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Braid groups and braid matrices

Definition
The braid group Brn and the positive braid monoid Br+n ⊂ Brn:

Generators: σi , i ∈ [1,n − 1];
Relations:

σiσi+1σi = σi+1σiσi+1, σiσj = σjσi for |i − j | ≥ 2.

Let z ∈ C, i ∈ [1,n − 1]. The braid matrix Bi(z) ∈ GL(n,C[z]) :

Bi(z) :=



1 · · · · · · 0
...

. . .
...

0 · · · 0 1 · · · 0
0 · · · 1 z · · · 0
...

. . .
...

0 · · · · · · 1


i

i+1
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Braid matrices

Given a positive braid word β = σi1 · · ·σir ∈ Br+n and z1, . . . , zr ∈ C, we
define the braid matrix Bβ(z1, . . . , zr ) ∈ GL(n,C[z1, . . . , zr ]) to be the
product

Bβ(z1, . . . , zr ) = Bi1(z1) · · ·Bir (zr ).

Replace each σi by the transposition si . This defines a projection
π : Brn → Sn.

Example
Bβ(0, . . . ,0) is the permutation matrix of π(β).

Lemma
Bi(z1)Bi+1(z2)Bi(z3) = Bi+1(z3)Bi(z2 − z1z3)Bi+1(z1), (⋆)
∀i ∈ [1,n − 2].
Bi(z1)Bj(z2) = Bj(z2)Bi(z1), for |i − j | ≥ 2.
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Half-twist

∆ = (σ1σ2 · · ·σn−1)(σ1 · · ·σn−2) · · · (σ1σ2)σ1. It is a lift of the longest
element w0 = (n (n − 1) . . . 1) ∈ Sn.

B∆

(
z1, . . . , z(n

2)

)
=


0 0 ... 1
0 ... 1 z1
... ··· ··· zn−2
1 z(n

2)
··· zn−1

.

Let ∆′ ∈ Br+n be any positive braid lift of w0 (half-twist). By (⋆),

B∆′

(
z1, . . . , z(n

2)

)
=


0 0 ... 1
0 ... 1 z2,n

... ··· ··· zn−1,n
1 zn,2 ··· znn

,

where the zi,j ∈ C[z1, . . . , z(n
2)
] are algebraically independent

polynomials.
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Full twist

Let ∆2 ∈ Br+n represent the full-twist braid, i.e. the square of the
positive braid lift of w0 ∈ Sn to the braid group. Then its braid matrix
can be decomposed as

B∆2

(
z1, . . . , z(n

2)
,w1, . . .w(n

2)

)
= LU =

=


1 0 . . . 0

c21 1 . . . 0
... · · · . . . 0

cn1 · · · · · · 1




1 u12 . . . u1n
0 1 . . . u2n

0 · · · . . . un−1,n
0 · · · · · · 1

 ,

where cij ∈ C[z1, . . . , z(n
2)
] and uij ∈ C[w1, . . . ,w(n

2)
] are algebraically

independent.
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Braid varieties

Definition
Let β = σi1 · · ·σir ∈ Br+n be a positive braid word. The braid variety
X0(β) ⊆ Cr is the affine closed subvariety given by

X (β) := {(z1, . . . , zr ) : Bβ(z1, . . . , zr ) is upper-triangular} ⊆ Cr .

Let π ∈ Sn be considered as a permutation matrix. The braid variety
X0(β;π) ⊆ Cr as

X (β;π) := {(z1, . . . , zr ) : Bβ(z1, . . . , zr )π is upper-triangular} ⊆ Cr .

It follows from the braid relation (⋆) that different presentations of the
same braid [β] ∈ Brn yield algebraically isomorphic braid varieties.

X (∆2) ∼= C(
n
2).

X (∆;w0) = {pt}.
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Appearances of braid matrices and braid varieties

[Euler]: Continuants;
[Stokes]: Study of irregular singularities;
[Broué-Michel]: Deligne-Lusztig varieties;
[Deligne]: Braid invariants;
· · ·
[Kálmán]: study of Legendrian Contact DGAs (under the name of
path matrices);
[Mellit]: proof of the curious Lefschetz property for character
varieties.
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Trefoil

Consider β = σ3
1 ∈ Br+2 . Its closure is the (right-handed) trefoil knot.

