mathfrak{g} \to T_x \mathbf{X}$, and $T_x^* \mathbf{X} \to \mathfrak{g}^*$. This gives the moment map $\mu : T^* X \to \mathfrak{g}^*$. For $\mathbf{X} = \mathbf{G}/\mathbf{H} : T^* \mathbf{X} \cong \mathbf{G} \times_{\mathbf{H}} \mathfrak{h}^{\perp}$ and $\mu(g\mathbf{H}, \alpha) = g \cdot \alpha$

Definition

 \bullet For a nilpotent orbit $0{\subset}\mathcal{N}(\mathfrak{g}^*),$ say X is 0-spherical if

$$\dim \mu^{-1}(\mathbf{0}) = \dim X + \dim \mathbf{0}/2$$

 For a G-invariant subset Ξ⊂N(g*), say X is Ξ-spherical if X is O-spherical ∀O⊂Ξ.

For $\mathbf{X} = \mathbf{G}/\mathbf{H}$, \mathbf{X} is \mathbf{O} -spherical $\iff \dim \mathbf{O} \cap \mathfrak{h}^{\perp} \leq \dim \mathbf{O}/2$. For parabolic $\mathbf{P} \subset \mathbf{G}$, $\mathbf{O}_{\mathbf{P}}$:=the unique orbit s.t. $\mathfrak{p}^{\perp} \cap \mathbf{O}_{\mathbf{P}}$ is dense in \mathfrak{p}^{\perp} .

Theorem 1 (Aizenbud - G. 2021)

X is $\overline{\mathbf{O}_{\mathbf{P}}}$ -spherical \iff **P** has finitely many orbits on **X**.

Corollary (following Wen-Wei Li)

- $\bullet~\textbf{X}$ is $\mathcal{N}(\mathfrak{g}^*)\text{-spherical}\iff\textbf{X}$ is spherical
- **X** is $\{0\}$ -spherical \iff **G** has finitely many orbits on **X**.

- *M*(*G*) :=Serre subcategory of the category of continuous representations in Fréchet spaces generated by representations of the form *C*[∞](*G*/*P*₀, *E*), where *G* ⊃ *P*₀-minimal parabolic subgroup, *E*-any smooth vector bundle over *G*/*P*₀. Irr(*G*) :=irreducible representations in *M*(*G*).
- $\sigma \in Irr(G) \iff \sigma =$ space of smooth vectors in a continuous irreducible representation in a Hilbert space.
- $\mathcal{M}(G) =$ continuous representations π in Fréchet spaces s.t.:
 - ① π is smooth and has moderate growth
 - 2 π has finite length
 - **3** $\pi|_{\mathcal{K}}$ has finite multiplicities, where $G \supset \mathcal{K}$ -maximal compact subgroup.
- $\mathcal{M}(G)$ is abelian category, equivalent to admissible $(\mathfrak{g}, \mathcal{K})$ -modules.
- S(X) ∉ M(G) for most X it is "too big" to be admissible or to have finite length.

Associated variety of the annihilator & the main theorem

- $\mathcal{U}_n(\mathfrak{g})$ PBW filtration on the universal enveloping algebra.
- gr $\mathcal{U}(\mathfrak{g}) \cong \mathcal{S}(\mathfrak{g}) \cong \mathsf{Pol}(\mathfrak{g}^*).$
- For an ideal $I \subset U(\mathfrak{g})$, $\mathcal{V}(I) :=$ zero set of symbols of I in \mathfrak{g}^* .
- For a g-module *M*, $Ann(M) \subset U(\mathfrak{g})$ annihilator, $\mathcal{V}(Ann(M)) \subset \mathfrak{g}^*$
- For $\Xi \subset \mathcal{N}(\mathfrak{g}^*)$, $\mathcal{M}_{\Xi}(G) = \{\pi \in \mathcal{M}(G) \,|\, \mathcal{V}(\operatorname{Ann}(\pi)) \subset \Xi\}$

Theorem 2 (Aizenbud - G. 2021)

Let $\Xi \subset \mathcal{N}(\mathfrak{g}^*)$ closed **G**-invariant. Let **X** be Ξ -spherical **G**-manifold, and let $\sigma \in \mathcal{M}_{\Xi}(G)$. Then dim Hom $(\mathcal{S}(X), \sigma) < \infty$

