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Introduction

The crisis that appeared in the naive set theory at the beginning of the 20th century has led to the
construction of several strict axiomatic set theories. The most useful among them is the set theory in the
Zermelo–Fraenkel axiomatics (ZF) (1908, 1922 [8]) and the class and set theory in the von Neumann–
Burnice–Hödel axiomatics (NBG) (1928, 1937, 1940 [10]).

In 1917, using transfinite induction Mirimanov [20] constructed the cumulative collection (≡hierarchy)
of sets Vα for all order numbers α having the following properties:

(1) V0 ≡ ∅;
(2) Vα+1 = Vα ∪ P(Vα) (P(Vα) denotes the set of all subsets of the set Vα);
(3) Vα = ∪ Vβ |β ∈ α for any limit order number α.

It turns out that cumulative sets Vα themselves and the collection Vα|α ∈ On as a whole have many
remarkable properties. In particular, von Neumann proved in [22] that the regularity axiom in ZF is
equivalent to the property ∀x∃α(α is an ordinal number ∧x ∈ Vα) and the class ∪ Vα|α ∈ On is an
abstract (≡ class) standard model for the ZF theory in ZF. Models of the ZF and NBG theories of the
form (Vα,=,∈) are said to be natural.

After the introduction of the concept of a (strongly) inaccessible cardinal number by Zermelo in [28]
and by Sierpinski–Tarski in [24], Zermelo [28] (not strictly) and Shepherdson [23] (strictly) proved that
a set U is a supertransitive standard model for the NBG theory iff it has the form Vκ+1 for a certain
inaccessible cardinal number κ. Thus, the natural model of the NBG theory was explained.

The Zermelo–Shepherdson theorem admits the following equivalent reformulation: a set U is a super-
transitive standard model for the ZF theory with the strong replacement property (∀X∀f(X ∈ U ∧ f ∈
UX ⇒ rng f ∈ U)) iff it has the form Vκ for a certain inaccessible cardinal number κ.

Starting from the requirements of category theory, instead of the metaconcept of a supertransitive
standard model set with the strong replacement property for the ZF theory, Ehresmann [6], Dedecker [5],
Sonner [25], and Grothendieck (see [9]), introduced an equivalent set-theoretic concept of a universal set
U (see [18], I.6, [7], [12]), which is defined by the following properties:

(1) x ∈ U ⇒ x ⊂ U ;
(2) x ∈ U ⇒ P(x),∪x ∈ U ;
(3) x, y ∈ U ⇒ x ∪ y, {x, y}, 〈x, y〉, x× y ∈ U ;
(4) x ∈ U ∧ f ∈ Ux ⇒ rng f ∈ U (strong replacement property);
(5) ω ∈ U (here, ω ≡ {0, 1, 2, . . . } is the set of all finite ordinal numbers).

To deal with categories in the set-theoretic framework, they suggested to strengthen the ZF theory by
adding the universality axiom AU, according to which each set is an element of a certain universal set.

The equivalent form of the Zermelo–Shepherdson theorem states that the universality axiom AU is
equivalent to the inaccessibility axiom AI according to which for every ordinal number, there exists an
inaccessible cardinal number strictly greater than it.

For axiomatic construction of inaccessible cardinal numbers, in [26] (see also [17], IX, § 1 and § 5),
Tarski introduced the concept of a Tarski set U, which is defined by the following properties:

(1) x ∈ U ⇒ x ⊂ U (transitivity property);
(2) x ∈ U ⇒ P(x) ∈ U (exponentiality property);
(2) (x ⊂ U ∧ ∀f(f ∈ Ux ⇒ rng f 
= U) ⇒ x ∈ U (Tarski property).

In [26], Tarskii proved that the set Vκ (≡ inaccessible cumulative set) is a Tarski set for each cardinal
number κ.

Also, in [26], Tarski proved that the inaccessibility axiom AI is equivalent to the Tarski axiom AT,
according to which every set is an element of a certain Tarskii set.

In connection with the Tarski theorem, the following problem remains open unit now: to what extent is
the axiomatic concept of Tarski set is wider than the constructive concept of inaccessible cumulative set?
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In this paper, we give an answer to this question: the concepts of an inaccessible cumulative set and
that of an uncountable Tarski set are equivalent.

The equivalence of the concepts of an inaccessible cumulative set and an uncountable Tarski set is
proved by using the concept of a universal set. More precisely, it is proved that every uncountable Tarski
set is universal.

As a result, we obtain the following theorem on the characterization of natural models of the NBG
theory: the following properties are equivalent for a set U :

(1) U is an inaccessible cumulative set, i.e., U = Vκ for a certain inaccessible cardinal number κ;
(2) P(U) is a supertransitive standard model for the NBG theory ;
(3) U is a supertransitive standard-model with the strong replacement property of the ZF theory;
(4) U is a universal set ;
(5) U is an uncountable Tarski set.
The Zermelo–Shepherdson theorem yields a canonical form of supertransitive standard models of the

NBG theory and an (equivalent) canonical form of standard models with the strong replacement property
of the ZF theory. However, Montague and Vaught proved in [21] that for any inaccessible cardinal
number κ, there exists an ordinal number θ < κ such that it is inaccessible and the cumulative set Vθ
is a supertransitive standard model of the ZF theory. Therefore, the problem on the canonical forms of
supertransitive standard models of the ZF theory turned out to be more complicated.

Since the concept of model in the ZF theory cannot be defined by a finite set of formulas, in this paper,
using the formula schema and its relativization to the set Vθ, we introduce the concept of a (strongly)
scheme-inaccessible cardinal number θ and prove a scheme analog of the Zermelo–Shepherdson theorem.

To prove this theorem, we introduce the concept of a scheme-universal set, which is a scheme analog
of the concept of a universal set. Moreover, in this paper, we introduce the concept of a scheme Tarski
set, which is a scheme analog of the concept of a Tarski set.

As a result, we prove the theorem on the characterization of natural models of the ZF theory : the
following properties are equivalent for a set U :

(1) U is a scheme-inaccessible cumulative set, i.e., U = Vθ for a certain scheme-inaccessible cardinal
number θ;

(2) U is a supertransitively standard model for the ZF theory;
(3) U is a scheme-universal set ;
(4) U is a scheme Tarski set.
In this paper, the problems mentioned above are solved for the ZF set theory (with the axiom of

choice). For the NBG set theory, all things are equally true. For the reader’s convenience, we present all
the necessary facts that are not sufficiently reflected in the literature or merely refer to the mathematical
folklore, with complete proofs.

1. Some Facts From Zermelo–Fraenkel Set Theory

1.1. Classes in the ZF set theory. We first present a list of proper axioms and axiom schemes of
the ZF theory, the Zermelo–Fraenkel theory with the axiom of choice (see [11, 17], and [13]).

This theory is a first-order theory with two binary predicates: the belonging predicate symbols ∈ (we
write A ∈ B) and the equality = (we write A = B).

The equality predicate = satisfies the following axiom and the axiom scheme:
(1) ∀x(x = x) (reflexivity of equality);
(2) (x = y) ⇒ (ϕ(x, x) ⇒ ϕ(x, y)) (interchange of equals), where x and y are variables, ϕ(x, x) is

an arbitrary formula, and ϕ(x, y) is obtained from ϕ(x, x) by replacing (not necessary all) free
entrances of x by entrances of y so that the condition that y is free for all x that are replaced holds.

Objects of ZF theory are called sets. Further, in the paper, the denoting sign-alternation σ for a
sign-alternation ρ will be introdused in the form of sign-alternation ρ ≡ σ (σ is the notation ρ).
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It is convenient to consider the totality C of all sets A satisfying a given formula ϕ(x). Such a totality
C is called the class defined by the formula ϕ. The totality C(�u) of all sets A satisfying a formula ϕ(x, �u)
is called the class (ZF ) defined by the formula ϕ through the parameter �u. Along with this, we will use
the notation

A ∈ C ≡ ϕ(A), A ∈ C(�u) ≡ ϕ(A, �u),
and

C ≡ {x|ϕ(x)}, C(�u) ≡ {x|ϕ(x, �u)}.
If C ≡ {x|ϕ(x)} and ϕ contains only one variable x, then the class C is said to be completely determined

by the formula ϕ.
Every set A can be considered as the class {x|x ∈ A}.
A class C ≡ {x|ϕ(x)} is called a subclass of a class D ≡ {x|ψ(x)} (denoted by C ⊂ D) if ∀x(ϕ(x) ⇒

ψ(x)). Two classes C and D are said to be equal if (C ⊂ D)∧ (D ⊂ C). In what follows, we will use the
notation {x ∈ A|ϕ(x)} ≡ {x|x ∈ A ∧ ϕ(x)}. If a class C is not equal to any set, then C is called a proper
class. The class of all sets V ≡ {x|x = x} is said to be universal

For two classes C ≡ {x|ϕ(x)} and D ≡ {x|ψ(x)}, let us define the binary union C ∪D and the binary
intersection C ∩ D as the classes

C ∪ D ≡ {x|ϕ(x) ∨ ψ(x)} andC ∩ D ≡ {x|ϕ(x) ∧ ψ(x)}.
A1 (volume axiom).

∀X∀Y (∀u(u ∈ X ⇔ u ∈ Y ) ⇒ X = Y ).
For two sets A and B, define an unordered pair {A,B} as the class {A,B} ≡ {z|z = A ∨ z = b}.
A2 (pair axiom).

∀u∀v∃x∀z(z ∈ x⇔ z = u ∨ z = v).
It follows from A2 and A1 that an unordered pair of sets is a set.
For two sets A and B, define the following:
— a unit set {A} ≡ {A,A};
— an ordered pair 〈A,B〉 ≡ {{A}, {A,B}}.
It follows from the above that {A} and 〈A,B〉 are sets.

Lemma 1. 〈A,B〉 = 〈A′, B′〉 iff A = A′ and B = B′.

AS3 (isolation axiom scheme).

∀X∃Y ∀u(u ∈ Y ⇔ u ∈ X ∧ ϕ(u, �p)),

where the formula ϕ(u, �p) does not freely contain the variable Y .
The isolation axiom scheme asserts that the class {u|u ∈ X∧ϕ(u, �p)} is a set. This set is unique by A1.
Consider the class C(�p) = {u|ϕ(u, �p)}. Then Scheme AS3 can be expressed as ∀X∃Y (Y = C(�p)∩X).
For two classes A and B define the difference A \B as the class A \B ≡ {x ∈ A|x /∈ B}. If A is a set,

then the difference A \ B is a set by AS3.
Since A∩B = {x ∈ A|x ∈ B} ⊂ A, by AS3, we have that for any sets A and B, the binary intersection

A ∩B is a set.
For a class C ≡ {x|ϕ(x)}, define the union ∪C as the class ∪C ≡ {z|∃x(ϕ(x) ∧ z ∈ x)}.
A4 (Union axiom).

∀X∃Y ∀u(u ∈ Y ⇔ ∃z(u ∈ z ∧ z ∈ X)).
From A4 and A1, it is deduced that for any set A, its union ∪A is a set.

The equality A ∪B = ∪{A,B} holds. Hence, for any sets A and B, their binary union A ∪B is a set.
The complete ensemble of a class C is the class P(C) ≡ {u|u ⊆ C}.
A5 (axiom of the set of subsets (≡ of complete ensemble)).

∀X∃Y ∀u(u ∈ Y ⇔ u ⊂ X).
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If A is a set, then by A5 and A1, P(A) is a set.
For two classes A and B define the (coordinatewise) product

A ∗ B ≡ {x|∃u∃v(u ∈ A ∧ v ∈ B ∧ x = 〈u, v〉)}.
The property that A ∗B is a set for the sets A and B follows from AS3, since A ∗B ⊆ PP (A ∪B)).

A class (in particular, a set) C is called a correspondence if ∀u(u ∈ C ⇒ ∃x∃y(u = 〈x, y〉))). For a
correspondence C, consider the classes domC ≡ {u|∃v(〈u, v〉 ∈ C)} and rngC ≡ {v|∃u(〈u, v〉 ∈ C}.

If C is a set, then by A4 and AS3, it follows from domC ⊂ ∪ ∪ C that domC is also a set.
A correspondence F is called a function (≡ mapping) if ∀x∀y∀y′(〈x, y〉 ∈ F ∧ 〈x, y′〉 ∈ F ⇒ y = y′).

The formula expressing the property to be a function for a class F will be denoted by func(F). For the
expression 〈x, y〉 ∈ F, we use the following notation: y = F(x), F : x �→ y, etc.

A correspondence C is called a correspondence from a class A into a class B if domC ⊂ A and
rngC ⊂ B (denoted by C : A ≺ B). A function F is a function from a class A into a class B if
domF = A and rngF ⊂ B (denoted by F : A → B).

The formula expressing the property of the class F to be a function from the class A into the class B
will be denoted by F � A → B. The formulas (F � A → B) ∧ ∀x, y ∈ A(F(x) = F(y) ⇒ x = y)
and (F � A → B) ∧ rngF = B will be denoted by F � A � B and F � A � B, respectively. The
conjunction of these formulas will be denoted by F � A � B. These formulas define the injectivity, the
surjectivity, and the bijectivity of the function F : A → B, respectively.

The class {f |f is a function ∧ domf = A ∧ rng f ⊆ B} of all functions from the class A into the class
B which are sets is denoted by BA or Map(A,B). Since BA ⊂ P(A ∗B), the class BA is a set for all sets
A and B.

The restriction of a function F to a class A′ is defined as the class F|A′ ≡ {x|∃u∃v(x = 〈u, v〉 ∧ x ∈
F ∧ u ∈ A′)}. The image and the preimage of a class D under a function F are defined as the classes
F[D] ≡ {v|∃u ∈ D(v = F(u))} and F−1[D] ≡ {u|F(u) ∈ D}.

A correspondence C from a class A into a class B is also called a (multivalued) collection of subclasses
Ba ≡ C〈a〉 ≡ {y|y ∈ B∧〈a, y〉 ∈ C} of the class B indexed by the class A. In this case, the correspondence
C and the class rngC are also denoted by Ba ⊂ B|a ∈ A and ∪ Ba ⊂ B|a ∈ A , respectively.
The class ∪ Ba ⊂ B|a ∈ A is also called the union of the collection Ba ⊂ B|a ∈ A . The class
{y|∀x ∈ A(y ∈ Bx)} is called the the intersection of the collection Ba ⊂ B|a ∈ A and is denoted by
∩ Ba ⊂ B|a ∈ A . To each class A, we canonically put in correspondence the collection a ⊂ V|a ∈ A
of element sets of the class A. The relation ∪A = ∪ a ⊂ V|a ∈ A holds for this collection.

A function F from a class A into a class B is also called a simple collections of elements ba ≡ F(a)
of the class B indexed by the class A. In this case, the function F and the class rngF are also denoted
by (ba ∈ B|a ∈ A) and {ba ∈ B|a ∈ A}, respectively. The collection (ba ∈ V|a ∈ A) is also denoted by
(ba|a ∈ A). To each class A, we canonically put in correspondence the simple collection (a ∈ A|a ∈ A)
of elements of the class A. Clearly, {a ∈ A|a ∈ A} = A.

AS6 (axiom substitution scheme).

∀x∀y∀y′(ϕ(x, y, �p) ∧ ϕ(x, y′, �p) ⇒ y = y′) ⇒ ∀X∃Y ∀x ∈ X∀y(ϕ(x, y, �p) ⇒ y ∈ Y ),

where the formula ϕ(x, y, �p) does not freely contain the variable Y .
Also, Scheme AS6 can be also expressed as follows: if F is a function, then for any set X, the class

F[X] is a set.
If A is a set, then the axiom substitution scheme implies that the class rngF ≡ {ba ∈ B|a ∈ A} is a

set. Then it follows from F ⊂ A × rngF that the class F ≡ (ba ∈ B|a ∈ A) is also a set. Therefore, in
the case where A is a set, the following notation is used: F : A→ B and F ≡ (ba ∈ B|a ∈ A).

A7 (empty set axiom).
∃x∀z(¬(z ∈ x)).

It follows from A1 that a set containing no element is unique. It is denoted by ∅.
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A8 (infinity axiom).
∃Y (∅ ∈ Y ∧ ∀u(u ∈ Y ⇒ u ∪ {u} ∈ Y )).

According to this axiom, there exists a set I containing ∅, {∅}, {{∅}}, etc.
A9 (regularity axiom).

∀X(X 
= ∅ ⇒ ∃x(x ∈ X ∧ x ∩X = ∅)).
The function f : P(A) \ {∅} → A is called the choice function for the set A if f(X) ∈ X for any

X ∈ P(A) \ {∅}.
The following last axiom postulates the existence of the choice function for any nonempty set.
A10 (axiom of choice (AC )).

∀X(X 
= ∅ ⇒ ∃z((z � P(X) \ {∅} → X) ∧ ∀Y (Y ∈ P(X) \ {∅} ⇒ z(Y ) ∈ Y ))).

The axiomatic system A1–A9 is called the Zermelo–Fraenkel axiomatic set theory ZF (with the axiom
of choice).

1.2. Ordinal and cardinals in the ZF set theory. If n ∈ ω, then a subclass R of the class An ≡
Map(n,A) is called an n-fold (≡ n-ary) relation on the class A.A mapping O : An → A is called an
n-fold (≡ n-ary) operation on the class A.

A binary relation ≤ on a class P is called an ordering of the class P (≡ an order on the class P) if the
following conditions hold:

(1) ∀p ∈ P(p ≤ p);
(2) ∀p, q ∈ P(p ≤ q ∧ q ≤ p⇒ p = q);
(3) ∀p, q, r ∈ P(p ≤ q ∧ q ≤ r ⇒ p ≤ r).

If, in addition,
(4) ∀p, q ∈ P(p ≤ q ∨ q ≤ p),

then ≤ is called a linear ordering of P.
A class P endowed with an order ≤ is said to be ordered.
An ordered class P is said to be completely ordered (c. o.) if

(5) ∀Q(∅ 
= Q ⊆ P ⇒ ∃x ∈ Q(∀y ∈ Q(x ≤ y))), i.e., if every nonempty subset of the class P has a
minimal element.

Let a class P be ordered by a relation ≤, and let A be a nonempty subclass of the class P. An element
p ∈ P is called the least upper bound or supremum of the subclass A if ∀x ∈ A(x ≤ p) ∧ ∀y ∈ P((∀x′ ∈
A(x′ ≤ y)) ⇒ p ≤ y). This formula is denoted by p = supA. An element a ∈ A is called a maximal
[minimal ] element of the class A if b ≤ a [b ≥ a] for any b ∈ A. This formula is denoted by a = grA
[a = smA]. If the class P is linearly ordered, then a maximal [minimal] element is unique.

A class S is said to be transitive if ∀x(x ∈ S ⇒ x ⊂ S). The class S is said to be quasi-transitive if
∀x∀y(x ∈ S ∧ y ⊂ x⇒ y ∈ S). A transitive and quasi-transitive class is said to be supertransitive.

A class [set] S is called an ordinal [ordinal number ] if S is transitive and completely ordered by the
relation ∈ ∪ = on S. The property of a set S to be an ordinal number will be denoted by On(S).

As usual, ordinal numbers are denoted by Greek letters α, β, γ, etc. The class of all ordinal numbers is
denoted by On. The relation α ≤ β ≡ α = β∨α ∈ β is a natural ordering of the class of ordinal numbers.
The class On is transitive and linearly ordered by the relation ∈ ∪ =.

Let us present several simple assertions on ordinal numbers:
(1) if α is an ordinal number, A is a set, and A ∈ α, then A is an ordinal number;
(2) α = {β|β ∈ α} for every ordinal number α;
(3) α+ 1 ≡ α ∪ {α} is a least ordinal number greater than α;
(4) every nonempty set of ordinal numbers has the least element.
Therefore, the ordered class On is completely ordered. Thus, On is an ordinal.

Lemma 1. Let A be a nonempty subclass of the class On. Then A has a minimal element.

Lemma 2. If A is a nonempty set of ordinal numbers, then:

5835



(1) the class ∪A is an ordinal number ;
(2) ∪A = supA in the ordered class On.

Corollary. The class On is proper.

An ordinal number α is said to be consequent if α = β+1 for a certain ordinal number β. Otherwise, α
is said to be limit. This unique number β will be denoted by α− 1. The formula expressing the property
to be consequent [limit] for an ordinal number α will be denoted by Son(α) [Lon(α)].

Lemma 3. An ordinal number α is limit iff α = supα.

The least (in the class On) nonzero limit ordinal is denoted by ω. The existence of such an ordinal
follows from A7, AS6, and AS3. Ordinals less than ω are called natural numbers.

Collections Bn ⊂ B|n ∈ N ⊂ ω and (bn ∈ B|n ∈ N ⊂ ω), where N is an arbitrary subset in ω, are
called sequences. If N ⊂ m ∈ ω, then the sequences are said to be finite, and they are said to be infinite
in the opposite case.

Theorem 1 (transfinite induction principle). Let C be a class or ordinal numbers such that :
(1) ∅ ∈ C;
(2) α ∈ C ⇒ α+ 1 ∈ C;
(3) (α is a limit ordinal number ∧α ⊂ C) ⇒ α ∈ C. Then C = On.

Theorem 2 (construction by transfinite induction). For each function G : V → V, there exists a func-
tion F : On → V such that for any α ∈ On,

F(α) = G(F|α).

There is the following ∈-induction principle in ZF.

Lemma 4. If a class C is such that
∀x(x ⊂ C ⇒ x ∈ C),

then C = V.

Two sets A and B are said to be equivalent (A ∼ B) if there exists a one-to-one (≡ bijective) function
u : A � B.

An ordinal number α is said to be cardinal if for each ordinal number β, the relations β ≤ α and β ∼ α
imply β = α. The class of all cardinal numbers will be denoted by Cn. The class Cn with the order
induced from the class On is completely ordered.

Theorem 3. For any set A, there exists an ordinal number α such that A ∼ α.

Now, for a set A, consider the class {x|x ∈ On ∧ x ∼ A}. By Theorem 3, this class is nonempty,
and, therefore, it contains a minimal element α. Obviously, α is a cardinal number. Moreover, this class
contains only one cardinal number α. This number α is called the cardinality of the set A (and is denoted
by |A| or cardA). Two sets having the same cardinality are said to be equicardinal (denoted by|A| = |B|).
A set of cardinality ω is said to be denumerable. Sets of cardinality n ∈ ω are said to be finite. A set is
said to be countable if it is finite or denumerable. A set is said to be infinite if it is not finite.

Note that if κ is an infinite cardinal number, then κ is a limit ordinal number.
Let α an ordinal. The confinality of α is the ordinal number cf(α) equal to the minimal ordinal number

β for which there exists a function f from β into α such that ∪rng f = α. The number cf(α) is a cardinal
number.

A cardinal κ is said to be regular if cf(κ) = κ, i.e., for any ordinal number β for which there exists a
function f : β → κ such that ∪rng f = κ, we have κ ≤ β, where ∪rng f = κ means that for any y ∈ κ,
there exists x ∈ β such that y < f(x).
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A cardinal κ > ω is said to be (strongly ) inaccessible if κ is regular and cardP(λ) < κ for all ordinal
numbers λ < κ. The property of a cardinal number κ to be inaccessible will be denoted by Icn(κ). The
class of all inaccessible cardinal numbers will be denoted by In.

