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Elementary equivalence of Chevalley groups over local rings

E.I. Bunina

Abstract. It is proved that (elementary) Chevalley groups over local rings

with invertible 2 are elementarily equivalent if and only if their types and

weight lattices coincide and the initial rings are elementarily equivalent.
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Introduction

Two models % and %' of the same first order language .# (for example, two
groups or two rings) are called elementarily equivalent if every proposition ¢ of the
language . is true in % if and only if it is true in %’. Any two finite models of
the same language are elementarily equivalent if and only if they are isomorphic.
Any two isomorphic models are elementarily equivalent, but for infinite models
the converse fact is not true. For example, the field C of complex numbers and the
field Q of algebraic numbers are elementarily equivalent, but not isomorphic since
they have different cardinalities (for more detailed examples see [1]).

First results about the connection between elementary properties of some models
and elementary properties of derivative models were obtained by Maltsev in 1961 [2].
He proved that the groups G, (K) and G,,(L) (where G = GL, SL, PGL, PSL,
n,m > 3, K and L are fields of characteristic 0) are elementarily equivalent if and
only if m = n and the fields K and L are elementarily equivalent.

The investigations were continued in 1992, when using the construction of an
ultrapower and the isomorphism theorem Beidar and Mikhalev [3] put forward
a general approach to the elementary equivalence problem for different algebraic
structures and generalized Maltsev’s theorem to the case when K and L are division
rings or associative rings.

In 1998-2005, this author continued looking at several problems of this kind (see
[4]-[9]). Maltsev’s results were generalized for linear unitary groups over division
rings or associative rings with inclusions, and also for Chevalley groups over fields.

An associative ring R with unit is called local if it contains exactly one maximal
ideal (which coincides with the radical J of this ring). This is equivalent to the fact
that the invertible elements of the ring R form an ideal.

In [8] the following results on elementary equivalence of Chevalley groups over
local rings were announced.
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Theorem 1. Let G.(®, R) and G (®',R') (or Ex(®,R) and E. (P, R')) be two
(elementary) Chevalley groups over local rings R and R’ with invertible 2 (in the
case of the root system G, with invertible 6), and let  and P be indecomposable
root systems of rank > 1. Then from elementary equivalence of these Chevalley
groups it follows that ® =2 &' and R = R'.

Theorem 2. Let G=G (P, R) and G'=G (®,R’) (or E.(®,R) and E. (P, R'))
be two (elementary) Chevalley groups over elementarily equivalent local rings R
and R’, where the representations m and ©' have isomorphic weight lattices. Then
the groups G and G’ are elementarily equivalent.

This paper is concerned with the detailed proofs of these theorems and also the
Main Theorem.

Main Theorem. Let G = G (P, R) and G' = G (P, R') (or E-(®,R) and
E. (D', R")) be two (elementary) Chevalley groups over infinite local rings R and R’
with invertible 2 (in the case of the root system Go with invertible 6), with inde-
composable Toot systems ®, D" of ranks > 1 and with weight lattices A and A,
respectively. Then the groups G and G’ are elementarily equivalent if and only if
the root systems ® and ®' are isomorphic, the rings R and R’ are elementarily
equivalent, and the lattices A and A’ coincide.

8 1. Necessary information about Chevalley groups

The basic notions about root systems, semisimple Lie algebras, Chevalley groups,
which will be used in this paper, can be found in the author’s papers [9]-[11].
Detailed information about root systems can be found in the books [12] and [13].
More detailed information about semisimple Lie algebras can be found in the
book [12]. More detailed information about elementary Chevalley groups is con-
tained in the book [14], and about Chevalley groups (also over rings) in [15] and
[16] (see also later references in these papers).

We fix some arbitrary (indecomposable) root system ® of rank [ > 2; we suppose
that in this system there are n positive and n negative roots.

Additionally we fix some infinite local ring R with invertible 2 (in the case of G5
with invertible 6).

We consider an arbitrary Chevalley group G,(®, R) constructed by the root
system @, a ring R and a representation m of the corresponding Lie algebra. It is
known that a Chevalley group is determined by the root system, the ring R and
the weight lattice of the representation 7m. We shall denote this lattice by A or A.
If we consider an elementary Chevalley group, we denote it by E.(®, R).

