Brick varieties, postroids, and Legendrian links

Mikhail Gorsky (joint with Roger Casals, Eugene Gorsky, and José Simental) arXiv: 2012.06931, arXiv:2105.13948

Seminar "Lie groups and invariant theory", MSU, 24.11.2021

Braid groups and braid matrices

Definition

The braid group Br_n and the positive braid monoid $Br_n^+ \subset Br_n$:

• Generators: σ_i , $i \in [1, n-1]$;

Relations:

$$\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}, \qquad \sigma_i \sigma_j = \sigma_j \sigma_i \text{ for } |i-j| \ge 2.$$

Let $z \in \mathbb{C}, i \in [1, n-1]$. The braid matrix $B_i(z) \in GL(n, \mathbb{C}[z])$:

$$B_{i}(z) := \begin{pmatrix} 1 & \cdots & \cdots & 0 \\ \vdots & \ddots & & & \vdots \\ 0 & \cdots & 0 & 1 & \cdots & 0 \\ 0 & \cdots & 1 & z & \cdots & 0 \\ \vdots & & & \ddots & \vdots \\ 0 & \cdots & & \cdots & 1 \end{pmatrix}^{i}$$

Mikhail Gorsky

Braid matrices

Given a positive braid word $\beta = \sigma_{i_1} \cdots \sigma_{i_r} \in Br_n^+$ and $z_1, \ldots, z_r \in \mathbb{C}$, we define the **braid matrix** $B_{\beta}(z_1, \ldots, z_r) \in GL(n, \mathbb{C}[z_1, \ldots, z_r])$ to be the product

$$B_{\beta}(z_1,\ldots,z_r)=B_{i_1}(z_1)\cdots B_{i_r}(z_r).$$

Replace each σ_i by the transposition s_i . This defines a projection $\pi : \operatorname{Br}_n \to S_n$.

Example

 $B_{\beta}(0,\ldots,0)$ is the permutation matrix of $\pi(\beta)$.

Lemma

•
$$B_i(z_1)B_{i+1}(z_2)B_i(z_3) = B_{i+1}(z_3)B_i(z_2-z_1z_3)B_{i+1}(z_1),$$
 (*
 $\forall i \in [1, n-2].$

• $B_i(z_1)B_j(z_2) = B_j(z_2)B_i(z_1)$, for $|i - j| \ge 2$.

э

Half-twist

 $\Delta = (\sigma_1 \sigma_2 \cdots \sigma_{n-1})(\sigma_1 \cdots \sigma_{n-2}) \cdots (\sigma_1 \sigma_2)\sigma_1.$ It is a lift of the longest element $w_0 = (n \ (n-1) \ \dots \ 1) \in S_n.$

$$B_{\Delta}\left(z_{1},\ldots,z_{\binom{n}{2}}\right) = \begin{pmatrix} 0 & 0 & \cdots & 1\\ 0 & \cdots & 1 & z_{1}\\ \vdots & \cdots & \cdots & z_{n-2}\\ 1 & z\binom{n}{2} & \cdots & z_{n-1} \end{pmatrix}.$$

Let $\Delta' \in \operatorname{Br}_n^+$ be *any* positive braid lift of w_0 (half-twist). By (*),

$$B_{\Delta'}\left(z_1,\ldots,z_{\binom{n}{2}}\right) = \begin{pmatrix} 0 & 0 & \ldots & 1 \\ 0 & \ldots & 1 & z_{2,n} \\ \vdots & \cdots & \cdots & z_{n-1,n} \\ 1 & z_{n,2} & \cdots & z_{nn} \end{pmatrix},$$

where the $z_{i,j} \in \mathbb{C}[z_1, \ldots, z_{\binom{n}{2}}]$ are algebraically independent polynomials.

イロン イ理 とくほ とくほ とう

Full twist

Let $\Delta^2 \in \operatorname{Br}_n^+$ represent the **full-twist** braid, i.e. the square of the positive braid lift of $w_0 \in S_n$ to the braid group. Then its braid matrix can be decomposed as

$$B_{\Delta^2}\left(z_1,\ldots,z_{\binom{n}{2}},w_1,\ldots,w_{\binom{n}{2}}\right) = LU = \\ = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ c_{21} & 1 & \cdots & 0 \\ \vdots & \cdots & \ddots & 0 \\ c_{n1} & \cdots & \cdots & 1 \end{pmatrix} \begin{pmatrix} 1 & u_{12} & \cdots & u_{1n} \\ 0 & 1 & \cdots & u_{2n} \\ 0 & \cdots & \ddots & u_{n-1,n} \\ 0 & \cdots & \cdots & 1 \end{pmatrix},$$

where $c_{ij} \in \mathbb{C}[z_1,\ldots,z_{\binom{n}{2}}]$ and $u_{ij} \in \mathbb{C}[w_1,\ldots,w_{\binom{n}{2}}]$ are algebraically independent.