Corollary

Let $\mathbf{H} \subset \mathbf{G}$ be reductive subgroup. Let $\mathbf{P} \subset \mathbf{G}$ and $\mathbf{Q} \subset \mathbf{H}$ be parabolic subgroups with $|\mathbf{P} \setminus \mathbf{G} / \mathbf{Q}| < \infty$ Then $\forall \pi \in \mathcal{M}_{\overline{\mathbf{O}_{\mathbf{P}}}}(G)$ and $\tau \in \mathcal{M}_{\overline{\mathbf{O}_{\mathbf{O}}}}(H)$,

 $\dim \operatorname{Hom}_H(\pi|_H,\tau) < \infty$

Corollary

- Let $\mathbf{P} \subset \mathbf{G}$ be a parabolic subgroup s.t. \mathbf{G}/\mathbf{P} is a spherical \mathbf{H} -variety. Then $\forall \pi \in \mathcal{M}_{\overline{\mathbf{O}_{\mathbf{P}}}}(G), \pi|_{H}$ has finite multiplicities.
- **(a)** Let $\mathbf{Q} \subset \mathbf{H}$ be a parabolic subgroup that is spherical as a subgroup of **G**. Then for any $\tau \in \mathcal{M}_{\overline{\mathbf{O}_{\mathbf{O}}}}(H)$, $\operatorname{ind}_{H}^{G} \tau$ has finite multiplicities.

Corollary

Let $\mathbf{H} \subset \mathbf{G}$ be reductive subgroup. Let $\mathbf{P} \subset \mathbf{G}$ and $\mathbf{Q} \subset \mathbf{H}$ be parabolic subgroups with $|\mathbf{P} \setminus \mathbf{G} / \mathbf{Q}| < \infty$ Then $\forall \pi \in \mathcal{M}_{\overline{\mathbf{O}_{\mathbf{P}}}}(G)$ and $\tau \in \mathcal{M}_{\overline{\mathbf{O}_{\mathbf{O}}}}(H)$,

 $\dim \operatorname{Hom}_{H}(\pi|_{H},\tau) < \infty$

Corollary

- Let $\mathbf{P} \subset \mathbf{G}$ be a parabolic subgroup s.t. \mathbf{G}/\mathbf{P} is a spherical H-variety. Then $\forall \pi \in \mathcal{M}_{\overline{\mathbf{O}_{\mathbf{P}}}}(G), \pi|_{H}$ has finite multiplicities.
- () Let $\mathbf{Q} \subset \mathbf{H}$ be a parabolic subgroup that is spherical as a subgroup of **G**. Then for any $\tau \in \mathcal{M}_{\overline{\mathbf{O}_{\mathbf{O}}}}(H)$, $\operatorname{ind}_{H}^{G} \tau$ has finite multiplicities.

For simple **G** and symmetric $\mathbf{H} \subset \mathbf{G}$, all $\mathbf{P} \subset \mathbf{G}$ satisfying (i), and all $\mathbf{Q} \subset \mathbf{H}$ satisfying (ii) are classified by He, Nishiyama, Ochiai, Oshima. A strategy for other spherical \mathbf{H} + implementation for classical \mathbf{G} : Avdeev-Petukhov.

Corollary

Let **H** be a reductive group, and **P**, **Q** \subset **H** be parabolic subgroups s.t. **H**/**P** × **H**/**Q** is a spherical **H**-variety, under the diagonal action. Then $\forall \pi \in \mathcal{M}_{\overline{\mathbf{O}_{\mathbf{P}}}}(H)$, and $\tau \in \mathcal{M}_{\overline{\mathbf{O}_{\mathbf{Q}}}}(H)$, $\pi \otimes \tau$ has finite multiplicities.

All such triples $(\mathbf{H}, \mathbf{P}, \mathbf{Q})$ were classified by Stembridge. Example: $\mathbf{H} = \operatorname{GL}_n$, $\tau \in \mathcal{M}_{\overline{\mathbf{O}_{\min}}}(H)$, or classical \mathbf{H} and $\pi, \tau \in \mathcal{M}_{\overline{\mathbf{O}_{2^n}}}(H)$.

• Our results also extend to certain representations of non-reductive H.

