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(GLn, GLk)-skew Howe duality
Consider

∧(
Cn ⊗ Ck

)
with the action of GLn ×GLk:∧(

Cn ⊗ Ck
)

=
(∧

(Cn)
)⊗k
'
⊕
λ

VGLn(λ)⊗ VGLk(λ̄′),

Sum of one-column diagrams raised to k-th tensor power· ⊕ ⊕ ⊕


⊗k

→ n

︸ ︷︷ ︸
k

GL3 : λ GL4 : λ′ λ̄′

The exterior algebra
∧(

Cn ⊗ Ck
)

=
⊕nk

p=0

∧p (Cn ⊗ Ck
)

is a

graded space and
∧p (Cn ⊗ Ck

)
'
⊕
|λ|=p VGLn(λ)⊗ VGLk(λ̄′),

the limit n, k, p→∞, n/k → const, p/(nk)→ const was
considered by P. Sniady and G. Panova ’18.



Skew Howe duality for Sp and SO
I Sp2l. Let V = C2l = VSp2l(Λ1) = V+⊕ V−,dimV = 2l. Then∧

(C2l⊗Ck) '
(∧

V
)⊗k
'
(∧

V−

)⊗2k
'
⊕
λ

VSp2l(λ)⊗VSp2k(λ̄′).

I SO2l+1. If V = C2l+1 = VSO2l+1
(Λ1), dimV = 2l + 1. Then∧

(C2l+1⊗Ck) '
∧

(V ⊗Ck) '
⊕
λ

VSO2l+1
(λ)⊗VPin2k

(λ̄′).

On the other hand, V = V+ ⊕ V0 ⊕ V−, dimV0 = 1 and∧
V =

∧
V+ ⊗

∧
V0 ⊗

∧
V− ' 2

(
VSO2l+1

(Λl)
)⊗2

. Then(
VSO2l+1

(Λl)
)⊗2k '

⊕
λ

21−k dim(VSO2k
(λ̄′))VSO2l+1

(λ).

I SO2l. If V = C2l = VSO2l
(Λ1) and

∧
V− = V (Λl−1)⊕ V (Λl).∧

(C2l ⊗ Ck) '
∧

(V ⊗ Ck) '
⊕
λ

VSO2l
(λ)⊗ VO2k

(λ̄′),

(VSO2l
(Λl−1)⊕ VSO2l

(Λl))
⊗2k =

⊕
λ

2 dim(VSO2k
(λ̄′))VSO2l

(λ).



Tensor power decompositon and limit shapes of Young
diagrams

Kerov ’86 (Schur-Weyl duality):

(Cn)⊗k = (VGLn(Λ1))⊗k '
⊕
λ

VGLn(λ)⊗ VSk(λ)

µn,k(λ) =
dimVGLn(λ) dimVSk(λ)

nk
=

=
1

nk
·
∏
i<j(λi − λj + j − i)∏n−1

m=0m!
·
k!
∏
i<j(λi − λj + j − i)∏n
i=1(λi + n− i)!

If n, k →∞, k ∼ n get Vershik-Kerov-Logan-Shepp limit shape:
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Young diagram of k boxes, n rows. P. Biane ’00: if c = k/n2
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This result is related to the RSK algorithm:

VGLn(Λ1) : ei ↔ i ,

VGLn(Λ1)⊗k ←→ (P,Q), P = SSY T (λ ` k, n), Q = SY T (λ, k)

Can we generalize it?



Dual RSK algorithm
Basis in Cn ⊗ Ck is {eij = ei ⊗ ej}n,ki=1,j=1, basis in

∧(
Cn ⊗ Ck

)
:

ei1j1 ∧ ei2j2 ∧ . . . corresponds to n× k matrices of 0, 1:1 1 1 0
0 1 0 1
1 0 0 1

 −→ (
1 1 1 2 2 3 3
1 2 3 2 4 1 4

)
−→ dual RSK

We bump equal boxes down and write upper row in the recording
table Q.

