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Murray Gerstenhaber, Alexander Voronov
’Higher operations on Hochschild complex’:
A recent explosion of algebraic structures

derived in quantum field theory and in the-
ory of vertex operator algebras has led to re-
naissance of operads and algebras with sev-
eral operations. The physicist’ vision of the
Universe revealed evidence of a number of
new mathematical structures now being in-
tensively studied by mathematicians.’

[Getzler, Jones, Ginzburg, Kapranov, Kont-
sevich, Kimura, Stasheff, Gerstenhaber, Voronov]
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I. Pre-Calabi-Yau algebras and double Pois-
son structures

We establish a clear connection between these
two structures in a constructive way.

We show that double Poisson structures are
in 1-1 correspondence with a particular part
of the pre-Calabi-Yau structures and describe
this correspondence explicitly.

This justifies the role of pre-Calabi-Yau al-
gebras as a noncommutative Poisson struc-
tures, via result of [Van den Bergh, 2008] on
double Poisson algebras.
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Double Poisson algebras
The double Poisson structure on associa-

tive algebra A is a linear map

{{,}} ∶ A⊗A→ A⊗A,

which satisfy the following axioms.
Anti-symmetry:

{{a, b}} = −{{b, a}}op
Here {{b, a}}op means the twist in the ten-

sor product, i.e. if {{b, a}} = ∑
i
bi ⊗ ci, then

{{b, a}}op = ∑
i
ci ⊗ bi.

Double Leibniz:

{{a, bc}} = b{{a, c}} + {{a, b}}c
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and double Jacobi identity:

{{a,{{b, c}}}}L+τ(123){{b{{c, a}}}}L+τ(132){{c{{a, b}}}}L = 0
Here for α ∈ A⊗A⊗A, and σ ∈ S3

τσ(α) = ασ−1(1)⊗ ασ−1(2)⊗ ασ−1(3).
The {{}}L is defined as

{{b, a1 ⊗ ...⊗ an}}L = {{b, a1}}⊗ a1 ⊗ ...⊗ an
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Pre-Calabi-Yau structures
It is a version of the notion of the A∞-structure

or strong homotopy associative algebra intro-
duced by [J.Stasheff, 1963].

Namely, one can impose an A∞-structure
on A ⊕ A∗, which is cyclic invariant w.r.t. the
natural inner form on A⊕A∗.

This idea appeared in string theory to de-
scribe the TQFT in case of open strings. The
notion was introduced in [T.Tradler, M.Zeinalian,
2006; P.Seidel, 2007; M.Kontsevich, Y.Vlassopoulos,
2006].

This structure is present in many examples
from algebraic geometry, symplectic geome-
try, physics, etc.
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Definition of an A∞-algebra (strong ho-
motopy associative algebra).

The main bit of data in the definition of A∞-
algebra is a graded vector space A = ⊕

k∈ZAk,

with a collection of n−ary operations (multi-
linear maps)
mn ∶ A ×A × ... ×A→ A, n = 1, 2, ...,
satisfying certain conditions.
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Conventions.
We will deal with shifts of gradings, so it

is important for further definitions which con-
vention on the relation between grading and
degrees of operations we choose.

Conventions differ by a shift in numeration
of graded components.

The main two conventions are as follows.
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Conv.0 (naive)
’Multiplication’ - binary operation m2 has de-

gree 0:
deg(m2(a1, a2)) = deg(a1) + deg(a2).
Then deg(mn) = 2 − n.

Conv.1 (respecting Koszul rule)
Each operation mn has degree 1:

deg(mn(a1, ..., an)) =
deg(a1) + ... + deg(an) + 1,∀n.
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Note that if the degree of element x in Conv.0
is deg x = ∣x∣, then after the shift of grading on
A: Ash = A[1], degshx = ∣x∣′ = ∣x∣ − 1 we fall into
Conv.1

In our notations ∣x∣′ stands for grading sat-
isfying Conv.1 and ∣x∣ for the one satisfying
Conv.0.

In formulae in precise definitions (signs there
depend on the convention) we mainly use Conv.1.
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Hochschild cochains
Let A be a Z graded vector space A = ⊕

n∈ZAn.