Example (Generalized Shalika model)

Let $\mathbf{G} = \mathrm{GL}_{2n}$, $\mathbf{R} = \mathbf{LU} \subset \mathbf{G}$ with $\mathbf{L} = \mathrm{GL}_n \times \mathrm{GL}_n$ and $\mathbf{U} = \mathrm{Mat}_{n \times n}$, $\mathbf{M} = \Delta \mathrm{GL}_n \subset \mathbf{L}$, $\mathbf{H} := \mathbf{MU}$. Let $\mathfrak{m}^* \supset \mathbf{O}_{\min} := \text{minimal nilpotent orbit, and } \pi \in \mathcal{M}_{\overline{\mathbf{O}_{\min}}}(M)$. Let ψ be a unitary character of H.

Then $\operatorname{ind}_{H}^{G}(\pi \otimes \psi)$ has finite multiplicities.

Similar case: $\mathbf{G} = O_{4n}$, $\mathbf{L} = \operatorname{GL}_{2n}$, $\mathbf{M} = \operatorname{Sp}_{2n}$, $\mathbf{O}_{\operatorname{ntm}} \subset \mathfrak{m}^*$.

Theorem (Tauchi)

Let $P \subset G$ be a parabolic subgroup. If all degenerate principal series representations of the form $\operatorname{Ind}_P^G \rho$, with dim $\rho < \infty$, have finite *H*-multiplicities, then *H* has finitely many orientable orbits on *G*/*P*.

Corollary

Let $P \subset G$ be a parabolic subgroup defined over \mathbb{R} . Suppose that for all but finitely many orbits of H on G/P, the set of real points is non-empty and orientable. Then the following are equivalent.

- **(1) H** is $\overline{\mathbf{O}_{\mathbf{P}}}$ -spherical.
- **(**) Every $\pi \in \mathcal{M}_{\overline{\mathbf{O}_{\mathbf{P}}}}(G)$ has finite multiplicities in $\mathcal{S}(G/H)$.
- H has finitely many orbits on G / P.
- H has finitely many orbits on G/P.

The assumption of the corollary holds if H and G are complex reductive groups.

Theorem (Tauchi)

Let $P \subset G$ be a parabolic subgroup. If all degenerate principal series representations of the form $\operatorname{Ind}_P^G \rho$, with dim $\rho < \infty$, have finite *H*-multiplicities, then *H* has finitely many orientable orbits on *G*/*P*.

Corollary

Let $P \subset G$ be a parabolic subgroup defined over \mathbb{R} . Suppose that for all but finitely many orbits of H on G/P, the set of real points is non-empty and orientable. Then the following are equivalent.

- **() H** is $\overline{\mathbf{O}_{\mathbf{P}}}$ -spherical.
- **(**) Every $\pi \in \mathcal{M}_{\overline{\mathbf{O}_{\mathbf{P}}}}(G)$ has finite multiplicities in $\mathcal{S}(G/H)$.
- H has finitely many orbits on G / P.
- **H** has finitely many orbits on **G**/**P**.

The assumption of the corollary holds if H and G are complex reductive groups. In general however, the finiteness of $\mathbf{H} \setminus \mathbf{G} / \mathbf{P}$ is not necessary, but the finiteness of $H \setminus G / P$ is not sufficient for finite multiplicities.

• $\mathcal{S}^*(X) := \mathcal{S}(X)^*$ - space of tempered distributions.

- Examples for $X = \mathbb{R}$: $\delta_0, \delta_x^{(n)}, f \mapsto \int_{-\infty}^{\infty} f(x)g(x)dx$, where *g*-smooth and tempered f-n.
- Non-example: $f \mapsto \int_{-\infty}^{\infty} f(x) \exp(x) dx$

Theorem 3 (Aizenbud - G. 2021)

Let $I \subset \mathcal{U}(\mathfrak{g})$ be a two-sided ideal such that $\mathcal{V}(I) \subset \mathcal{N}(\mathfrak{g}^*)$. Let \mathbf{X}, \mathbf{Y} be $\mathcal{V}(I)$ -spherical \mathbf{G} -manifolds. Let $\mathcal{S}^*(X \times Y)^{\Delta G, I}$ denote the space of ΔG -invariant tempered distributions on $X \times Y$ annihilated by I. Then

$$\dim \mathcal{S}^*(X \times Y)^{\Delta G, I} < \infty$$

• $\mathcal{S}^*(X) := \mathcal{S}(X)^*$ - space of tempered distributions.