The subgroup of all diagonal (in a standard basis of weight vectors) matrices
of the Chevalley group G(®, R) is called the standard mazimal torus of G(®, R)
and is denoted by T (®, R). This group is isomorphic to Hom(A,, R*).

Let us denote by h(x) an element of T, (®, R) corresponding to the homo-
morphism x € Hom(A(r), R*).

In particular, hq(u) = h(Xau), ©w € R*, a € &, where

Xow: A= u N e AL
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The connection between Chevalley groups and the corresponding elementary
Chevalley groups is a considerable problem in the theory of Chevalley groups over
rings. If for elementary Chevalley groups there exists a convenient system of gen-
erators x4 (), « € @, £ € R, and all relations between these generators are studied,
it is not possible to do a similar thing with the Chevalley groups themselves.

If K is an algebraically closed field, then

G (®,R) = E;(D,R)

for any representation w. This equality is not true even in the case of fields that
are not algebraically closed.

But if G is a universal group and the ring R is semilocal (that is, it contains only
finitely many maximal ideals), then we have the condition

Gsc (P, R) = Esc(?, R)

(see [17]-]20]).

Let us show the difference between Chevalley groups and their elementary sub-
groups in the case when a ring R is semilocal and the Chevalley group is not
universal. In this case

G- (®,R) = E,(®,R)T, (P, R)

(see [17], [18], [20]), and the elements h(x) are connected with elementary generators
by the formula

h(xX)zs()h(x) ™" = 25(x(8)8). (1)

It is known that the subgroup of elementary matrices E2(R) = Fs.(A1, R) is not
necessarily normal in the special linear group SLa(R) = Gs.(A1, R) (see [21]-[23]).
But if ® is an irreducible root system of rank [ > 2, then E(®, R) is always normal
in G(®, R). In the case of semilocal rings with 1/2 it is easy to show that

[G(®,R),G(®,R)] = E(?,R).

§ 2. Proof of Theorem 2

In the book [1] it is proved that elementary equivalence is preserved under taking
direct products, therefore the result below directly follows.

Proposition 1. If a semisimple Lie algebra £ = L1 & - - DL, where the algebras
A, ..., L are simple, R and R’ are rings, then the pairwise equivalence of the
(elementary) Chevalley groups

Gﬂlxl(gl’R) and Gﬂ/|$1(.§,ﬂ1,R/), ey Gﬂ—|$k($k,R) and Gwl‘fk(fk,R/)

implies the elementary equivalence of the (elementary) Chevalley groups G.(%£, R)
and G (£, R).

Therefore we need only prove our theorem for simple Lie algebras.
The following theorem holds for arbitrary commutative rings with unit R and R'.
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Theorem 3. If two Chevalley groups G = G(®,R) and G' = G(®,R’) are con-
structed by the same complex Lie algebra of type ® and the same representation w
of it, and also by elementarily equivalent rings R and R, then G = G'.

Proof. As we know from the definition of a Chevalley group,

G= { i) € Mn(R) | pr(aiz) = p2(aij) = -+ = pm(ai;) = 0},
G' = {(aij) € MN(R') | pr(aij) = p2(aij) = -+ = pm(ai;) = 0},
where p1, po, ..., pm are some known polynomials with integer coefficients and N is

some known integer number.

Suppose that we have some sentence ¢ of the group language, which is considered
on groups G and G’. We translate it to a sentence @ of the ring language in the
following way:

the subformula Vg (g) to the subformula

Vail, . ,a?va (pl(ail, e ,a?V7N) =0A--- /\pm(aﬁ”l, e 7“?\/,N) =0
= Ylaf,,. .., a?V,N));

the subformula 3¢ (g) is translated to the subformula

Elail,...,afva (pl(afvl,...,a?\,’N) :O/\-~~/\pm(a%1,...,a?\,,N) =
Aw(a§71,...,a§V7N));

the subformula g = h is translated to the subformula
_ 9  _ _h .
ayy =aypy N Nay y = 0N N3
the subformula g = h - f is translated to the subformula
N n
h
A (et = Y abu-of, ).
ij=1 k=1

It is clear that G(R) E ¢ if and only if R E .
Therefore, if rings R and R’ are elementarily equivalent, then for any sentence ¢
of the group language

GFyp <= RF¢p < RFQp +— GEFEo
So G = G’ and the proof is complete.