5/36

イロト イポト イヨト イヨ

Definition

Let $\beta = \sigma_{i_1} \cdots \sigma_{i_r} \in Br_n^+$ be a positive braid word. The **braid variety** $X_0(\beta) \subseteq \mathbb{C}^r$ is the affine closed subvariety given by

 $X(\beta) := \{(z_1, \ldots, z_r) : B_{\beta}(z_1, \ldots, z_r) \text{ is upper-triangular}\} \subseteq \mathbb{C}^r$.

Let $\pi \in S_n$ be considered as a permutation matrix. The **braid variety** $X_0(\beta; \pi) \subseteq \mathbb{C}^r$ as

$$X(\beta;\pi) := \{(z_1,\ldots,z_r) : B_{\beta}(z_1,\ldots,z_r)\pi \text{ is upper-triangular}\} \subseteq \mathbb{C}^r$$

It follows from the braid relation (*) that different presentations of the same braid $[\beta] \in Br_n$ yield algebraically isomorphic braid varieties.

•
$$X(\Delta^2) \cong \mathbb{C}^{\binom{n}{2}}$$
.

•
$$X(\Delta; w_0) = \{ pt \}.$$

- [Euler]: Continuants;
- [Stokes]: Study of irregular singularities;
- [Broué-Michel]: Deligne-Lusztig varieties;
- [Deligne]: Braid invariants;

- [Kálmán]: study of Legendrian Contact DGAs (under the name of path matrices);
- [Mellit]: proof of the curious Lefschetz property for character varieties.

A D b 4 A b

^{• · · ·}

Trefoil

Consider $\beta = \sigma_1^3 \in Br_2^+$. Its closure is the (right-handed) trefoil knot. $X(\sigma_1^5) = X_0(\sigma_1^3 \cdot \Delta^2)$ is defined by the condition:

 $B(z_1)B(z_2)B(z_3)B(z_4)B(z_5)$ is upper-triangular.

By rewriting the matrix product, we get

$$X(\sigma_1^3 \cdot \Delta^2) \cong X(\sigma_1^3 \cdot \Delta; w_0) \times \mathbb{C}.$$

 $X(\sigma_1^3 \cdot \Delta; w_0) = \{(z_1, z_2, z_3) \in \mathbb{C}^3 : (z_1 + z_3 + z_1 z_2 z_3) \neq 0\} \subset \mathbb{C}^3.$

This shows that $X(\sigma_1^3 \cdot \Delta; w_0)$ is smooth. We can also write

$$X(\sigma_1^3 \cdot \Delta; w_0) \cong \{(z_1, z_2, z_3, t) : (z_1 + z_3 + z_1 z_2 z_3)t = 1\} \subset \mathbb{C}^3 \times \mathbb{C}^*,$$

so there exists a \mathbb{C}^* -action on $X(\sigma_1^3 \cdot \Delta; w_0)$ whose quotient yields an affine surface.

Torus action

Definition

Let $\beta \in Br_n^+$ of length $r = \ell(\beta)$. The torus action of $(\mathbb{C}^*)^n$ on $\mathbb{C}^{\ell(\beta)}$ is given by

$$(t_1,\ldots,t_n).(z_1,\ldots,z_r):=(c_1z_1,\ldots,c_rz_r), \quad (z_1,\ldots,z_r)\in\mathbb{C}^r,$$

where $c_k = t_{w_k(i_k+1)}t_{w_k(i_k)}^{-1}$, $w_k = s_{i_1} \cdots s_{i_{k-1}}$, and $w = w_{r+1}$ is the permutation corresponding to β . This torus action preserves $X_0(\beta) \subseteq \mathbb{C}^r$ thanks to (*).