X (σ5
1) = X0(σ

3
1 ·∆2) is defined by the condition:

B(z1)B(z2)B(z3)B(z4)B(z5) is upper-triangular.

By rewriting the matrix product, we get

X (σ3
1 ·∆2) ∼= X (σ3

1 ·∆;w0)× C.

X (σ3
1 ·∆;w0) = {(z1, z2, z3) ∈ C3 : (z1 + z3 + z1z2z3) ̸= 0} ⊂ C3.

This shows that X (σ3
1 ·∆;w0) is smooth. We can also write

X (σ3
1 ·∆;w0) ∼= {(z1, z2, z3, t) : (z1 + z3 + z1z2z3)t = 1} ⊂ C3 ×C∗,

so there exists a C∗-action on X (σ3
1 ·∆;w0) whose quotient yields an

affine surface.
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Torus action

Definition

Let β ∈ Br+n of length r = ℓ(β). The torus action of (C∗)n on Cℓ(β) is
given by

(t1, . . . , tn).(z1, . . . , zr ) := (c1z1, . . . , cr zr ), (z1, . . . , zr ) ∈ Cr ,

where ck = twk (ik+1)t
−1
wk (ik )

, wk = si1 · · · sik−1 , and w = wr+1 is the
permutation corresponding to β.
This torus action preserves X0(β) ⊆ Cr thanks to (⋆).

T := (C∗)n/C∗
diag

∼= (C∗)n−1.
C∗

diag acts trivially on X0(β). This induces the T -torus action
T × X0(β) → X0(β).

If [β] = [β′] ∈ Br+n , then there exists an algebraic isomorphism
X0(β) ∼= X0(β

′) which is equivariant w.r.t. this torus action.
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HOMFLY-PT homology

With β one can associate a Rouquier complex Tβ in the category
of complexes of Soergel bimodules.
Up to homotopy, it depends only on [β].

HOMFLY-PT (= Khovanov-Rozansky) homology of β :
HHH(β) := H∗(HH∗(Tβ)).

Theorem (Khovanov-Rozansky)
HHH(β) is, up to shifts in gradings, a topological invariant of the
closure of β.

a = 0 part is not a topological invariant. But it is invariant under
conjugation, positive (de)stabilization (γ < − > γσk , for γ ∈ Brk ),
and Reidemester II and III moves.
Webster-Williamson,. . . , Mellit, Trinh:
grW HT

∗,BM(X (β,w0)) = grW H∗
T (X (β∆) = HHHa=n(β∆).

E. Gorsky-Hogancamp-Mellit-Nakagane:
HHHa=n(β∆) = HHHa=0(β∆−1).
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Markov theorem for braid varieties

Corollary
H∗

T (X (β,w0)) with its weight filtration is invariant under conjugation and
positive (de)stabilization l (and Reidemeister II and III moves) for β∆−1.

Theorem (Casals - E. Gorsky - MG - Simental)
X (β,w0), up to C∗ factors, is invariant under conjugation and positive
(de)stabilization (and Reidemeister II and III moves) for β∆−1.

[Casals-Ng]: The “pigtail closure” of β∆−1 can be realized as a
Legendrian link in R3 (with the standard contact structure
ξst = ker(dz − ydx)).
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[Chekanov,...]: A DGA for any Legendrian link. Generators
correspond to crossings, differentials count certain discs.
Here:

n2 generators in degree 1 (crossings in the pigtail);
A generator zi of degree 0 for each positive crossing;
A generator wj of degree (-1) for each negative crossing.