- Examples for $X = \mathbb{R}$: $\delta_0, \delta_x^{(n)}, f \mapsto \int_{-\infty}^{\infty} f(x)g(x)dx$, where g-smooth and tempered f-n.
- Non-example: $f \mapsto \int_{-\infty}^{\infty} f(x) \exp(x) dx$

Theorem 3 (Aizenbud - G. 2021)

Let $I \subset \mathcal{U}(\mathfrak{g})$ be a two-sided ideal such that $\mathcal{V}(I) \subset \mathcal{N}(\mathfrak{g}^*)$. Let \mathbf{X}, \mathbf{Y} be $\mathcal{V}(I)$ -spherical \mathbf{G} -manifolds. Let \mathcal{E} be an algebraic vector bundle on $X \times Y$. Let $\mathcal{S}^*(X \times Y, \mathcal{E})^{\Delta G, I}$ denote the space of ΔG -invariant tempered \mathcal{E} -valued distributions on $X \times Y$ annihilated by I. Then

$$\dim \mathcal{S}^*(X \times Y, \mathcal{E})^{\Delta G, I} < \infty$$

Reduction to distributions

 $\mathcal{S}^*(X) := \mathcal{S}(X)^*$ - space of tempered distributions.

Theorem 3

Let $I \subset \mathcal{U}(\mathfrak{g})$ be a two-sided ideal such that $\mathcal{V}(I) \subset \mathcal{N}(\mathfrak{g}^*)$. Let \mathbf{X}, \mathbf{Y} be $\mathcal{V}(I)$ -spherical \mathbf{G} -manifolds. Let \mathcal{E} be an algebraic vector bundle on $X \times Y$. Let $\mathcal{S}^*(X \times Y, \mathcal{E})^{\Delta G, I}$ denote the space of ΔG -invariant tempered \mathcal{E} -valued distributions on $X \times Y$ annihilated by I. Then

 $\dim \mathcal{S}^*(X \times Y, \mathcal{E})^{\Delta G, I} < \infty$

Proof of Theorem 2.

 $\Xi \subset \mathcal{N}(\mathfrak{g}^*)$, **X** is Ξ -spherical, $\sigma \in \mathcal{M}_{\Xi}$. Need: dim $\operatorname{Hom}_G(\mathcal{S}(X), \sigma) < \infty$. Let \mathcal{E} be a bundle on Y := G/K s.t. $\mathcal{S}(Y, \mathcal{E}) \twoheadrightarrow \sigma$. Let $I := \operatorname{Ann}(\sigma)$. Then $\mathcal{V}(I) \subset \Xi$, and

 $\operatorname{Hom}_{G}(\mathcal{S}(X), \sigma) \hookrightarrow \operatorname{Hom}_{G}(\mathcal{S}(X), \mathcal{S}(Y, \mathcal{E}))^{I} \hookrightarrow \mathcal{S}^{*}(X \times Y, \mathbb{C} \boxtimes \mathcal{E})^{\Delta G, I}$

Theorem 3

Let $I \subset \mathcal{U}(\mathfrak{g})$ be a two-sided ideal such that $\mathcal{V}(I) \subset \mathcal{N}(\mathfrak{g}^*)$. Let \mathbf{X}, \mathbf{Y} be $\mathcal{V}(I)$ -spherical \mathbf{G} -manifolds. Let \mathcal{E} be an algebraic vector bundle on $X \times Y$. Let $\mathcal{S}^*(X \times Y, \mathcal{E})^{\Delta G, I}$ denote the space of ΔG -invariant tempered \mathcal{E} -valued distributions on $X \times Y$ annihilated by I. Then

 $\dim \mathcal{S}^*(X \times Y, \mathcal{E})^{\Delta G, I} < \infty$

- $D_{\mathbf{X}} :=$ sheaf of algebraic differential operators. Gr $D_{\mathbf{X}} \cong \mathcal{O}(T^*\mathbf{X})$.
- For a fin.gen. sheaf M of $D_{\mathbf{X}}$ -modules, SingS(M) := Supp Gr $(M) \subset T^* \mathbf{X}$.
- Bernstein: if $M \neq 0$ then dim SingS $(M) \ge \dim X$.
- *M* is called holonomic if dim SingS(M) = dim X.