P =

1 2 3 4

1 4

2

, Q =

1 1 1 2

2 3

3

This is a pair of (SSY T (λ′, k), SSY T (λ, n)). Uniform measure on
n× k matrices of zeros and ones, i.e. on numbers from 0 to
2nk − 1, after applying the dual RSK leads to the measure on

Young diagrams µn,k(λ) =
dimVGLn (λ)·dimVGLk (λ′)

2nk
.



Probability measure on Young diagrams

Consider the space
∧(

Cn ⊗ Ck
)

and the action the group
GLn ×GLk on it. Assuming that k is even, introduce the action
of the Clifford algebra and consider the invariant subspace∧(

Cn ⊗ Ck/2
)

with the actions of SO2l+1 × Pink for n = 2l + 1,
SO2l ×Ok for n = 2l, and Sp2l × Spk for n = 2l on it. Introduce
the probability measures on the diagrams as

µn,k(λ) =
dimVGLn(λ) · dimVGLk(λ̄′)

2nk
,

and

µn,k/2(λ) =
dimVG1(λ) · dimVG2(λ̄′)

2nk/2
,

for the actions of SO2l+1 × Pink for n = 2l + 1, SO2l ×Ok for
n = 2l, and Sp2l × Spk for n = 2l.
To derive the asymptotics of these measures we need the explicit
formulas for dimVG2(λ̄′) in terms of row lengths {λi}



Multiplicity, Young tableaux and Gelfand-Tsetlin patterns
We need formula for dimVG2(λ̄′) in terms of row lengths {λi}.

dimVGLk(λ̄′) = #SSYT(λ̄′, k)

Semistandard Young tableaux ←→ Gelfand–Tsetlin patterns:

1 1 1 4 4

2 2 4 6

3 3

4 4

6

←→

5 4 2 2 1 0
5 3 2 2 0

5 3 2 2
3 2 2

3 2
3

b
(k)
1 b

(k)
2 . . . b

(k)
k

. . . . . . . .
.

b
(2)
1 b

(2)
2

b
(1)
1

b
(j)
i – number of boxes with value ≤ j in i-th row of the diagram



Gelfand-Tsetlin patterns and lozenge tilings
Let b̃

(j)
i = b

(j)
i + j − i, these numbers can be seen as the positions

from the bottom of in j column from the left in the tiling.
Let ai = λi + n− i, where λi is row length of GLn-diagram. Then

coordinates in the rightmost column are ā′i = b̃
(k)
i = λ̄′i + k − i,

where
{
λ̄′i
}

are the row lengths of the complement conjugate
GLk-diagram λ̄′.

10 8 5 4 2 0
9 6 4 3 0

8 5 3 2
5 3 2

4 2
3

←→

1

a1

2
a2

3

a34

a45

a5



Determinant formula for multiplicity

dimVGLk(λ̄′) = #Lozenge tilings of trapezoid(k, n, k, n+ k) =

= #configurations of n non-intersecting paths (i→ ai) of length k

Apply Lindström–Gessel–Viennot lemma:

dimVGLk(λ̄′) = det [#of paths (i→ aj)]
n
i,j=1 =

= det

[(
k + i− 1

aj

)]n
i,j=1

.

1
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2 a2
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From determinants to products

For subsets A,B ⊆ [n], let MB
A denote the submatrix of M with

columns A and rows B removed. Use Desnanot–Jacobi identity

detM · detM1,n
1,n = detM1

1 · detMn
n − detMn

1 · detM1
n.

to prove that

dimVGLk(λ̄′) = det

[(
k + i− 1

aj

)]n
i,j=1

=

=

n−1∏
m=0

(k +m)!

n∏
i=1

ai! · (k + n− 1− ai)!
×

∏
1≤i<j≤n

(ai − aj).



Relation of paths to crystals

Paths depict signature rule. Non-intersection condition ∼ highest
weight condition

s0
s1
s2
s3
s4

t0

t1

t2
t3

t4

7−→
1

3

4

⊗

1

2

3

4

5

⊗∅⊗
1

2

3

⊗
1

2

3

⊗
1

2
.