Conjugations, positive (de)stabilizations, and Reidemeister II and
III moves induce stable tame isomorphisms of DGAs A(γ) of braid
closures. In particular, they do not change H∗(A(γ)).
[Kálmán] If β is positive, then X (β,w0) ∼= Spec(H0(A(β∆)).
(augmentation variety).
[CGGS] If β is equivalent to a positive braid, then
H i(A(β∆)) = 0, i ̸= 0 and Spec(H0(A(β∆)) ∼= X/V , where V is a
collection of commuting vector fields on X parameterized by
negative crossings.
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Closed Bott-Samelson varieties and brick manifolds

(i) Let β = σi1 · · ·σiℓ be a positive braid word. The (closed)
Bott-Samelson variety BS(β) ⊆ Fℓℓ+1 associated to β is the
moduli space of (ℓ+ 1)-tuples of flags (F0, . . . ,Fℓ) such that
consecutive flags Fk−1,Fk coincide or differ only in Vik , for each
k ∈ [1, ℓ].

(ii) Assume that β contains a reduced expression of w0 as a subword.
The brick manifold is the intersection

brick(β) := BS(β) ∩ p−1
0 (Fst) ∩ p−1

ℓ (Fast).

Warning: These depend on the word β, not only on the braid [β].

Theorem (Escobar)
brick(β) is smooth, irreducible and of dimension ℓ−

(n
2

)
.
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Open Bott-Samelson varieties and brick manifolds

(i) Let β = σi1 · · ·σiℓ be a positive braid word. The open
Bott-Samelson variety OBS(β) ⊆ Fℓℓ+1 associated to β is the
moduli space of (ℓ+ 1)-tuples of flags (F0, . . . ,Fℓ) such that
consecutive flags Fk−1,Fk are in relative position sik (i.e. differ
precisely in Vik ), for each k ∈ [1, ℓ].

(ii) Assume that β contains a reduced expression of w0 as a subword.
The open brick manifold is the intersection

brick(β)◦ := brick(β) ∩ OBS(β).

[Broué-Michel, Deligne,...] These depend only on the braid [β] !!!

Theorem (Escobar)
brick(β) =

∐
brick(β′)◦, for β′ subwords of β containing w0.

The adjacency of the strata is described by the dual subword
complex of (β,w0) introduced by [Knutson-Miller]. brick(β)◦ is the
unique top dimensional stratum.
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Torus actions and moment polytopes

Bott-Samelson varieties are Hamiltonian symplectic manifolds with
respect to the natural action of (C∗)n−1.

Escobar: the image of brick(β) under the corresponding moment map
is a brick polytope of β [Pilaud-Stump].

brick(β) is a toric variety of this polytope with respect to this torus
action if and only if the word β is root independent.

[Pilaud-Stump]: The brick polytope of a root independent word β
realizes its spherical subword complex; this is not true for an arbitrary
braid word β.
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Theorem (CGGS)
Let β = σi1 · · ·σiℓ ∈ Brn be a positive braid word, β∈ Bn its opposite
braid word, δ( β) its Demazure product, and consider the truncations
βj := σi1 · · ·σij , j ∈ [1, ℓ]. The following holds:
(i) The algebraic map

Θ : Cℓ −→ Fℓℓ+1
n , (z1, . . . , zℓ) 7→ (Fst,F1, . . . ,F ℓ),

where F j is the flag associated to the matrix B−1
βj
(zℓ−j+1, . . . , zℓ),

restricts to an isomorphism

Θ : X ( β; δ(β))
∼=−→ brick◦(β),

of affine varieties. It is compatible with the torus actions.
(ii) Suppose that the Demazure product of βis δ( β) = w0. Then, the

complement to X ( β;w0) in brick(β) is a normal crossing divisor. Its
components correspond to all possible ways to remove a letter
from βwhile preserving its Demazure product.
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Consider the equivalent braid words

β1 = σ1σ2σ1σ2σ1, β2 = σ1σ2σ2σ1σ2.

In both cases, the braid varieties are algebraic tori

X ( β1;w0) ∼= X ( β2;w0) ∼= (C∗)2.