Theorem (Bernstein-Kashiwara)

For any holonomic M, dim Hom_{D_X} $(M, S^*(X)) < \infty$.

Theorem 3

Let $I \subset \mathcal{U}(\mathfrak{g})$ be a two-sided ideal such that $\mathcal{V}(I) \subset \mathcal{N}(\mathfrak{g}^*)$. Let \mathbf{X}, \mathbf{Y} be $\mathcal{V}(I)$ -spherical \mathbf{G} -manifolds. Let $\mathcal{S}^*(X \times Y)^{\Delta G, I}$ denote the space of ΔG -invariant tempered distributions on $X \times Y$ annihilated by I. Then

 $\dim \mathcal{S}^*(X \times Y)^{\Delta G, I} < \infty$

- $D_{\mathbf{X}}$:=sheaf of algebraic differential operators. Gr $D_{\mathbf{X}} \cong \mathcal{O}(T^*\mathbf{X})$.
- For a f.gen. sheaf M of $D_{\mathbf{X}}$ -modules, SingS(M) := Supp Gr $(M) \subset T^* \mathbf{X}$.
- *M* is called holonomic if dim $SingS(M) = \dim X$.
- Bernstein-Kashiwara: \forall holonomic M, dim Hom_{D_X} $(M, S^*(X)) < \infty$.

Lemma

Let $\Xi{\subset}\mathcal{N}(\mathfrak{g}^*)$ and let X,Y be $\Xi{\text{-spherical}}~\textbf{G}{\text{-manifolds}}.$ Then

$$\dim \mu_{{f X} imes {f Y}}^{-1}(\Xi \cap (\Delta \mathfrak{g})^{\perp}) \leq \dim {f X} + \dim {f Y}$$

Proof of Theorem 3.

 $M := D_{\mathbf{X} \times \mathbf{Y}}$ -module with $\mathcal{S}^*(X \times Y)^{\Delta G, I} \hookrightarrow \operatorname{Hom}(M, \mathcal{S}^*(X, Y))$. By the lemma, M is holonomic.

Lemma

Let $\Xi{\subset}\mathcal{N}(\mathfrak{g}^*)$ and let X,Y be $\Xi{\text{-spherical }\textbf{G}{\text{-manifolds.}}}$ Then

$$\dim \mu_{\mathbf{X} \times \mathbf{Y}}^{-1}(\Xi \cap (\Delta \mathfrak{g})^{\perp}) \leq \dim \mathbf{X} + \dim \mathbf{Y}$$

Proof.

 $\forall \text{ orbit } \mathbf{O} {\subset} \Xi \text{ we have }$

$$\dim \mu_{\mathbf{X} \times \mathbf{Y}}^{-1}((\mathbf{0} \times \mathbf{0}) \cap (\Delta \mathfrak{g})^{\perp}) = \dim \mu_{\mathbf{X}}^{-1}(\mathbf{0}) + \dim \mu_{\mathbf{Y}}^{-1}(\mathbf{0}) - \dim \mathbf{0} \le \dim \mathbf{X} + \dim \mathbf{0}/2 + \dim \mathbf{Y} + \dim \mathbf{0}/2 - \dim \mathbf{0} = \dim \mathbf{X} + \dim \mathbf{Y}$$

Classical: \forall parabolic $\mathfrak{p}\subset\mathfrak{g}$, \forall orbit $\mathbf{O}\subset\overline{\mathbf{O}_{\mathbf{P}}}$, dim $\mathfrak{p}^{\perp}\cap\mathbf{O}\leq$ dim $\mathbf{O}/2$.

Lemma

Let **P** act on **X** and $\mathbf{S} := \mu_{\mathbf{P},\mathbf{X}}^{-1}(\{0\})$. Then the following are equivalent:

- P has finitely many orbits on X.
- S ⊂ T*X is a Lagrangian subvariety.
- im $S \leq \dim X$

Proof.

 $\mathbf{S} =$ union of conormal bundles to orbits.