These paths are dual to the paths that correspond to Young
tableaux by row bijection, where number of j boxes in row i is the
number of steps along the line j in path number i.



Weighted paths and q-multiplicity theorem for GL
Weight vertical steps in the paths by qcolumn number.
Theorem
Let V =

∧
V (Λ1) of GLn. For a diagram λ contained in an n× k

rectangle, define MA
q (λ) = det

[[
k+i

j+λn−j

]
q

]n−1

i,j=0

.

Let ai = λi + n− i. Then we have

MA
q (λ) = q‖λ‖

n−1∏
m=0

[k +m]q!×
∏

1≤i<j≤n
[ai − aj ]q

n∏
i=1

[ai]q![k + n− 1− ai]q!
=

= q‖λ‖ dimq(λ
′
) = q‖λ‖ dimq(λ

′) ∈ Z≥0[q],

where dimq(ν) =
∏
α∈Φ+

1−q〈ν+ρ,α∨〉
1−q〈ρ,α∨〉 is the q-dimension of V (ν)

for GLk and ‖λ‖ =
∑

i(i− 1)λi. Moreover, MA
1 (λ) is equal to the

multiplicity of V (λ) in V ⊗k.



Lozenge tilings for SO and Sp

Tilings that are strict for Sp and semi-strict for SO symmetry
conditions, related to Proctor patterns and King tableaux.
Sp2l:

↔

3 2 0
3 1 0

2 1
2 0

2
1

↔

s0

s1

s2

s3

t3
t2

t1

t0

SO2l+1:lozenge tilings of the half hexagon that are almost
symmetric up to the middle row of hexagons, which are then

forced to be either or
SO2l: Symmetry in the blue tiles except for the middle blue tile.



q-multiplicities for SO and Sp.
Let q-multiplicity be MBC

q (λ+ pΛn) := det
[
C(a(i,j),b(i,j))(q)

]n
i,j=1

,

where a(i, j) = 2n− i− j + k + p+ λj , b(i, j) = j − i+ k − λj
and Cn,k(q) =

[n+k]q ![n−k+1]q
[k]q ![n+1]q !

.

Theorem
Let λ be a partition inside an n× k rectangle. Then for

p = 0: We have MBC
q (λ)

∏k−1
a=1(qa + 1) = q‖λ‖ dimq(λ

′
+ ωk), where

ωk = 1
2(ε1 + · · ·+ εk) for type Dk and dimq(λ

′
+ ωk) is the

q-dimension of V (λ
′
+ ωk) in type Dk. Furthermore, MBC

1 (λ)
equals the multiplicity of V (λ) in V (Λn)⊗2k for type Bn and
MBC
q (λ) ∈ Z≥0[q].

p = 1: We have MBC
q (λ+ Λn) = q‖λ‖ dimq(λ

′
) ∈ Z≥0[q], where

dimq(λ
′
) is the q-dimension of V (λ

′
) in type Ck.

Furthermore, MBC
1 (λ+ Λn) equals the multiplicity of

V (λ+ Λn) in V (Λn)⊗2k+1 for type Bn and V (λ) in V ⊗k for
V =

∧
V (Λ1) in type Cn.



Product formula for series B and C.

Theorem
Fix positive integers k and n. Let λ be a partition contained inside
of a n× k rectangle. Let ai = λi + (n− i) + 1−p

2 . Then we have

MBC
q (λ+ pΛn)

= q‖λ‖

n∏
i=1

[2k + p+ 2i− 2]q! [2ai]q ×
∏

1≤i<j≤n
[ai − aj ]q[ai + aj ]q

n∏
i=1

[
k + n− ai −

1− p
2

]
q

!

[
k + n+ ai −

1− p
2

]
q

!

.