Let Cl(A,A) be Hochschild cochains

Cl(A,A) =Hom(A[1]⊗l, A[1]), l ⩾ 0,
C●(A,A) = ∏

k⩾1C
l(A,A).
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On C●(A,A)[1] there is a natural structure
of graded pre-Lie algebra, defined via com-
position:

○ ∶ Cl1(A,A)⊗Cl2(A,A)→ Cl1+l2−1(A,A) ∶
f ○ g(a1 ⊗ ...⊗ al1+l2−1) =

∑(−1)σf(a1⊗...⊗ai−1⊗g(ai⊗...⊗ai+l2+1)⊗...⊗al1+l2−1)
Graphically:

f ○ g = ∑
inputs of f

(−1)σ

g f

1
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The operation ○ defined in this way does
satisfy the graded right-symmetric identity:

(f, g, h) = (−1)σ(f, h, g)
where

(f, g, h) = (f ○ g) ○ h − f ○ (g ○ h).
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Analogously to the non-graded case, the graded
commutator on a graded pre-Lie algebra de-
fines a graded Lie algebra structure.

Thus the Gerstenhaber bracket [−,−]G:

[f, g]G = f ○ g − (−1)σg ○ f
makes C●(A)[1] into a graded Lie algebra.

Equipped with the derivation d = ad m2,(C●(A), ad m2) becomes a DGLA.
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With respect to the Gerstenhaber bracket[−,−]G we have the Maurer-Cartan equation
in this DGLA:

[m(1),m(1)]G = ∑
p+q=k+1

p−1∑
i=1(−1)ε

mp(x1, . . . , xi−1,mq(xi, . . . , xi+q−1), . . . , xk) = 0,
where

ε = ∣x1∣′+ . . .+ ∣xi−1∣′, ∣xi∣′ = ∣xi∣−1 = degxi−1
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Definition.
An element γ = m(1) ∈ C●(A,A)[1] which

satisfies the Maurer-Cartan equation

[γ,γ]G = 0
with respect to the Gerstenhaber bracket [−,−]G

is called an A∞-structure on A.
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Equivalently, A∞-structure can be defined in
a more compact way as a coderivation on the
coalgebra of the bar complex of A.

Let us consider the bar complex BC = ⊕
k⩾1Tk(A[1])

of algebra A. It has a structure of coalgebra
in a natural way: ∆ ∶ BC → BC ⊗BC:

∆(v1, ..., vn) = n∑
i=1(v1 ⊗ ...⊗ vi)⊗ (vi+1 ⊗ ...⊗ vn)

The coderivation on BC can be defined ex-
tending the given bunch of k-ary maps:
mk ∶ Tk(A[1])→ A[1]
as follows:
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m̄k(x1, ..., xn) = n−k+1∑
i=1 (−1)∣x1∣

′+...+∣xi−1∣′

x1 ⊗ ...⊗mk(xi ⊗ ...⊗ xi+k−1)⊗ ...⊗ xn

and m̄k(x1, ..., xn) = 0 for k > n
The fact that for d̄ = ∞∑

k=0 m̄k, d̄ ○ d̄ = 0 is equiv-

alent to the fact the bunch of maps mn do sat-
isfy the Maurer-Cartan equation.

Thus this can serve as another definition of
an A∞-algebra.
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Simplest example.
An associative algebra with zero derivation

A = (A,m = m(1)2 , d = 0) is an example of
A∞-algebra. The component of the Maurer-
Cartan equation of arity 3, MC3 will say that
the binary operation of this structure, the mul-
tiplication m2 is associative:

(ab)c − a(bc) = dm3(a, b, c)+(−1)σm3(da, b, c)+(−1)σm3(a, db, c)+(−1)σm3(a, b, dc)
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We can give now definition of pre-Calabi-
Yau structure (in Conv.1).

Definition.
A d-pre-Calabi-Yau structure on an A∞-algebra

A is
(I). an A∞-structure on A⊕A∗[1 − d],
(II). cyclic invariant with respect to natural

non-degenerate inner form on A ⊕ A∗[1 − d],
meaning:

⟨mn(α1, ...,αn),αn+1⟩ = (−1)∣α1∣′(∣α2∣′+...+∣αn+1∣′)
⟨mn(α2, ...αn+1),α1)⟩

for all αi ∈ A or A∗[1 − d].
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where the inner form ⟨, ⟩ on A⊕A∗ is defined
naturally as

⟨(a, f), (b, g)⟩ = f(b)+(−1)∣g∣′∣a∣′g(a), a, b ∈ A,f, g ∈ A∗
(III) and such that A is an A∞-subalgebra in

A⊕A∗[1 − d].
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Example. The most simple example of pre-
Calabi-Yau structure demonstrates that this
structure does exist on any associative alge-
bra.