If
$$\mathbf{G} \supset \mathbf{P}$$
 acts on \mathbf{X} , $\mu_{\mathbf{P},\mathbf{X}} : \mathcal{T}^*\mathbf{X} \to \mathfrak{g}^* \to \mathfrak{p}^*$, and
 $\mathbf{S} = \mu_{\mathbf{P},\mathbf{X}}^{-1}(\{0\}) = \mu_{\mathbf{G},\mathbf{X}}^{-1}(\mathfrak{p}^{\perp}).$

Theorem 4 (Strengthening of Theorem 1)

Let $P \subset G$ be a parabolic subgroup, and $O_P \subset \mathcal{N}(\mathfrak{g}^*)$ be its Richardson orbit. Then the following are equivalent:

- **●** *P* has finitely many orbits on **X**.
- **(**) $\forall \mathbf{O} \subset \overline{\mathbf{O}_{\mathbf{P}}}, \Gamma_{\mathbf{O}} := \{(x, -\mu(x)) \in T^*(X) \times \mathfrak{g}^* \mid \mu(x) \in \mathbf{O}\} \text{ is an isotropic subvariety of } T^*(\mathbf{X}) \times \mathbf{O}.$
- X is O_P-spherical.

Proof of (i) \Rightarrow (ii).

Let $\nu : T^*(\mathbf{G}/\mathbf{P}) \to \mathfrak{g}^*$. Let $\mathbf{T}_{\mathbf{O}} \subset T^*\mathbf{X} \times T^*(\mathbf{G}/\mathbf{P})$ denote the preimage of $\Gamma_{\mathbf{O}}$ under $\mathrm{Id} \times \nu$. Enough to prove that $\mathbf{T}_{\mathbf{O}}$ is isotropic.

 $T_{\mathbf{0}} \subset T := \{ (x, y) \in T^* \mathbf{X} \times T^* (\mathbf{G}/\mathbf{P}) \mid \mu(x) = -\nu(y) \} = (\mu \times \nu)^{-1} (\Delta \mathfrak{g})^{\perp}$

where $(\Delta \mathfrak{g})^{\perp} \subset (\mathfrak{g} \times \mathfrak{g})^*$. Thus $\mathbf{T} = \mu_{\Delta \mathbf{G}}^{-1}(\{0\})$, where

$$\mu_{\Delta \mathbf{G}}: \mathcal{T}^*(\mathbf{X} \times \mathbf{G}/\mathbf{P}) \to (\mathfrak{g} \times \mathfrak{g})^*.$$

 $|\textbf{P} \backslash \textbf{G}| < \infty \Rightarrow |(\textbf{X} \times \textbf{G} / \textbf{P}) / \textbf{\Delta}\textbf{G}| < \infty \Rightarrow \textbf{T} \text{ is Lagrangian}.$

 $|\mathbf{P} \setminus \mathbf{X}| < \infty \iff \dim \mathbf{S} \le \dim \mathbf{X} \iff \mathbf{S} \text{ is Lagrangian.}$

Proof of (iii) \Rightarrow (i), *i.e.* **X** is $\overline{\mathbf{O}_{\mathbf{P}}}$ -spherical $\Rightarrow |\mathbf{P} \setminus \mathbf{G}| < \infty$.

Let $\mathbf{S} := \mu^{-1}(\mathfrak{p}^{\perp}) = \mu_{\mathbf{P},\mathbf{X}}^{-1}(\{0\})$. Then $|\mathbf{P}\setminus\mathbf{X}| < \infty \iff \dim \mathbf{S} \le \dim \mathbf{X}$. Further, $\dim \mathbf{S} = \max_{\mathbf{O} \subset \overline{\mathbf{O}_{\mathbf{P}}}} \dim \mu^{-1}(\mathfrak{p}^{\perp} \cap \mathbf{O})$. $\forall \mathbf{O} \subset \overline{\mathbf{O}_{\mathbf{P}}}$ we have

$$\dim \mu^{-1}(\mathfrak{p}^{\perp} \cap \mathbf{O}) = \dim \mu^{-1}(\mathbf{O}) + \dim \mathfrak{p}^{\perp} \cap \mathbf{O} - \dim \mathbf{O} \le \\ \le \dim \mu^{-1}(\mathbf{O}) - \dim \mathbf{O}/2.$$