Paths for the series D.
We need to take into account the sign of the last coordinate, we
do it by allowing two kinds of vertical steps on the last path near
the anti-diagonal.
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⊗
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⊗
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⊗
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⊗
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⊗
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+

⊗
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+

−
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⊗
−
+

+

−

⊗
+

−
−
−

⊗
+

+

+

+

⊗
+

+

+

−

←→
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s2

s3
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t1
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t3
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q-multiplicity formula for series D.
Theorem
Let g = so2n and let V = V (Λn−1)⊕ V (Λn). Let p = 0, 1. Define

MD
q (λ+ pΛn) := det

[[ 2(k+i)+p
k+i−j−|λn−j |

]
q

]n−1

i,j=0

. Then the multiplicity

of V (λ+ pΛn−1) and V (λ+ pΛn) in V ⊗2k+p is MD
1 (λ+ pΛn).

Furthermore, we have

MD
q (λ) = q‖λ‖

n∏
i=1

[2k + 2n− 2i+ p]q!×
∏

1≤i<j≤n
[ai − aj ]q[ai + aj ]q

n∏
i=1

[
k + n− 1− ai +

p

2

]
q
!
[
k + n− 1 + ai +

p

2

]
q
!

,

where ai = λi + n− i+ p
2 and MD

q (λ) ∈ Z≥0[q]. We also have

MD
q (λ+ Λn) = q‖λ‖ dimq(λ

′
),

where dimq(λ
′
) be the q-dimension of V (λ

′
) in type Bk.



Multiplicity formulas for
∧(

Cn ⊗ Ck
)
and

∧(
Cn ⊗ Ck/2

)
GLn : ai = λi + n− i, Sp2l : ai = λi + l + 1− i,
SO2l : ai = 2λi + 2(l − i), SO2l+1 : ai = 2λi + 2(l − i) + 1

MGLn
(λ) =

n−1∏
m=0

(k +m)!

n∏
i=1

ai! · (k + n− 1− ai)!
×

∏
1≤i<j≤n

(ai − aj),

MSO2l+1
(λ) =

l∏
m=1

(k + 2m− 2)!

22m−2
(
k+am+2l−1

2

)
!
(
k−am+2l−1

2

)
!

l∏
s=1

as
∏
i<j

(
a2
i − a2

j

)
MSp2l(λ) = 2l

l∏
i=1

(k − 1 + 2i)!

(k/2 + l + ai)!(k/2 + l − ai)!
×

l∏
s=1

as ·
∏
i<j

(a2
i − a2

j ),

MSO2l
(λ) = 2−l(l−1)

l∏
i=1

(2k + 2l − 2i)!×
∏

1≤i<j≤l

(a2
i − a2

j )

l∏
i=1

(
2k + 2l − 2− ai

2

)
!

(
2k + 2l − 2 + ai

2

)
!

.



Lozenge tilings and probability measure

µn,k(λ) =
dimVGLn(λ) · dimVGLk(λ̄′)

2nk

Complimentary tilings of trapezoids (k, n, k, n+ k) and (n+ k, n, k, n).



Insertion algorithm and sampling of Sp2l-diagrams

Sp2l-tableau:
fill with 1, 1̄, . . . , l, l̄ in semi-standard way in this order.
Extra condition: no numbers ≤ ī below row i.
We want to multiply by

∧
V−(Λ1) and

dim
∧
V−(Λ1) = 2l,

basis element corresponds to a full column with numbers i1, . . . , il,
where ik = k or k̄. Insert numbers one-by-one from bottom to top,
if condition is broken erase box and shift it to the boundary as in
jeu de taquin (Berele insertion):

1̄ 2 3̄

2 3

3̄

⊗
1

2̄

3

3−→
1̄ 2 3

2 3 3̄

3̄

2̄−→
1̄ 2 2̄

2 3 3

3̄ 3̄

1−→
2 2̄

2 3 3

3̄ 3̄

→
2 2 2̄

3 3

3̄ 3̄



Insertion algorithm and sampling of SO2l+1-diagrams

SO2l+1 Sundaram tableau:
first column can have width 1

2 , then it’s full. Each of other
columns can have at most one ∞-box.
Insertion: (Benkart-Stroomer algorithm) if there is no
half-column, erase all ∞ boxes, adjoin half-column. Otherwise
produce a sequence of boxes from two half-columns starting from
the bottom by the rules