Namely, the structure of associative alge-
bra on A can be extended to the associative
structure on A ⊕A∗[1 − d] in such a way, that
the natural inner form is (graded)cyclic with
respect to multiplication.
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This amounts to the following fact: for any
A-bimodule M the associative multiplication
on A⊕M is given by (a+f)(b+g) = ab+ag+fb.

In this simplest situation both structures on
A and on A ⊕A∗ are in fact associative alge-
bras.

More examples of pre-Calabi-Yau structures
one can find in [Iyudu, IHES preprints 2017;
Rubtsov, arxiv:1208.2935; Brav, Dyckerhoff,
arxiv:1606.00619]
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Maurer-Cartan equation on A⊕A∗
The general Maurer-Cartan equations on R =

A⊕A∗ for the operations mn ∶ Rn → R have the
shape

∑
p+q=k+1

p−1∑
i=1(−1)ε

mp(x1, . . . , xi−1,mq(xi, . . . , xi+q−1), . . . , xk),
where

ε = ∣x1∣′ + . . . + ∣xi−1∣′, ∣xs∣′ = degxs − 1
where xi ∈ A or A∗.
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What we have from the Maurer-Cartan in ar-
ities four and five, is exactly what is relevant
for comparison with the double Leibniz and
Jacobi identities for the double bracket.

In arity 4, Maurer-Cartan equation, MC4 reads:

m3(x1x2, x3, x4) + (−1)∣x1∣′m3(x1, x2x3, x4)+
(−1)∣x1∣′+∣x2∣′m3(x1, x2, x3x4)+(−1)∣x1∣′m2(x1,m3(x2, x3, x4))+m2(m3(x1, x2, x3), x4) = 0
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In arity 5, Maurer-Cartan equation, MC5 reads:

m3(m3(x1, x2, x3), x4, x5)+(−1)∣x1∣′m3(x1,m3(x2, x3, x4), x5)+(−1)∣x1∣′+∣x2∣′m3(x1, x2,m3(x3, x4, x5)) = 0
Operations of arity 4 are absent due to our

imposed condition m4 = 0 in A∞-structure on
A⊕A∗.

26



Construct a double bracket from a pre-
Calabi-Yau structure

Now we are going to construct from cyclic
invariant operations w.r.t. inner form on R =
A⊕A∗, mn ∶ Rn → R a double bracket

{{,}} ∶ A⊗A→ A⊗A,

in such a way, that corresponding compo-
nents of MC (MC4 and MC5) ensure the ax-
ioms of double Poisson bracket.
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Definition
The double bracket we define as:

⟨g ⊗ f,{{b, a}}⟩ ∶= ⟨m3(a, f, b), g⟩,
where a, b ∈ A, f, g ∈ A∗ and
m3(a, f, b) = c ∈ A corresponds to the com-

ponent of m3: A ×A∗ ×A→ A.
By choosing this definition we set up a one-

to-one correspondence between appropriate
part of pre-Calabi-Yau structures
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(of ’type B’: meaning the operations
m3 ∶ A × A∗ × A → A, corresponding to the

tenzor A∗ ⊗A⊗A∗ ⊗A;
plus with mi = 0, i ⩾ 4)
and double Poisson brackets.
We will check that double bracket defined

in this way satisfies all axioms of the double
Poisson bracket.
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Theorem. Let we have A∞-structure on (A⊕
A∗,m = ∞∑

i=2,i≠4m
(1)
i ). Define the bracket by the

formula

⟨g ⊗ f,{{b, a}}⟩ ∶= ⟨m3(a, f, b), g⟩,
where a, b ∈ A, f, g ∈ A∗

and m3(a, f, b) = c ∈ A corresponds to the
component of type B of the solution to the
Maurer-Cartan

(i.e. the component m3:A ×A∗ ×A→ A).
Then this bracket does satisfy all axioms of

the double Poisson algebra.
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Moreover, pre-Calabi-Yau structures of type
B, with mi = 0, i ⩾ 4 are in one-to-one corre-
spondence with the double Poisson brackets{{⋅, ⋅}} ∶ A ⊗ A → A ⊗ A for an arbitrary asso-
ciative algebra A.