The following theorem holds for local and semilocal rings R and R’ with 1/2.

Theorem 4. If two elementary Chevalley groups E=E,(R,®) and E'=E. (R, )
are constructed by the same complex Lie algebra of type ® and the same representa-
tion m of it, and also by elementarily equivalent semilocal rings R and R’ with 1/2,
then E = E'.

This theorem clearly follows from the previous one and Proposition 2 in the next
section.
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8 3. Transfer to an elementary adjoint group

Here we want to prove that if two (elementary) Chevalley groups are elementarily
equivalent, then their root systems coincide, initial rings are elementarily equivalent,
weight lattices coincide.

For our convenience we suppose all rings to be infinite. Note that this assumption
does not limit the generality of our result, since in the case of two finite rings R
and R’ the (elementary) Chevalley groups G(R) and G(R') (E(R) and E(R')) are
finite, that is,

GR)=G(R) = GR)=GR).

Therefore we can refer to the results proved earlier that show that in this case
®~ P and R R/, that is, P = ®' and R = R'.
First we demonstrate the following result.

Proposition 2. If two Chevalley groups G and G’ are elementarily equivalent, then
their elementary subgroups E and E’ are also elementarily equivalent.

Lemma. Let G = G(P,R) be a Chevalley group, E = E.(®, R) its elementary
subgroup, R a semilocal ring with 1/2 (and with 1/3, if ®=2G5). Then E=[G,G]
and there exists a number N depending on ®, but not on R (nor on the represen-
tation ) such that every element of the group E is a product of at most N com-
mutators of the group G.

Proof. Let a root system ® have rank [.
If R is a (semi)local ring, then for every element ¢ € E we have the Gauss
decomposition (see [18])

g = uhvu/, uu' €U, veV, hecH.

It is known (see [14]) that elements u, u’ and v are represented as the products of
at most n (the number of positive roots of the system ®) elements x,(t), and h is
a product of at most [ elements of the form h,(t), which, in their turn, are products
of at most six elements x,(t).

Therefore every element of the group E.(®, R) is a product of at most 61 4+ 3n
elements x(t), where n is the number of positive roots, which depends on [ as
shown in Table 1.

Table 1

root-system type | rank n
A BRRGEDR
By l 12
C l 2
D l 12 -1
Eg 6 36
Er 7 63
Es 8 120
Fy 4 24
Go 2 6
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Now we only need to show that every x,(t) is a product of some (bounded above)
number of commutators. To do this we must consider root types separately.

Namely, if we consider any of the root systems A;,1 > 2, D;,l > 4, E; (I = 6,7,8),
then every root in it can be included in some root system of type Ao, that is, we
can suppose that o = a; + a; for some roots a; and «ay; these three roots form the
set of positive roots of the system A,. In this case

[Ta (), Laj ()] = za(+£ts),

therefore x,(t) is a commutator.
For the root systems B; (I > 2), C; (I = 3), Fy every root can be considered as
a long or short root of the system Bs. In this system every root has the form

:|:€17 :|:€2 or + €1 + €9.

Note that
1) +e1 e = (£e1)+ (£ez) and no linear combination of the roots +e; and +eq
with natural coefficients different from (4e1) + (£e2) is a root, therefore

[miel (t)v Ltey (8)] = Ttertes (:l:2t8)7

that i, T4e, +e,(t) is a commutator (since 1/2 € R);
2) we have ey = (te; — ea) + ea, SO

[x:t61*62 (t)v Ley (8)] = Ltey (:l:2ts)x:|:€1+€2 (ctsQ),

therefore xL., (t) is a product of two commutators.
Thus any element z,(t) is a product of at most 2 commutators.
For the root system G any root has the form

:|:(€1 — 62), :|:(€1 — 63), :t(eg — 63),
1(261 — €9 — 63), :|:(262 —e1 — 63), :l:(2€3 — €1 — 62)‘

We have

+(2e1 —eg —e3) = £(2e2 —e1 —e3) + (
+(2e3 —e1 —e3) = +(2e3 —e1 —ea) + (
+(2e3 —e; —e2) = +(2e1 —ex —e3) + (
Consequently, for any long root « the element z,(¢) is a commutator.
Then we have
e1 —eg = (e1 —e3) + (e3 — ea),

so that

[xfil*eg. (t)a Leg—es (5)} = Tey—es (i3ts)m*2€2+61+63 (Clt‘92)x2€1*62*63 (62t28).