(k, k)→ k, (k̄, k̄)→ k̄, (k, k̄)→ ∅, (k̄, k)→ k̄, k;

insert them by Berele insertion, but fill the empty boxes at the
edge by ∞:

+

−
+

⊗
1̄ 2 ∞
2 3 −→

+ 1̄ 2

− 2 3

+

;

−
−
+

⊗
+ 1̄ 2

− 2 3

+

insert−−−−→
3,2̄,1̄,1

1 2 2̄

2 3 ∞
3



Example of sampling of random diagrams

0 1 2 3 4

0

1

2

3

4

Figure: Blue: Random Young diagram sampled using dual RSK algorithm
for GL50 and k = 150 with the limit shape for k = 3.Shaded: Random
Young diagram sampled using Benkart and Stroomer algorithm for SO51

and k = 150.



Young diagrams as a determinantal point process

µn,k(λ) =
dimVGLn(λ) · dimVGLk(λ̄′)

2nk
=

=

n−1∏
m=0

(k +m)!

2k ·m!(k + n− 1)!
×

∏
1≤i<j≤n

(ai−aj)2×
n∏
i=1

(k + n− 1)!

ai!(k + n− 1− ai)!
.

We have the Krawtchouk polynomial ensemble.

a5a4a3a2a1

x

y

0 1 2 3 4 5 6 7 8 9 10 11 12
0

1
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4
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Convergence of the diagrams to the limit shape

Theorem
As n→∞, k →∞, c = limn,k→∞

k
n = const, the upper

boundary fn of a Young diagram in a decomposition, rotated and
scaled by 1

n , converges in probability with respect to the probability
measure µn,k(λ) in the supremum norm ‖·‖∞ to the limiting shape
given by the formula

f(x) = 1+

∫ x

0

(1−2ρ(t)) dt for c > 1, f(x) = 1+

∫ x

0

(2ρ(t)−1) dt, for c < 1,

where the limit density ρ(x) is written explicitly as

ρ(x) =
θ
(√
c−

∣∣x− c+1
2

∣∣)
2π

arctan

−(c+ 1)
(
x− c+1

2

)
+ 2c

(c− 1)

√
c−

(
x− c+1

2

)2
+

arctan

 (c+ 1)
(
x− c+1

2

)
+ 2c

(c− 1)

√
c−

(
x− c+1

2

)2
 .



Limit shape of Young diagrams for GL

0 2 4 6 8 10
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3.0

The most probable diagram for n = 10, k = 90 and the limit shape
for c = 9; n = 20, k = 10, c = 0.5; n = 10, k = 20, c = 2.



Limit shape for SO and Sp

One of the most probable Young diagrams for GL40 and k = 100
and for SO40, and tensor power 100.
For the groups SO2l+1 × Pink, SO2l ×Ok, and Sp2l × Spk limit
shape is described by the same density ρ(x) with a shifted
argument ρ

(
x+ c+1

2

)
such that x ∈ [0, (c+ 1)/2].



Derivation of the limit density (arXiv:2010.16383)
Denote by fn(x) the upper boundary of the scaled rotated
diagram, x ∈ [0, c+ 1]. Let ρn(x) = 1

2(1− f ′n(x)), it is equal to
zero on an interval of the length 1

n if there is no particle in the left
boundary of the interval and is equal to 1 if there is a particle.

µn,k({xi}) =
1

Zn
exp

(
−n2J [ρn] +O(n lnn)

)
,

J [ρn] =

∫ c+1

0

∫ c+1

0
ρn(x)ρn(y) ln|x−y|−1 dx dy+

∫ c+1

0
ρn(x) V (x) dx,

V (x) = x lnx+ (c+ 1− x) ln(c+ 1− x).