The existence of inaccessible cardinals cannot be proved in ZF (see [13], 13).

2. Cumulative Sets and Their Properties

2.1. Construction of cumulative sets. Let us apply the construction by transfinite induction to the
following situation. Consider the class

G ≡ {Z|∃X∃Y (Z = 〈X,Y 〉 ∧ ((X = ∅ ⇒ Y = ∅)
∨(X 
= ∅ ⇒ (¬func(X) ⇒ Y = ∅) ∨ (func(X) ⇒ (¬On(domX) ⇒ Y = ∅)
∨(On(domX) ⇒ (Son(domX) ⇒ Y = X(domX − 1) ∪ P(X(domX − 1)))

∨(Lon(domX) ⇒ Y = ∪rng X))))))}.
If we express the definition of the class G less formally, then G consists of all pairs 〈X,Y 〉 for which

we have the following five cases which exclude each other:
(1) if X = ∅, then Y = ∅;
(2) if X 
= ∅ and X is not a function, then Y = ∅;
(3) if X 
= ∅, X is a function and domX is not an ordinal number, then Y = ∅;
(4) if X 
= ∅, X is a function, domX is an ordinal number, and domX = α + 1, then Y = X(α) ∪

P(X(α)).
(5) if X 
= ∅, X is a function, and domX is a limit ordinal number, then Y = ∪rng X.
By definition, G is a correspondence. Since any set X has one of the properties listed above, we have

domG = V. Since in each of the above five cases, the set Y is uniquely determined by the set X, using
the property of an ordered pair from Lemma 1 (Sec. 1.1), we verify that G is a function from V into V.

According to Theorem 2 (Sec. 1.2), for the function G, there exists a function F : On → V such that
the following relation holds for any α ∈ On:

F(α) = G(F|α).

It follows from Case (1) for the function G that F(∅) = G(F|∅) = G(∅) = ∅.
It follows from case (4) that if β is the subsequent cardinal number and β = α + 1, then F(β) =

G(F|β) = (F|β)(α) ∪ P((F|β)(α)) = F(α) ∪ P(F(α)).
Finally, it follows from Case (5) that if α is a limit ordinal number, then F(α) = G(F|α) = ∪rng (F|α) =

∪ F(β)|β ∈ α .
Denote F(α) by Vα. We have obtained the collection Vα ⊂ V|α ∈ On satisfying the following

relations:

(1) V0 = ∅;
(2) Vα+1 = Vα ∪ P(Vα);
(3) Vα = ∪ Vβ |β ∈ α if α is a limit ordinal number.
This collection is called the Mirimanov–von Neumann cumulative collection, and its elements Vα are

called Mirimanov–von Neumann cumulative sets.

2.2. Properties of cumulative sets.

Lemma 1. If α and β are ordinal numbers, then:

(1) α < β ⇔ Vα ∈ Vβ ;
(2) α = β ⇔ Vα = Vβ ;
(3) α ⊂ Vα and α ∈ Vα+1.
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Proof. (1) and (2). By the transfinite induction, let us prove that for any ordinal number β, (α ∈ β ⇒
Vα ∈ Vβ).

If β = ∅, then this is obvious, since ∀α¬(α ∈ β).
If (α ∈ β ⇒ Vα ∈ Vβ) for a certain ordinal number β, then consider the ordinal number β+1. It follows

from α ∈ β + 1 that α ∈ β ∨ α = β. If α ∈ β, then Vα ∈ Vβ by the induction assumption, and since
Vβ+1 = Vβ ∪ P(Vβ), we have Vα ∈ Vβ+1. If α = β, then Vα = Vβ ∈ Vβ+1, since Vβ ∈ P(Vβ). Therefore,
α ∈ β + 1 ⇒ Vα ∈ Vβ+1 holds for β + 1.

Now assume that β is a limit ordinal number and ∀γ ∈ β∀α(α ∈ γ ⇒ Vα ∈ Vγ). Let α be such that
α ∈ β. Since β is a limit ordinal number, we have α+1 ∈ β. Since Vβ = ∪ Vγ |γ ∈ β , we have Vα+1 ⊂ Vβ .
Since Vα ∈ Vα+1 in this case, we have Vα ∈ Vβ .

Clearly, α = β ⇒ Vα = Vβ . If Vα = Vβ , then either α < β, or α = β, or β < α. If α < β, then Vα ∈ Vβ ;
if β < α, then Vβ ∈ Vα; therefore, β = α.

If Vα ∈ Vβ , then α < β, since Vα = Vβ for α = β, and for β < α, Vβ ∈ Vα.
(3) Consider the class C ≡ {x|x ∈ On ∧ x ⊂ Vx}. Since 0 ⊂ ∅ = V0, we have 0 ∈ C. If α ∈ C, then

α ⊂ Vα implies α + 1 ≡ α ∪ {α} ⊂ Vα ⊂ Vα+1. Let α be a limit ordinal number, and let α ⊂ C. By
construction, Vα = ∪ Vβ |β ∈ α . If x ∈ α, then x ∈ C means that x ⊂ Vx. Hence x ∈ P(Vx) ⊂ Vx+1.
Since α is a limit number x+ 1 ∈ α implies x ∈ Vα. Therefore, α ⊂ Vα and hence α ∈ C. By Theorem 1,
C = On.

The lemma is proved.

Using the ∈-induction principle, by Lemma 4 (Sec. 1.2), we prove the following von Neumann identity.

Lemma 2. V = ∪ Vα|α ∈ On .

The proof was given in ([13], 9, Theorem 13). Moreover, von Neumann proved that this identity is
equivalent to the regularity axiom (see ibid).

Lemma 3. For any ordinal number α, z ⊂ x ∈ Vα implies z ∈ Vα.

Proof. Let us prove this assertion by transfinite induction.
Precisely, let C = {α|α ∈ On ∧ ∀x∀z(z ⊂ x ∈ Vα ⇒ z ∈ Vα)}. We show that C = On.
If α = ∅, then, obviously, α ∈ C.
Assume that α ∈ C. Then let us prove that α + 1 ∈ C. Let z ⊂ x ∈ Vα+1. Since Vα+1 = Vα ∪ P(Vα),

we have z ⊂ x ∈ Vα ∪ P(Vα). Therefore, x ∈ Vα or x ⊂ Vα. If z ⊂ x ∈ Vα, then z ∈ Vα by the induction
assumption, and hence z ∈ Vα+1. If x ⊂ Vα and z ⊂ x, then z ⊂ Vα, and, therefore, z ∈ Vα+1. Thus,
α+ 1 ∈ C.

If α is a limit ordinal and ∀β ∈ α(β ∈ C), then z ⊂ x ∈ Vα implies ∃β ∈ α(z ⊂ x ∈ Vβ), whence, by
the induction assumption, it follows that ∃β ∈ α(z ∈ Vβ), i.e., z ∈ Vα.

Therefore, C = On by the transfinite induction principle, and the lemma is proved.

This lemma shows that any cumulative set Vα is quasi-transitive.

Lemma 4. For any ordinal number α,

∀x(x ∈ Vα ⇒ x ⊂ Vα).

Proof. We prove this lemma also using the transfinite induction.
The desired formula hods for α = ∅, since ∀x¬(x ∈ V∅).
For a certain ordinal number α, let

∀x(x ∈ Vα ⇒ x ⊂ Vα).

Consider the ordinal number α+1. If x ∈ Vα+1, then x ∈ Vα∨x ∈ P(Vα), or, more precisely, x ∈ Vα∨x ⊂
Vα. In the case where x ∈ Vα, we have x ⊂ Vα by the induction assumption, and since Vα ⊂ Vα+1, we
have x ⊂ Vα+1. If x ⊂ Vα, then we immediately obtain from Vα ⊂ Vα+1 that x ⊂ Vα+1.
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Now let α be a limit ordinal number, and, moreover, let ∀β ∈ α∀x(x ∈ Vβ ⇒ x ⊂ Vβ). Then x ∈ Vα
implies ∃β ∈ α(x ∈ Vβ); by the inductive assumption, ∃β ∈ α(x ⊂ Vβ), and, therefore, x ⊂ Vα.

The lemma is proved.

This lemma shows that any cumulative set is transitive.

Corollary 1. If α and β are ordinal numbers and α ≤ β, then Vα ⊂ Vβ.

Corollary 2. For any ordinal number α, the inclusion Vα ⊂ P(Vα) and the equality Vα+1 = P(Vα) hold.

Proof. If x ∈ Vα, then by this lemma, x ⊂ Vα, i.e., x ∈ P(Vα). Therefore, Vα ⊂ P(Vα). Whence
Vα+1 = Vα ∪ P(Vα) = P(Vα).

Corollary 3. If α and β are ordinal numbers and α < β, then |Vα| < |Vβ |.
Proof. By the previous Corollaries 1 and 2, Vα ⊂ P(Vα) = Vα+1 ⊂ Vβ . Using the Cantor theorem, we
obtain |Vα| < |P(Vα)| = |Vα+1| ≤ |Vβ |.
Lemma 5. For any ordinal number α, if x ∈ Vα+1, then x ⊂ Vα.

Proof. Assume that x ∈ Vα+1. This means that x ∈ Vα ∨ x ⊂ Vα. If x ⊂ Vα, then all the things are
proved. If x ∈ Vα, then by the previous lemma, x ⊂ Vα, which is what was required.

Lemma 6. For any ordinal number α,

∀x∀y(x ∈ Vα ∧ y ∈ Vα ⇒ x ∪ y ∈ Vα).

Proof. We use the transfinite induction principle once again.
If α = ∅, then the condition of the lemma holds, since ∀x¬(x ∈ V∅).
Now let α = β + 1 for a certain ordinal number β. Then by Lemma 5, the property x ∈ Vα ∧ y ∈ Vα

implies x ⊂ Vβ ∧ y ⊂ Vβ , and, therefore, x ∪ y ⊂ Vβ , whence x ∪ y ∈ Vβ+1, i.e., x ∪ y ∈ Vα.
Now assume that α is a limit ordinal number and ∀β ∈ α∀x∀y(x ∈ Vβ ∧ y ∈ Vβ ⇒ x ∪ y ∈ Vβ). Then

x, y ∈ Vα implies ∃β ∈ α(x, y ∈ Vβ), whence, by the induction assumption, we have ∃β ∈ α(x ∪ y ∈ Vβ),
and, therefore, x ∪ y ∈ Vα, which is what was required to prove.

Lemma 7. For any limit ordinal number α, it follows from x ∈ Vα that P(x) ∈ Vα.

Proof. Assume that α is a certain limit ordinal number and x ∈ Vα. Then ∃β ∈ α such that x ∈ Vβ . Let
us show that P(x) ⊂ Vβ in this case. Indeed, by Lemma 3, x ∈ Vβ and z ⊂ x imply z ∈ Vβ ; therefore,
∀z(z ∈ P(x) ⇒ z ∈ Vβ), which means that P(x) ⊂ Vβ. If P(x) ⊂ Vβ , then P(x) ∈ Vβ+1, i.e., P(x) ∈ Vα,
which was required to prove.

Corollary 1. For any limit ordinal number α, it follows from x, y ∈ Vα that {x}, {x, y}, 〈x, y〉 ∈ Vα.

Proof. By Lemma 7, P(x) ∈ Vα. By Lemma 3, it follows from {x} ⊂ P(x) that {x} ∈ Vα. Now Lemma 6
implies {x, y} ∈ Vα. By the property proved above, it follows from this that 〈x, y〉 ∈ Vα.

Corollary 2. For any limit ordinal number α, it follows from X,Y ∈ Vα that X ∗ Y ∈ Vα.

Proof. Let x ∈ X and y ∈ Y . Then {x} ⊂ X ∪ Y and {y} ⊂ X ∪ Y imply {x, y} ⊂ X ∪ Y . By Lemma 6,
X ∪ Y ∈ Vα. Since {x} ∈ P(X ∪ Y ) and {x, y} ∈ P(X ∪ Y ), it follows that 〈x, y〉 ≡ {{x}, {x, y}} ⊂
P(X ∪ Y ). Hence 〈x, y〉 ∈ P(P(X ∪ Y )). Therefore, X ∗ Y ⊂ P(P(X ∪ Y )). By Lemmas 6, 7, and 3,
X ∗ Y ∈ Vα.

Lemma 8. If α ≥ ω, then ω ⊂ Vα. If α > ω, then ω ∈ Vα.

Proof. By Lemma 1, ω ⊂ Vω ⊂ Vα. If α > ω, then ω ⊂ Vω ∈ Vω+1 implies ω ∈ Vω+1 ⊂ Vα.
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Let λ be an ordinal number. Consider the collection K(λ) ≡ Mβ |β ∈ λ + 1 of sets Mβ ≡ {x ∈
Map(P(|Vβ |), |P(|Vβ|)| |x � P(|Vβ|) � |P(|Vβ |)|} of all corresponding bijective mappings β ∈ λ + 1
and the set M(λ) ≡ ∪ Mβ |β ∈ λ + 1 . By the axiom of choice, there exists a choice function ch(λ) :
P(M(λ)) \ {∅} → M(λ) such that ch(λ)(P ) ∈ P for any P ∈ P(M(λ)) \ {∅}. Since Mβ ⊂ M(λ) for
β ∈ λ+ 1, it follows that cβ(λ) ≡ ch(λ)(Mβ) ∈Mβ , i.e., cβ(λ) is a bijection from P(|Vβ |) onto |P(|Vβ |)|.

The following assertion can be called the theorem on the initial synchronization of cardinality of cumu-
lative sets. It is new and belongs to the authors.

Theorem 1. Let λ be an ordinal number. Then for any ordinal number α ≤ λ, there exists a unique
collection u(α) ≡ u(λ)(α) ≡ (fβ |β ∈ α+ 1) of bijective functions fβ : Vβ � |Vβ | such that :

(1) f0 ≡ ∅;
(2) if γ < β ∈ α+ 1, then fγ = fβ |Vγ ;
(3) if β ∈ α + 1 and β = γ + 1, then fβ |Vγ = fγ and fβ(x) = cγ(λ)(fγ [x]) for each x ∈ Vβ \ Vγ =

P(Vγ) \ Vγ ;
(4) if β ∈ α+ 1 and β is a limit ordinal number, then fβ = ∪ fγ |γ ∈ β .

The uniqueness property implies u(α)|δ+1 = u(δ) for each δ ≤ α, i.e., these collections extend each other.

Proof. We first verify the uniqueness of the collection u ≡ u(α). For α, let there exist a collection
v ≡ (gβ |β ∈ α + 1) of bijective functions gβ : Vβ � |Vβ | having Properties (1)–(4). Consider the set
D′ ≡ {β ∈ α+ 1|fβ = gβ}, the class D′′ ≡ On \ (α+ 1), and the class D ≡ D′ ∪D′′. Clearly, 0 ∈ D′ ⊂ D.

Let β ∈ D. If β ≥ α, then β + 1 ∈ D′′ ⊂ D. Let β < α. Then β ∈ D′ and β + 1 ∈ α + 1. Therefore,
by Property (3), fβ+1(x) = fβ(x) = gβ(x) = gβ+1(x) for any x ∈ Vβ and fβ+1(x) = cβ(λ)(fβ [x]) =
cβ(λ)(gβ [x]) = gβ+1(x) for any x ∈ Vβ+1 \ Vβ , i.e., fβ+1 = gβ+1. Thus, β+ 1 ∈ D′ ⊂ D. Therefore, β ∈ D
implies β + 1 ∈ D.

Let β be a limit ordinal number, and let β ⊂ D. If β ∩ D′′ 
= ∅, then there exists γ ∈ β such that
γ ≥ α + 1. Hence β > γ ≥ α + 1 implies β ∈ D′′ ⊂ D. Let β ∩ D′′ = ∅, i.e., let β ⊂ D′. Then for any
γ ∈ β, fγ = gγ holds. Since β ⊂ α + 1, it follows that β ≤ α + 1. If β = α + 1, then β ∈ D′′ ⊂ D.
Let β ∈ α + 1. If x ∈ Vβ = ∪ Vγ |γ ∈ β , then x ∈ Vγ for a certain γ ∈ β. Then by Property (2),
fβ(x) = fγ(x) = gγ(x) = gβ(x) for any x ∈ Vβ , i.e., fβ = gβ . Thus, β ∈ D′ ⊂ D. Therefore, the properties
that β is a limit ordinal number and that β ⊂ D imply β ∈ D.

By the transfinite induction principle, D = On. Hence D′ = α+ 1. Therefore, u = v.
In what follows, instead of cγ(λ), we will merely write cγ .
Consider the set C ′ consisting of all ordinal numbers α ≤ λ for which there exists a collection u(α)

having Properties (1)–(4). Also, consider the classes C′′ ≡ On \ (λ+ 1) and C ≡ C ′ ∪ C′′. Since V0 = ∅
and |V0| = 0, the collection u(0) ≡ (fβ |β ∈ 1) with the bijective function f0 = ∅ : V0 � |V0| has Properties
(1)–(4), and, therefore, 0 ∈ C.

Let α ∈ C. If α ≥ λ, then α + 1 ∈ C′′ ⊂ C. Now let α < λ. Then α + 1 ∈ λ + 1 means that we can
use the function cα. Since α ∈ C ′, for α, there exists a unique collection u ≡ (fβ |β ∈ α + 1). Define the
collection v ≡ (gβ |β ∈ α + 2) of bijective functions gβ : Vβ � |Vβ | setting gβ ≡ fβ for any x ∈ Vα and
gα+1(x) ≡ cα(fα[x]) for any x ∈ Vα+1 \ Vα = P(Vα) \ Vα.

Let us verify that v has Properties (1)–(4). Let β ∈ α + 2. If β ∈ α + 1, then Properties (1)–
(4) obviously hold. Let β = α + 1. Then gβ(x) = gα+1(x) = fα(x) = gα(x) for any x ∈ Vα and
gβ(x) = gα+1(x) = cα(fα[x]) = cα(gα[x]) for any x ∈ Vβ \ Vα. Moreover, gβ |Vα = fα = gα. Therefore,
γ < β implies gβ |Vγ = gα|Vγ = fα|Vγ = fγ = gγ . Thus, α+ 1 ∈ C ′ ⊂ C.

Let α be a limit ordinal number, and let α ⊂ C. If α ∩ C′′ 
= ∅, then there exists β ∈ α such that
β ≥ α + 1. Hence α > β ≤ λ + 1 implies α ∈ C′′ ⊂ C. Let α ∩ C′′ = ∅, i.e., let α ⊂ C ′. Then for any
β ∈ α, there exists a unique collection uβ ≡ (fβγ |γ ∈ β + 1) of bijective functions fβγ : Vγ � |Vγ | with
Properties (1) – (4). Since α ⊂ λ+ 1, it follows that α ≤ λ+ 1. If α = λ+ 1, then α ∈ C′′ ⊂ C. Further,
let α ∈ λ+ 1. For any δ ≤ β ∈ α, consider the collection w ≡ uβ |δ+ 1 ≡ (fβγ |γ ∈ δ+ 1). The collection w
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has Properties (1)–(4). By the uniqueness proved above, w = uδ. Therefore, uδ = uβ |δ + 1, i.e., f δγ = fβγ

for any γ ∈ δ + 1. In particular, f δδ = fβδ for any δ ≤ β.
Define the collection v ≡ (gβ |β ∈ α+1) of functions gβ setting gβ ≡ fββ for any β ∈ α and gα(x) ≡ fβγ (x)

for any x ∈ Vα = ∪ Vγ |γ ∈ α and any γ ≤ β ∈ α such that x ∈ Vγ . Clearly, gβ � Vβ � |Vβ| for any
β ∈ α. Let us verify that gα � Vα → |Vα|. By Corollary 1 of Lemma 4 (Sec. 2.2), Vγ ⊂ Vα. Hence
|Vγ | ⊂ |Vα|. Therefore, for any x ∈ Vα, we have gα(x) ≡ fβγ (x) ∈ |Vγ | ⊂ κ ≡ ∪ |Vγ | ⊂ |Vα| |γ ∈ α ⊂ |Vα|.
Let x, y ∈ Vα and gα(x) = gα(y). Then x ∈ Vγ and y ∈ Vδ for certain γ, δ ∈ α. Consider the number β
being maximal among the numbers γ and δ. By definition, fββ (x) = gα(x) = gα(y) = fββ (y). From the
injectivity of this function, we conclude that x = y. Hence the function gα is injective. Let z ∈ κ. Then
z ∈ |Vγ | for a certain γ ∈ α. Since the function fγγ : Vγ � |Vγ | is injective, it follows that z = fγγ (x) for a
certain x ∈ Vγ ⊂ Vα. Hence z = gα(x). Therefore, gα is a bijective function from Vα onto κ, i.e., Vα ∼ κ.

By Corollary 3 of Lemma 4 (Sec. 2.2), |Vγ | ∈ |Vα|. Therefore, there exists a set A ≡ {x ∈ |Vα| |∃y ∈
α(x = |Vy|)} = {|Vγ | |γ ∈ α} of ordinal numbers |Vγ |. Since α is a limit ordinal number, it follows that
A 
= ∅. Therefore, by Lemma 2 (Sec. 1.2), the set ∪A = supA is an ordinal number. If z ∈ ∪A = {z|∃x ∈
A(z ∈ x)}, then z ∈ |Vγ | ⊂ κ for a certain γ ∈ α. Conversely, if z ∈ κ, then z ∈ |Vγ | ∈ A for a certain
γ ∈ α. Therefore, z ∈ ∪A. Thus, κ = ∪A, i.e., κ is an ordinal number.

Let us prove that κ is a cardinal number. Let β be an ordinal number, β ≤ κ, and let β ∼ κ. Assume
that β < κ. Then β ∈ κ implies β ∈ |Vγ | for a certain γ ∈ α. Hence β < |Vγ | = card |Vγ | ≤ |κ| = |β|.
Since β is an ordinal number, it follows that |β| ≤ β. As a result, we arrive at the inequality β < β, which
is impossible. The obtained contradiction implies β = κ. This means that κ is a cardinal number.

Since κ is a cardinal number and κ ∼ Vα, it follows that κ = |Vα|. Therefore, gα � Vα � |Vα|.
Let us verify that the collection v has Properties (1)–(4). By the definition of this collection,

g0 ≡ f0
0 = ∅. Let γ < β ∈ α + 1. If β ∈ α, the equality fγγ = fβγ proved above implies gβ |Vγ =

fββ |Vγ = fβγ = fγγ ≡ gγ . If β = α, then by construction, gβ |Vγ = gα|Vγ = fγγ ≡ gγ . Therefore, Property (2)
holds for v.

Let β ∈ α + 1, β = γ + 1, and let x ∈ Vβ = P(Vγ). If β ∈ α, then the equality fγγ = fβγ proved
above implies gβ(x) = fββ (x) = fβγ (x) = fγγ (x) = gγ(x) for any x ∈ Vγ and gβ(x) = fββ (x) = cγ(f

β
γ [x]) =

cγ(f
γ
γ [x]) = cγ(gγ [x]) for any x ∈ Vβ \ Vγ . Therefore, Property (3) holds for v.