Therefore, for 1/3 € R every element z., ,(t) is a product of three commutators.
Consequently, every element x,,(t) is a product of at most three commutators.

So we see that any element of an elementary Chevalley group E,(®, R) is a prod-
uct of not more than M commutators of the group G(®, R), where the number
M depends only on the root system ®. The proof is complete.
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Proof of Proposition 2. Consider the set of sentences

Definen :=V 1, ..., Tp Ylse ooy UM 21y - oo s ZM b1y o ooy tag JUL, oo, Opg, UL, - . Upg
(([z1, 0] [eas yna]) (21, 1] -+ [2ar, ta]) = fun, 01] - - fuag, va]).-

Every such sentence states that any element of the commutant of a group under

consideration is a product of at most M commutators. We know that for the groups

G and G’ there exists (the same, since they are elementarily equivalent) M such
that the sentence Definey; holds in both groups. In this case the formula

Commut () := Jug, ..., upr, V1, .., U0 (x = [ug,vq] - [uM,vM])

defines in both groups G and G’ subgroups FE and E’, respectively, therefore these
subgroups are elementarily equivalent, which completes the proof.

So we see that if we have two elementarily equivalent Chevalley groups F and E’,
we also have two elementarily equivalent adjoint Chevalley groups E,q and E! ; that
are central quotients of the original groups.

8§ 4. Factorization for local rings

Since the radical J is the unique maximal (that is, the greatest proper) ideal of
aring R, the subgroup E; = F.q(®, R, J) generated by z(t), t € J, is the greatest
proper normal subgroup of E = E.q(®, R) (see [24]).

Therefore, if we can show that the subgroup F; is definable in the group F,
then, factorizing E by E; we obtain the Chevalley group E = E.q(R/J), that is,
the Chevalley group over a field, and after that refer to the results proved in [9] on
elementary equivalence of Chevalley groups over fields.

Proposition 3. The subgroup Ej = Enq(®, R, J) is definable in E = Enq(®, R).
Proof. Consider in E elements A satisfying the formula
Nolnvy (A) = p1(A) A pa(A),

where the formula

N N

©1(A) == /\vxl,...,Xi,xq,...,Yj (\/321,...,2,c
4,7=0 k=0

(- X AXTH - XGAXT - (1 AY - YAY T
=(1-2,AZ7 - ZkAZkl)))

means that elements XlAXf1 e Xk;AX];1 for £ < N form a subgroup of E, and
the formula

N N
pa(A) = A\VXy,..., X, X (\/321,...,Zk
1=0 k=0
(X(XAXT - XGAX DX = Z20AZ7 - ZkAZk1)>
N
AIX (/\VXl,...,Xi (X;AXlAX;l-.-XiAX;l))
1=0

means that this subgroup is normal and does not coincide with the whole of E.
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If for a given A and some N this formula is true, than it means that the minimal
normal subgroup of E containing A is a proper subgroup of E. As we know, every
proper normal subgroup of E is contained in Ej, therefore A € E;.

On the other hand, for any A = z,(u),u € J, a € ®, the formula Nolnvy(A) is
true for some rather big N (which can be chosen unique for a given root system).

Let us fix the minimal natural N such that if for some A the sentence Nolnvy (A)
does not hold, then for this A no sentence Nolnv,(A4), p > N, holds.

Now consider M such that in our group the following sentence is true:

Normps, n = 91 Atha APy Ay,
where
M
dri= N\ VX1, XYY
i,j=0
(NolnvN(Xl) A -+ ANolnvy (X;) A NoInvy (Y1) A -+ - A Nolnvy (Y;)

M
= \/3%,....%
k=0

(Nolnvy(Z1) A - ANolnvy (Zy) A Xy - X, Y1+ Y = Z; - ~~Zk))

(this sentence means that the products X - - - Xy, k < M, of elements of F satisfy-
ing Nolnvy (X) form a subgroup of E);

M
o= \VX1,... X, X (NoInvN(Xl) A --- A Nolnvy (X;)
=0

= \/In,....y;
j=0

(NoInvy (Y1) A -+ ANolnv (V) A X (X1 -+ X)X =Y, - Yj)>
(this sentence means that the said subgroup is normal);
1/)3 = HXl,XQ (NOIHVN(Xl)/\NOIDVN(XQ)/\X:[ #XQ)