The second part of the statement is proved
by ensuring no other identities apart from (dou-
ble) Leibniz and Jacobi appear from the Maurer-
Cartan equation.
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II. Higher Hochschild complex
First, we should define higher cyclic Hochschild

cochains and generalised necklace bracket.
For N ⩾ 1 the space of N-higher cyclic Hochschild

cochains is defined as

C(N)cycl (A) ∶= ∏
r1,...,rN⩾0

HomK(N⊗
i=1A

⊗ri,A⊗Ncycl)ZN ,

Note that for N = 1 we have the usual Hochschild
complex.

Differential is coming from the dualised bar
complex of A⊗N-bimodules:

HomA⊗N−mod−A⊗N(Bar⊗N,A⊗Ncycl

32



The A⊗N-bimodule structure on A⊗Ncycl is de-
fined as follows:

for any x1⊗ ...⊗xN ∈ A⊗Ncycl and elements a1⊗
...⊗ aN, b1 ⊗ ...⊗ bN ∈ A⊗N ,

(a1 ⊗ ...⊗ aN) ● (x1 ⊗ ...⊗ xN) ● (b1 ⊗ ...⊗ bN) =
a1x1b2 ⊗ ...⊗ aNxNb1.

33
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The symbol Hom(A⊗r,A⊗N)ZN means that
we take only elements of Hom which are ’in-
variant’ with respect to obvious ZN-action.

Denote by C(●)cycl(A) =∏N⩾1C(N)cycl (A) the space
of all higher cyclic Hochschild cochains.
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The generalized necklace bracket between
two elements f, g ∈ C●(A) is given by

[f, g]g.n = f ○ g − (−1)σg ○ f,
where composition f ○g consists of inserting

all outputs of g to all inputs from f with signs
assigned according to the Koszul rule.

Graphically:

f ○ g = ∑
f−inputs,
g−outputs

(−1)σ

g f

1
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Def. (Pre-Calabi-Yau structure in terms of
HCH complex)

Pre-Calabi-Yau structure is an element

m =∑m(n) ∈HCH(A)
which is a solution of the Maurer-Cartan equa-

tion [m,m]g.n = 0.
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To deal with higher cyclic Hochschild com-
plex C●(A) we choose a small subcomplex.

In case of free algebra A we specify a par-
ticular embedding of the subcomplex ζ● into
C●(A) by choosing a basis of ξ∂-monomials
and describing the operation from C●(A) cor-
responding to a given ξ∂-monomial.
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The operation is the following.

In this particular picture we see the ξ∂-monomial
which encodes an operation Φ ∶ A⊗3 → A⊗5.
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Example.

{{,}} ∶ A⊗2 → A⊗2
is an element from HCH - Hom(A⊗2,A⊗2cycl)Z2

{{v, u1u2}} = u1{{v, u2}} + {{v, u1}}u2

40
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We show how generalised necklace bracket
works in terms of ξ∂-monomials.

By this we not only prove that small sub-
complex ζ(●)A is a Lie subalgebra in

g = (C(●)A (A), [, ]g.n),
but also give a concrete combinatorial for-

mula for this bracket via ξ∂-monomials.
The bracket [A,B] of two ξ∂-monomials A

and B is a linear combination of ξ∂-monomials
obtained from the initial ones as follows.
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Pic.4

Pic.5
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[R12, R13] − [R23, R12] + [R13, R23] = 0
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Pre-Calabi-Yau structures provide solutions of CYBE:
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As noticed in [Schedler, arxiv0612493] double Poisson bracket provides a map from square of the vector space to itself, wich is a solution of CYBE due to the Jacobi identity.
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III. Homology calculation for higher cyclic
Hochschild complex

We reduce computations to the small sub-
complex ζ● ⊂ C(●)(A), and show that homolo-
gies are sitting in the last place w.r.t cohomo-
logical grading by ξ-degree:

∂ ∂∂ ∂∂∂ ∂∂∂∂↗ ∣ ↗ ∣ ↗ ↗
ξ ξ∂ ξ∂∂ ξ∂∂∂↗ ∣ ↗ ∣ ↗
ξξ ξξ∂ ξξ∂∂↗ ∣ ↗ ∣
ξξξ ξξξ∂↗ ∣
ξξξξ

Theorem. The higher cyclic Hochschild com-
plex over A = K⟨X⟩ is pure.
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Example of the argument using Gröbner
bases theory.