Property (4) follows from Property (2). It follows from the verified properties that α ∈ C ′ ⊂ C.
By the transfinite induction principle, C = On, and, therefore, C ′ = λ+ 1.

Note that since the functions cγ(λ) depend on the number λ, we cannot compose the collections u(λ)(α)
extending each other into a global collection indexed by all order numbers.

Corollary. For any limit ordinal number α, we have |Vα| = ∪ |Vβ | |β ∈ α = ∪{|Vβ | |β ∈ α} =
sup{|Vβ | |β ∈ α}.
Proof. Consider the number λ ≡ α. By Theorem 1, there exists the corresponding collection u(α) ≡
(fβ |β ∈ α + 1). Since α is a limit ordinal number and α ∈ α + 1, by Property (4), it follows that
fα = ∪ fβ |β ∈ α . Therefore, |Vα| = rng fα = ∪ rng fβ |β ∈ α = ∪ |Vβ | |β ∈ α = ∪{|Vβ | |β ∈ α} =
sup{|Vβ | |β ∈ α}, where the latter equality follows from Lemma 2 (Sec. 1.2).

2.3. Properties of inaccessible cumulative sets. The sets Vκ for inaccessible cardinal numbers κs
will be called inaccessible cumulative sets. They have a number of specific properties. We present these
properties with complete proofs, since their proofs are practically absent in ([13], 13) and are not obvious.

Lemma 1. For any inaccessible cardinal number κ and any ordinal number α ∈ κ, we have |Vα| < κ.

Proof. Consider the set C ′ ≡ {x ∈ κ| |Vx| < κ} and the classes C′′ ≡ On \ κ and C ≡ C ′ ∪ C′′. Since
V0 = ∅, it follows that |V0| = 0 < κ. Therefore, 0 ∈ C.

Let α ∈ C. If α ≥ κ, then α+1 ∈ C′′ ⊂ C. Let α < κ. Then α ∈ C ′. If α+1 = κ, then α+1 ∈ C′′ ⊂ C.
Let α+1 < κ. Since Vα ∼ |Vα|, it follows that P(Vα) ∼ P(|Vα|). Hence |P(Vα)| = |P(|Vα|)|. By Corollary
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2 of Lemma 4 (Sec. 2.2), |Vα+1| = |P(Vα)| = |P(|Vα|)|. Since |Vα| < κ and the cardinal number κ is
inaccessible, it follows that |P(|Vα|)| < κ. Hence |Vα+1| < κ. Therefore, α+ 1 ∈ C ′ ⊂ C.

Let α be a limit ordinal number, and let α ⊂ C. If α ∩ C′′ 
= ∅, then there exists β ∈ α such that
β ≥ κ. Hence α > β ≥ κ implies α ∈ C′′ ⊂ C. Let α ∩ C′′ = ∅, i.e., α ⊂ C ′ ⊂ κ. If α = κ, then
α ∈ C′′ ⊂ C. Let α < κ. By α ⊂ C ′, for any β ∈ α, we have |Vβ | < κ. Hence, sup{|Vβ | |β ∈ α} ≤ κ.

Using the properties of |Vβ | ∈ κ, we can correctly define the function f : α → κ setting f(β) ≡ |Vβ|.
Clearly, rng f = {|Vβ | |β ∈ α}. By the corollary of Theorem 1, ∪rng f = ∪{|Vβ | |β ∈ α} = sup{|Vβ | |β ∈
α} = |Vα|. By the inequality proved above, we obtain |Vα| ≤ κ. Assume that |Vα| = κ. Then by the
regularity of the number κ, κ = ∪rng f implies κ ≤ α, which contradicts the initial inequality α < κ.
Thus, |Vα| < κ. Therefore, α ∈ C ′ ⊂ C.

By the transfinite induction principle, C = On. Therefore, C ′ = κ.

Lemma 2. If κ is an inaccessible cardinal, then κ = |Vκ|.
Proof. By Lemma 1 (Sec. 2.2), κ ⊂ Vκ. Hence κ = |κ| ≤ |Vκ|. By the corollary of Theorem 1 (Sec. 2.2),
|Vκ| = sup(|Vβ | |β ∈ κ). Since |Vβ | < κ by Lemma 1, it follows that |Vκ| ≤ κ. As a result, we obtain
κ = |Vκ|.
Lemma 3. If κ is an inaccessible cardinal number, α is an ordinal number such that α < κ, and f is a
correspondence from Vα into Vκ such that domf = Vα and f〈x〉 ∈ Vκ for any x ∈ Vα, then rng f ∈ Vκ.

Proof. Since κ is a limit ordinal number, it follows that Vκ = ∪ Vδ|δ ∈ κ . For x ∈ Vα, there exists
δ ∈ κ such that f〈x〉 ∈ Vδ. Therefore, the nonempty set {y ∈ κ|f〈x〉 ∈ Vy} has a minimal element z.
By the uniqueness of z, we can correctly define the function g : Vα → κ setting g(x) ≡ z. Consider
the ordinal number β ≡ |Vα| and take a certain bijective mapping h : β � Vα. Consider the mapping
ϕ ≡ g ◦ h : β → κ and the ordinal number γ ≡ ∪rng ϕ = sup rng ϕ ≤ κ.

Assume that γ = κ. Since the cardinal κ is regular, the assumption ∪rng ϕ = κ implies κ ≤ β ≡ |Vα|.
However, by Lemma 1, |Vα| < κ. The obtained contradiction implies γ < κ.

Since h is bijective, then rng ϕ = rng g. Hence γ = sup rng g. If x ∈ Vα, then f〈x〉 ∈ Vz = Vg(x). By
Lemma 1 (Sec. 2.2), it follows from g(x) ≤ γ that Vg(x) ⊂ Vγ . Hence, by Lemma 1 (Sec. 2.2), f〈x〉 ∈ Vγ
implies f〈x〉 ⊂ Vγ . Therefore, rng f ⊂ Vγ . By Lemma 1 (Sec. 2.2), rng f ∈ Vγ+1 ⊂ Vκ.

Lemma 4. If κ is an inaccessible cardinal number, A ∈ Vκ, and f is a correspondence from A into Vκ

such that f〈x〉 ∈ Vκ for any x ∈ A, then rng f ∈ Vκ.

Proof. Since κ is a limit ordinal number, it follows that Vκ = ∪ Vα|α ∈ κ . Therefore, A ∈ Vα for a
certain α ∈ κ. By Lemma 4 (sec. 2.2), A ⊂ Vα. Define the correspondence g from Vα into Vκ setting
g|A ≡ f and g〈x〉 ≡ ∅ ⊂ Vκ for any x ∈ Vα \ A. Then domg = Vα and rng g = rng f . If x ∈ A, then
g〈x〉 = f〈x〉 ∈ Vκ, and if x ∈ Vα\A, then g〈x〉 = ∅ ∈ Vκ. Therefore, by Lemma 3, rng f = rng g ∈ Vκ.

Corollary 1. If κ is an inaccessible cardinal number and Ba|a ∈ A is a collection of sets such that
A ∈ Vκ and Ba ∈ Vκ for any a ∈ A, then ∪ Ba|a ∈ A ∈ Vκ.

Corollary 2. If κ is an inaccessible cardinal number and A ∈ Vκ, then ∪A ∈ Vκ.

The following assertion is due to Tarski [26] (see also [17], IX, § 1, Theorem 6). Here, we present another
proof of this assertion.

Lemma 5. If κ is an inaccessible cardinal number, A ⊂ Vκ, and |A| < |Vκ|, then A ∈ Vκ.

Proof. By Lemma 2, |A| ∈ |Vκ| = κ ⊆ Vκ. Consider the bijection b : |A| � A ⊂ Vκ. By Lemma 4,
A = rng b ∈ Vκ.

Lemma 6. If κ is an inaccessible cardinal number, ε is an ordinal number, and ε ∈ Vκ, then ε ∈ κ.

Proof. Since Vκ = ∪ Vα|α ∈ κ , it follows that ε ∈ Vα for a certain α ∈ κ. By Lemma 4 from Sec. 2.2,
ε ⊂ Vα. By Lemma 1, |ε| ≤ |Vα| < κ. Assume that ε ≥ κ. Then κ ⊂ ε implies κ = |κ| ≤ |ε|, which
contradicts the previous inequality. Therefore, ε < κ.
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3. Universal Sets and Their Connection with Inaccessible Cumulative Sets

3.1. Universal sets and their properties. A set U in ZF theory is said to be universal (see [18], I, 6,
[7], [12]) if it has the following properties:

(1) x ∈ U ⇒ x ⊂ U (transitivity property);
(2) x ∈ U ⇒ P(x),∪x ∈ U ;
(3) x ∈ U ∧ y ∈ U ⇒ x ∪ y, {x, y}, 〈x, y〉, x ∗ y ∈ U ;
(4) x ∈ U ∧ (f ∈ Ux) ⇒ rng f ∈ U (strong substitution property);
(5) ω ∈ U .
Clearly, not all of these properties are independent.
The property that a set U is universal will be denoted by U ��. Denote by U the class (possibly, empty)

of all universal sets. It immediately follows from the definition of a universal set that the intersection
∩A ≡ {x|∀U ∈ A(x ∈ U)} of any nonempty subclass A of the class of universal sets is a universal set.

Let us deduce several properties of universal sets from these conditions.

Lemma 1. If a set U is universal, then x ∈ U ∧ y ⊂ x⇒ y ∈ U .

Proof. If x ∈ U , then by Property (2), P(x) ∈ U , and, by Property (1), P(x) ⊂ U . Since y ∈ P(x), it
follows that y ∈ U , which is what was required to prove.

This lemma shows that a universal set is quasi-transitive. This and the transitivity property imply
that a universal set is supertransitive.

Lemma 2. If a set U is universal, then ∅ ∈ U .

Proof. This obviously follows from the property that ω ∈ U and Property (1).

Lemma 3. Let Ai|i ∈ I be a collection such that I ∈ U and Ai ∈ U for any i ∈ I. Then ∪ Ai|i ∈
I ∈ U .

Proof. Consider a function f : I → U such that f(i) ≡ Ai. By Property (4), rng f ∈ U , and, by
Property (2), ∪ Ai|i ∈ I = ∪rng f ∈ U .

Lemma 4. If U is a universal set, then x ∈ U ⇒ |x| ∈ U .

Proof. Consider the class C ≡ {α ∈ On|α /∈ U)}. This class is nonempty, since otherwise the class On is
a set. Denote its minimal element by κ. Assume that there exists x ∈ U such that α ≡ |x| /∈ U . Then
there exists a one-to-one mapping f : α → x. It follows from α ∈ C that κ ≤ α. Since κ ⊂ α, we can
consider the mapping g ≡ f |κ. In this case, g is a one-to-one mapping from κ onto y ≡ rng g ⊂ x. Since
y ⊂ x, it follows that y ∈ U . Then h ≡ g−1 is a function from y ∈ U onto κ /∈ U . Since κ is a minimal
element in the class C, it follows that ∀β ∈ κ(β ∈ U). Therefore, h(z) ∈ κ implies h(z) ∈ U for any z ∈ y.
By Property (4) it follows from this that κ ∈ U , which contradicts the definition of κ. We conclude from
the obtained contradiction that ∀x ∈ U(|x| ∈ U).

Let us prove that in a universal set, there exists a ∈-induction principle analogous to the ∈-induction
principle in ZF (see Lemma 4 (Sec. 1.2)).

Lemma 5. Let U be a universal set, C ⊂ U , and ∀x ∈ U , let (x ⊂ C ⇒ x ∈ C). Then C = U .

Proof. Assume that C 
= U , i.e., D ≡ U \C 
= ∅. Then there exists P ∈ D. Clearly, P ∈ U . If P ∩D = ∅,
then we set X ≡ P .

Let P ∩ D 
= ∅. Consider the set N consisting of all n ∈ ω for which there exists a unique sequence
u ≡ u(n) ≡ (Rk ∈ U |k ∈ n+ 1) of sets Rk ∈ U such that R0 = P and Rk+1 = ∪Rk for any k ∈ n. Since
the sequence (Rk|k ∈ 1) such that R0 ≡ P has this property, it follows that 0 ∈ N . Let n ∈ N , i.e., for
n, there exists a unique sequence u ≡ (Rk ∈ U |k ∈ n + 1). Define the sequence v ≡ (Sk ∈ U |k ∈ n + 2)
setting Sk ≡ Rk ∈ U for any k ∈ n + 1 and Sn+1 ≡ ∪Rn = ∪Sn, i.e., v = u ∪ {〈n + 1,∪Rn〉}. Since U
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is a universal set, Rn ∈ U implies Sn+1 ∈ U . Clearly, the sequence v has the necessary properties. Let
us verify its uniqueness. Assume that there exists a sequence w ≡ (Tk ∈ U |k ∈ n+ 2) such that T0 = P
and ∀k ∈ n + 1(Tk+1 = ∪Tk). Consider the set M ′ consisting of all m ∈ n + 2 for which Sm = Tm. Let
M ′′ ≡ ω \ (n+ 2), and let M ≡M ′ ∪M ′′. Since S0 = P = T0, it follows that 0 ∈M ′ ⊂M .

Let m ∈ M ′. If m = n + 1, then m + 1 = n + 2 ∈ M ′′ ⊂ M . If m < n + 1, then m + 1 ∈ n + 2, and
Sm+1 = ∪Sm = ∪Tm = Tm+1 implies m+ 1 ∈ M ′ ⊂ M . If m ∈ M ′′, then m+ 1 ∈ M ′′ ⊂ M . Therefore,
m ∈ M implies m + 1 ∈ M . By the natural induction principle, M = ω. Hence M ′ = n + 2, and,
therefore, v = w, i.e., the sequence v is unique. Therefore, n+1 ∈ N . By the natural induction principle,
N = ω. Therefore, for any n ∈ ω, there exists a unique sequence u(n). Because of its uniqueness, it will
be denoted by (Rnk |k ∈ n+ 1).

Consider the following formula of the ZF theory: ϕ(x, y) ≡ (x ∈ ω ⇒ y = Rxx) ∧ (x /∈ ω ⇒ y = ∅).
According to the axiom substitution scheme, there exists a set Y such that ∀x ∈ ω(∀y(ϕ(x, y) ⇒ y ∈ Y ).
If n ∈ ω, then ϕ(n,Rnn) implies Rnn ∈ Y . Therefore, in the set ω × Y , we can define the infinite sequence
u ≡ (Rn ∈ Y |n ∈ ω) setting u ≡ {z ∈ ω × Y |∃x ∈ ω(z = 〈x,Rxx〉)}. It immediately follows from the
uniqueness property mentioned above that u(m) = u(n)|(m+1) for allm ≤ n. Therefore, u|(n+1) = u(n).
Consequently, the sequence u has the following properties R0 = P and Rk+1 = ∪Rk for any k ∈ ω. Having
the function u : ω → U , Properties (5), (4), and (2) from the definition of a universal set, we can take the
set A ≡ rng u ≡ {Rn ∈ U |n ∈ ω} ∈ U and the set Q ≡ ∪A = {y|∃x ∈ ω(y ∈ Rx)} = ∪ Rn|n ∈ ω ∈ U .
Clearly, Rn ⊂ Q for any n ∈ ω, and hence P = R0 ⊂ Q.

Since P ∩D 
= ∅, it follows that R ≡ Q∩D 
= ∅. By the regularity axiom A8, there exists X ∈ R such
that X ∩ R = ∅. Clearly, X ∈ U and X ⊂ U . Let us verify that X ∩D = ∅. Indeed, assume that there
exists x ∈ X ∩D. Since X ∈ Q, it follows that X ∈ Rn for a certain n ∈ ω. Hence x ∈ X ∈ Rn implies
x ∈ ∪Rn = Rn+1 ⊂ Q. Therefore, x ∈ R. As a result, we obtain x ∈ X ∩R = ∅, which is impossible. The
obtained contradiction implies X ∈ D and X ∩D = ∅.

Therefore, X ∈ U and X ⊂ C in both cases. By the condition, we then obtain X ∈ C, which is
impossible, since X ∈ D. This contradiction implies C = U .

For a universal set, the following analog of the von Neumann identity from Lemma 2 (Sec. 2.2) holds.

Lemma 6. Let U be a universal set. Then:
1. Vα ∈ U for any α ∈ On ∩ U ;
2. U = ∪ Vα ⊂ U |α ∈ On ∩ U .

Proof. 1. Consider the sets A ≡ On ∩ U and C ′ ≡ {α ∈ A|Vα ∈ U} and also the classes C′′ ≡ On \ U
and C ≡ C ′ ∪ C′′. By Lemma 2, 0 = V0 = ∅ ∈ U . Let 0 ∈ C. Let α ∈ C. Assume that α+ 1 ∈ A. Since
α ∈ α+1 ∈ U , by Property (1), it follows that α ∈ U , and hence α ∈ A∩C = C ′. Then by Properties (2)
and (3), the condition Vα ∈ U implies Vα+1 = Vα ∪ P(Vα) ∈ U . Therefore, α + 1 ∈ C ′ ⊂ C. In the case
α+ 1 /∈ A, we immediately obtain α+ 1 ∈ C′′ ⊂ C.

Let α be a limit ordinal number, and let α ⊂ C. Assume that α ∈ A. If β ∈ α, then β ∈ α ∈ U implies
β ∈ A ∩ C = C ′. Then by Lemma 3, the condition Vβ ∈ U implies Vα = ∪ Vβ |β ∈ α ∈ U . Therefore,
α ∈ C ′ ⊂ C. In the case α /∈ A, we immediately obtain α ∈ C′′ ⊂ C.

By the transfinite induction principle, C = On, and hence C ′ = A.
2. It follows from what was proved above that Vα ⊂ U for any α ∈ A. Therefore,

P ≡ ∪ Vα|α ∈ A ⊂ U.

Let us show that P satisfies the ∈-induction principle from Lemma 5. Define the function r : P → A
setting r(p) ≡ sm {α ∈ A|p ∈ Vα} for any p ∈ P ⊂ U .

Let x ∈ U , and let x ⊂ P . If x = ∅, then x ∈ P . In what follows, we assume that x 
= ∅. If y ∈ x ⊂ P ,
then y ∈ Vα for a certain α ∈ A. Consequently, by Lemma 1, r(y) ≤ α ∈ U implies r(y) ∈ A. Therefore,
we can consider the function s ≡ r|x from x into A. By Property (4), R ≡ rng s ∈ U , and ρ ≡ ∪R ∈ U
by Property (2). Since ∅ 
= R ⊂ On, ρ is an ordinal number by Lemma 2 (Sec. 1.2) Hence ρ ∈ A.
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If y ∈ x, then by Lemma 1 (Sec. 2.2), s(y) ⊂ ρ implies y ∈ Vs(y) ⊂ Vρ. Therefore, by Lemma 3 (Sec. 2.2)
x ⊂ Vρ ∈ Vρ+1 implies x ∈ Vρ+1. By Property (3), ρ+ 1 = ρ ∪ {ρ} ∈ U implies ρ+ 1 ∈ A. Hence x ∈ P .

Now, Lemma 5 implies P = U .

3.2. Description of the class of all universal sets. The following theorem is implied by the
Zermelo–Shepherdson theorem (see [28] (incomplete proof) and [23] (complete proof)) on the canoni-
cal form of standard supertransitive model sets for the NBF theory in the ZF set theory (see Sec. 5
below). Here, we give another proof.

Theorem 1. Let U be an arbitrary universal set. Then:
(1) κ ≡ sup(On ∩ U) = ∪(On ∩ U) ⊂ U is an inaccessible cardinal number ;
(2) U = Vκ;
(3) the correspondence q : U �→ κ such that U = Vκ is an injective isotone mapping from the class U

of all universal sets into the class In of all inaccessible cardinal numbers.

Proof. (1) Since A ≡ On ∩ U is a nonempty set, because it contains the element ω by Property (5), by
Lemma 2 (Sec. 1.2), it follows that κ is an ordinal number.

Assume that κ is not a cardinal number. In this case, there exist an ordinal number α < κ and a
bijective function f : α → κ. Since α ∈ κ ⊂ U , It follows that α ∈ U . If β ∈ α, then f(β) ∈ U .
Therefore, by Property (4), κ = rng f ∈ U . In this case, by Property (3), {κ} ∈ U , and also, by Property
(3) κ

+ ≡ κ ∪ {κ} ∈ U . Since κ
+ ∈ On, it follows that κ

+ ∈ A, i.e., κ
+ ≤ κ, which is impossible.

Therefore, we conclude from the obtained contradiction that κ is a cardinal number.
Now assume that the cardinal number κ is not regular. Then α ≡ cf(κ) < κ. By definition, there

exists a function f : α→ κ such that ∪rng f = κ. As before, α ∈ U and f(β) ∈ U for all β ∈ α, whence,
by Property (4), rng f ∈ U . Since ∪rng f ∈ U by Property (2), it follows that κ ∈ U . Repeating the
arguments of the previous paragraph, we arrive at a contradiction. Therefore, κ is a regular cardinal.

Let λ be a cardinal number such that λ < κ. Since λ ∈ κ ⊂ U , by Property (2), we have P(λ) ∈ U . By
Lemma 4 (Sec. 3.1), |P(λ)| ∈ U . Consequently, |P(λ)| ≤ κ. Assuming that κ = |P(λ)| ∈ U , as before,
we arrive at a contradiction. Therefore, |P(λ)| < κ.

Moreover, since ω ∈ U by Property (5), it follows that ω+ 1 = ω ∪ {ω} ∈ U . Therefore, ω ∈ ω+ 1 ∈ A
implies ω ∈ ∪A = κ.

Assertion (1) is proved.
(2) It follows from (1) that κ is a limit ordinal number. Therefore, Vκ = ∪ Vβ |β ∈ κ . By

Lemma 6 (Sec. 3.1), U = ∪ Vα|α ∈ A . If α ∈ A, then α ≤ κ implies Vα ⊂ Vκ. Therefore, U ⊂ Vκ. If
β ∈ κ = ∪A, then β ∈ α ∈ A for a certain α. By Property (1), β ∈ A. Therefore, Vκ ⊂ U .

Thus, U = Vκ.
(3) It follows from Lemma 1 (Sec. 2.2) that κ is unique. Therefore, we can define the mapping q : U →

In such that q(U) = κ, where U = Vκ. Also, Lemma 1 (Sec. 2.2) implies that q is isotone.

Corollary 1. If U is a universal set, then |U | is an inaccessible cardinal number, |U | = sup(On ∩ U),
and U = V|U |.

Proof. By Theorem 1, U = Vκ for the inaccessible cardinal number κ ≡ sup(On ∩ U). By
Lemma 2 (Sec. 2.3), κ = |Vκ| = |U |.
Corollary 2. If U is a universal set, then |U | = sup(|Vα| | α ∈ On ∩ U).