 $\begin{array}{l} \mathcal{T} := (\mathbb{C}^*)^n / \mathbb{C}^*_{\textit{diag}} \cong (\mathbb{C}^*)^{n-1}.\\ \mathbb{C}^*_{\textit{diag}} \text{ acts trivially on } X_0(\beta). \text{ This induces the } T\text{-torus action}\\ \mathcal{T} \times X_0(\beta) \to X_0(\beta). \end{array}$

If $[\beta] = [\beta'] \in \operatorname{Br}_n^+$, then there exists an algebraic isomorphism $X_0(\beta) \cong X_0(\beta')$ which is equivariant w.r.t. this torus action.

HOMFLY-PT homology

- With β one can associate a Rouquier complex T_β in the category of complexes of Soergel bimodules.
- Up to homotopy, it depends only on $[\beta]$.
- HOMFLY-PT (= Khovanov-Rozansky) homology of β : HHH(β) := H*(HH*(T_β)).

Theorem (Khovanov-Rozansky)

 $HHH(\beta)$ is, up to shifts in gradings, a topological invariant of the closure of β .

- *a* = 0 part is not a topological invariant. But it is invariant under conjugation, positive (de)stabilization (γ < − > γσ_k, for γ ∈ Br_k), and Reidemester II and III moves.
- Webster-Williamson,..., Mellit, Trinh: $\mathbf{gr}^{W}H_{*,BM}^{T}(X(\beta, w_{0})) = \mathbf{gr}^{W}H_{T}^{*}(X(\beta\Delta) = HHH^{a=n}(\beta\Delta).$
- E. Gorsky-Hogancamp-Mellit-Nakagane: $HHH^{a=n}(\beta \Delta) = HHH^{a=0}(\beta \Delta^{-1}).$

Corollary

 $H^*_T(X(\beta, w_0))$ with its weight filtration is invariant under conjugation and positive (de)stabilization I (and Reidemeister II and III moves) for $\beta \Delta^{-1}$.

Theorem (Casals - E. Gorsky - MG - Simental)

 $X(\beta, w_0)$, up to \mathbb{C}^* factors, is invariant under conjugation and positive (de)stabilization (and Reidemeister II and III moves) for $\beta \Delta^{-1}$.

• [Casals-Ng]: The "pigtail closure" of $\beta \Delta^{-1}$ can be realized as a Legendrian link in \mathbb{R}^3 (with the standard contact structure $\xi_{st} = \ker(dz - ydx)$).

11/36

- [Chekanov,...]: A DGA for any Legendrian link. Generators correspond to crossings, differentials count certain discs.
- Here:
 - *n*² generators in degree 1 (crossings in the pigtail);
 - A generator z_i of degree 0 for each positive crossing;
 - A generator w_j of degree (-1) for each negative crossing.

- Conjugations, positive (de)stabilizations, and Reidemeister II and III moves induce *stable tame isomorphisms* of DGAs A(γ) of braid closures. In particular, they do not change H*(A(γ)).
- [Kálmán] If β is positive, then X(β, w₀) ≅ Spec(H⁰(A(βΔ)).
 (augmentation variety).
- [CGGS] If β is equivalent to a positive braid, then Hⁱ(A(βΔ)) = 0, i ≠ 0 and Spec(H⁰(A(βΔ)) ≅ X/V, where V is a collection of commuting vector fields on X parameterized by negative crossings.

Closed Bott-Samelson varieties and brick manifolds

- (i) Let β = σ_{i1} ··· σ_{iℓ} be a positive braid word. The (closed) Bott-Samelson variety BS(β) ⊆ Fℓℓ+1 associated to β is the moduli space of (ℓ + 1)-tuples of flags (F₀,..., F_ℓ) such that consecutive flags F_{k-1}, F_k coincide or differ only in V_{ik}, for each k ∈ [1, ℓ].
- (ii) Assume that β contains a reduced expression of w_0 as a subword. The **brick manifold** is the intersection

$$\operatorname{brick}(\beta) := \operatorname{\mathsf{BS}}(\beta) \cap p_0^{-1}(\mathcal{F}^{st}) \cap p_\ell^{-1}(\mathcal{F}^{ast}).$$

Warning: These depend on the word β , not only on the braid [β].

Theorem (Escobar)

brick(β) is smooth, irreducible and of dimension $\ell - \binom{n}{2}$.