(the subgroup is not trivial);

g i=3X (/\vxl,...,
(NoInvy (X1) A -+ ANolnvy (X;) = X;éXl---Xi))

(the subgroup does not coincide with the whole group FE).
With the help of this formula we find M such that every element of the group
E; is generated by at most M elements z,(u), u € J.
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Now the formula

M
Normaly, v (X) = A\ 3X1,..., X;
=0

(NOIIIVN(Xl) VANREIRWAN NOIIIVN(XZ‘) ANX =X Xz)

defines in E the subgroup F;, which finishes the proof.

For the moment we obtain the following implication:

G(®,R) =G (P, R) = FE.(P,R)=FE.(?,R)
=  E.(®,R)=FEa\q(®,R) = FE.(®,R/J)=E\q(®,R/J)
= =9

The last implication follows from the main theorem of [9] (elementary equivalence
of Chevalley groups over fields).

Now we can always suppose that the root system of our Chevalley group is
known.

8 5. Formulae for the Gauss decomposition of Chevalley groups

Recall that we have a root system ® of rank > 1. The set of simple roots is
denoted by A, the set of positive roots is denoted by ®T. The subgroup U = U(R)
of the Chevalley group G (F) is generated by the elements z,(t), a € ®T, 1 € R,
and the subgroup V = V(R) is generated by the elements z_,(t), « € d+ ¢ € R.

For invertible ¢t € R* we denote x,(t)7_o(—t"1)x4(t) by wa(t), and we denote
wa(t)wa(1)71 by ha(t)'

The group H = H(R) is generated by all h,(t), o € ®, t € R*.

Proposition 4. (i) Every element x of a Chevalley group G (E) over a local ring R
can be represented in the form

r =utvu  (resp. x = uhvu'),

where u,u’ € U(R), ve V(R), t e T(R), h € H(R).
(ii) For decompositions x1 = uitiviu) and o = ustavaub, where

wi = 2oy (1) - 2o, (0D), = 20, (81 - 20, (s,
Vi = Ty (M) a0, (PD), = hay (67) - oy (67),
i=1,2,

there exists a first order formula of the ring language

RIS

BN N 4 IR

90( tSzQ)asgl)w-~7S£zl)a552)a~--58'22)7

’I“El),...,7“,21)77”?)7...,7“7(12)7551),...,6511)7552),...,5,,(12)),

which is true if and only if
T, = T2.
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(iil) Similarly, for decompositions x1 = uitiviu}, x2 = ustovouh and xs =
ustzvsul, where

wi = oy (1) 2o, (0D), = a0, (s7) 20, (sD),
U = m—oq(TgZ)) o T—ay, TS))a t; = hlxl(fgl)) e haz (fl(l))v
i=1,2,3,

there exists a first order formula of the ring language

zb(tgi),...,tsf),sgi),...,sg),rgi),... ) gi),...,ﬁ(i)),

RA (A n

that is true if and only if
T3 = T1 - T2.

Proof. (i) We only need to prove that

TUVUza(t) e TUVU Vo €®*, VteR, (2)
TUVUR(x) € TUVU  Vh(x) €T, (3)
TUVUz_o(+1) e TUVU ~ Va €A, (4)

since

T_o(t) = wa (1) za(H)we (£1) 7
=zo(ED)z_o(Fl)aa(£1)za(t)za(Fl)x_o(£1)zo (F1),
and we (1) = wa, (1) wa,, (1), where a;,, ..., a; € A.

Relation (2) is absolutely clear because Uz, (t) CU Va € @, Vt e R.
Relation (3) follows from

h(X)za(Hh() ™" = za(x(@)t).