Shift the argument x̃ = x− c+1
2 , ρ̃n(x̃) = ρn(x), Ṽ (x̃) = 1

2V (x) is
even function. Assume suppρ̃ = [−a, a], then Euler-Lagrange
equation with the normalization condition are∫ a

−a
ln |x− y|−1ρ̃(y) dy + Ṽ (x) = const,

∫ c+1
2

− c+1
2

ρ̃(x) dx = 1.

−
∫ a

−a

ρ̃(y) dy

y − x
+ Ṽ ′(x) = 0.



G(z) := −i
∫ a

−a

ρ̃(y)

y − z
dy Hilbert transform of ρ̃,

G(z) is analytic on C \ [−a, a] and with limit values given by

G±(x) = lim
ε→0

1

i

∫
ρ̃(y) dy

y − (x± iε)
= −ip. v.

∫
ρ̃(y) dy

y − x
± πρ̃(x).

G±(x) = ±πρ̃(x) + iṼ ′(x), ρ̃(x) =
1

π
<[G+(x)]

G(z) is the solution of a non-standard Riemann-Hilbert problem:

G+(x) +G−(x) = 2iṼ ′(x), x ∈ [−a, a],
G+(x)−G−(x) = 0, x 6∈ [−a, a],
G(z)→ 0, z →∞.

Introduce G̃(z) = G(z)√
z2−a2 , it is a solution of the standard

Riemann–Hilbert problem and is given by the Plemelj formula

G̃(z) =
1

2πi

∫ a

−a

2iṼ ′(s)ds(√
s2 − a2

)
+

(s− z)
.



a =
√
c is then computed from the asymptotic of G(z) for z →∞.

Then

ρ̃(x) =
1

π2
<

√x2 − c
∫ √c
−
√
c

1
2

(
ln
(
c+1

2 + s
)
− ln

(
c+1

2 − s
))(√

s2 − c
)

+
(s− x)

ds

 .
To compute the integral notice that the function 1

π ln
∣∣∣ s−(c+1)/2
s+(c+1)/2

∣∣∣ is

the Hilbert transform of the indicator function 1[−(c+1)/2,(c+1)/2]

and use the following well-known relation:∫ ∞
−∞

f(s)g̃(s) ds = −
∫ ∞
−∞

f̃(s)g(s) ds,

where f̃ is a Hilbert transform of f and f ∈ Lp(R), g ∈ Lq(R)
with 1

p + 1
q = 1.



Variational problem for SO2l+1.

µn,k(λ) =
2−l2+2l−lkl!

(2l)!(2l− 2)! . . . 2!
×

l∏
m=1

(2k + 2m− 2)!

22m−2
(

2k+am+2l−1
2

)
!
(

2k−am+2l−1
2

)
!
×

l∏
s=1

a
2
s×

∏
i<j

(
a
2
i − a

2
j

)2
.

Consider the limit n, k →∞ s.t. lim 2k
n

= c. {ai} are taking integer values in [0, n(c + 1)].

−2 −1 0 1 2

1

2

x1x−1 x2x−2 x3x−3 x4x−4 x5x−5

Figure: Rotated and scaled diagram for SO2l+1 with l = 5 and its continuation to negative values of

coordinate x. The function fl(x) is shown in solid black, the points xi =
ai
2l

are the midpoints of intervals,

where f ′l (x) = −1.

Let a2l+1−i be the “mirror image” of ai: a2l+1−i ≡ −ai. Then we get the same variational problem, but
need only half-interval. V (u) is the same as in GL case:

µn,k({ai}
2l
i=1) =

1

Zl

2l∏
i6=j

i,j=1

|ai − aj | ·
2l∏

s=1

exp

[
−(4l)V

(
as

4l

)
− el (as)

]
,



Proof of the convergence to the limit shape
Write J in terms of the (shifted) upper boundary f̃n as

J [f̃n] = Q[f̃n] + C, Q[f̃n] =
1

2

(c+1)/2∫∫
0

f̃ ′n(x)f̃ ′n(y) ln|x− y|−1 dx dy.