Open Bott-Samelson varieties and brick manifolds

- (i) Let $\beta = \sigma_{i_1} \cdots \sigma_{i_\ell}$ be a positive braid word. The open
- Bott-Samelson variety $OBS(\beta) \subseteq \mathcal{F}\ell^{\ell+1}$ associated to β is the moduli space of $(\ell + 1)$ -tuples of flags $(\mathcal{F}_0, \ldots, \mathcal{F}_\ell)$ such that consecutive flags $\mathcal{F}_{k-1}, \mathcal{F}_k$ are in relative position s_{i_k} (i.e. differ precisely in V_{i_k}), for each $k \in [1, \ell]$.
- (ii) Assume that β contains a reduced expression of w_0 as a subword. The **open brick manifold** is the intersection

 $\mathsf{brick}(\beta)^{\circ} := \mathsf{brick}(\beta) \cap \mathsf{OBS}(\beta).$

[Broué-Michel, Deligne,...] These depend only on the braid [β] !!!

Theorem (Escobar)

• brick(β) = \coprod brick(β')°, for β' subwords of β containing w_0 .

 The adjacency of the strata is described by the dual subword complex of (β, w₀) introduced by [Knutson-Miller]. brick(β)° is the unique top dimensional stratum. Bott-Samelson varieties are Hamiltonian symplectic manifolds with respect to the natural action of $(\mathbf{C}^*)^{n-1}$.

Escobar: the image of $brick(\beta)$ under the corresponding moment map is a *brick polytope* of β [Pilaud-Stump].

brick(β) is a toric variety of this polytope with respect to this torus action if and only if the word β is *root independent*.

[Pilaud-Stump]: The brick polytope of a root independent word β realizes its spherical subword complex; this is not true for an arbitrary braid word β .

Theorem (CGGS)

Let $\beta = \sigma_{i_1} \cdots \sigma_{i_\ell} \in \operatorname{Br}_n$ be a positive braid word, $\vartheta \in \mathcal{B}_n$ its opposite braid word, $\delta(\vartheta)$ its Demazure product, and consider the truncations $\beta_j := \sigma_{i_1} \cdots \sigma_{i_j}, j \in [1, \ell]$. The following holds:

(i) The algebraic map

 $\Theta: \boldsymbol{C}^{\ell} \longrightarrow \mathcal{F}\ell_n^{\ell+1}, \quad (z_1, \ldots, z_{\ell}) \mapsto (\mathcal{F}^{st}, \mathcal{F}^1, \ldots, \mathcal{F}^{\ell}),$

where \mathcal{F}^{j} is the flag associated to the matrix $B_{\beta_{j}}^{-1}(z_{\ell-j+1}, \ldots, z_{\ell})$, restricts to an isomorphism

$$\Theta: X(\wr; \delta(\beta)) \stackrel{\cong}{\longrightarrow} \mathsf{brick}^{\circ}(\beta),$$

of affine varieties. It is compatible with the torus actions.

(ii) Suppose that the Demazure product of δ is δ(δ) = w₀. Then, the complement to X(δ; w₀) in brick(β) is a normal crossing divisor. Its components correspond to all possible ways to remove a letter from δ while preserving its Demazure product.

Consider the equivalent braid words

$$\beta_1 = \sigma_1 \sigma_2 \sigma_1 \sigma_2 \sigma_1, \quad \beta_2 = \sigma_1 \sigma_2 \sigma_2 \sigma_1 \sigma_2.$$

In both cases, the braid varieties are algebraic tori

$$X(\mathfrak{A}_1; w_0) \cong X(\mathfrak{A}_2; w_0) \cong (\mathbf{C}^*)^2.$$

The variety $brick(\beta_1)$ has

- $X(\beta_1; w_0)$ as an open stratum;
- 5 strata of codim 1 (isomorphic to C*);
- 5 strata of codim 2 (points).

 $brick(\beta_1)$ is a toric degree 5 del Pezzo surface, i.e. the toric variety associated to the pentagon, and these various strata correspond to toric orbits.

For brick(β_2), $X(\sigma_1 \sigma_2^3; w_0)$ is empty, so there can only be four codimension 1 strata and four codimension 2 strata:

 $\operatorname{brick}(\beta_2) \cong \mathbf{P}^1 \times \mathbf{P}^1.$

At least in the toric case, all such compactifications of $X(\beta; w_0)$ are related by of blow-up sand blow-downs, corresponding to braid moves,

The flag variety admits the *Schubert decomposition* and the *opposite Schubert decomposition*. The strata in either of them are parameterized by permutations: \hat{X}_w , resp. \hat{X}^w .