The variety brick(β1) has
X (β1;w0) as an open stratum;
5 strata of codim 1 (isomorphic to C∗);
5 strata of codim 2 (points).

brick(β1) is a toric degree 5 del Pezzo surface, i.e. the toric variety
associated to the pentagon, and these various strata correspond to
toric orbits.
For brick(β2), X (σ1σ

3
2;w0) is empty, so there can only be four

codimension 1 strata and four codimension 2 strata:
brick(β2) ∼= P1 × P1.
At least in the toric case, all such compactifications of X ( β;w0) are
related by of blow-up sand blow-downs, corresponding to braid moves.
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Open Richardson varieties

The flag variety admits the Schubert decomposition and the opposite
Schubert decomposition. The strata in either of them are

parameterized by permutations:
◦
X w , resp.

◦
X w .

An open Richardson variety R◦(u,w) is the intersection
◦
X w ∩

◦
X u.

R◦(u,w) ̸= ∅ if and only if u ≤ w in the Bruhat order.

Theorem (Brion, Knutson-Lam-Speyer, Balan, Escobar, CGGS)
Let u,w ∈ Sn be such that u ≤ w in Bruhat order, and
β(w), β(u−1w0) ∈ Brn positive lifts of w ,u−1w0. Then we have an
isomorphism of affine algebraic varities

X (β(w)β(u−1w0);w0) ∼= R◦(u,w).
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Positroids

The Grassmannian Gr(k ,n) admits a stratification by open positroid
varieties. They have many different desriptions/parameterization by
various combinatorial pieces of data (Postnikov, KLS):

A cyclic rank matrix;
A juggling pattern;
A decorated affine permutation;
u,w ∈ Sn s. t. u ≤ w and w is k-Grassmannian;
A reduced plabic graph;
. . .

Theorem (KLS)
For each u,w ∈ Sn s. t. u ≤ w and w is k-Grassmannian, the positroid
Πu,w is isomorphic to the open Richardson variety R◦(u,w).

Corollary
Open positroid varieties are braid varieties.
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Positroid links

In fact, we associate various Legendrian links to the combinatorial
pieces of data defining positroids:

Theorem
Let u,w ∈ Sn with u ≤ w in Bruhat order, w a k-Grassmannian
permutation, Rn(u,w) = β(u)β(w)−1 and f := u−1tkw the
corresponding k-bounded affine permutation. Then we have

Πu,w ∼= X (Rn(u,w)∆n)/V ∼= X (β(w)β(u−1w0,n);w0,n) ∼=

X (Jk (f );w0,k )× (C∗)n−s−k .
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Automorphisms

The braid varieties X (siβ;w0) and X (βsn−i ;w0) are isomorphic
(invariance by conjugation).
This easily implies that the centralizer of β acts on X (β∆;w0) by
automorphisms.
It is clear that the relations between different γ yield the same relations
between the automorphisms.
[Fraser]: There is a natural braid group action on the top positroid cell.
[Fraser-Keller, in preparation]: This generalizes to all positroids.
Expectation: this is the same action, for certain braids on the last slide.
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Toric charts

Consider the positive braid word β = β1σiβ2 and β′ = β1β2, with σi on
the r−th place in β.

Lemma
There exists a rational map

Ωσi : X (β, δ(β)) 99K X (β′, δ(β))× C∗

which restricts to an isomorphism between the open locus
{zr ̸= 0} ⊆ X (β, δ(β)) and X (β′, δ(β))× C∗.

Proposition

Let β ∈ Br+n . For each ordering τ(β) ∈ Sℓ(β) of the crossings of β, there
exists an open set Tτ(β) ⊆ X (β ·∆;w0) which is isomorphic to a torus
(C∗)ℓ(β) and stable under the (C∗)n−1-action on X (β ·∆;w0).
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Toric cluster charts and stratifications

Theorem (Gao-Shen-Weng)
X0(β ·∆;w0) is a cluster variety: it has a special atlas of toric charts
called cluster charts. Birational transition functions have very special
form of cluster mutations.

We also stratify X0(β;w0) by strata described via certain planar
diagrams (weaves). The diagrammatics resembles Soergel calculus,
but takes mutations into account.