We reduce the computation of the homolo-
gies for the complex (ζ, dζ) where differential(dζ) is:

d(u1ξu2ξ . . . un) =∑(−1)g(u1ξu2ξ...ui)u1ξu2ξ . . . ui∆ui+1 . . . un
if u1 ≠ ∅ (u1 starting with ∂i),
here ∆ = r∑

i=1∂ixi − xi∂i,
and

d(ξu1ξu2ξ . . . un) = ξd(u1ξu2ξ . . . un)+
r∑
i=1[∂ixiu1ξu2ξ . . . un − ∂iu1ξu2ξ . . . unxi]

if the monomial starts with ξ.

45

Natalja Joudu
-Shirshov



to the computation of the homologies for the
complex (ζ̂, dζ̂) where differential dζ̂ is:

dζ̂(u1ξu2ξ . . . un) =
∑(−1)g(u1ξu2ξ...ui)u1ξu2ξ . . . ui∆ui+1 . . . un,

where ∆ = r∑
i=1∂ixi − xi∂i.
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Lemma. Consider the place in (ζ̂m, dζ̂), (
m = degξ,∂), where degξu = 1, u ∈ ζ̂m (one but
last place in the complexes ζ̂m). Then the ho-
mology in this place is trivial.

m
P r o o f. Let dζ̂(u) = 0 for u ∈ ζ̂ with degξu = 1.

We show that u ∈ Imdζ̂. Since degξu = 1, u has
the shape

u =∑aiξbi, ai, bi ∈ K⟨x1 . . . , xr,∂1 . . .∂r⟩.
Then

dζ̂u =∑(−1)g(aj)aj∆bj = 0.
Consider the ideal I in K⟨x1 . . . , xr,∂1 . . .∂r⟩

generated by ∆: I = Id(∆).
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We use the following lemma to describe when
this above equality might happen.

Lemma.(Version of Diamond Lemma) Let
A = K⟨y1 . . . , yn⟩/Id(r1, . . . , rm). Let M be the
syzigy module of the relations r1, . . . , rm, that
is M is the submodule of the free K⟨y1 . . . , yn⟩-
bimodule generated by the symbols r̂1, . . . r̂m
consisting of ∑fir̂sigi such that ∑firsigi = 0.

Then M is generated by trivial syzigies r̂iurj−
riur̂j and the syzigies obtained by resolutions
of ambiguities between highest terms of rela-
tions (with respect to some ordering).
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Let us fix the ordering ∂1 > ∂2 > ⋅ ⋅ ⋅ > x1 > x2 >
Then the leading term of the polynomial ∆

is ∂1x1.
It does not produce any ambiguities.
Hence by Lemma the corresponding syzygy

module M is generated by trivial syzygies.

(∗) ∑aj∆̂bj =∑uk(∆̂vk∆ −∆vk∆̂)wk

After we know this we can construct an ele-
ment

g =∑γkukξvkξwk

such that

dζ̂(g) =∑(ukξvk∆wk−uk∆vkξwk) =∑ajξbj = u.
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From the purity in homology we deduce for-
mality.

The complex (C,d) is formal if it is quasi-
isomorphic to its cohomologies (H●C, 0), con-
sidered with zero differential, as L∞-algebra.
Theorem 1. The higher cyclic Hochschild com-
plex C =∏

N
C(N)cycl (A) is formal.

[preprint IHES M-19-14, Iyudu, Kontsevich]
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Similar techniques related to Gröbner bases
theory was developed and applied before in
many concrete situations:
● for Sklyanin algebras [J.Algebra 2017,

Iyudu, Shkarin]● for contraction algebras (introduced by
Wemyss in connection to MMP)

[in IMRN 2018, Iyudu, Smoktunowicz]● for semigroup algebras [Monatshefte für
Mathematik, 2012, Iyudu, Shkarin]● for Witt and Virasoro algebras [arxiv:1905.07507,
Iyudu, Sierra]● for homology of moduli spaces of pointed
curves given by Keel relations

[Iyudu, arxiv:1304.6343]
etc.
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