Now we shall prove relation (4).
Without loss of generality we suppose that « = a3 € A = {a1,...,a;}. Then

B =h(X)Ta:(t1)  Ta, (tn)T—0y (1) T—a, (Tr)Tay (81) - Ta, (80)T—ay (1)
=h(X)ZTa, (t1) + Ta, (tn)T—ay (1) T—a,, (Tn)
X Ty (81)T 0y (1)Zay (53) -+ Ta, (57,) (5)

where s}, ..., s are polynomials with integer coefficients of sa, ..., $p.
If 1 + s; € R*, then the equality is continued as follows:

B = h(X)Ta, (t1) -+ Ta, (tn) Ty (1) -+ T, (T0) Ty (1) Py (1) Ty (87) -~ T, (57,)
=1 (X)2a, (1)) -+ Ta, (13)T—a; (1) - 2=, (17,)Ta, (1) -+ Ta,, (57,),

where p, n, sy,..., 80, thy...,t ri,...,rl, h/(x) are Laurent polynomials (with
integer coefficients) of the old variables.

If 14 s; ¢ R*, then s; € R* and

Tay (81)T—a, (1) = Tay (14 81)Ta, (—1)T -0, (1)Ta, (—1)Ta, (1)
= l‘al(l + Sl)wfn(_l)xch(l) = wal(_l)x_al (_1 - 81)$a1(1)'
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Then equality (5) is continued as follows:

(t1) a, (tn)T—a, (r1) - T—q, (Tn)

(—1D)7—a, (=1 = 51)Z0, (1)Tay(53) - - 2a, (57,)
= h(X)Tay (t3) - Ta, (1) Tay (01)T 0, (71) - T, (T0)

(=17 -0, (1)Ta, (s5) -~ Ta, (57)-

Now we use the equality

Loy (tl)x—oq (Tl) = Loy (1 + tl)x—ou (1)x041 (1 - Tl)wal (1)

We obtain the following continuation of (5):

() Ta, () Tay (14 t1)2—a, (D)Ta, (1 —711)
X Way, (1)ar_a2 (7‘2) ‘T, (Tn)
X Way (—1)T—ay (=1 = 81)2a, (1)Ta, (85) -+~ Ta,, (57,)
= h(X)Za, (t7) T, ()T -y (Do, (1 = 71) T, (13) - 20, (17,)
X &g, (1 = 51)2a, (1)Ta, (53) -+~ Ta, (57,)
= h/(X)xm (t1) %o, (tn)T—0y (F1) - T, (Fn) Ty (B1) - - - Tar,, (30),
where all the new parameters are rational functions with integer coeflicients of the
old parameters.

Therefore assertion (i) is proved.
(ii) and (iii). For o € &7, o = o, let

wa7+(t17"'7tn7r17"'arn751;-~-58n7£17"'7£n;

tl?"'7tn7F17""Fn7§17"'7§n7§17"'7£l;t)

B = h(X)%Ta,

be the formula
tl :fl/\-~~/\tn:fn/\r1 =T1 AN~ ATp
=Ta NG =E N ANG=E AT (51,00, 803581, 5n3 ),

where
77a’+( ) = 77(136’+(Sl7 .. '7snu§17t) ANRRRAN nz’-‘r(sh .. '38n7§’nat)7

and the formula na“+(sl, ...,5n,5;5,t) has the form s; = p(s1,...,5,,t) and p is

a polynomial of n+1 variables with integer coefficients such that this formula is true
if and only if

Tay (51) * Tay, (5n)Ta, ()
= xal(')mom(') o -xaj—l(-)xaj(gj)xaj+l(.). -.xan(.)'
So we see that the formula ®*(-) holds if and only if
T = hEI_“EZ (X)ay (t1) - Ta, (tn)T—a, (T1) -+ T—a, ()T, (51) - - Ta, (5n)

and for

T = h{l-uiz (X)xal (tl) Ly, (tn)$—a1 (Tl) o T—ay, (Tn)xal (31) T, (Sn)
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we have the equality
Now let

Suppose the formula

wT(tl,...,tn,rl,...,rn,sh...,sn,fl,...,fn;
[ZTUI S ST e TN SR ST SR V)
is true for
T=x h(Xr..\)
It has the form
=& MAAG=G- NN =0 (A, ) A A,
=)t A S N) AT =05 (P A N) A AT,
=0 (s ALy A) AT =105 1 (51, A1, M) A A (S0, A, A,

where 2/)3: ; is a Laurent polynomial (a monomial) with integer coefficients of its
arguments.

Finally, for x_,,(1) and x_,(—1), where a; € A in the proof of (i) we have
shown that there exist formulae 1%1(...) and *~1(...) of the variables

tl,...,tn,rl,...,Tn,Sh...,Sn,gl,...,fl,fl,...,fn,Fl,...,?n,gl,...,gn,gl,...7gl,
that hold in the cases T =z - x_,, (1) and T = x - x_,, (—1), respectively.