Proof. By Theorem 1, U = Vκ for the inaccessible cardinal κ ≡ supA = ∪A, where A ≡ On ∩ U . Since
κ is a limit ordinal number, by the corollary of Theorem 1 (Sec. 2.2), |Vα| = sup(|Vα| | α ∈ κ). If α ∈ κ,
then α ∈ a for a certain a ∈ A. By the transitivity, α ∈ A. Conversely, if α ∈ A, then α ≤ κ. Assume
that α = κ. Then κ ∈ U . However, in proving Theorem 1, we have proved that the condition κ ∈ U
leads to a contradiction. Therefore, α ∈ κ.

Theorem 2. For any set U , the following assertions are equivalent :
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(1) U is an inaccessible cumulative set ;
(2) U is a universal set.

Proof. (1) � (2). Let U = Vκ for a certain inaccessible cardinal number κ. Let us show that the set U is
universal.

The property x ∈ U ⇒ x ⊂ U follows from Lemma 4 (Sec. 2.2).
The property x ∈ U ⇒ P(x) ∈ U follows from Lemma 7 (Sec. 2.2).
The property x ∈ U ∧ y ∈ U ⇒ x ∪ y ∈ U follows from Lemma 6 (Sec. 2.2).
The properties x ∈ U ∧ y ∈ U ⇒ {x, y}, 〈x, y〉, x × y ∈ U follow from Corollaries 1 and 2 of Lemma 7

(Sec. 2.2).
The property ω ∈ U follows from Lemma 8 (Sec. 2.2).
The properties x ∈ U ⇒ ∪x ∈ U and x ∈ U ∧ (f ∈ Ux) ⇒ rng f ∈ U follow from Lemma 4 (Sec. 2.3)

and its corollaries.
Therefore, the set U is universal.
(2) � (1). This implication obviously follows from the previous theorem.

Corollary. The correspondence q : U �→ κ from Theorem 1 such that U = Vκ and κ = |U | is a bijective
isotone mapping from U onto In.

Therefore, the cardinalities of universal sets exhaust all inaccessible cardinal numbers.
This theorem allows us to make the following conclusions on the structure of the class U ≡ {U |U ��}

of all universal sets.
The relation ∈ ∪ = is an order relation on the class U. It will be denoted by ≤, i.e., U ≤ V if U ∈ V

or U = V . By Lemma 4 (Sec. 2.2), the class U is transitive. Therefore, U ∈ V implies U ⊂ V . Therefore,
U ≤ V implies U ⊂ V . Let us prove that these relations are equivalent.

Proposition 1. Let U and V be universal sets. Then the relation U ≤ V is equivalent to the relation
U ⊂ V .

Proof. We need to only verify that U ⊂ V implies U ≤ V . By Theorem 1, U = Vπ and V = Vκ for
certain inaccessible cardinals π and κ. If π = κ, then U = Vπ = Vκ = V . If π < κ, then by Lemma 1
(Sec. 2.2), U = Vπ ∈ Vκ = V . Finally, if π > κ, then by the same lemma, V = Vκ ∈ Vπ = U ⊂ V , which
is impossible. Therefore, U ≤ V .

The following theorem is of conditional character in the ZF theory. In ZF+AU, the condition of the

theorem holds.

Theorem 3. If the class U of all universal sets in the ZF theory is nonempty, then it is completely
ordered with respect to the order ⊂. Moreover, any nonempty subclass of the class U has a minimal
element.

Proof. Let ∅ 
= A ⊂ U, i.e., let ∀U ∈ A(U ��). To the class A, the injective and strictly monotone
mapping q : U �→ κ from the class U into the class On of the form U = Vκ from Theorem 1 puts in
correspondence a certain subclass B ≡ q[A] ≡ {x|x ∈ On ∧ ∃U ∈ A(z = q(U))} of the class On. By
Lemma 1 (Sec. 1.2), it has the minimal element π, which is an inaccessible cardinal. Since π ∈ B, it
follows that π = q(U) for a certain U ∈ A, i.e., U = Vπ. Since the mapping q is injective and strictly
monotone, U is a minimal element in the class A.

3.3. Enumeration of the class of all universal sets in the ZF+AU theory and the structural
form of the universality axiom. In the ZF+AU set theory, let us consider the class

G ≡ {Z|∃X∃Y (Z = 〈X,Y 〉 ∧ ((X = ∅ ⇒ Y = ∩{U |U ��})
∨(X 
= ∅ ⇒ (¬func(X) ⇒ Y = ∅)(func(X) ⇒ (¬On(domX) ⇒ Y = ∅)
∨(On(domX) ⇒ (Son(domX) ⇒ Y = ∩{U |U �� ∧X(domX − 1) ∈ U})

∨(Lon(domX) ⇒ Y = ∩{U |U �� ∧ ∩ rng X ⊂ U}))))))}.

5846



If we express the definition of the class G less formally, then G consists of all pairs 〈X,Y 〉 for which
there are the following five possibilities excluding each other:

(1) if X = ∅, then Y is the intersection of all universal sets (the existence of a nonempty intersection
follows from the universality axiom);

(2) if X 
= ∅ and X is not a function, then Y = ∅;
(3) if X 
= ∅, X is a function, and domX is not an ordinal number, then Y = ∅;
(4) if X 
= ∅, X is a function, domX is an ordinal number, and domX = α + 1, then Y is the

intersection of all universal sets U such that X(α) ∈ U (the existence of this nonempty intersection
follows from the universality axiom);

(5) if X 
= ∅, X is a function, and domX is a limit ordinal number, then Y is the intersection of all
universal sets U such that ∪rng X ⊂ U (the existence of this nonempty intersection follows from
the universality axiom).

As in Sec. 2.1, we can verify that the class G is a function from V into V.
According to Theorem 2 from Sec. 2, for the function G, there exists a function F : On → V such that

the following relation holds for any α ∈ On:

F(α) = G(F|α).

It follows from Case (1) for the function G that F(∅) = G(F|∅) = G(∅) = ∩{U |U ��}.
It follows from Case (4) that if β is a subsequent cardinal number and β = α+1, then F(β) = G(F|β) =

∩{U |U �� ∧F(α) ∈ U}.
Finally, it follows from Case (5) that if α is a limit ordinal number, then F(α) = G(F|α) = ∩{U |U ��

∧ ∪ F(β)|β ∈ α ⊂ U}.
Denote F(α) by Uα. We have obtained the collection (Uα ∈ U|α ∈ On) satisfying the following

relations:
(1) U0 = ∩{U |U ��};
(1) Uα+1 = ∩{U |U �� ∧Uα ∈ U}.
(1) Uα = ∩{U |U �� ∧ ∪ Uβ|β ∈ α ⊂ U} if α is a limit ordinal number.
Let us prove several properties of this collection.

Lemma 1. In the ZF+AU set theory, the collection Uα ∈ U|α ∈ On) has the following properties:
(1) α ∈ β ⇔ Uα ∈ Uβ (strict increase);
(2) U0 is the minimal universal set (originality);
(3) if V is a universal set and U0 ⊂ V ∈ Uα, then V = Uβ for a certain β ∈ α (noncondensibility);
(4) if V is a universal set, then V = Uα for a certain α (surjectivity);
(5) α ⊂ Uα (absorbability).

Proof. (1) By the transfinite induction, let us prove that for any ordinal number β, (α ∈ β ⇒ Uα ∈ Uβ).
If β = 0, then this is obvious, since ∀α¬(α ∈ β).
For a certain ordinal number β, if ∀α(α ∈ β ⇒ Uα ∈ Uβ), then let us consider the ordinal number

β+1. It follows from α ∈ β+1 that α ∈ β∨α = β. If α ∈ β, then by the inductive assumption, Uα ∈ Uβ ,
and since Uβ ⊂ Uβ+1, it follows that Uα ∈ Uβ+1. If α = β, then Uα = Uβ ∈ Uβ+1. Therefore, for β + 1,
we have α ∈ β + 1 ⇒ Uα ∈ Uβ+1.

Now assume that β is a limit ordinal number and ∀γ ∈ β∀α(α ∈ γ ⇒ Uα ∈ Uγ). Let α be such that
α ∈ β. Since β is a limit ordinal number, α+1 ∈ β. Since ∪ Uγ |γ ∈ β ⊂ Uβ, it follows that Uα+1 ⊂ Uβ .
Since Uα ∈ Uα+1 in this case, we have Uα ∈ Uβ.

Clearly, α = β ⇒ Uα = Uβ . If Uα ∈ Uβ, then α ∈ β, since for α = β, we have Uα = Uβ , and for β ∈ α,
we have Uβ ∈ Uα.

Property (2) holds by construction.
(4) Let V be an arbitrary universal set. If V = U0, then the property is proved. Therefore, assume

that V 
= U0.
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Consider the class A ≡ {α ∈ On|Uα ∈ V }. By construction, U0 ⊂ V . By Proposition 1 of Sec. 3.2,
U0 ∈ V . Therefore, 0 ∈ A.

Consider the class F ≡ {z|∃x ∈ A∃y ∈ In(z = 〈x, y〉 ∧ y = q(Ux))}, where q is the mapping from
Theorem 1 of Sec. 3.2. Clearly, F is a mapping from A into In. If α ∈ A, then F(α) = q(Uα) ∈ q(V ).
Consequently, rngF ⊂ q(V ). Therefore, B ≡ rngF is a set. Let α, β ∈ A, and let α 
= β. If α ∈ β, then
by Property (1) proved above, Uα ∈ Uβ. Since q is isotone, F(α) < F(β). If β ∈ α, then analogously
F(β) < F(α). Therefore, the mapping F : A → B is bijective. Therefore, we can consider the mapping
F−1 : B � A. Since B is a set, by the substitution axiom scheme, A = rngF−1 is a set. Therefore, in
what follows, instead of A, we will write A.

Consider the nonempty class C ≡ On \ A and the minimal element β in this class. Clearly, Uβ /∈ V .
Therefore, by Proposition 1 of Sec. 3.2, V ⊂ Uβ . If V = Uβ, then the property is proved. Let V ∈ Uβ .
Assume that β = γ + 1. Then γ ∈ A implies Uγ ∈ V . By Property (2), for the collection of universes, it
follows from this that Uβ ⊂ V . Therefore, in this case, V = Vβ .

Assume that β is limit. If γ ∈ β, then γ ∈ A implies Uγ ∈ V , and by the transitivity property, Uγ ⊂ V .
Hence ∪ Uγ |γ ∈ β ⊂ V . By Property (3), for the collection of universes, it follows from this that
Uβ ⊂ V . Therefore, in this case, V = Vβ .

(3) This property follows from Properties (1) and (4).
(5) Using Property (1), by induction, we prove that α ⊂ Uα for any α. Clearly, α = 0 = ∅ ⊂ U0.
Let α ⊂ Uα. Since α + 1 ≡ α ∪ {α}, it follows that α ⊂ Uα ∈ Uα+1 implies α ∈ Uα+1, and, therefore,

{α} ∈ Uα+1. By the transitivity property, α ⊂ Uα+1 and {α} ⊂ Uα+1 implies α+ 1 ⊂ Uα+1.
Let α be a limit ordinal number, and let β ⊂ Uβ for any β ∈ α. By Lemmas 2 and 3 (Sec. 1.2) ,

α = supα = ∪α = ∪ β|β ∈ α . Since β ⊂ Uβ ⊂ Uα, it follows that α = ∪α ⊂ Uα.

This lemma implies that the collection (Uα ∈ U|α ∈ On) is a natural enumeration of the class of all
universal sets in the ZF+AU theory. The following lemma shows that this enumeration is unique.

Lemma 2. In the ZF+AU set theory, the collection (Uα ∈ U|α ∈ On) with Properties (1)–(3) from
Lemma 1 is unique.

Proof. Assume that there exists a collection (Wα ∈ U|α ∈ On) having Properties(1)–(3) of Lemma 1.
Consider the classes A ≡ {α ∈ On|Uα = Wα} and B = On \ A. Since U0 = W0, it follows that 0 ∈ A.

Assume that B 
= ∅. Then by lemma 3 of Sec. 3.2, there exists β = smB. If Uβ ∈ Wβ , then by
Property (3), the condition W0 = U0 ⊂ Uβ ∈Wβ implies β = Wγ for a certain γ ∈ β.

Since γ ∈ A, it follows that Wγ = Uγ . Therefore, Uβ = Uγ and γ ∈ β, which contradicts Property (1).
If Wβ ∈ Uβ, then analogously we arrive at a contradiction. Therefore, Uβ = Wβ by Theorem 3 and
Proposition 1 of Sec. 3.2. However, this contradicts the definition of the class B. Therefore, we arrive at
a contradiction. Therefore, B = ∅ and A = On.

The following theorem yields the structural form of the universality axiom.

Theorem 1. In the ZF set theory, the following assertions are equivalent :
(1) the universality axiom AU≡ ∀X∃U(U �� ∧X ∈ U), which means that for any set X, there exists a

universal set U such that X ∈ U ;
(2) there exists a collection (Uα ∈ U|α ∈ On) of universal sets having Properties (1)–(5) from

Lemma 1;
(3) the inaccessibility axiom AI≡ ∀α(On(α) ⇒ ∃κ(Icn(κ)∧α ∈ κ)), which means that for any ordinal

number α, there exists an inaccessible cardinal number κ such that α < κ.

Proof. The deducibility (1) � (2) was proved in Lemma 1.
(2) � (3). Take an arbitrary order number α. According to ([11], 4, Lemma 8), there exists a cardinal

number β such that α < β. By condition, β ⊂ Uβ . Consider the cardinal number κ ≡ |Uβ+1|. By the
universality, β ∈ Uβ+1, and, therefore, β ⊂ Uβ+1. Therefore, β = |β| ≤ |Uβ+1| ≡ κ. Assume that β = κ.
Then κ ∈ Uβ+1 implies P(κ) ∈ Uβ+1, and, therefore, P(κ) ⊂ Uβ+1. Using the Cantor theorem, we obtain
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κ = |κ| < |P(κ)| ≤ |Uβ+1| ≡ κ. This contradiction implies β < κ. Therefore, α < κ. By the corollary
to Theorem 1 of Sec. 3.2, κ is an inaccessible cardinal number.

(3) � (1). By Lemma 2 of (Sec. 2.2), X ∈ Vα for a certain ordinal number α. By Condition (3), α < κ

for a certain inaccessible cardinal number κ. By Lemma 1 (Sec. 2.2), Vα ∈ Vκ. By Theorem 2 (Sec. 3.2),
the set Vκ is universal. By Corollary 1 of Lemma 4 (Sec. 2.2), X ∈ Vα ⊂ Vκ implies X ∈ Vκ.

Note that the equivalence of the universality and inaccessibility axioms was proved in [4] by using
another method.

Theorem 1 shows the structure of the class of all universal sets in the ZF+AU set theory. The number
of universal sets and the number of ordinal numbers in the ZF theory are the same.

3.4. Enumeration of the class of all inaccessible cardinals in the ZF+AI theory and the
structural form of the inaccessibility axiom. Now let us enumerate all inaccessible cardinal numbers
in the ZF+AI set theory. For this purpose, consider the class

G ≡ {Z|∃X∃Y (Z = 〈X,Y 〉 ∧ ((X = ∅ ⇒ Y = sm {κ|Icn(κ)})(X 
= ∅ ⇒ (¬func(X) ⇒ Y = ∅)
∨(func(X) ⇒ (¬On(domX) ⇒ Y = ∅) ∨ (On(domX) ⇒ (rng X 
⊂ On ⇒ Y = ∅)
∨(rng X ⊂ On ⇒ (Son(domX) ⇒ Y = sm {κ|Icn(κ) ∧X(domX − 1) ∈ κ})

∨(Lon(domX) ⇒ Y = sm {κ|Icn(κ) ∧ ∪rng X ⊂ U})))))))}.
If we express the definition of the class G less formally, then G consists of all pairs 〈X,Y 〉 for which

the following six cases, which are mutually exclusive, hold:
(1) if X = ∅, then Y is a minimal inaccessible cardinal number (its existence follows from the inacces-

sibility axiom);
(2) if X 
= ∅ and X is not a function, then Y = ∅;
(3) if X 
= ∅, X is a function, and domX is not an ordinal number, then Y = ∅;
(4) if X 
= ∅, X is a function, domX is an ordinal number, and rng X 
⊂ On, then Y = ∅;
(5) if X 
= ∅, X is a function, domX is an ordinal number, rng X ⊂ On, and domX = α+ 1, then Y

is minimal among all inaccessible cardinals κ such that X(α) ∈ κ (its existence follows from the
inaccessibility axiom);

(6) if X 
= ∅, X is a function, rng X ⊂ On, and domX is a limit ordinal number, then Y is minimal
among all inaccessible cardinals κ such that ∪rng X ⊂ κ (its existence follows from Lemmas 1
and 2 (Sec. 1.2), Axiom AI, and the transitivity of κ).

As in Sec. 1.2, we can verify that the class G is a function from V into V.
According to Theorem 2 of Sec. 1.2, for the function G, there exists a function F : On → V such that

the following relation holds for any α ∈ On:

F(α) = G(F|α).

It follows from Case (1) that for the function G, F(∅) = G(F|∅) = G(∅) = sm{κ|Icn(κ)}.
Case (5) implies that if β is a subsequent ordinal number and β = α + 1, then F(β) = G(F|β) =

sm {κ|Icn(κ) ∧ F(α) ∈ κ}.
Finally, Case (6) implies that if α is a limit ordinal number, then F(α) = G(F|α) = sm{κ|Icn(κ) ∧

∪ F(β)|β ∈ α ⊂ κ}.
Denote F(α) by qα. We have obtained the collection (qα ∈ In|α ∈ On) of inaccessible cardinal numbers

satisfying the following relations:
(1) q0 = sm {κ|Icn(κ)};
(2) qα+1 = sm {κ|Icn(κ) ∧ qα ∈ κ}.
(3) qα = sm {κ|Icn(κ) ∧ ∪ qβ |β ∈ α ⊂ κ} if α is a limit ordinal number.

Lemma 1. In the ZF+AI set theory, the collection (qα ∈ In|α ∈ On) has the following properties:
(1) α ∈ β ⇔ qα ∈ qβ (strict inaccessibility);
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(2) q0 is a minimal inaccessible cardinal number (originality);
(3) if p is an inaccessible cardinal and q0 ⊂ p ∈ qα, then p = qβ for a certain β ∈ α (noncondensibility);
(4) if p is an inaccessible cardinal, then p = qα for a certain α (surjectivity);
(5) α ⊂ qα (absorbability).

The proof is analogous to the proof of Lemma 1 (Sec. 3.3). However, it can be obtained from Lemma 1
(Sec. 3.3) by using the isotone bijection q : U → In from the corollary to Theorem 2 (Sec. 3.2).

Lemma 2. In the ZF+AI set theory, the collection (qα ∈ In|α ∈ On) with Properties (1)–(3) from
Lemma 1 is unique.

The proof is analogous to the proof of Lemma 2 (Sec. 3.3).
The following assertion yields the structural form of the inaccessibility axiom.

Theorem 1. In the ZF set theory, the following assertions are equivalent :
(1) the inaccessibility axiom AI of Theorem 1;
(2) there exists a collection (qα ∈ In|α ∈ On) of inaccessible cardinal numbers having Properties (1)–(5)

of Lemma 1.

Proof. The deducibility (1) � (2) was proved in Lemma 1.
(2) � (1). Take an arbitrary order number α. By the condition, α ⊂ qα ∈ qα+1 ≡ β. Clearly, α 
= β

by Property (1). By the transitivity, α ⊂ qα ⊂ β. Therefore, the nonempty set β \ α has a minimal
element y. Let us verify that α = y. Let x ∈ y. Then x ∈ y ∈ β implies x ∈ β. Since x < y, we have
x ∈ α. This means that y ⊂ α. Conversely, let x ∈ α. It follows from y /∈ α that y 
= x. Assume that
y ∈ x. Then y ∈ x ∈ α implies y ∈ α. Consequently, y ∈ α ∩ (β \ α) = ∅. This contradiction implies
x ∈ y. As a result, α ⊂ y, whence α = y ∈ β.

Theorem 1 shows the structure of the class of all inaccessible cardinal numbers in the ZF+AI set theory.
The amount of all inaccessible cardinal numbers is the same as that of ordinal numbers in the ZF theory.

Now let us connect the collections (Vα ∈ V|α ∈ On), (Uα ∈ U|α ∈ On), and (qα ∈ In|α ∈ On) with
each other.

Theorem 2. In the ZF+AU set theory and the ZF+AI theory equivalent to it, the relation Vqα = Uα
holds for any order number α.

Proof. Since Vq0 is a universal set by Theorem 2 (Sec. 3.2), it follows that U0 ⊂ Vq0 . Let U be an arbitrary
universal set. By Theorem 1 (Sec. 3.2), U = Vκ for a certain inaccessible cardinal number κ. By Lemma 1,
κ = qα for a certain α. Since q0 ⊂ qα, it follows that Vq0 ⊂ Vqα = Vκ = U . Hence Vq0 ⊂ ∩{U |U ��} = U0.
As a result, we have proved that Vq0 = U0.

Consider the nonempty class A ≡ {α ∈ On|Vqα = Uα} and the class B ≡ On \A. Assume that B 
= ∅.
Then there exists a number β ≡ smB > 0. Consider the universal sets Vqβ and Uβ.

Assume that Vqβ ∈ Uβ. Then by Lemma 1 (Sec. 3.3), the condition U0 = Vq0 ⊂ Vqβ ∈ Uβ implies
Vqβ = Uγ for a certain γ ∈ β. It follows from γ < β that γ ∈ A, and, therefore, Vqγ = Uγ . As a result, we
arrive at the relation Vqβ = Vqγ . By Lemma 1 (Sec. 2.2), we conclude that qβ = qγ , and, moreover, γ ∈ β,
which contradicts Lemma 1.

On the other hand, assume that Uβ ∈ Vqβ . Since Uβ is a universal set, by Theorem 1 (Sec. 3.2),
it follows that Uβ = Vκ for a certain inaccessible cardinal κ. Then by Lemma 1 (Sec. 2.2), the chain
Vq0 = U0 ⊂ Uβ = Vκ ∈ Vqβ implies the chain q0 ⊂ κ ∈ qβ . By Lemma 1, it follows from this that
κ = qγ for a certain γ ∈ β. Since γ ∈ A, it follows that Vqγ = Uγ . As a result, we arrive at the equality
Uβ = Vκ = Vqγ = Uγ under the condition γ ∈ β, which contradicts Lemma 1.

By Theorem 3 (Sec. 3.2) and Proposition 1 (Sec. 3.2), we conclude that Vqβ = Uβ. However, this
contradicts the definition of the class B. Therefore, we arrive at a contradiction. Therefore, B = ∅ and
A = On.
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Corollary. In the ZF+AU set theory and the ZF+AI theory equivalent to it, the equality |Uα| = qα holds
for any order number α.

Proof. By Theorem 2 (Sec. 2.3) and Lemma 2 (Sec. 2.3), |Uα| = |Vqα | = qα.

4. Weak Forms of the Axioms of Universality and Inaccessibility

4.1. Axioms of ω-universality and ω-inaccessibility. Along with the universality axiom AU, the
following weaker ω-universality axiom is considered in the ZF set theory:

AU(ω) ≡ ∃X(∀U ∈ X(U ��) ∧X 
= ∅ ∧ ∀U ∈ X∃V ∈ X(U ∈ V )).