Thus

 $\dim \mu^{-1}(\mathbf{O}) \leq \dim \mathbf{X} + \dim \mathbf{O}/2 \ \forall \mathbf{O} \subset \overline{\mathbf{O}_{\mathbf{P}}} \Rightarrow \dim \mathbf{S} \leq \dim \mathbf{X}.$

(ii) \Rightarrow (iii): $\Gamma_{\mathbf{0}} = \{(x, -\mu(x)) \in T^*(X) \times \mathfrak{g}^* \mid \mu(x) \in \mathbf{0}\}$ is isotropic, thus $\dim \mu^{-1}(\mathbf{0}) = \dim \Gamma_{\mathbf{0}} \leq (\dim T^*\mathbf{X} + \dim \mathbf{0})/2 = \dim \mathbf{X} + \dim \mathbf{0}/2$ Main geometric questions:

- Give a criterion for \overline{O} -sphericity of X for non-Richardson O.
- What should be the definition of *O*-real spherical *X*?

Further geometric questions:

- Does *O*-spherical $\Rightarrow \overline{O}$ -spherical?
- Does dim O ∩ h[⊥] ≤ dim O/2 imply O ∩ h[⊥] being isotropic in O? Wen-Wei Li: for spherical h, and any O: O ∩ h[⊥] is isotropic in O.
- For $X = U \coprod Z$, when is $X \overline{O}$ -spherical in terms of U and Z?

More questions:

- Can we bound $m_{\sigma}(\mathcal{S}(X))$? Have to use some invariant of σ .
- By Theorem 3, relative characters given by $\mathcal{S}(X) \to \sigma$ and $\mathcal{S}(X) \to \tilde{\sigma}$ for $\mathcal{V}(\operatorname{Ann}(\sigma))$ -spherical **X** are holonomic. Are they regular holonomic? Wen-Wei Li: for spherical **X** they are.
- If G/H is V(Ann(σ))-spherical, is σ^{HC}|_h finitely generated? Holds for real spherical G/H (Aizenbud-G.-Kroetz-Liu, Kroetz-Schlichtkrull).
- Conjecture: Theorem 2 holds over non-archimedean fields as well.

Thank you for your attention!

Examples by I.Karshon

Example ($\overline{\mathbf{O}}$ -spherical **X** for non-Richardson **O**)

$$\begin{split} \mathbf{G} &:= \mathsf{GL}(V) \times \mathsf{GL}(W) \times \mathsf{Sp}(V \otimes W \oplus V^* \otimes W^*), \\ \iota : \mathsf{GL}(V) \times \mathsf{GL}(W) \to \mathsf{Sp}(V \otimes W \oplus V^* \otimes W^*), \ \mathbf{H} := \operatorname{Graph}(\iota) \subset \mathbf{G}. \\ \operatorname{Then} \mathbf{G}/\mathbf{H} \text{ is } \overline{\mathbf{O}_{\operatorname{reg}} \times \mathbf{O}_{\operatorname{reg}} \times \mathbf{O}_{\operatorname{min}}} \text{-spherical.} \end{split}$$

Example (Strict inequality)

W :=symplectic vector space, $\mathbf{G} := \operatorname{Sp}(W) \times \operatorname{Sp}(W \oplus W)$, and

$$\mathbf{H} := \{ (Y, \begin{pmatrix} Y & 0 \\ 0 & Y \end{pmatrix}) \} \subset \mathbf{G}$$

Let $\mathbf{O} := O_{\min} \times O_{\min} \subset \mathfrak{g}^* = \mathfrak{sp}^*(W) \times \mathfrak{sp}^*(W \oplus W)$. Then $\dim \mathfrak{h}^{\perp} \cap \mathbf{O} = \dim W + 1$, while $\dim \mathbf{O} = 3 \dim W$. Thus for $\dim W > 2$ we have $\dim \mathfrak{h}^{\perp} \cap \mathbf{O} < \dim \mathbf{O}/2$ and thus

dim
$$\mu_{\mathbf{G}/\mathbf{H}}^{-1}(\mathbf{O}) < \dim \mathbf{G}/\mathbf{H} + \dim \mathbf{O}/2.$$