Now let us construct a formula ¢™i(-) that holds for T = x - w,,, a; € A.

It can be constructed as follows:

wwi(tl""7tn7r17""/"n)817"‘78n’€1?""€l’

t17"'7tn7?17"'7Fna§17"'7§n7€1a"'7§l)
/ / " " / / 12 " / / " "
=3ttt T T T Ty STy o3 Sy STy Sy € R

Y¥n VN Y n? i n

! ! 1 1 *
3,860, ¢ eR

W (et T e Ty ST e S0y 1, -5 &1,

/ o o ) .
LA T A N A N A S TR STl |
1,—1 74/ / ’ / / / / /
AT (e T T ST S € &
1 1 / 1 1 1
[ A S S S 30

TR ) " " 1 12 1 1 11
NPT (ot T Ty ST e S &Y 6

Tlyee oy s Tl e e s Ty By oy 8y Eqy e e 5 &3 1),
In the group language it states:
Ja',2" 2=z, ()N =2z, (-1) AT =2" - 24,(1).

If « € ®F \ A, then to construct a formula %= (-) that holds for 7 = = - w,
we decompose w, into the product of simple reflections w, = w;, ... w;, and apply
consecutively multiplication by w;,, ..., w;,.
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Now let us write a formula

wa’i(t];""7t71/7/rl7"'7rn7817"'7S7l7§17"'7§l7
%17"'afnafla"'7?n7§17'”agnazla"wzl;t)
that holds for
T=x 2_qt).

It has the form

Ittt s sl s s R
Sl e R
ww“(tl,...,tn,rl,...,rn,sl,...,sn,fl,...,fl,
L A R S N Y S TR 39|
APt s s €L
ot s s e =)
T (2 O i R N A 3 U A
Tl oo sty Tl e Ty Bl o3 By €1y oo 05 &))-
Now we can easily write a formula
’(/J®(t1,...,tn,7"1,...,7"”7817...,Sn,€17...,€l,fl,...7¥n7
Flyeeos Ty S1yeey 8y &y ee s Ethy oot e 8T 80 €L )

that holds for T = x - 2’ as a composition of the formulae ¥+, 1=, ¥T obtained
above.

But since writing an element z € G in the form x = tuvu’ is not unique, we obtain
a formula that holds for x3 = 1 - z2 only for some certain forms for x1, z2, z3.

However, we need these parameters to satisfy the formula ¥®(-) if and only if
they define elements x1, 29,23 € G such that x3 = 1 - 2o, that is, if there exist
parameters defining x4 such that the forms for z3 and x% define the same elements,
and also

1,[)®(1‘1, o, Ig).

The fact that two elements z; and z2 are equal means that z; - x5 L=1. We

find a formula expressing that an element is equal to 1:

T =Ta,(t1)  Ta, (t)(XE ) T—0r (T1) T, (T0) Ty (1) Ty, (80) = 1.

Let utve/ = 1, where u,u/ € U, t € T,v € V. Then TV 3 tv = v/~ € U.
Since TV NU =1, we have tv = 1 Av'u = 1.
Let ¥Y(ty,... tn,t),...,t,t1,...1,) be a formula that holds if and only if
Loy (t1) - Loy, (tn) = Tay (1) Ta, (tn) Ty (tll) Ty, (t’/n)
Then a formula expressing that  is equal to the unit has the form
’(/J(l)(th...,tn,fl,...,§l7T17...,Tn,81,...78n)
=& =D)ANAN&G=1)Ar1=1NAry
:1/\’(ﬂu(tl,...,tn,sl,...,87“1,...,1).
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To find an inverse element to

T =To,(t1)  Ta, (tn)R(Xey &) T—ay (1) Ty, (T0) Ty (51) -+ Tar,, (S0,

we express ! in the form UTVU:

a7 = Ta, (=80)  Tay (—51)T—a, (—T0) - Tay (_Tl)h(ngl...gfl)