The explanation of such a name of this axiom is given by the following theorem, which is proved by using
Theorem 1 of Sec. 3.2.

Theorem 1. The following assertions are equivalent in the ZF theory ;
(1) AU(ω);
(2) for any n ∈ ω, there exists a finite set of universal sets which has the cardinality n+ 1;
(3) for any n ∈ ω, there exists a finite sequence u ≡ (Uk|k ∈ n+ 1) of universal sets such that Uk ∈ Ul

for any k ∈ l ∈ n+ 1, i.e., the sequence u is strictly increasing ;
(4) there exists a universal set U∗, and for any n ∈ ω, there exists a unique finite strictly increasing

subsequence u(n) ≡ (Unk |k ∈ n + 1) of universal sets such that Un0 = U∗ and the facts that V is a
universal set Un0 ≤ V ≤ Unn imply V = Unk for a certain k ∈ n+ 1 (noncondensibility property);

(5) There exists a denumerable set of universal sets;
(6) there exists an infinite sequence u ≡ (Un|n ∈ ω) of universal sets such that Uk < Ul for any

k ∈ l ∈ ω, i.e., the sequence u is strictly increasing ;
(7) there exists an infinite strictly increasing sequence u ≡ (Un|n ∈ ω) of universal sets such that the

properties that n ∈ ω, V is a universal set, and U0 ≤ V ≤ Un imply V = Uk for a certain k ∈ n+1
(noncondensibility property);

(8) there exists an infinite set of universal sets.

Proof. (1) � (4). Let W be an empty set whose existence is ensured by Axiom AU(ω). Consider the
nonempty class W ≡ {x|x �� ∧∃y ∈ W (x ≤ y)}. If x ∈ W, then x ≤ y for a certain y ∈ W . By AU(ω),
for y ∈ W , there exists z ∈ W such that y < z. Hence x < z ∈ W. Therefore, the class W has all the
properties listed in formula AU(ω).

Since ∅ 
= W ⊂ U, by Theorem 3 (Sec. 3.2), in W, there exists a minimal element U∗. For any y ∈W ,
it follows from U∗ ≤ y that W ∗ ∈ W. The class W has the following properties: if z ∈ U and z ≤ y for
a certain y ∈ W, then z ∈ W.

Consider the set N consisting of all n ∈ ω for which there exists a unique sequence u ≡ u(n) ≡ (Uk ∈
W|k ∈ n + 1) such that U0 = U∗, Uk < Ul for any k ∈ l ∈ n + 1 and V ∈ U and U0 ≤ V < Un imply
V = Uk for a certain k ∈ n.

Since the sequence (Uk ∈ W|k ∈ 1) such that U0 ≡ U∗ has all the properties listed above, then 0 ∈ N .
Let n ∈ N . By the property of the class W, for Un ∈ W, there exists z ∈ W such that Un < z. Therefore,
the class J ≡ {x ∈ W|Un < x} is nonempty. Therefore, by Theorem 3 (Sec. 3.2), it contains a minimal
element A.

Therefore, we can define the sequence v ≡ (Pk ∈ W|k ∈ n+ 2) setting Pk ≡ Uk for any k ∈ n+ 1 and
Pn+1 ≡ A, i.e., v = u∪ {〈n+ 1, A〉}. Clearly, P0 = U∗ and Pk < Pl for any k ∈ l ∈ n+ 2. Let V ∈ U and
P0 ≤ V < Pn+1. Then V ∈ W and U0 ≤ V < A. If V = Un, then V = Pn. If V < Un, then U0 ≤ V < Un
implies V = Uk = Pk for a certain k ∈ n. Finally, if V > Un, then V ∈ J. Therefore, A ≤ V , which
contradicts the property V < A. Therefore, this case is impossible. It follows from the two previous cases
that V = Pk for a certain k ∈ n+ 1. This means that the sequence v has the necessary properties. Let us
prove that it is unique. Assume that there exists a sequence w ≡ (Vk ∈ W|k ∈ n+ 2) such that V0 = U∗,
Vk < Vl for any k ∈ l ∈ n+ 2 and V ∈ U and V0 ≤ V < Vn+1 imply V = Vk for a certain k ∈ n+ 1. Since
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the sequence w|n + 1 ≡ (Vk ∈ W|k ∈ n + 1) has all the properties listed above for n, by the uniqueness
of the sequence u, we conclude that u = w|(n+ 1), i.e., Vk = Uk ≡ Pk for all k ∈ n+ 1. If Vn+1 < Pn+1,
then by what was proved above, P0 = V0 ≤ Vn+1 < Pn+1 implies Vn+1 = Pk = Vk for a certain k ∈ n+ 1,
which is impossible. If Pn+1 < Vn+1, then analogously V0 = P0 ≤ Pn+1 < Vn+1 implies Pn+1 = Vk = Pk
for a certain k ∈ n + 1, which is also impossible. Therefore, Vn+1 = Pn+1. Thus, the uniqueness of the
sequence v is proved. Therefore, n + 1 ∈ N . By the natural induction principle, N = ω. Therefore, for
any n ∈ ω, there exists the unique sequence u(n) indicated above. By its uniqueness, we can denote it by
(Unk |k ∈ n+ 1).

(4) � (7). Consider the following formula of the ZF theory: ϕ(x, y) ≡ (x ∈ ω ⇒ y = Uxx ) ∧ (x /∈ ω ⇒
y = ∅). By the axiom substitution scheme AS6, for ω, there exists a set Y such that ∀x ∈ ω(∀y(ϕ(x, y) ⇒
y ∈ Y )). If n ∈ ω, then ϕ(n,Unn ) implies Unn ∈ Y . Therefore, in the set ω × Y , we can define the infinite
sequence u ≡ (Un ∈ Y |n ∈ ω) setting u ≡ {z ∈ ω × Y |∃x ∈ ω(z = 〈x, Uxx 〉)}. The uniqueness property
mentioned above implies u(m) = u(n)|m + 1 for all m ≤ n. Therefore, u|n + 1 = u(n). Clearly, the
sequence u has all the necessary properties.

(6) � (1). Consider the following formula of the ZF theory: ϕ(x, y) ≡ (x ∈ ω ⇒ y = Ux)∧(x /∈ ω ⇒ y =
∅). By the substitution axiom scheme AS6, for ω, there exists a set Y such that ∀x ∈ ω(∀y(ϕ(x, y) ⇒
y ∈ Y )). If n ∈ ω, then ϕ(n,Un) implies Un ∈ Y . By the axiom isolation scheme AS3, the class
X ≡ {Un|n ∈ ω} ≡ {y|∃x ∈ ω(y = Ux)} = {y|y ∈ Y ∧ ∃x ∈ ω(y = Ux)} is a set. Since the sequence u
strictly increases, the set X satisfies Axiom AU(ω).

The deducibilities (7) � (6) � (5) � (2) are obvious.
The deducibilities (4) � (3) � (2) are also obvious.
(2) � (3) and (2) � (6). Consider the nonempty class A of all finite sets consisting of universal sets.

Then the class W ≡ ∪A is also nonempty, and, therefore, by Theorem 3 (Sec. 3.2), there exists a minimal
element U∗ in W.

Consider the set N consisting of all n ∈ ω for which there exists a unique sequence u ≡ u(n) ≡ (Uk ∈
W|k ∈ n+ 1) such that U0 = U∗, Uk < Ul for any k ∈ l ∈ n+ 1 and such that V ∈ W in U0 ≤ V < Un
imply V = Uk for a certain k ∈ n (W-noncondensibility property). Since the sequence (Uk ∈ W|k ∈ 1)
such that U0 ≡ U∗ has all the properties listed above, it follows that 0 ∈ N . Let n ∈ N , i.e., for n, the
sequence u ≡ (Uk ∈ W|k ∈ n + 1) is constructed. Consider the finite set A ≡ {Uk ∈ W|k ∈ n + 1} of
cardinality n+ 1. By Condition (2), for n+ 2, there exists a finite set B ∈ A of cardinality n+ 2. In B,
take a minimal element a and a maximal element b. By definition, a ≥ U∗. Assume that b ≤ Un. Then the
inequality U0 = U∗ ≤ a ≤ c ≤ b ≤ Un holds for any c ∈ B. If c < Un, then by the W-noncondensibility
property, we conclude from c ∈ W that c = Uk for a certain k ∈ n, i.e., c ∈ A. If c = Un, then c ∈ A once
again. As a result, we arrive at the inclusion B ⊂ A, which is impossible. The obtained contradiction
implies Un < b. Since b ∈ W, the class J ≡ {x ∈ W|Un < x} is nonempty. Therefore, it contains a
minimal element Λ.

Therefore, we can define the sequence v ≡ (Pk ∈ W|k ∈ n + 2) setting Pk ≡ Uk for any k ∈ n + 1
and Pn+1 ≡ Λ, i.e., v = u ∪ {〈n+ 1,Λ〉}. Further, almost in the same way as in deducing (1) � (4) with
the replacement of U by W, we verify that the sequence v has all necessary properties and is unique.
Therefore, n+ 1 ∈ N . By the natural induction principle, N = ω. Therefore, for any n ∈ ω there exists
the above unique sequence u(n). By the uniqueness, we can denote it by (Unk |k ∈ n+ 1). This completes
the deduction (2) � (3). Further, as in deducing (4) � (7), according to the sequence (Unk |k ∈ n + 1),
we construct an infinite strictly increasing sequence u ≡ (Un|n ∈ ω) of universal sets. This yields the
deduction 2) � (6).

Therefore, we have proved the following deducibility and equivalence criteria: (1) � (4) � (7) � (6) � (1)
and (6) � (5) � (2) � (6) and (2) ∼ (3). This implies the equivalence of all assertions (1)–(7).

(8) � (6). Let W be an infinite set of universal sets. By Theorem 3 (Sec. 3.2), there exists a minimal
element U∗ in W .
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Consider the set N consisting of all n ∈ ω for which there exists a unique sequence u ≡ u(n) ≡ (Uk ∈
W |k ∈ n+ 1) such that U0 = U∗, Uk < Ul for any k ∈ l ∈ n+ 1 and such that V ∈W and U0 ≤ V < Un
implies V = Uk for a certain k ∈ n (W -noncondensibity property).

Since the sequence (Uk ∈ I|k ∈ 1) such that U0 = U∗ has all the properties listed above, it follows that
0 ∈ N . Let n ∈ N . Consider the set J ≡ W \ {Uk|k ∈ n + 1}. It is nonempty, since otherwise the set
W is finite and, therefore, contains a minimal element Λ. Clearly, Λ 
= Un and Λ ≥ U∗ = U0. Assume
that Λ < Un. Then by assumption, U0 ≤ Λ < Un implies Λ = Uk for a certain k ∈ n, which is impossible.
Therefore, Un < Λ.

Therefore, we can define the sequence v ≡ (Pk ∈ W |k ∈ n+ 2) setting Pk ≡ Uk for any k ∈ n+ 1 and
Pn+1 ≡ Λ, i.e., v = u ∪ {〈n + 1,Λ〉}. Clearly, P0 = U∗ and Pk < Pl for any k ∈ l ∈ n + 2. Let V ∈ W
and P0 ≤ V < Pn+1. Then U0 ≤ V < Λ. If V = Un, then V = Pn. If V < Un, then U0 ≤ V < Un implies
V = Uk = Pk for a certain k ∈ n. Finally, if V > Un, then V > Uk for all k ∈ n + 1. Hence V ∈ J .
Therefore, Λ ≤ V , which contradicts the property V < Λ. Therefore, this case is impossible. The two
previous cases imply V = Pk for a certain k ∈ n + 1. This means that the sequence v has the necessary
properties. Let us verify its uniqueness. Assume that there exists a sequence w ≡ (Vk ∈ W |k ∈ n + 2)
such that V0 = U∗, Vk ∈ Vl for any k ∈ l ∈ n + 2 and such that V ∈ W and V0 ≤ V < Vn+1 imply
V = Vk for a certain k ∈ n+ 1. Since the sequence w|n+ 1 ≡ (Vk ∈ W |k ∈ n+ 1) has all the properties
listed above for n, by the uniqueness of the sequence u, we conclude that u = w|n+ 1, i.e., Vk = Uk ≡ Pk
for all k ∈ n + 1. If Vn+1 < Pn+1, then by what was proved above, P0 = V0 ≤ Vn+1 < Pn+1 implies
Vn+1 = Pk = Vk for a certain k ∈ n + 1, which is impossible. If Pn+1 < Vn+1, then in a similar way,
V0 = P0 ≤ Pn+1 < Vn+1 implies Pn+1 = Vk = Pk for a certain k ∈ n + 1, which is also impossible.
Therefore, Vn+1 = Pn+1. Thus, the uniqueness of the sequence v is proved. Therefore, n + 1 ∈ N . By
the natural induction principle, N = ω. Therefore, for any n ∈ ω, there exists the unique sequence
u(n) indicated above. By the uniqueness, we can denote it by (Unk |k ∈ n + 1). Further, as in deducing
(4) � (7), according to the sequence (Unk |k ∈ n+ 1), we construct an infinite strictly increasing sequence
u ≡ (Un|n ∈ ω) of universal sets.

(6) � (8). As in proving the deducibility (6) � (1), for the sequence u, consider the set X ≡ {Un|n ∈ ω}
of its members. Assume that the set X is finite. Then X has the maximal element V , which contradicts
the fact that the sequence strictly increases u.

The fact that the ω-universality axiom is weaker than the universality axiom follows from the following
proposition.

Proposition 1. In the ZF theory, the ω-universality axiom is deduced from the universality axiom.

Proof. Let us prove that Property (2) of Theorem 1 is deduced from AU . Indeed, let us prove by induction
that for any n ∈ ω, there exists a finite set of universal sets having the cardinality n+ 1.

For n = 0, the assertion means that there exists at least one universal set, which obviously holds.
Assume that for a certain n ∈ ω, there exists a set of cardinality n + 1 consisting of universal sets.

Denote this set by A. By the universality axiom, there exists a universal set U such that A ∈ U , and
hence A ⊂ U . If V ∈ A, then V 
= U , since otherwise U ∈ U , which is impossible. Consider the set
B ≡ A ∪ {U}. Obviously, this set is of cardinality n + 2. Therefore, by induction, we have proved the
desired deducibility.

Along with the inaccessibility axiom AI, in the ZF theory the following weaker ω-inaccessibility axiom
is considered:

AI(ω) ≡ ∃X(∀x ∈ X(Icn(x)) ∧X 
= ∅ ∧ ∀x ∈ X∃y ∈ X(x ∈ y)).
The following theorem yields an explanation of such a name of this axiom.

Theorem 2. The following assertions are equivalent in the ZF theory :
(1) AI(ω);
(2) for any n ∈ ω, there exists a finite set of inaccessible cardinals having the cardinality n+ 1;
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(3) for any n ∈ ω, there exists a finite sequence u ≡ (ιk|k ∈ n + 1) of inaccessible cardinals such that
ιk < ιl for any k ∈ l ∈ n+ 1, i.e., the sequence u strictly increases;

(4) there exists an inaccessible cardinal κ
∗, and for any n ∈ ω, there exists a unique finite strictly

increasing sequence u(n) ≡ (ιnk |k ∈ n + 1) of inaccessible cardinals such that ιn0 = κ
∗, and the

properties that κ is a inaccessible cardinal and ιn0 ≤ κ ≤ ιnn imply κ = ιnk for a certain k ∈ n + 1
(noncondensibility property);

(5) there exists a denumerable set of inaccessible cardinals:
(6) there exists an infinite sequence u ≡ (ιn|n ∈ ω) of inaccessible cardinals such that ιk < ιl for any

k ∈ l ∈ ω, i.e., the sequence u strictly increases;
(7) there exists an infinite strictly increasing sequence u ≡ (ιn|n ∈ ω) of inaccessible cardinals such

that n ∈ ω, κ is an inaccessible cardinal and such that ι0 ≤ κ ≤ ιn implies κ = ιk for a certain
k ∈ n+ 1 (noncondensibility property);

(8) there exists an infinite set of inaccessible cardinals.

The proof of this theorem is completely analogous to the proof of Theorem 1. However, it can be also
obtained from Theorem 1 by using the isotone bijection q : U → In from the corollary of Theorem 2
(Sec. 3.2).

The following proposition is an ω-analog of Theorem 1 (Sec. 3.3).

Proposition 2. The following axioms are equivalent in the ZF theory :
(1) the ω-universality axiom AU(ω);
(2) the ω-inaccessibility axiom AI(ω).

Proof. To prove the equivalence, it suffices to apply the isotone bijection q : U → In from the corollary
to Theorem 2 (Sec. 3.2).

4.2. Comparison of various forms of the universality and inaccessibility axioms.

Lemma 1. The following assertions are equivalent in the ZF theory :
(1) the ω-universality axiom AU(ω);
(2) ATU(ω) (transitive ω-universality axiom) ≡ there exists a set Y such that :

(a) ∀U ∈ Y (U ��);
(b) Y 
= ∅;
(c) ∀U∀V (U �� ∧U ∈ V ∧ V ∈ Y ⇒ U ∈ Y ) (transitivity property with respect to universal sets);
(d) ∀V ∈ Y ∃W ∈ Y (V ∈W ) (unboundedness property).

Proof. (1) � (2). Denote by D the set whose existence is asserted in AU(ω). Consider the set E ≡ {U ∈
∪D|U ��}. If U ∈ D, then ∃V ∈ D(U ∈ V ) by AU(ω). Therefore, D ⊂ E. The set E is universally
transitive. Indeed, if U �� and U ∈ V ∈ E, then U ∈ V ∈W ∈ D for a certain W ∈ D. By the transitivity
of the set W , we obtain U ∈W ∈ D, i.e., U ∈ E.

If V ∈ E, then by definition, V ∈W ∈ D ⊂ E for a certain W . Therefore, E satisfies Property (2).
The deducibility (2) � (1) is obvious.

An analogous lemma holds for inaccessible cardinals with the replacements of AU(ω) by AI(ω) and
ATU(ω) by ATI(ω) (transitive ω-inaccessibility axiom).

Lemma 2. Let E be a nonempty set of universal sets with the transitivity property with respect to
universal sets, i.e., E has Properties (a)–(c) of Lemma 1. Then E contains a minimal universal set
a0 ≡ U0 ≡ ∩U.

Proof. Let V ∈ E. By Proposition 1 (Sec. 3.2), V = a or a ∈ V . In the first case, a ∈ E. In the second
case, by Property (c), a ∈ V ∈ E implies a ∈ E.

An analogous lemma holds for inaccessible cardinals with the replacement of a ≡ U0 by q ≡ q0 ≡ sm In.
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Along with Axioms AU and AU(ω), consider one more weaker 1-universality axiom AU(1) ≡ AUS
(axiom of universal set) ≡ ∃U(U ��), which asserts the existence of at least one universal set. In the
ZF + AU(1) set theory, the class U of all universal sets is nonempty, and therefore, contains a minimal
element a ≡ U0 ≡ ∩U.

Analogously, along with Axioms AI and AI(ω), consider one more weaker 1-inaccessibility axiom
AI(1) ≡ AIC (axiom of inaccessible cardinal) ≡ ∃κ(Icn(κ)), which asserts the existence of at least one
inaccessible cardinal number. In the ZF+AI(1) set theory, the class In of all inaccessible cardinal numbers
is nonempty and, therefore, contains a minimal element q ≡ q0 ≡ sm In.

The following proposition is a 1-analog of Theorem 1 (Sec. 3.3) and Proposition 2 (Sec. 4.1).

Proposition 1. In the ZF theory, the following axioms are equivalent :
(1) the 1-universality axiom AU(1);
(2) the 1-inaccessibility axiom AI(1).

Proof. To prove the equivalence, it suffices to apply the isotone bijection q : U → In from the corollary
of Theorem 2 (Sec. 3.2).

The following relations between these axioms hold:

AU � AU(ω) � AU(1) and AI � AI(ω) � AI(1).

Let us show that these axioms are indeed different.

Assertion 1. (1) If the ZF + AU(1) theory is consistent, then the ZF + AU(1) + ¬AU(ω) theory is
also consistent.

(2 If the ZF +AU(1) theory is consistent, then Axiom AU(ω) is not deducible in ZF +AU(1).

Proof. (1) Let U0 be a minimal universal set whose existence follows from Axiom AU(1). Consider the
classes W ≡ {W |W �� ∧U0 ∈W} and D ≡ {X|∀W (W �� ∧U0 ∈W ⇒ X ∈W )}.

The following two cases are possible. If the class W is not empty, then it contains a minimal element
U1. Clearly, D ⊂ U1. If X ∈ U1 and W ∈ W, then X ∈ U1 ⊂ W implies X ∈ W . Hence X ∈ D. Thus,
D = U1. If the class W is empty, then D = V.

By Lemma 1, Axiom AU(ω) is equivalent to Axiom ATU(ω). Therefore, we consider the equivalent
T ≡ ZF + AUS + ¬ATU(ω) theory. Consider the class of standard interpretation M ≡ (D, I) of the T
theory in the S ≡ ZF +AUS set theory in which the correspondence I puts in correspondence the binary
relations E ≡ {z|∃x∃y(x ∈ D ∧ y ∈ D ∧ z = (x, y) ∧ x = y)} and B ≡ {z|∃x∃y(x ∈ D ∧ y ∈ D ∧ z =
(x, y) ∧ x ∈ y)} on D to the predicate symbols = and ∈ in T

If D = U1, then by Proposition 1 (Sec. 5.1), the interpretation M ≡ M = (U1, I) is a model of the ZF
theory in the S theory. If D = V, then, obviously, the interpretation M is a class model of ZF in the S
theory.

Let us verify that Axiom AUS holds in M. Axiom AUS can be written as follows:

AUS ≡ ∃X(∀x(x ∈ X ⇒ x ⊂ X ∧ P(x) ∈ X ∧ ∪x ∈ X) ∧ ∀x∀y(x ∈ X ∧ y ∈ X ⇒ {x, y} ∈ X)

∧∀x∀f(x ∈ X ∧ f � x→ X ⇒ rng f ∈ X) ∧ ω ∈ X).

Let us consider the first case. Let s be a certain sequence x0, . . . , xq, . . . of elements of the domain U1.
Taking the three equivalences proved in Proposition 1 (Sec. 5.1) and the notation from its proof, we obtain

˜AUSt = ∃X ∈ U1(∀x ∈ U1(x ∈ X ⇒ x ⊂ X ∧ P(x)τ ∈ X ∧ (∪x)τ ∈ X) ∧ ∀x ∈ U1∀y ∈ U1(x ∈ X ∧ y ∈
X ⇒ {x, y}σ ∈ X) ∧ ∀x ∈ U1∀f ∈ U1(x ∈ X ∧ (f � x→ X)ρ ⇒ (rng f)ρ ∈ X) ∧ ωπ ∈ X).