Q is positive-definite on compactly-supported Lipschitz functions.
Introduce a norm

‖f‖Q = Q[f ]1/2.

Introduce a metric dQ on a space of 1-Lipschitz functions f1, f2, such
that f ′1,2(x) = sgn x for |x| > c+1

2 :

dQ(f1, f2) = ‖f1 − f2‖Q.
Then ‖f‖∞ = supx|f(x)| ≤ C1Q[f ]1/4, where C1 is constant.
The probability of the diagram that differs (by dQ) from the limit shape

by ε is bounded by µn(λ) ≤ C2e
−n2ε2+O(n lnn).

Total number of diagrams in the n× k box is estimated as C3e
C4n by

Hardy-Ramanujan formula. The probability that dQ(f̃n, f̃)Q > ε is

bounded by e−n
2ε2+O(n lnn), that is

P
(
‖f̃n − f̃‖Q > ε

)
−−−−→
n→∞

0.



Limit shape as a level line of rectangular Young tableaux
P. Sniady and G. Panova considered the decomposition∧m (Cn ⊗ Ck

)
=
⊕
|λ|=m VGLn

(λ)⊗ VGLk
(λ′) and proved

µ
〈m〉
n,k (λ) =

dimVGLn
(λ) dimVGLk

(λ′)

dim
∧m

(Cn ⊗ Ck)
=
fλf λ̄

fnk ,

where fλ is the dimension Sm-irrep, nk – rectangular Young diagram
with n rows and k columns. Then λ has the same distribution as diagram
of boxes with entries < m of a uniformly random rectangular n× k
Young tableau. The limit shape is the same as the level lines of the limit
shape for plane partitions by Romik and Pittel. Since∧(

Cn ⊗ Ck
)

=
⊕nk

m=0

∧m (Cn ⊗ Ck
)
, we have

µn,k(λ) =

nk∑
p=0

µ
〈m〉
n,k (λ)

(
nk
m

)
2nk

.

In the limit n, k →∞, the binomial distribution concentrates on the

point m = 1
2nk. Therefore, the limit shape for (GLn, GLk) coincides

with the limit shape for µ
〈 12nk〉
n,k (λ) and is the same as the corresponding

level line of the plane partitions in the box. Borodin-Olshanski 07: lhs is

Krawtchouk ensemble. Is there such a relation for SO, Sp?



Principal specialization of dual Cauchy identity
For (GLn, GLk) we have dual Cauchy identity∑

λ⊆kn
sλ(x1, . . . , xn)sλ′(y1, . . . , yk) =

n∏
i=1

k∏
j=1

(1 + xiyj).

Use ch(V (λ
′
))(y1, . . . , yk) =

∏k
j=1 y

λ
′
1−n
i ch(V (λ′)∗)(y1, . . . , yk) =∏k

j=1 y
n
i ch(V (λ′))(y−1

1 , . . . , y−1
k ) and substitute yi 7→ y−1

i to

account for the λ′ → λ
′

change, and then multiply by yn1 · · · ynk to
obtain ∑

λ⊆kn
sλ(x1, . . . , xn)sλ̄′(y1, . . . , yk) =

n∏
i=1

k∏
j=1

(xi + yj).

The measure can be introduced as

µn,k(λ|{x}, {y}) =
sλ(x1, . . . , xn)sλ̄′(y1, . . . , yk)∏n

i=1

∏k
j=1(xi + yj)

.

In particular, we are interested in principal specialization
xi = yi = qi−1, where sλ(1, q, . . . , qn−1) = q‖λ‖ dimq(VGLn(λ))



q-deformation of limit shape
Take xm = ym = qm−1, consider the limit n, k →∞, q → 1, s.t.
k/n→ c, q ∼ 1− b/n. From numerics limit shapes depend on c, b.