An open Richardson variety $\mathcal{R}^{\circ}(u, w)$ is the intersection $X_{w} \cap X^{u}$.

 $R^{\circ}(u, w) \neq \emptyset$ if and only if $u \leq w$ in the Bruhat order.

Theorem (Brion, Knutson-Lam-Speyer, Balan, Escobar, CGGS)

Let $u, w \in S_n$ be such that $u \le w$ in Bruhat order, and $\beta(w), \beta(u^{-1}w_0) \in \operatorname{Br}_n$ positive lifts of $w, u^{-1}w_0$. Then we have an isomorphism of affine algebraic varities

 $X(\beta(w)\beta(u^{-1}w_0);w_0)\cong \mathcal{R}^{\circ}(u,w).$

18/36

Positroids

The Grassmannian Gr(k, n) admits a stratification by **open positroid** varieties. They have many different desriptions/parameterization by various combinatorial pieces of data (Postnikov, KLS):

- A cyclic rank matrix;
- A juggling pattern;
- A decorated affine permutation;
- $u, w \in S_n$ s. t. $u \le w$ and w is k-Grassmannian;
- A reduced plabic graph;
- . . .

Theorem (KLS)

For each $u, w \in S_n$ s. t. $u \le w$ and w is k-Grassmannian, the positroid $\Pi_{u,w}$ is isomorphic to the open Richardson variety $\mathcal{R}^{\circ}(u, w)$.

Corollary

Open positroid varieties are braid varieties.

Positroid links

In fact, we associate various Legendrian links to the combinatorial pieces of data defining positroids:

Theorem

Let $u, w \in S_n$ with $u \le w$ in Bruhat order, w a k-Grassmannian permutation, $R_n(u, w) = \beta(u)\beta(w)^{-1}$ and $f := u^{-1}t_k w$ the corresponding k-bounded affine permutation. Then we have

$$\Pi_{u,w} \cong X(R_n(u,w)\Delta_n)/V \cong X(\beta(w)\beta(u^{-1}w_{0,n});w_{0,n}) \cong$$

$$X(J_k(f); w_{0,k}) \times (\mathbb{C}^*)^{n-s-k}$$

- The braid varieties $X(s_i\beta; w_0)$ and $X(\beta s_{n-i}; w_0)$ are isomorphic (invariance by conjugation).
- This easily implies that the centralizer of β acts on $X(\beta \Delta; w_0)$ by automorphisms.
- It is clear that the relations between different γ yield the same relations between the automorphisms.
- [Fraser]: There is a natural braid group action on the top positroid cell. [Fraser-Keller, in preparation]: This generalizes to all positroids.
- Expectation: this is the same action, for certain braids on the last slide.

Toric charts

Consider the positive braid word $\beta = \beta_1 \sigma_i \beta_2$ and $\beta' = \beta_1 \beta_2$, with σ_i on the *r*-th place in β .

Lemma

There exists a rational map

$$\Omega_{\sigma_i}: X(\beta, \delta(\beta)) \dashrightarrow X(\beta', \delta(\beta)) \times \mathbb{C}^*$$

which restricts to an isomorphism between the open locus $\{z_r \neq 0\} \subseteq X(\beta, \delta(\beta))$ and $X(\beta', \delta(\beta)) \times \mathbb{C}^*$.

Proposition

Let $\beta \in Br_n^+$. For each ordering $\tau(\beta) \in S_{\ell(\beta)}$ of the crossings of β , there exists an open set $T_{\tau(\beta)} \subseteq X(\beta \cdot \Delta; w_0)$ which is isomorphic to a torus $(\mathbb{C}^*)^{\ell(\beta)}$ and stable under the $(\mathbb{C}^*)^{n-1}$ -action on $X(\beta \cdot \Delta; w_0)$.

Theorem (Gao-Shen-Weng)

 $X_0(\beta \cdot \Delta; w_0)$ is a cluster variety: it has a special atlas of toric charts called cluster charts. Birational transition functions have very special form of cluster mutations.

We also stratify $X_0(\beta; w_0)$ by strata described via certain planar diagrams (**weaves**). The diagrammatics resembles Soergel calculus, but takes mutations into account.