In proving Proposition 1 (Sec. 5.1), it was proved that P(x)τ = P(x), (∪x)τ = ∪x, {x, y}σ = {x, y},
(f � x → X)ρ ⇔ (f � x → X), and (rng f)ρ = rng f . In a similar way, we can prove that ωπ = ω.
Therefore, ˜AUSt ⇔ ∃X ∈ U1χ(X), where the formula χ(X) ≡ ∀x ∈ U1(x ∈ X ⇒ x ⊂ X ∧ P(x) ∈
X ∧ ∪x ∈ X) ∧ ∀x ∈ U1∀y ∈ U1(x ∈ X ∧ y ∈ X ⇒ {x, y} ∈ X) ∧ ∀x ∈ U1∀f ∈ U1(x ∈ X ∧ f � x →
X ⇒ rng f ∈ X) ∧ ω ∈ X is obtained by deleting the indices τ, σ, and ρ in the conjunction kernel of the
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formula ˜AUSt. Since U0 is a universal set, the formula χ(U0) holds for it. This means that the formula
χ(U0) is deduced from Axiom AUS in the S set theory. Hence the formula ∃X ∈ U1χ(X) is deduced, and,
therefore, AUSt is also deduced.

In the second case, on a sequence s of elements x0, . . . , xq, . . . of the domain V, the formula AUS is
obviously transformed into the formula AUS once again, and, therefore, Axiom AUS holds in M.

It remains to verify the fulfillment of the formula ¬ATU(ω). By Lemma 2, we can also insert the
formula U0 ∈ Y in the conjunctive kernel of Axiom ATU(ω). Therefore, consider the formulas
ϕ ≡ ATU(ω) ≡ ∃Y (∀U(U ∈ Y ⇒ U ��) ∧ U0 ∈ Y ∧ ∀U∀V (U �� ∧U ∈ V ∧ V ∈ Y ⇒ U ∈ Y ) ∧ ∀V (V ∈

Y ⇒ ∃W (W ∈ Y ∧ V ∈W ))) and ϕt ≡ M � ϕ[s].
Let us consider the first case. Taking into account the remarks made after Axiom AUS, we obtain
ϕt ⇔ ϕ̃t = ∃Y ∈ U1(∀U ∈ U1(U ∈ Y ⇒ (U ��)σ) ∧ U τ0 ∈ Y ∧ ∀U ∈ U1∀V ∈ U1((U ��)ρ ∧ U ∈ V ∧ V ∈

Y ⇒ U ∈ Y ) ∧ ∀V ∈ U1(V ∈ Y ⇒ ∃W ∈ U1(W ∈ Y ∧ V ∈W ))).
In considering the transformation of the previous axiom, we have proved that (U ��)σ ⇔ χ(U) and

that the same is true for the index ρ.
Since the set U0 can be defined from the formula ∃!Z(Z �� ∧∀U(U ��⇒ Z ⊂ U)), the set U τ0 is defined

from the formula ∃!Z ∈ U1((Z ��)∗ ∧ ∀U ∈ U1((U ��)∗∗ ⇒ Z ⊂ U)).
As above, (Z ��)∗ ⇔ χ(Z) and (U ��)∗∗ ⇔ χ(U). Therefore, U τ0 is defined from the formula ∃!Z ∈

U1(χ(Z) ∧ ∀U ∈ U1(χ(U) ⇒ Z ⊂ U)). It is clear from this that U τ0 = U0.
Therefore, ϕt ⇔ ∃Y ∈ U1(∀U ∈ U1(U ∈ Y ⇒ χ(U)) ∧ U0 ∈ Y ∧ ∀U ∈ U1∀V ∈ U1(χ(U) ∧ U ∈ V ∧ V ∈

Y ⇒ U ∈ Y ) ∧ ∀V ∈ U1(V ∈ Y ⇒ ∃W ∈ U1(W ∈ Y ∧ V ∈W ))).
Assume that the condition ϕt is fixed and consider the set E ∈ U1 = D whose existence follows from

this condition. By the condition, U0 ∈ E. Therefore, ϕt implies that for U0 ∈ U1, there exists W ∈ U1

such that W ∈ E and U0 ∈W . Let us deduce from this that the set W is universal.
Since W ∈ E, it follows that χ(W ). Let x ∈ W . By the transitivity of U1, it follows from W ∈ U1

that x ∈ U1. Therefore, χ(W ) implies x ⊂ W , P(x) ∈ W , and ∪x ∈ W . Analogously, if x, y ∈ W , then
x, y ∈ U1 and χ(W ) implies {x, y} ∈ W . Finally, let x ∈ W and f � x → W . Then x ∈ U1 and W ∈ U1

imply f ⊂ x ∗W ∈ U1. Lemma 1 (Sec. 3.1) implies f ∈ U1. Therefore, χ(W ) implies rng f ∈ W . The
property y ⊂ x ∧ x ∈ W ⇒ y ∈ W and the property x, y ∈ W ⇒ (〈x, y〉 ∈ W ∧ x ∪ y ∈ W ) are easily
deduced from the above. From x ∗ y ⊂ P(P(x ∪ y)), the property x, y ∈ W ⇒ x ∗ y ∈ W is deduced.
Finally, χ(W ) directly implies ω ∈W . Therefore, W is universal.

Moreover, U0 ∈W . HenceW ∈ W. This implies U1 ⊂W . Taking into account Proposition 1 (Sec. 3.2),
we conclude that W /∈ U1. On the other, hand, from ϕt, we have deduced that W ∈ U1.

Therefore, in the S theory, from the formula ϕt, we have deduced the formula η ≡ W ∈ U1 and the
formula ¬η = W /∈ U1. Ny the deduction theorem in the S theory, we have deduced the formulas (ϕt ⇒ χ)
and (ϕt ⇒ ¬χ).

Now, applying the classical implicit logical axiom (ϕt ⇒ χ) ⇒ ((ϕt ⇒ ¬χ) ⇒ ¬ϕt), we sequentially
deduce the formulas (ϕt ⇒ ¬χ) ⇒ ¬ϕt and ¬ϕt. Therefore, from the condition W 
= ∅, we have deduced
the formula ¬ϕt. By the deduction theorem, in the S theory, the formula W 
= ∅ ⇒ ¬ϕt is deduced.

In the second case, on a sequence s of elements x0, . . . , xq, . . . of the sequence V, the formula ϕ is
obviously translated to the formula ϕ once again, i.e., ϕt = ϕ.

Assume that the condition ϕt = ϕ is fixed and consider the set E ∈ V = D whose existence follows from
this condition. By the condition, U0 ∈ E. Therefore, ϕt implies that for U0, there exists a universal set
W ∈ E such that U0 ∈W . Therefore, W 
= ∅. By the deduction theorem in S, the formula ϕt ⇒ W = ∅
is deduced. Applying the logical formula (ϕt ⇒ ¬(W = ∅)) ⇒ (W = ∅ ⇒ ¬ϕt), we deduce the formula
W = ∅ ⇒ ¬ϕt. Therefore, from the condition W = ∅, we have deduced the formula W = ∅ ⇒ ¬ϕt.
Therefore, the formula ¬ϕt is deduced from the condition W = ∅. By the deduction theorem in S theory,
the formula W = ∅ ⇒ ¬ϕt is deduced. Denote the formula W = ∅ by ξ.
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Now applying the logical formula (ξ ⇒ ¬ϕt) ⇒ ((¬ξ ⇒ ¬ϕt) ⇒ ((ξ ∨ ¬ξ) ⇒ ¬ϕt)), in the S theory, we
sequentially deduce the formulas (ξ ⇒ ¬ϕt) ⇒ (ξ∨¬ξ ⇒ ¬ϕt) and ξ∨¬ξ ⇒ ¬ϕt. Since, in the first-order
theory, for any formula ξ, the formula ξ ∨ ¬ξ is deduced, as a result, the formula ¬ϕt is deduced in S.

The latter formula is equal to the formula M � (¬ϕ)[s]. Therefore, M is a model of T in S.
(2) We will proceed in the naive propositional logic with the implication symbol ⊃.
Denote by Φa and Ξa the totalities of axioms of the T and S theories, respectively.
Consider the propositions A ≡ cons(S) ⊃ ¬(Ξa � AU(ω)) and B ≡ cons(S) ∧ (Ξa � AU(ω)). Then

¬A = cons(S) ∧ ¬¬(Ξa � AU(ω)). Using the axiom ¬¬C ⊃ C, we obtain ¬A ⊃ B.
Clearly, B ⊃ (Φa � AU(ω)) and Φa � ¬AU(ω). Therefore, the proposition B ⊃ (Φa � AU(ω)) ∧ (Φa �

¬AU(ω)), i.e., the proposition B ⊃ ¬cons(T ), is true. By the deduction rule, ¬A ⊃ ¬cons(T ).
According to the first part of our assertion, the proposition cons(S) ⊃ cons(T ) is true. Therefore,

B ⊃ cons(T ) is true. By the deduction rule, we deduce ¬A ⊃ cons(T ).
Therefore, the proposition (¬A ⊃ cons(T )) ∧ (¬A ⊃ ¬cons(T )) is deduced. Applying the tautology

(¬A ⊃ C) ∧ (¬A ⊃ ¬C) ⊃ A (see [16], I, § 7), we deduce the proposition A.

Corollary. If the ZF +AU(1) theory is consistent, then Axiom AU is not deducible in ZF +AU(1).

Remark. In fact, in the ZF+AU(1) theory, we have proved the nondeductibility of the second universal
set U1, i.e., a set such that U0 ∈ U1 and U1 = ∩{U |U �� ∧U0 ∈ U}.

Analogous assertions hold for inaccessible cardinals with the replacement of AU(1), AU(ω), and AU
by AI(1), AI(ω), and AI, respectively.

Assertion 2. (1) If the ZF+AU(ω) is consistent, then the ZF+AU(ω)+¬AU theory is also consistent.
(2) If the ZF +AU(ω) theory is consistent, then Axiom AU is nondeducible in ZF +AU(ω).

Proof. (1) Let D be a set whose existence follows from Axiom AU(ω). Consider the classes W ≡ {W |W ��
∧D ∈W} and D ≡ {X|∀W (W �� ∧D ∈W ⇒ X ∈W )}.

The following two cases are possible. If the class W is nonempty, then it contains a minimal element
U∗. Clearly, D = U∗. If the class W is nonempty, thenD = V.

Consider the class of standard interpretation M ≡ (D, I) of the T ≡ ZF +AU(ω)+¬AU theory in the
S ≡ ZF +AU(ω) set theory for which I is the same as in the proof of the previous assertion. According
to this proof, M is a class model of the ZF theory in the S theory.

Let us verify that Axiom AU(ω) of the T theory holds in M. This axiom has the form
AU(ω) ≡ ∃X(∀U(U ∈ X ⇒ U ��) ∧X 
= ∅ ∧ ∀V (V ∈ X ⇒ ∃W (W ∈ X ∧ V ∈W ))).
We first consider the first case. Exactly in the same way as was done in proving the previous assertion,

it is proved that
AU(ω)t ⇔ ∃X ∈ U∗(∀U ∈ U∗(U ∈ X ⇒ χ(U)) ∧X 
= ∅ ∧ ∀V ∈ U∗(V ∈ X ⇒ ∃W ∈ U∗(W ∈ X ∧ V ∈

W ))).
Consider the set D 
= ∅. If U ∈ D, then U is a universal set, and, therefore, the formula χ(U) holds

for it. Let V ∈ D. It follows from AU(ω) that there exists W ∈ D such that V ∈W . By the transitivity
of U∗, W ∈ D ∈ U∗ implies W ∈ U∗. This means that the formula AU(ω)t is deduced from AU(ω).

In the second case, the formula AU(ω) obviously translates into the formula AU(ω) once again, and,
therefore, Axiom AU(ω) holds in M.

It remains to verify the fulfillment of the formula ¬AU .
Consider the formula

ϕ ≡ AU ≡ ∀X∃V (V �� ∧X ∈ V ).
We first consider the first case. Then

ϕt ⇔ ∀X ∈ U∗∃V ∈ U∗(χ(V ) ∧X ∈ V ).

Assume that the condition ϕt is fixed. Since D ∈ U∗, according to this condition, for D, there exists a
set W ∈ U∗ such that χ(W ) and D ∈W . In the same way as was done in proving the previous assertion,
we deduce from W ∈ U∗ and χ(W ) that W is universal. Moreover, D ∈W . Hence W ∈ W. This implies
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U∗ ⊂ W . Taking into account Proposition 1 (Sec. 3.2), we conclude that W /∈ U∗. On the other hand,
we have deduced from ϕt that W ∈ U∗.

As in the proof of the previous assertion, we conclude from this that the formula W 
= ∅ ⇒ ¬ϕt is
deduced in the S theory.

In the second case, the formula ϕ obviously transforms into the formula ϕ once again, i.e., ϕt = ϕ.
Assume that the condition ϕt = ϕ is fixed. According to this condition, for the set D, there exists

a universal set W such that D ∈ W . This implies W ∈ W, and, therefore, W 
= ∅. By the deduction
theorem in S, we deduce the formula ϕt ⇒ W 
= ∅. In the same way as in proving Assertion 1, we deduce
from this the formula W = ∅ ⇒ ¬ϕt.

Further, as in the proof of Assertion 1, from the deduced formulas ξ ⇒ ¬ϕt and ¬ξ ⇒ ϕt, we deduce
the formula ¬ϕt, which is equal to the formula M � (¬ϕ)[s]. Therefore, M is a model of T in S.

(2) The proof is the same as the proof of item (2) of Assertion 1.

Therefore, Axiom AU is in fact stronger than Axiom AU(ω), and Axiom AU(ω) is strictly stronger
than Axiom AU(1). An analogous relation holds for Axioms AI, AI(ω), and AI(1) equivalent to them.

Note that Axiom AI(1) is not deducible in the ZF theory. Moreover, by the methods formalized in the
ZF theory, it is not possible to show that Axiom AI(1) is consistent with the ZF theory (see [14], 12, The-
orem 12.12). Analogous assertions hold for Axioms AI(ω) and AI and the universality axioms equivalent
to them.

5. Description of the Class of all Supertransitive Standard Models
of the NBG Theory in the ZF Theory

5.1. Supertransitive standard models of the ZF theory having the strong subtitution prop-
erty. Let U be a certain set in the ZF theory. On U , let us consider the binary equality relation
E ≡ {z ∈ U ∗ U |∃x, y ∈ U(z = (x, y) ∧ x = y)} and the membership relation B ≡ {z ∈ U ∗ U |∃x, y ∈
U(z = (x, y) ∧ x ∈ y)}. The interpretation M ≡ (U, I) of the ZF or NBG theory in which to predicate
symbols = and ∈ the correspondence I puts in correspondence the binary relations E and B on the set
U is said to be standard.

According to ([3], II, § 7), a set U is said to be a standard model for the ZF [NBG ] theory if the
standard interpretation M ≡ (U, I) is a model of the ZF theory [resp. NBG theory].

Recall that for the formula ϕ(x, y, . . . ), by ϕU (x, y, . . . ) we usually denote the relativization of the
formula ϕ to the set U , i.e., the formula obtained by the replacement of all quantor prefixes ∀t and ∃t by
the quantor prefixes ∀t ∈ U and ∃t ∈ U in ϕ, respectively.

Proposition 1. In the ZF theory, the following assertions are equivalent for a set U :
(1) U is a hypermodel for the ZF theory ;
(2) U is a supertransitive standard model for the ZF theory and U has the strong subtitution property

∀x∀f(x ∈ U ∧ f ∈ Ux ⇒ rng f ∈ U).

Proof. (1) � (2). Consider an arbitrary sequence s ≡ x0, . . . , xq, . . . of elements of the set U and trans-
formations of certain axioms and axiom schemes of the ZF theory under the standard interpretation of
M ≡ (U, I) on the sequence s (see [19], Chap. 2, § 2).

Instead of θM [s] and M � ϕ[s], we will write θt and ϕt for the terms θ and the formulas ϕ, respectively.
To simplify the further presentation, we first consider the translations of certain simple formulas. Let

u and v be certain sets.
The formula u ∈ v translates into the formula (u ∈ v)t = (〈ut, vt〉 ∈ B). Denote the latter formula by

γ. By definition, this formula is equivalent to the formula (∃x∃y(x ∈ U ∧y ∈ U ∧〈ut, vt〉 = 〈x, y〉∧x ∈ y)).
Using the property of an ordered pair, we conclude that ut = x and vt = y. Hence the formula δ ≡ (ut ∈ vt)
is deduced from γ. By the deduction theorem, γ ⇒ δ. Conversely, consider the formula δ. In the ZF
theory, it is proved that for sets ut and vt, there exists a set z such that z = 〈ut, vt〉. By the logical
axiom scheme, LAS3 from ([16], III, § 1), from the formula δ, we deduce the formula (z = 〈ut, vt〉 ⇒ ut ∈
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U ∧vt ∈ U ∧z = 〈ut, vt〉∧ut ∈ vt). Since the formula z = 〈ut, vt〉 is deduced from the axioms, the formula
(ut ∈ U ∧ vt ∈ U ∧ z = 〈ut, vt〉 ∧ ut ∈ vt) ia also deduced from the axioms. By LAS13, we deduce the
formula ∃x∃y(x ∈ U ∧y ∈ U ∧z = 〈x, y〉∧x ∈ y), which is equivalent to the formula z ∈ B and, therefore,
to the formula γ. By the deduction theorem, δ ⇒ γ. Therefore, the first equivalence (u ∈ v)t ⇔ ut ∈ vt

holds.
The formula v ⊂ w translates into the formula (v ⊂ w)t. Denote the latter formula by ε. By the first

equivalence proved above, it is equivalent to the formula ε′ ≡ ∀u ∈ U(u ∈ vt ⇒ u ∈ wt). According to
LAS11, from the formula ε′, we deduce the formula ε′′ ≡ (x ∈ U ⇒ (x ∈ vt ⇒ x ∈ wt)). If x ∈ vt,
then vt ∈ U and the transitivity of the set U imply x ∈ U . Then it follows from the formula ε′′ that
x ∈ vt ⇒ x ∈ wt. Hence, by the deduction theorem, we deduce the formula (ε⇒ (x ∈ vt ⇒ x ∈ wt)). By
the generalization rule, we deduce the formula ∀x(ε ⇒ (x ∈ vt ⇒ x ∈ wt)). By LAS12, we deduce the
formula (ε⇒ ∀x(x ∈ vt ⇒ x ∈ wt)), i.e., the formula (ε⇒ vt ⊂ wt).

Conversely, let the formula vt ⊂ wt be given. Using the logical axioms, we sequentially deduce from it
the formulas (u ∈ vt ⇒ u ∈ wt) and (u ∈ U ⇒ (u ∈ vt ⇒ u ∈ wt)). By the generalization rule, we deduce
the formula ε′. Hence, by the deduction theorem, we deduce the formula (vt ⊂ wt ⇒ ε). Therefore, the
second equivalence (v ⊂ w)t ⇔ vt ⊂ wt holds.

Exactly in the same way as in deducing the first equivalence, we deduce the third equivalence (u = v)t ⇔
ut = vt.

In what follows, we will write not literal transformations of axioms but their equivalent variants obtained
by using the mentioned equivalencies.

The volume axiom A1 translates into the formula A1t ⇔ A1U = ∀X ∈ U∀Y ∈ U(∀u ∈ U(u ∈ X ⇔
u ∈ Y ) ⇒ X = Y ).

The axiom of pair A2 translates into the formula A2t ⇔ A2U = ∀u ∈ U∀v ∈ U∃x ∈ U∀z ∈ U(z ∈ x⇔
z = u ∨ z = v).

The union axiom A4 translates into the formula A4t ⇔ A4U = ∀X ∈ U∃Y ∈ U∀u ∈ U(u ∈ X ⇔ ∃z ∈
U(u ∈ z ∧ z ∈ X)).

The axiom of the set of subsets A5 translates into the formula A5t ⇔ A5U = ∀X ∈ U∃Y ∈ U∀u ∈
U(u ⊂ X ⇔ u ∈ Y ).

The axiom substitution scheme AS6 translates into the formula scheme AS6t ⇔ ∀x ∈ U∀y ∈ U∀y′ ∈
U(ϕτ (x, y) ∧ ϕτ (x, y′) ⇒ y = y′) ⇒ ∀X ∈ U∃Y ∈ U∀x ∈ U(x ∈ X ⇒ ∀y ∈ U(ϕσ(x, y) ⇒ y ∈ Y )), where
ϕτ and ϕσ denote the formulas M � ϕ[sτ ] and M � ϕ[sσ] in which sτ and sσ denote the corresponding
changes of the sequence s in translating the quantor subformulas indicated above. Denote by α⇒ β the
latter formula scheme.

The empty set axiom A7 translates into the formula A7t ⇔ A7U = ∃x ∈ U∀z ∈ U(z /∈ x).
The infinity axiom A8 translates into the formula A8t ⇔ A8τ ≡ ∃Y ∈ U(∅t ∈ Y ∧ ∀y ∈ U(y ∈ Y ⇒

(y ∪ {y})τ ∈ Y )), where the set ∅t is defined from the formula A7U , the set Z1 ≡ Z1(y) ≡ (y ∪ {y})τ
is defined from the formula ∃Z1 ∈ U∀u ∈ U(u ∈ Z1 ⇔ ∃z ∈ U(u ∈ z ∧ z ∈ {y, {y}}σ)), the set
Z2 ≡ Z2(y) ≡ {y, {y}}σ is defined from the formula ∃Z2 ∈ U∀u ∈ U(u ∈ Z2 ⇔ u = y ∨ u = {y}ρ), and
the set Z3 ≡ Z3(y) ≡ {y}ρ is defined from the formula ∃Z3 ∈ U∀u ∈ U(u ∈ Z3 ⇔ u = y).

Since M is a model of the ZF theory, all the transformations written above are deducible formulas in
the ZF theory.

Therefore, the formula A7U asserts the existence of a certain x ∈ U denoted by ∅t. If z ∈ U , then A7U

implies z /∈ x. Now let z /∈ U ; assume that z ∈ x. Then by the transitivity of the set U , we obtain z ∈ U ,
which contradicts the condition. Hence, z /∈ x. Therefore, z /∈ x is deduced. By the generalization rule,
we deduce the formula ∀z(z /∈ x) meaning that x = ∅. Therefore, ∅t = ∅ and ∅ ∈ U .

Now let us verify that if y ∈ U , then Z3 = {y}. Let u ∈ Z3. Since Z3 ∈ U and U is transitive, it follows
that u ∈ U . If u ∈ U , then the formula for Z3 presented above implies u = y. Hence u ∈ {y}. Therefore,
Z3 ⊂ {y}. Conversely, let u ∈ {y}. Then u = y. Since y ∈ U , it follows that u ∈ U . Therefore, by the
same formula, u ∈ Z3. Therefore, {y} ⊂ Z3, which implies the required equality. This equality leads to
the disappearance of the index ρ in the formula for Z2.
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Using this equality, let us prove that Z2 = {y, {y}}. Let u ∈ Z2. Then, as above, u ∈ U . Therefore,
the formula for Z2 presented above implies u = y or u{y}. Therefore, u ∈ {y, {y}}. Thus, Z2 ⊂ {y, {y}}.
Conversely, let u ∈ {y, {y}}. Then u = y ∈ U or u = {y} = Z3 ∈ U . Therefore, u ∈ U in both cases.
Therefore, u ∈ Z2 by the same formula . Therefore, {y, {y}} ⊂ Z2, which implies the required equality.
This equality leads to the disappearance of the index σ in the formula for Z1.