0 1 2 3 4 5

0

1

2

3

4

5

Figure: Most probable Young diagram from the measure µn,k(λ|q) for
GL50, GL150 and k = 150 for b = −0.5, 0.1, 0.5, 2, 10, 20. For
b = ±∞, q = ±const we get horizontal lines.



q-deformation of limit shape and q-Krawtchouk ensemble
Use principal specialization in dual Cauchy for (GLn, GLk) identity

µn,k(λ; q) =
q‖λ‖ dimq

(
VGLn(λ)

)
· q‖λ

′‖ dimq

(
VGLn(λ

′
)
)

NA
n,k(q)

,

NA
k,n(q) = qPk−1+(n−k)(k2)2k

k−1∏
i=1

(qi + 1)2(k−i) ·
n∏

j=k+1

k∏
i=1

(qj−i + 1)

with Pk = k(k+1)(2k+1)
6 . Then

µn,k(λ; q) =
1

Z(q)
· q‖λ‖+‖λ

′‖∏n
i=1[ai]q![k + n− 1− ai]q!

·
∏
i<j

[ai − aj ]2q

q-Krawtchouk polynomials are defined by the weight
(q−N ;q)x

(q;q)x
(−p)−x on the lattice q−x, where q-Pochhammer symbols

are (α; q)k =
∏k
i=1(1− αqi−1). If we take N = k + n− 1, x = ai,

p = 1
q2n−1 , we recover the weight above.

Using approach of Borodin and Olshansky, we were able to derive
the limit shape, the proof of convergence is not complete yet.



Limit shape for q-Krawtchouk ensemble
Use difference equation on q-Krawtchouk polynomials, write it as a

difference operator, demonstrate that it is a spectral projection and

compute the spectral density in the limit. This would be ρ(x).

ρ(x; b, c) =
1

π
arccos

1

2
eb(c−1−x)/2

(
eb(c+1) − e2b

eb(c+1) − ebx

)√
1− e−b(c+1−x)

1− e−bx
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Figure: Limit shape for c = 4 and b = −50,−0.5, 0.01, 0.1, 0.5, 2, 10, 25.



Limit shape for q, q−1-specialization
Principal specialization in q for GLn and in q−1 for GLk, xm = qm−1,
ym = q1−m, use [m]1/q = q1−m[m]q, the measure is

µn,k(λ; q) =
1

Zn,k
q
∑n

i=1 (ai
2 )+(n−1)ai

∏
i<j

(
q−ai − q−aj

)2· n∏
i=1

[
n+ k − 1

ai

]
q

We again see q-Krawtchouk ensemble, limit shape is given by

ρ(x; b, c) =
1

π
arccos

1

2

e−b/2
(
−eb(x−c) + ebx − eb + 1

)√
(1− ebx)

(
eb(x−(c+1)) − 1

)
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Figure: c = 4, b = −10,−2,−0.5,−0.1,−0.01, 0.01, 0.1, 0.5, 2, 10.



Possible further developments
I Skew Howe duality for Lie superalgebras

I We can prove central limit theorem for global fluctuations
using orthogonal polynomials. We have Krawtchouk
polynomial ensemble. Breuer-Duits ’16, Johannson ’02

I Prove the convergence for q-deformed case

I q-dimensions are principal specialization of the characters. For
(GLn, GLk) consider dual Cauchy identity and the measure:

∑
λ⊆kn

sλ(x1, . . . , xn)sλ̄′(y1, . . . , yk) =

n∏
i=1

k∏
j=1

(xi + yj).

µn,k(λ|{x}, {y}) =
sλ(x1, . . . , xn)sλ̄′(y1, . . . , yk)∏n

i=1

∏k
j=1(xi + yj)

.

The limit shape for n, k →∞ and xi = eϕ(i/n), yj = eψ(j/n)

with smooth ϕ,ψ is supposedly described by Burgers
equation, as in lozenge tilings.



Thank you for your attention!