Theorem

The complement

$$X_0(eta \cdot \Delta; w_0) \setminus \left(\bigcup_{ au(eta) \in S_{\ell(eta)}} T_{ au(eta)}
ight) \subseteq X_0(eta \cdot \Delta; w_0)$$

has codimension at least 2. It can be stratified into $(\mathbb{C})^a\times (\mathbb{C}^*)^b$ using

weaves.

Mikhail Gorsky

Examples of weaves

Left: A 3-weave from $\beta_2 = (\sigma_1 \sigma_2)^4 \sigma_1 \in \operatorname{Br}_3^+$ to $\beta_1 = \sigma_2 \sigma_1 \sigma_2 \in Br_3^+$. The blue color indicates a transposition label $s_1 \in S_3$ and the red color indicates the transposition label $s_2 \in S_3$. Right: A 2-weave from $\beta_2 = \sigma_1^{16} \in \operatorname{Br}_2^+$ to $\beta_1 = \sigma_1^2 \in \operatorname{Br}_2^+$, all black edges are labeled with the unique transposition $s_1 \in S^2$.

24/36

Our diagrammatic calculus resembles Soergel calculus of Elias, Elias-Khovanov, Elias-Williamson...

The crucial difference is that two weaves $sss \rightarrow s$ are not considered to be equivalent: the are related by a mutation:

All edges are oriented in the direction $(ss)s \rightarrow s(ss)$. This a Hasse graph of the Tamari lattice.

For trees with (n + 1) leaves, the graph is the 1-skeleton of a polytope: the (n - 1)-dimensional associahedron.

A D b 4 A b

Weaves $s_1s_2s_1s_2s_1s_2s_1s_2s_2 \rightarrow s_2s_1s_2$ with only 6-valent vertices $s_1s_2s_1 \rightarrow s_2s_1s_2$ and 3-valent vertices $s_2s_2 \rightarrow s_2$ allowed represent monotone paths from the top vertex to the bottom vertex. The mutation graph is a pentagon!

Conjecture

 $T_{\tau(\beta)}$ are the cluster charts. Mutations correspond to mutations of weaves (proved in typed D by Hughes, some evidence in finite and affine types by An-Bae-Lee).

Theorem

Equivalent weaves give rise to the same toric chart.

Big positroid cell in Gr(2,5), up to a torus:

- $X_0(\sigma_1\sigma_1\sigma_1\cdot\Delta, w_0)$ in Br₂;
- $X_0(\sigma_1\sigma_2\sigma_1\sigma_2\cdot\Delta, w_0)$ in Br₃.

For each of these braids, the closure is the trefoil knot. The augmentation varieties depend only on the link, so they are isomorphic (up to the choice of marked points/torus actions). These varieties are both of cluster type A_2 . The mutation graph is the pentagon, so we recover all clusters via weaves.

28/36

(a) $R_6(1, w_4)\Delta_6$ for the shuffle braid $R_6(1, w_4) = \beta(w_4) = (\sigma_4\sigma_3\sigma_2\sigma_1)(\sigma_5\sigma_4\sigma_3\sigma_2) \in$ Br₆⁺. Here w_4 is the maximal 4-Grassmannian permutation in S_6 .

(b) $J_4(f)$ for the (4, 2) torus braid $(\sigma_3 \sigma_2 \sigma_1)^2 \in Br_4^+$.

Conjecture

- The coordinate ring of any braid variety X(η) admits a structure of a cluster algebra.
- The exchange type of the mutable part of its defining quiver is preserved under Reidemeister II moves, Reidemeister III moves and Δ-conjugations of the braid word η. In addition, each such move gives rise to a quasi-cluster transformation.
- A positive stabilization adds one frozen vertex to the defining quiver, and a positive destabilization specializes one frozen variable to 1.
- The 2-forms considered by Mellit are Gekhtman-Shapiro-Vainstein forms for such cluster structures.

Partially known for GSW varieties $X(\beta \cdot \Delta, w_0)$, open Richardson varieties, open positroid varieties. Deodhar stratifications of open Richardson varieties correspond to certain weaves.

30/36

Brick manifolds, spherical subword complexes, Soergel calculus are well-defined beyond the type A.