Finally, let us verify that if y ∈ U , then Z1 = y ∪ {y}. Let u ∈ Z1. Since Z1 ∈ U and U is transitive,
it follows that u ∈ U . Therefore, the formula for Z1 implies that there exists z ∈ U such that u ∈ z
and z ∈ {y, {y}}. Therefore, u ∈ ∪{y, {y}} ≡ Z, i.e., Z1 ⊂ Z. Conversely, let u ∈ Z. Then there exists
z ∈ {y, {y}} such that u ∈ z. From z = y ∈ U or z = {y} = Z3 ∈ U , we conclude that z ∈ U . Therefore,
the mentioned formula implies u ∈ Z1. Therefore, Z ⊂ Z1, which implies the required equality. This
equality leads to the disappearance of the index τ in the formula A8τ .

All that was said above implies A8τ ≡ ∃Y ∈ U(∅ ∈ Y ∧ ∀y ∈ U(y ∈ Y ⇒ y ∪ {y} ∈ Y )). If
y ∈ Y , then Y ∈ U and the transitivity of U imply y ∈ U . Then y ∪ {y} ∈ Y is deduced from
this formula. By the deduction theorem, we deduce the formula y ∈ Y ⇒ y ∪ {y} ∈ Y , and by the
generalization rule, we deduce the formula ∀y ∈ Y (y ∪ {y} ∈ Y ). Therefore, from A8t, we deduce the
formula ∃Y ∈ U(∅ ∈ Y ∧ ∀y ∈ Y (y ∪ {y} ∈ Y )) almost coinciding with the infinity axiom, which asserts
that there exists an inductive set Y ∈ U .

Using the obtained transformations, let us prove that the set U is universal.
Consider the formula A2U . According to this formula, for any u, v ∈ U , there exists the corresponding

set x ∈ U . If z ∈ x, then the transitivity of U implies z ∈ U . Therefore, from this formula, we deduce the
formula z = u ∨ z = v. If z = u ∨ z = v, then z ∈ U , and, therefore, from A2U , we deduce the formula
z ∈ x. Since A2U is deducible in ZF, by the deduction theorem and the generalization rule, we deduce
the formula ∀z(z ∈ x ⇔ z = u ∨ z = v), which means that x = {u, v}. Therefore, {u, v} ∈ U . By the
deduction theorem, we deduce the formula u, v ∈ U ⇒ {u, v} ∈ U . This implies {u} ∈ U and 〈u, v〉 ∈ U .

Consider the formula A4U . According to this formula, for any X ∈ U , there exists the corresponding
set Y ∈ U . As above, the transitivity of U implies Y = ∪X. Therefore, ∪X ∈ U , and by the deduction
theorem, we deduce the formula X ∈ U ⇒ ∪X ∈ U . It follows from this that X,Y ∈ U implies
X ∪ Y ≡ ∪{X,Y } ∈ U .

Consider the formula A5U . According to this formula, for any X ∈ U , there exists the corresponding
set Y ∈ U . Clearly, Y ⊂ P(X). Let y ∈ P(X). Then by the quasi-transitivity of U , y ⊂ X ∈ U implies
y ∈ U . Hence, Y = P(X). Therefore, P(X) ∈ U , and by the deduction theorem, we deduce the formula
X ∈ U ⇒ P(X) ∈ U .

If X,Y ∈ U , then by the quasi-transitivity property, X ∗ Y ⊂ P(P(X ∪ Y )) ∈ U implies X ∗ Y ∈ U .
Consider an inductive set Y ∈ U whose existence was proved above. Since ω is minimal among all

inductive sets, it follows that ω ⊂ Y . By the quasi-transitivity property, this implies ω ∈ U .
Property (4) from the definition of a universal set holds automatically.
Therefore, we have proved that (1) � (2).
(2) � (1). Let U be a universal set. According to Sec. 3.1, it is supertransitive. Consider the standard

interpretation M ≡ (U, I) of the ZF theory. In the above, we have carried out the transformation of
certain axioms and axiom schemes of the ZF theory under the interpretation M on the sequence s. Let
us prove that they are deducible in ZF.

Consider the formula A1U . Let X,Y ∈ U , and let χ ≡ ∀u ∈ U(u ∈ X ⇔ u ∈ Y ). Take an arbitrary
set u. If u ∈ X, then the transitivity of U implies u ∈ U , and then u ∈ Y is deduced. Analogously, from
u ∈ X, we deduce u ∈ Y . Therefore, by the deduction theorem, we deduce the formula u ∈ X ⇔ u ∈ Y ,
and by the generalization rule, we deduce the formula ∀u(u ∈ X ⇔ u ∈ Y ). According to the volume
axiom, the equality X = Y is deduced from this. By the deduction theorem in ZF, we deduce the formula
χ⇒ X = Y . Further, by logical tools, we deduce A1t.

Consider the formula A2U . Let u, v ∈ U . By the property of a universal set, we have {u, v} ∈ U . By
the axiom of pair, it follows that ∀z ∈ U(z ∈ {u, v} ⇔ z = u ∨ z = v). Therefore, by LAS13, we deduce
the formula ∃x ∈ U∀z ∈ U(z ∈ x⇔ z = u∨ z = v). Further, by logical tools, we deduce the formula A2t.
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The axiom separation scheme AS3 transforms into the formula scheme AS3t ⇔ ∀X ∈ U∃Y ∈ U∀u ∈
U(u ∈ Y ⇔ u ∈ X∧ϕτ (u)), where Y is not a free variable of the formula ϕ(u), and ϕτ denotes the formula
M � ϕ[sτ ] in which sτ denotes the corresponding change of the sequence s under the transformation of
the mentioned quantor overformulas ∀X(. . . ), ∃Y (. . . ) and ∀u(. . . ). According to AS3, for X ∈ U , there
exists Y such that ∀u ∈ U(u ∈ Y ⇔ u ∈ X ∧ ϕτ (u)). Since Y ⊂ X ∈ U , it follows by Lemma 1 (Sec. 3.1)
that Y ∈ U . Therefore, AS3t is deduced in ZF.

Similar to the deducibility of A2t, we verify the deducibility of A4t and A5t.
Let us verify the deducibility of AS6t. Let the formula α hold. Consider any set X ∈ U . According to

the axiom separation scheme, there exists the set F ≡ {z ∈ U |∃x, y ∈ U(z = 〈x, y〉 ∧ ϕσ(x, y))}. Clearly,
F ⊂ U∗U . The transitivity of U impliesX ⊂ U . Therefore, there exists a set Z ≡ F [X] ⊂ U . Consider the
set G ≡ {z ∈ U |∃x, y ∈ U(z = 〈x, y〉 ∧ϕσ(x, y)∧x ∈ X)} = F |X ⊂ X ∗Z. Let x ∈ X ⊂ U . If x /∈ domG,
then G〈x〉 = ∅ ∈ U . Let x ∈ domG, i.e., G〈x〉 
= ∅. If y, y′ ∈ G〈x〉 ⊂ U , then ϕσ(x, y) ∧ ϕσ(x, y′) holds,
or, more precisely, ϕσ(x, y,X, Y )∧ϕσ(x, y′, X, Y ), since X and Y can be free variables of the formula ϕσ.
Since ϕτ (x, y) = ϕσ(x, y,X‖XM [s], Y ‖YM [s]) and similarly for y′, by LAS11, ϕτ (x, y) ∧ ϕτ (x, y′) holds.
Therefore, the formula α implies y = y′. Therefore, G〈x〉 = {y} ∈ U . Thus, G〈x〉 ∈ U for any x ∈ X. By
Lemma 3 (Sec. 3.1), Y0 ≡ rng G = ∪ G〈x〉|x ∈ X ∈ U .

If x ∈ X ⊂ U , y ∈ U , and ϕσ(x, y), then 〈x, y〉 ∈ G implies y ∈ Y0. This means that the formula β is
deduced from the formula α. By the deduction scheme, the formula α ⇒ β and, therefore, the scheme
AS6t are deduced.

According to Lemma 2 (Sec. 3.1), ∅ ∈ U . From this and A7, we deduce A7t.
Consider the formula A8τ and the set ω ∈ U . It follows from the previous paragraph that ∅t = ∅ ∈ ω.

Let y ∈ U and y ∈ ω. Then, as above, we verify that Z3 = {y}, Z2 = {y, {y}}, and Z1 = y ∪ {y} ∈ ω. By
the deduction theorem, we deduce the formula (y ∈ ω ⇒ Z1 ∈ ω). Further, by logical tools, we deduce
the formula (∅t ∈ ω ∧ ∀y ∈ U(y ∈ ω ⇒ (y ∪ {y})τ ∈ ω)) and, therefore, the formula A8t.

The regularity axiom A9 translates into the formula A9t ⇔A9τ ≡ ∀X ∈ U(X 
= ∅t ⇒ ∃x ∈ U(x ∈
X∧(x∩X)τ = ∅t)), where the set ∅t is defined from the formula A7U and, as was proved above, coincides
with the empty set ∅ and the set Z ≡ (x ∩X)τ is determined from the formula ∃Z ∈ U∀u ∈ U(u ∈ Z ⇔
u ∈ x ∧ u ∈ X).

Let us verify that if X ∈ U and x ∈ U , then Z = x ∩X. Let u ∈ Z. Since Z ∈ U and U is transitive,
it follows that u ∈ U . Therefore, the formula for Z implies u ∈ x ∧ u ∈ X, i.e., u ∈ x ∩ X. Therefore,
Z ⊂ x ∩ X. Conversely, let u ∈ x ∩ X, i.e., u ∈ x ∧ u ∈ X. By the transitivity, u ∈ U . Therefore, the
mentioned formula implies u ∈ Z. Thus, x ∩ X ⊂ Z, which proves the required equality. This equality
leads to the disappearance of the index τ in the formula A9τ .

Let X ∈ U , and let X 
= ∅t = ∅. By the regularity axiom, there exists x ∈ X such that x ∩X = ∅. By
the transitivity, x ∈ U . By logical tools, we deduce A9t from this.

Finally, the axiom of choice A10 transforms into the formula

A10t ⇔ A10τ ≡ ∀X ∈ U(X 
= ∅t ⇒ ∃z ∈ U((z � P(X) \ {∅} → X)τ ∧ ∀Y ∈ U(Y ∈ (P(X) \ {∅})σ

⇒ ∀x ∈ U(x ∈ X ∧ 〈Y, x〉σ ∈ z ⇒ x ∈ Y ))))),
where the set Z1 ≡ Z1(X) ≡ (P(X) \ {∅})σ is defined from the formula ∃Z1 ∈ U∀u ∈ U(u ∈ Z1 ⇔
u ∈ P(X)ρ ∧ u /∈ {∅}ρ); the set Z2 ≡ 〈Y, x〉σ is defined from the formula ∃Z2 ∈ U∀u ∈ U(u ∈ Z2 ⇔
(u = {Y }σ ∨ u = {Y, x}σ)); the set Z3 ≡ {Y, x}σ is defined from the formula ∃Z3 ∈ U∀u ∈ U(u ∈ Z3 ⇔
(u = Y ∨ u = x)); the set Z4 ≡ {Y }σ is defined from the formula ∃Z4 ∈ U∀u ∈ U(u ∈ Z4 ⇔ u = y);
ϕτ ≡ (z � P(X) \ {∅} → X)τ denotes the formula M � ϕ[sτ ], in wich sτ denotes the corresponding
change of the sequence s in transforming the quantor overformulas ∀X(. . . ) ∃z(. . . ) mentioned above.

Fix the conditions X ∈ U and X 
= ∅t = ∅ ∈ U . In the above, we have proved that this implies
P(X)ρ = P(X) and {∅}ρ = {∅}. This leads to the disappearance of the index ρ in the formula for Z1.

Let us verify that Z1 = P(X) \ {∅} ≡ Z. Let u ∈ Z1. Since Z1 ∈ U and U is transitive, it follows
that u ∈ U . Therefore, the formula for Z1 implies u ∈ Z. Therefore, Z1 ⊂ Z. Conversely, let u ∈ Z.
Since P(X) ∈ U , it follows that P(X) ⊂ U by transitivity. This implies u ∈ U . Therefore, the mentioned
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formula implies u ∈ Z1. Therefore, Z ⊂ Z1, which proves the required equality. This leads to the
replacement of Z1 by Z in the formula A10τ .

Consider the formula ϕ ≡ (z � Z → X). It is the conjunction of the following three formulas:
ϕ1 ≡ (z ⊂ Z ∗ X), ϕ2 ≡ (domz = Z), and ϕ3 ≡ (∀x(x ∈ Z ⇒ ∀y(y ∈ X ⇒ ∀y′(y′ ∈ X ⇒ (〈x, y〉 ∈
z ∧ 〈x, y′〉 ∈ z ⇒ y = y′))))).

Therefore, ϕτ = ϕτ1 ∧ ϕτ2 ∧ ϕτ3 . Since ϕ1 = (∀u(u ∈ z ⇒ ∃x∃y(x ∈ Z ∧ y ∈ X ∧ u = 〈x, y〉))),
it follows that ϕτ1 ⇔ (∀u ∈ U(u ∈ z ⇒ ∃x ∈ U∃y ∈ U(x ∈ Z ∧ y ∈ X ∧ u = 〈x, y〉σ))). Analogously,
ϕ2 = (∀x(x ∈ Z ⇒ ∃y(y ∈ X∧〈x, y〉 ∈ z))) implies ϕτ2 ⇔ (∀x ∈ U(x ∈ Z ⇒ ∃y ∈ U(y ∈ X∧〈x, y〉σ ∈ z))).

Finally, ϕτ3 ⇔ (∀x ∈ U(x ∈ Z ⇒ ∀y ∈ U(y ∈ X ⇒ ∀y′ ∈ U(y′ ∈ X ⇒ (〈x, y〉σ ∈ z ∧ 〈x, y′〉σ ∈ z ⇒ y =
y′))))).

By the transitivity property, for x, y, and y′ in the formulas ϕτ1 , ϕ
τ
2 , and ϕτ3 , we have x, y, y′ ∈ U .

Therefore, by what was proved above, the following equalities hold in these formulas: 〈x, y〉σ = 〈x, y〉,
and 〈x, y′〉σ = 〈x, y′〉. This implies that the formulas ϕτ1 , ϕ

τ
2 , and ϕτ3 differ from the formulas ϕ1, ϕ2, and

ϕ3, respectively, by only the bounded quantor prefices ∀ · · · ∈ U and ∃ · · · ∈ U .
For X, by the axiom of choice A10, there exists z such that χ ≡ (z � Z → X)∧∀Y (Y ∈ Z ⇒ ∀x(x ∈

X ∧ 〈Y, x〉 ∈ z ⇒ x ∈ Y )).
Therefore, the formula ϕ = ϕ1∧ϕ2∧ϕ3 is deduced, and hence the formulas ϕ1, ϕ2, and ϕ3 are deduced.
Let u ∈ U and u ∈ z. Then we deduce from the formula ϕ1 that there exist x ∈ Z and y ∈ X such that

u = 〈x, y〉. Since x ∈ Z ∈ U and y ∈ X ∈ U , by the transitivity property, x, y ∈ U . This means that for
given conditions u ∈ U and u ∈ z, the formula ∃x ∈ U∃y ∈ U(x ∈ Z ∧ y ∈ X ∧ u = 〈x, y〉σ) is deduced.
Applying the deduction theorem two times and the deduction rule, we deduce the formula ϕτ1 .

Let x ∈ U and x ∈ Z. Then we deduce from the formula ϕ2 that for x, there exists y ∈ X such that
〈x, y〉 ∈ z. It follows from y ∈ X ∈ U that y ∈ U . This means that for given conditions x ∈ U and x ∈ Z,
the formula ∃y ∈ U(y ∈ X ∧ 〈x, y〉σ ∈ z) is deduced. As in the previous paragraph, we deduce from this
the formula ϕτ2 .

Let x ∈ U , x ∈ Z, y ∈ U , y ∈ X, y′ ∈ U , y′ ∈ X, 〈x, y〉 ∈ z, and 〈x, y′〉 ∈ z. Then y = y′ is deduced
from the formula ϕ3. Applying alternately the deduction theorem several times and the deduction rules,
we deduce the formula ϕτ3 .

Thus, the formula ϕτ is deduced.
Let us veryfy that Z4 = {Y } under the conditions X ∈ U , Y ∈ U , and Y ∈ Z. Let u ∈ {Y }, i.e., let

u = Y ∈ U . Then the formula for Z4 implies u ∈ Z4. Conversely, if u ∈ Z4 ∈ U , then u ∈ U , and hence,
u = Y ∈ {Y }. This yields the required equality.

Let us veryfy that Z3 = {Y, x} under the conditions X ∈ U , x ∈ X, Y ∈ U , and Y ∈ Z. Let u ∈ {Y, x}.
Then u = Y ∈ U or u = x ∈ X ∈ U implies u ∈ U , and, therefore, u ∈ Z3. Conversely, if u ∈ Z3 ∈ U ,
then u ∈ U and the formula for Z3 imply u = Y ∨u = x, i.e., u ∈ {Y, x}. This yields the required equality.

Finally, let us verify that Z2 = 〈Y, x〉 under the above conditions. Let u ∈ 〈Y, x〉, i.e., u = {Y }
or u = {Y, x}. The above equalities lead to the disappearance of the index σ in the formula for Z2.
Since Y ∈ U and x ∈ X ∈ U , it follows that x ∈ U and the universality of U imply u = {Y } ∈ U or
u = {Y, x} ∈ U .

Therefore, u ∈ U implies u ∈ Z2. Conversely, if u ∈ Z2 ∈ U , then u ∈ U and the formula for Z2 imply
u = {Y } or u = {Y, x}, i.e. u = 〈Y, x〉. This yields the required equality.

Since Z =∈ U and X ∈ U , it follows that Z ∗X ∈ U . By Lemma 1 (Sec. 3.1), z ⊂ Z ∗X implies z ∈ U .
All this means that from Axiom A10, we deduce the existence of an object z ∈ U satisfying the formula

χ from which the formula ξ ≡ (ϕτ ∧ ∀Y ∈ U(Y ∈ Z⇒∀x ∈ U(x ∈ X ∧ 〈Y, x〉 ∈ z ⇒ x ∈ Y )) is deduced.
Thus from the fixed conditions, we deduce the formula ∃z ∈ Uξ. Applying alternately the deduction
theorem and the generalization rule several times, as a result, we deduce the formula A10t.

Therefore, M is a model of the ZF theory.

Corollary. Any inaccessible cumulative set Vκ is a standard model for the ZF theory.

Proof. The assertion follows from the proved Proposition 1 and Theorem 2 (Sec. 3.2).
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This proposition implies that for supertransitive standard model sets, analogs of all the assertions
presented in Sec. 3 for universal sets hold.

The corollary of Proposition 1 is well known (see, e.g., ([13], 13, Theorem 21)). Using Theorems 1 and
2 (Sec. 3.2) and Proposition 1, we prove the following converse theorem.

Theorem 1. In the ZF theory, the following assertions are equivalent for a set U :
(1) U = Vκ for the inaccessible cardinal number κ = |U | = sup(On ∩ U);
(2) U is a supertransitive standard model for the ZF theory and has the strong substitution property.

Proof. (1) � (2). By Theorem 2 (Sec. 3.2), the set U = Vκ is universal. By Proposition 1, the set U is a
hypermodel.

(2) � (1). By Proposition 1, U is universal. By Theorem 1 (Sec. 3.2), U = Vκ and κ = sup(On ∩ U).
By Corollary 1 of Theorem 1 (Sec. 3.2), κ = |U |.

Unfortunately, this theorem does not yield the description of all natural models and all supertransitive
standard models of the ZF theory. This description will be given in Sec. 7.3.

Theorem 1 is equivalent to the Zermelo–Shepherdson theorem (see [28] and [23]) on the canonical forms
of supertransitive standard model sets for the NBG theory in the ZF set theory (see Sec. 5.2 below).

5.2. Supertransitive standard models of the NBG theory in the ZF theory. The NBG theory
is a first-order theory (without equalities) with a single binary predicate symbol of belonging ∈ (write
A ∈ B).

The objects of the NBG theory are called classes.
A class A is called a set if ∃X(A ∈ X). We will denote this formula by S(A).
The formula ∀x(x ∈ A ⇒ x ∈ B) is denoted by A ⊂ B. Two classes A and B are said to be equal

(denoted by A = B) if A ⊂ B ∧B ⊂ A.
Let us present a list of proper axioms and axiom schemes of the NBG theory.
A1 (volume axiom).

∀y∀z((y = z) ⇒ ∀X(y ∈ X ⇔ z ∈ X)).

A formula ϕ is said to be a predicate (see [3], Chap. 4, § 1) if for any variables x, all strings of symbols
∀x and ∃x entering the formula ϕ are located at positions of the following form: ∀x(S(x) ⇒ . . . ) and
∃x(S(x) ∧ . . . ).

AS2 (axiom scheme of complete envelopment). Let ϕ(x) be a predicate formula such that the substi-
tution ϕ(x‖y) is admissible and ϕ does not freely contain the variable Y . Then

∃Y ∀y(y ∈ Y ⇔ (S(y) ∧ ϕ(y))).

This axiom scheme postulates the existence of classes, which are denoted by {x|ϕ(x)}.
The universal class is the class of all sets V ≡ {x|x = x}. The empty class is the class ∅ ≡ {x|x 
= x}.
A3 (axiom of set of subclasses (≡ of a complete ensemble)).

∀X(S(X) ⇒ ∃Y (S(Y ) ∧ ∀Z(Z ⊂ X ⇔ Z ∈ Y ))).

For each class A, the class P(A) ≡ {x|x ⊂ A} is called the class of subsets of the class A.
Axiom A3 is equivalent to the conjunction of the following two axioms:
A3′ (axiom of subset).

∀X∀Y (S(X) ∧ Y ⊂ X ⇒ S(Y )).

A3′′ (axiom of set of subsets).
∀X(S(X) ⇒ S(P(X))).

For two classes A and B, the class A ∪ B ≡ {x|x ∈ A ∨ x ∈ B} is called the union of the classes A
and B; the class A ∩B ≡ {x|x ∈ A ∧ x ∈ B} is called the intersection of the classes A and B.
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A4 (axiom of binary union).

∀X∀Y (S(X) ∧ S(Y ) ⇒ S(X ∪ Y )).

For a class A, consider the individual class {A} ≡ {x|x = A}. For two classes A and B consider an
unodered pair {A,B} ≡ {A}∪{B}, a coordinate pair 〈A,B〉 ≡ {{A}, {A,B}}, and the coordinate product
A ∗B ≡ {x|∃y∃z(y ∈ A ∧ z ∈ B ∧ x = 〈y, z〉)}.

As was done in Sec. 1.1 in the ZF theory, in the NBG theory we define a correspondence C with domain
domC and range rng C, a mapping (≡ function) F , a correspondence C : A ≺ B with the set of values
C〈a〉 at a point a ∈ A, a function F : A→ B with value F (a) at a point a ∈ A, etc.