Theorem
The complement

X0(β ·∆;w0)\

 ⋃
τ(β)∈Sℓ(β)

Tτ(β)

 ⊆ X0(β ·∆;w0)

has codimension at least 2. It can be stratified into (C)a × (C∗)b using
weaves.
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Examples of weaves

Left: A 3-weave from β2 = (σ1σ2)
4σ1 ∈ Br+3 to β1 = σ2σ1σ2 ∈ Br+3 . The

blue color indicates a transposition label s1 ∈ S3 and the red color
indicates the transposition label s2 ∈ S3.

Right: A 2-weave from β2 = σ16
1 ∈ Br+2 to β1 = σ2

1 ∈ Br+2 , all black
edges are labeled with the unique transposition s1 ∈ S2.

Mikhail Gorsky Brick varieties, positroids, and links Moscow, 24.11.2021 24 / 36



Mutations

Our diagrammatic calculus resembles Soergel calculus of Elias,
Elias-Khovanov, Elias-Williamson...
The crucial difference is that two weaves sss → s are not considered
to be equivalent: the are related by a mutation:
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Tamari lattice

(((s s) s) s)

((s (s s))s) (s((s s) s))

((s s)(s s))

(s (s (s s)))

77

))

//

$$

55

All edges are oriented in the direction (ss)s → s(ss). This a Hasse graph of
the Tamari lattice.
For trees with (n + 1) leaves, the graph is the 1−skeleton of a polytope: the
(n − 1)-dimensional associahedron.
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Weaves s1s2s1s2s1s2s2 → s2s1s2 with only 6-valent vertices s1s2s1 → s2s1s2
and 3-valent vertices s2s2 → s2 allowed represent monotone paths from the
top vertex to the bottom vertex. The mutation graph is a pentagon!
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Cluster charts and mutations

Conjecture
Tτ(β) are the cluster charts. Mutations correspond to mutations of
weaves (proved in typed D by Hughes, some evidence in finite and
affine types by An-Bae-Lee).

Theorem
Equivalent weaves give rise to the same toric chart.

Big positroid cell in Gr(2,5), up to a torus:
X0(σ1σ1σ1 ·∆,w0) in Br2;

X0(σ1σ2σ1σ2 ·∆,w0) in Br3.

For each of these braids, the closure is the trefoil knot. The
augmentation varieties depend only on the link, so they are isomorphic
(up to the choice of marked points/torus actions). These varieties are
both of cluster type A2. The mutation graph is the pentagon, so we
recover all clusters via weaves.
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6 6
5 5
4 4
3 3
2 2
1 1

(a) R6(1,w4)∆6 for the shuffle braid
R6(1,w4) = β(w4) = (σ4σ3σ2σ1)(σ5σ4σ3σ2) ∈
Br+6 . Here w4 is the maximal 4-Grassmannian
permutation in S6.

4 4
3 3
2 2
1 1

(b) J4(f ) for the (4, 2) torus
braid (σ3σ2σ1)

2 ∈ Br+4 .
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Cluster structure: general case

Conjecture
The coordinate ring of any braid variety X (η) admits a structure of
a cluster algebra.
The exchange type of the mutable part of its defining quiver is
preserved under Reidemeister II moves, Reidemeister III moves
and ∆-conjugations of the braid word η. In addition, each such
move gives rise to a quasi-cluster transformation.
A positive stabilization adds one frozen vertex to the defining
quiver, and a positive destabilization specializes one frozen
variable to 1.
The 2-forms considered by Mellit are Gekhtman-Shapiro-Vainstein
forms for such cluster structures.

Partially known for GSW varieties X (β ·∆,w0), open Richardson
varieties, open positroid varieties. Deodhar stratifications of open
Richardson varieties correspond to certain weaves.
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Brick manifolds, spherical subword complexes, Soergel calculus are
well-defined beyond the type A.

Conjecture
The coordinate ring of any open brick variety brick◦(η) in any type
admits a structure of a cluster algebra. A version of the weave calculus
can be developed for all types. Demazure weaves give cluster charts.

Partially proved for analogues of Gao-Shen-Weng varieties
(half-decorated double Bott-Samelson cells) by [Shen-Weng], for open
Richardson varieties in types ADE [Leclerc, Ménard, Keller-Cao;
Ingermanson].
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