Conjecture

The coordinate ring of any open brick variety $brick^{\circ}(\eta)$ in any type admits a structure of a cluster algebra. A version of the weave calculus can be developed for all types. Demazure weaves give cluster charts.

Partially proved for analogues of Gao-Shen-Weng varieties (half-decorated double Bott-Samelson cells) by [Shen-Weng], for open Richardson varieties in types ADE [Leclerc, Ménard, Keller-Cao; Ingermanson].

References

• Our works:

R. Casals, E. Gorsky, MG, J. Simental. *Algebraic weaves and braid varieties*. arXiv:2012.06931.

R. Casals, E. Gorsky, MG, J. Simental. *Positroid links and braid varieties*. arXiv:2105.13948.

• A brief survey:

E. Gorsky, O. Kivinen, J. Simental. *Algebra and geometry of link homology* (Section 4). arXiv:2108.10356.

• Several constructions of Bott-Samelson varieties:

P. Magyar. *Schubert polynomials and Bott-Samelson varieties*. Comment. Math. Helv. 73, 603–636 (1998).

• Comparison between braid varieties and various other varieties (and stacks) in the literature (including those considered by Lusztig):

M.-T. Trinh. *From the Hecke category to the unipotent locus* (Appendix B). arXiv:2106.07444.

References II

• Brick manifolds/varieties:

L. Escobar. *Brick manifolds and toric varieties of brick polytopes*, Electron. J. Combin., 23(2):Paper 2.25, 18, 2016.

 Further works on resolutions of Richardson varieties:
 M. Balan. Standard monomial theory for desingularized Richardson varieties in the flag variety GL(n)/B.
 Transformation Groups, 18(2):329–359, 2013.

A. Knutson, T. Lam, and D. E Speyer. *Projections of Richardson varieties*. Journal für die reine und angewandte Mathematik (Crelles Journal), 2014(687):133–157, 2014. (Appendix A).

• Main motivation for all of them:

M. Brion. *Lectures on the geometry of flag varieties*. In Topics in cohomological studies of algebraic varieties, pages 33–85. Springer, 2005.

33/36

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 Some relevant works on cluster structures and their categorifications:

B. Leclerc. *Cluster structures on strata of flag varieties. Advances in Mathematics*, 300:190–228, 2016.

J. S Scott. *Grassmannians and cluster algebras*. Proceedings of the London Mathematical Society, 92(2):345–380, 2006.

K. Serhiyenko, M. Sherman-Bennett, and L. Williams. *Cluster structures in Schubert varieties in the Grassmannian*. Proceedings of the London Mathematical Society, 119(6):1694–1744, 2019.

P. Galashin, T. Lam. *Positroid varieties and cluster algebras*. To appear in Ann. Sci. Éc. Norm. Supér. arXiv:1906.03501, 2019.

C. Fraser, M. Sherman-Bennett. *Positroid cluster structures from relabeled plabic graphs*. arXiv:2006.10247, 2020.

Mikhail Gorsky

Brick varieties, positroids, and links

• Further relevant works on cluster structures and their categorifications:

Grace Ingermanson. *Cluster algerbras of open Richardson varieties*. Ph.D. Thesis, University of Michigan, 2019.

E. Ménard. *Algèbres amassées associées aux variétés de Richardson ouvertes: un algorithme de calcul de graines initiales*. Theses, ComUE Normandie Université, March 2021.

B.T. Jensen, A. King, X. Su, *A categorification of Grassmannian cluster algebras*, Proc. L.M.S. 113 (2016) 185–212

K. Baur, A.D. King, R.J. Marsh, *Dimer models and cluster categories of Grassmannians*, Proc. L.M.S. 113 (2016) 213–260

I. Çanakçi, A. King, M. Pressland. *Perfect matching modules, dimer partition functions and cluster characters.* arXiv:2106.15924

Mikhail Gorsky

Moscow, 24.11.2021 35/36

Varieties X₀(βΔ; w₀) (double Bott-Samelson cells):
 L. Shen, D. Weng. Cluster structures on double
 Bott-Samelson cells. Forum of Mathematics, Sigma, 9 E66.

H. Gao, L. Shen, D. Weng. *Augmentations, fillings, and clusters*. arXiv:2008.10793, 2020.

 Mellit's work on the curious Lefschetz property:
 A. Mellit. *Cell decompositions of character varieties.* arXiv:1905.10685, 2019.

A (10) A (10) A (10)