_ n) A fEal(—h)
=Zo, (=8n)  Ta, (—sl)h(nglmglfl)
X ZTa, (=qn(&1s- s &)n) - Toay (1 (&1y -, §)T1)Ta, (—tn) -+ Tay (1)
= Za, (P (=8ny - =51)) - T, (P (=80 -, _31))h(Xgl—1.,,gl—1)
X Ty, (0] (mqn (&1 &)y ooy —q1 (&, - o, &)T1)
X T, (Pn (—qn (&1, &)y - — @1 (&r, - &)
x xal(pf(_tm o t1)) o Ta, (pZ(—tm oo —t1)),

X
8
Q
3
—~
~

where pf (), ..., pt(+), py(+), ..., p,(+) are polynomials of n variables with
integer coefficients and ¢;( ), ..., ¢g,(-) are Laurent monomials of [ variables.
Therefore the formula

z/)(_l)(tlw" tn7§17"‘>§larl7"‘7r’na817"‘7sn7
e b & T T STy S)
= (= pf (tns s =) A At = D (s, —t)) A (& =E67)
A /\(gl/:gl_l)/\(rll:pl_(f(h(fla'"7£l)r17"'7 Qn(§1;~-~,§l)rn)
A - /\(7“7/1:p;(_CIl(fla--~7§l)7“1,~-a_Qn(flwwafl)Tn)
Ay =pf (=8p,. ., —s1) A--- A s,
= pi(=8ns. .y —51)
holds if and only if 2/ = 1.

Consequently, the required formula ¥(=)(-) that is true if and only if z = 2’ has
the form

qp(:)(tla"'atna§15"'aglarla"'arnasl?-"asvu

e & T T Sy Sh)
=3ttt T T, T, S S 81,5 ER
3¢, ,6,,...,§ €R
w(_l)(t€l7"'7 77,7617"'751771:/[7"'77’.:74783""78’/”,7
tll/a"'atxa /7 R} l//ﬂrla"'arnﬂsl?"'?‘s;i)
/\Ql)@(tl,...7tn7£1,...,fl,'l”l,...7’!’n,81,...78n,tl17..., n’€17""6l17
P S st s €T e Ty B e B)

APD (E, B &y 6T, oo TnyB1, o Sn).

So we now have a formula for (ii).



Elementary equivalence of Chevalley groups over local rings 15

Finally we can write a formula for (iii):

VO (o, €1y LTy ey Ty ST, ey Smu st D€L
P s st &y 6T e Ty B, e B)
=3¢, .t s s e RO3E, . ERT
1/)®(t1,...,tn,fl,...,&,rl,.. T‘n,Sl,...,Sn,tll,...7 n7£17"'7§l,7
T/l,...,rn,sl,..., n,tll/, ..,t’ri, ”,..., l”,ri',...,r;:,s'l’,...,sx)
ANYE e e s s
Tryees by &gy E0 T, oo Ty 51, e 8-

The proof of Proposition 4 is complete.

8§ 6. Elementary equivalence of the initial rings

Suppose that we have two elementarily equivalent elementary adjoint Chevalley
groups E and E’ of the same type ® (of rank > 1) over local rings R and R’ with
invertible 2 (if ® = G, then also with invertible 3).

From [25], [10], [11] it follows that if two such groups are isomorphic, then the
rings R and R’ are isomorphic.

If the groups E and E’ are elementarily equivalent, then by the Keisler-Shelah
theorem (see [1]) there exists an ultrafilter D such that

[HE=]]E"
D D
From Proposition 4 it follows that

[ Eate.r) ad<<1> HR)
Therefore,
FEoa <<I>, 11 R) >~ Faa ((I), 11 R’> )
D D
Consequently,
[a=T1#
D D

from which it follows that
R=R.

§ 7. Conclusion

Now let us collect all the proved facts and finally obtain the proof of the main
theorem.

— The reverse implication is completely proved in § 2, even for a more general
class of rings.
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Suppose now that we have two elementarily equivalent Chevalley groups satis-
fying all conditions from the theorem.

— In §4 it was proved that in this case the root systems are isomorphic.

— In §6 it was proved that the initial rings are elementarily equivalent.

— The isomorphism of weight lattices follows from the fact that with regard
to our groups over local rings we can with the help of factorization by the
greatest normal subgroup obtain Chevalley groups over residue fields with
the same weight lattices as the initial groups. Then the required result
follows from the similar result of [9].

The proof of the Main Theorem is complete.
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