A5 (axiom of general union).

∀X∀Y ∀Z(S(X) ∧ (Z ⊂ X ∗ Y ) ∧ ∀x(x ∈ X ⇒ S(Z〈x〉)) ⇒ S(rng Z)).

For each class A, the class ∪A ≡ {x|∃y ∈ A(x ∈ y)} is called the union of the class A.
Axiom A5 is the conjunction of the following two axioms:
A5′ (axiom of union).

∀X(S(X) ⇒ S(∪X)).
A5′′ (axiom of replacement (≡ substitution)).

∀X∀Y ∀Z(S(X) ∧ (Z � X → Y ) ⇒ S(rng Z)).

A6 (regularity axiom).
∀X(X 
= ∅ ⇒ ∃x(x ∈ X ∧ x ∩X = ∅)).

A7 (axiom of infinity).

∃X(S(X) ∧ ∅ ∈ X ∧ ∀x(x ∈ X ⇒ x ∪ {x} ∈ X)).

A8 (axiom of choice).

∀X(S(X) ∧X 
= ∅ ⇒ ∃z((z � P(X) \ {∅} → X) ∧ ∀Y (Y ∈ P(X) \ {∅} ⇒ z(Y ) ∈ Y ))).

Theorem 1. For a set P the following assertions are equivalent in the ZF theory :
(1) P is a supertransitive standard model for the NBG theory ;
(2) P = P(U) for a certain universal set U .

Proof. 1) � 2). Consider an arbitrary sequence s ≡ x0, . . . , xq, . . . of elements of the set P and translations
of axioms and axioms schemes of the NBG theory into sequences s under the standard interpretation
M ≡ (P, I).

Instead of θM [s] and M � ϕ[s], we will write θt and ϕt for terms θ and formulas ϕ, respectively.
To simplify the further presentation, we first consider translations of certain simple formulas. Let u

and v be certain classes.
Exactly in the same way as in proving Proposition 1 from the previous subsection, we verify that the

equivalences (u ∈NBG v)t ⇔ ut ∈ZF vt and (u ⊂NBG v)t ⇔ ut ⊂ZF vt hold. This implies that the
equivalence (u =NBG v)t ⇔ (ut ⊂ZF v

t) ∧ (vt ⊂ZF u
t) holds.

The formula X ⊂ Y ∧ Y ⊂ X of the ZF theory, equivalent to the formula ∀a(a ∈ X ⇔ a ∈ Y ), will be
temporary denoted by X ∗= Y .

Let ut ∗= vt. By the volume axiom A1 we deduce the formula ut =ZF vt in the ZF theory. By
the deduction axiom, we deduce the formula ut

∗= vt ⇒ ut =ZF vt in the ZF theory. Conversely, let
ut =ZF vt. Take a ∈ ut. By the axiom of replacement of equals, we deduce the formula a ∈ vt from the
latter equality. Therefore, by the deduction axiom, we deduce the formula a ∈ ut ⇒ a ∈ vt in ZF, and by
the generalization rule, we deduce the formula ut ⊂ vt. Similarly we deduce the formula vt ⊂ U t. Hence
the formula ut ∗= vt is deduced. By the deduction axiom we deduce the formula ut =ZF v

t ⇒ ut
∗= vt in ZF.

Thus, the equivalence ut ∗= vt ⇔ ut =ZF v
t holds. Therefore, the equivalence (u =NBG v)t ⇔ (ut =ZF v

t)
holds.
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In what follows, we do not write literal translations of axioms and axiom schemes but their equivalent
variants, which are obtained by using the mentioned equivalences.

The volume axiom A1 translations into the formula A1t ⇔ A1P = ∀y ∈ P∀z ∈ P (y = z ⇒ ∀X ∈
P (y ∈ X ⇔ z ∈ X)).

The axiom scheme of complete envelopment AS2 translates into formula scheme AS2t ⇔ ∃Y ∈ P∀y ∈
P (y ∈ Y ⇔ ∃X ∈ P (y ∈ X) ∧ ϕτ (y)), where Y is not a free variable of the formula ϕ(y) and by ϕτ we
denote the formula M � ϕ[sτ ] in which sτ stands for the corresponding change of the sequence s under
the transfer of the quantor overformulas ∃Y (. . . ), ∀y(. . . ) and ∃X(. . . ) mentioned above .

The axiom of subset A3′ translates into the formula A3′t ⇔ A3′P = ∀X ∈ P∀Y ∈ P (∃E ∈ P (X ∈ E)∧
Y ⊂ X ⇒ ∃F ∈ P (Y ∈ F )).

The axiom of sets of subsets A3′′ translates into the formula A3′′t ⇔ A3′′τ = ∀X ∈ P (∃E ∈
P (X ∈ E) ⇒ ∃F ∈ P (P(X)τ ∈ F )), where the set Z ≡ P(X)τ is determined from the formula
∃Z ∈ P∀z ∈ P (z ∈ Z ⇔ (∃G ∈ P (z ∈ G) ∧ z ⊂ X)).

The axiom of binary union A4 translates into the formula A4t ⇔ A4τ = ∀X ∈ P∀Y ∈ P (∃E ∈ P (X ∈
E) ∧ ∃F ∈ P (Y ∈ F ) ⇒ ∃G ∈ P ((X ∪ Y )τ ∈ G)), where the set Z ≡ (X ∪ Y )τ is determined from the
formula ∃Z ∈ P∀z ∈ P (z ∈ Z ⇔ (∃H ∈ P (z ∈ H) ∧ (z ∈ X ∨ z ∈ Y ))).

The axiom of general union A5 translates into the formula A5t ⇔ A5τ = ∀X ∈ P∀Y ∈ P∀Z ∈
P (∃E ∈ P (X ∈ E)∧ (Z ⊂ (X ∗Y )τ )∧∀x ∈ P (x ∈ X ⇒ ∃F ∈ P (Z〈x〉σ ∈ F )) ⇒ ∃G ∈ P ((rng Z)τ ∈ G)),
where:

— the class Z1 ≡ (X ∗ Y )τ is determined from the formula ∃Z1 ∈ P∀z ∈ P (z ∈ Z1 ⇔ (∃H ∈
P (z ∈ H) ∧ ∃x ∈ P∃y ∈ P (x ∈ X ∧ y ∈ Y ∧ z = 〈x, y〉∗)));

— the class Z2 ≡ Z2(x) ≡ Z〈x〉σ is determined from the formula ∃Z2 ∈ P∀y ∈ P (y ∈ Z2 ⇔ (∃K ∈
P (y ∈ K) ∧ y ∈ Y ∧ 〈x, y〉∗ ∈ Z));

— the class Z3 ≡ (rng Z)τ is determined from the formula ∃Z3 ∈ P∀y ∈ P (y ∈ Z3 ⇔ (∃L ∈
P (y ∈ L) ∧ y ∈ Y ∧ ∃x ∈ P (x ∈ X ∧ 〈x, y〉∗ ∈ Z));

— the class Z4 ≡ 〈x, y〉∗ is determined from the formula ∃Z4 ∈ P∀z ∈ P (z ∈ Z4 ⇔ ∃M ∈ P (z ∈M) ∧
(z = {x}∗ ∨ z = {x, y}∗));

— the class Z5 ≡ {x, y}∗ is determined from the formula ∃Z5 ∈ P∀z ∈ P (z ∈ Z5 ⇔ ∃N ∈ P (z ∈ N) ∧
(z = x ∨ z = y));

— the class Z6 ≡ {x}∗ is determined from the formula ∃Z6 ∈ P∀z ∈ P (z ∈ Z6 ⇔ ∃Q ∈ P (z ∈ Q) ∧
z = x).

The regularity axiom A6 translates into the formula A6t ⇔ A6τ ≡ ∀X ∈ P (X 
= ∅t ⇒ ∃x ∈ P (x ∈
X ∧ (x ∩X)τ = ∅t)), where:

— the class Z1 ≡ ∅t is determined from the formula ∃Z1 ∈ P∀z ∈ P (z ∈ Z1 ⇔ (∃E ∈ P (z ∈ E) ∧
z 
= z));

— the class Z2 ≡ (x ∩ X)τ is determined from the formula ∃Z2 ∈ P∀z ∈ P (z ∈ Z2 ⇔ (∃F ∈
P (z ∈ F ) ∧ z ∈ x ∧ z ∈ X)).

The infinity axiom A7 translates into the formula A7t ⇔ A7τ ≡ ∃X ∈ P (∃E ∈ P (X ∈ E) ∧ ∅t ∈
X ∧ ∀x ∈ P (x ∈ X ⇒ (x ∪ {x})τ ∈ X)), where:

— the class Z1 ≡ ∅t is determined from the formula presented above;
— the class Z2 ≡ Z2(x) ≡ (x ∪ {x})τ is determined from the formula ∃Z2 ∈ P∀z ∈ P (z ∈ Z2 ⇔ (∃F ∈

P (z ∈ F ) ∧ (z ∈ x ∨ z ∈ {x}σ)));
— the class Z3 ≡ Z3(x) ≡ {x}σ is determined from the formula ∃Z3 ∈ P∀z ∈ P (z ∈ Z3 ⇔ (∃G ∈

P (z ∈ G) ∧ z = x)).
Since M is a model of the NBG theory, all the translations written above are deducible formulas in the

ZF theory ZF.
Using the obtained transfers, we prove that P = P(U) for a certain set U .
In the NBG theory, let us consider the formula ϕ(x) ≡ (x = x). Then AS2 defines an implicit axiom

of the NBG theory of the form ∃Y ∀y(y ∈ Y ⇔ ∃X(y ∈ X) ∧ y = y). According to the translations made
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above, this implicit axiom translates into the formula equivalent to the formula Φ ≡ ∃Y ∈ P∀y ∈ P (y ∈
Y ⇔ ∃X ∈ P (y ∈ X) ∧ y = y). Since this formula is deducible in ZF, it defines a certain element U ∈ P
in ZF.

Consider an arbitrary element X ∈ P . Let y ∈ X. Then the transitivity of P implies y ∈ P . Hence for
y, the formula ∃X ∈ P (y ∈ X ∧ y = y) is deduced. By the formula Φ, we have y ∈ U . Therefore, X ⊂ U ,
i.e., X ∈ P(U). Thus, we have deduced the embedding P ⊂ P(U).

Conversely, if and X ∈ P(U), then the quasi-transitivity of P implies X ∈ P . Therefore, P = P(U).
Let us prove that the set U is universal.
Let y ∈ x ∈ U ∈ P . The transitivity of P implies x ∈ P = P(U). Hence y ∈ x ⊂ U implies y ∈ U .

Therefore, the set U is transitive.
Let y ⊂ x ∈ U ∈ P . Then x ∈ P = P(U), and y ⊂ x ⊂ U implies y ∈ P . By A3′P , we conclude that

y ∈ F for a certain F ∈ P . Therefore, y ∈ F ⊂ U implies y ∈ U . Therefore, the set U is quasitransitive.
Let us verify that in A3′′τ , the following equality holds for X ∈ E ∈ P : P(X)τ = P(X), where P(X) is

defined in Sec. 1.1. Let z ∈ P(X). Then by the quasi-transitivity of P , z ⊂ X ∈ P implies z ∈ P . Further
z ⊂ X ∈ E ∈ P = P(U) implies z ⊂ X ∈ E ⊂ U . By the quasi-transitivity of U , z ⊂ X ∈ U implies
z ∈ U ∈ P . Therefore, the formula defined by the set Z ≡ P(X)τ , which was presented above, implies
z ∈ P(X)τ . Therefore, P(X) ⊂ P(X)τ . The mentioned formula also implies the inverse embedding.

Let X,Y ∈ U ∈ P . Then by A3′′τ , X,Y ∈ P implies P(X) = P(X)τ ∈ F for a certain F ∈ P .
Therefore, P(X) ∈ F ⊂ U implies P(X) ∈ U .

Let us verify that in A4τ , the equality (X ∪ Y )τ = X ∪ Y holds for X ∈ E ∈ P and Y ∈ F ∈ P . Let
z ∈ X ∪ Y . Then z ∈ X or z ∈ Y . The transitivity of P implies X ∈ P and Y ∈ P , which, in turn,
implies z ∈ P . Moreover, by the transitivity of U , z ∈ X ∈ E ⊂ U or z ∈ Y ∈ F ⊂ U implies z ∈ U ∈ P .
Therefore, the formula presented above, which defines the set Z ≡ (X ∪ Y )τ , implies z ∈ (X ∪ Y )τ .
Therefore, X ∪ Y ⊂ (X ∪ Y )τ . The mentioned formula implies the inverse embedding.

Let X,Y ∈ U . Then by A4τ , X,Y ∈ P implies X ∪Y = (X ∪Y )τ ∈ G for a certain G ∈ P . Therefore,
X ∪ Y ∈ G ⊂ U implies X ∪ Y ∈ U .

Let X ∈ U ∈ P . By what was proved above, P(X) ∈ U . Then by the quasi-transitivity of the set U ,
{X} ⊂ P(X) ∈ U implies {X} ∈ U .

Let X,Y ∈ U . Then by what was proved above, {X,Y } = {X} ∪ {Y } ∈ U . This implies 〈X,Y 〉 ∈ U .
If X,Y ∈ U , then by the quasi-transitivity property of U , X ∗Y ⊂ P(P(X∪Y )) ∈ U implies X ∗Y ∈ U .
Before proving other universality properties, let us simplify the formula A5τ obtained under the transfer

of the axiom of general union A5.
Let z ∈ {x}. Then z = x ∈ X ∈ P implies z ∈ P , and, therefore, z ∈ Z6. Conversely, if z ∈ Z6 ∈ P ,

then z ∈ P and the formula for Z6 imply z = x ∈ {x}. Hence Z6 = {x}.
Let z ∈ {x, y}. Then z = x ∈ X ∈ P or z = y ∈ Y ∈ P implies z ∈ Z5. Conversely, if z ∈ Z5, then

z = x or z = y implies z ∈ {x, y}. Hence Z5 = {x, y}.
These equalities lead to the disappearance of the star in the formula for Z4. Let z ∈ 〈x, y〉. Then

z = {x} or z = {x, y}. Since x ∈ X ∈ P = P(U), it follows that x ∈ U . Analogously, y ∈ U . By what was
proved above, this implies {x} ∈ U and {x, y} ∈ U . Therefore, z ∈ U ∈ P implies z ∈ Z4. Conversely,
if z ∈ Z4 ∈ P , then z ∈ P , and the formula for Z4 implies z = {x} or z = {x, y}, i.e., z ∈ 〈x, y〉. Hence
Z4 = 〈x, y〉.

This equality leads to the disappearance of the star in the formulas for Z3, Z2, and Z1.
Using this conclusion, we verify that Z1 = X ∗ Y . Let z ∈ Z1 ∈ P . The transitivity of P implies

z ∈ P . Therefore, the formula for Z1 implies z = 〈x, y〉 for certain x ∈ X and y ∈ Y . Therefore,
z ∈ X ∗ Y . Conversely, let z ∈ X ∗ Y . Then z = 〈x, y〉 for certain x ∈ X ∈ P and y ∈ Y ∈ P . The
transitivity of P implies x, y ∈ P . Since x ∈ X ⊂ U and y ∈ Y ⊂ U , by what was proved above, we have
z = 〈x, y〉 ∈ U ∈ P and z ∈ P . Therefore, the formula for Z1 implies z ∈ Z1. This proves the necessary
equality.

Hence Z ⊂ X ∗ Y .
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Using this conclusion, let us verify that Z3 = rng Z. Let y ∈ Z3 ∈ P . The transitivity of P implies
y ∈ P . Therefore, the formula for definition of Z3 implies y ∈ rng Z. Conversely, let y ∈ rng Z ⊂ Y ∈ P .
Then there exists x ∈ X ∈ P such that 〈x, y〉 ∈ Z. The transitivity of P implies x, y ∈ P . Therefore, the
formula for Z3 implies y ∈ Z3. This proves the necessary equality.

Finally, let us verify that Z2 = Z〈x〉.
Let y ∈ Z2 ∈ P . The transitivity of P implies y ∈ P . Therefore, the formula for Z2 implies y ∈ Y and

〈x, y〉 ∈ Z.Therefore, y ∈ Z〈x〉. Conversely, let y ∈ Z〈x〉 ⊂ Y ∈ P . Then 〈x, y〉 ∈ Z. The transitivity of
P implies y ∈ P . Therefore, the formula for Z2 implies y ∈ Z2. This proves the necessary equality.

All that was proved above imply that in the formula A5τ , the indices τ and σ disappear.
Using this conclusion, we prove that X ∈ U implies ∪X ∈ U . In ZF, let us consider the sets Y ≡ ∪X

and Z ≡ {z ∈ X ∗ Y |∃x ∈ X∃y ∈ y(z = 〈x, y〉 ∧ y ∈ x)}. If y ∈ x ∈ X ∈ U , then the transitivity of U
implies y ∈ U . Therefore, Y ⊂ U implies Y ∈ P . Let z ∈ Z, i.e., z = 〈x, y〉 for certain x ∈ X and y ∈ Y
such that y ∈ x. Then y ∈ x ∈ U implies y ∈ U . By what was proved above, z = 〈x, y〉 ∈ U . Hence
Z ⊂ U , i.e., Z ∈ P .

Let us verify that for any x ∈ P such that x ∈ X, Z〈x〉 = x holds. If y ∈ Z〈x〉, then 〈x, y〉 ∈ Z implies
〈x, y〉 = 〈x′, y′〉 for certain x′ ∈ X and y′ ∈ Y such that y′ ∈ x′. This implies y = y′ ∈ x′ = x. Conversely,
if y ∈ x ∈ X, then y ∈ Y , and 〈x, y〉 ∈ Z implies y ∈ Z〈x〉.

This implies Z〈x〉 = x ∈ U ∈ P for any x ∈ P such that x ∈ X ∈ U ∈ P . Since the formula A5τ is
also deducible in ZF, it implies Y = rng Z ∈ G for a certain G ∈ P . Therefore, Y ∈ G ⊂ U .

Let us verify that X ∈ U and f ∈ UX imply rng f ∈ U . If x ∈ X ∈ U and y ∈ U , by what was proved
above, x ∈ U implies 〈x, y〉 ∈ U . Hence f ⊂ X ∗ U ⊂ U implies f ∈ P . Moreover, by what was proved
above, f(x) ∈ U implies f〈x〉 = {f(x)} ∈ U ∈ P for any x ∈ X. Applying the formula A5τ , we conclude
that rng f ∈ G for a certain G ∈ P . Therefore, rng f ∈ U .

Now let us simplify the formula A7τ . We verify that Z1 = ∅ZF . Let z ∈ P . Assume that z ∈ Z1.
Then according to the formula for Z1, we obtain z 
= z. But, according to the equality axiom, z = z.
The obtained contradiction implies z /∈ Z1. Now let z /∈ P . Since Z1 ⊂ P , it follows that z1 /∈ Z1. Thus,
for any z, z /∈ Z1 holds. According to the axiom of empty set A7 in the ZF theory, we conclude that
Z1 = ∅ZF .

In simplifying the formula A5τ , we have proved that the formula for Z3 ≡ {x}σ implies the equality
Z3 = {x}.

Let x ∈ X ∈ P . By what was proved above, x ∈ U implies {x} ∈ U ∈ P . The transitivity of P implies
{x} ∈ P . In simplifying the formula A4τ , we have proved that the equality Z2 = x∪{x} is deduced from
these properties.

Thus, the formula A7τ becomes ∃X ∈ P (∃E ∈ P (X ∈ E)∧∅ZF ∈ X∧∀x ∈ P (x ∈ X ⇒ x∪{x} ∈ X)).
Let x ∈ X, where X ∈ E ∈ P . The transitivity of P implies x ∈ P . Then the formula x ∪ {x} ∈ X is
deduced from the formula A7τ . By the deduction axiom, we deduce the formula (x ∈ X ⇒ x∪{x} ∈ X),
and by the generalization rule, we deduce the formula ∀x ∈ X(x∪{x} ∈ X). Thus, from A7τ , we deduce
the formula ∃X ∈ P (∃E ∈ P (X ∈ E) ∧ ∅ZF ∈ X ∧ ∀x ∈ X(x ∪ {x} ∈ X)), which almost coincides with
the infinity axiom A8 in the ZF theory and which says that there exists an inductive set X ∈ E ∈ P .
Since ω is the minimal set among all inductive sets, it follows that ω ⊂ X ∈ U . By the quasi-transitivity
of the set U , this implies ω ∈ U .

Therefore, we have proved that 1) � 2).
2) � 1). Let P = P(U) for a certain universal set U . Consider the standard interpretation M ≡ (P, I)

of the NBG theory. In the above, we carried out the translation of axioms and axiom schemes of the NBG
theory into sequences s under the interpretation M . Let us prove that they are deduced in NBG.

We verify that P is supertransitive. Let x ∈ y ∈ P . Then x ∈ y ⊂ U implies x ∈ U . Since U is
transitive, it follows that x ⊂ U and hence x ∈ P . Therefore, P is transitive. Let x ⊂ y ∈ P . Then
x ⊂ y ⊂ U implies x ∈ P . Therefore, P is quasi-transitive.

Let y, z ∈ P , y = z, and let X ∈ P . Consider the formula ϕ(y) ≡ (y ∈ X). By the scheme of replacing
equals in ZF, from y = z, we deduce the formula ϕ(z) = (z ∈ X). By the deduction theorem, the formula
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y ∈ X ⇒ z ∈ X is deduced. In a similar way, the formula z ∈ X ⇒ y ∈ X is deduced. Thus, the
formula y ∈ X ⇔ z ∈ X and, therefore, the formula X ∈ P ⇒ (y ∈ X ⇔ z ∈ X) are deduced. By the
generalization rule, the formula ψ ≡ ∀X ∈ P (y ∈ X ⇔ z ∈ X) is deduced. By the deduction theorem,
the formula y = z ⇒ ψ is deduced. By logical means, from this, we deduce the formula A1t.

According to AS3 in ZF, for the formula ϕτ (y) and the set U , there exists a set Y such that ∀y(y ∈
Y ⇔ y ∈ U∧ϕτ (y)). Let y ∈ Y . Then y ∈ U∧ϕτ (y). Since U ∈ P , it follows that ∃X ∈ P (y ∈ X)∧ϕτ (y).
By the deduction theorem, we deduce the formula y ∈ Y ⇒ ∃X ∈ P (y ∈ X) ∧ ϕτ (y). Conversely, let
∃X ∈ P (y ∈ X) ∧ ϕτ (y). Then y ∈ X ⊂ U implies y ∈ U . Therefore, y ∈ U ∧ ϕτ (y) implies y ∈ Y . By
the deduction theorem, we deduce the formula ∃X ∈ P (y ∈ X) ∧ ϕτ (y) ⇒ y ∈ Y . Thus, the formula
y ∈ Y ⇔ ∃X ∈ P (y ∈ X) ∧ ϕτ (y) is deduced. From this, we deduce the formula ∀y ∈ P (y ∈ Y ⇔ ∃X ∈
P (y ∈ X) ∧ ϕτ (y)). Since Y ⊂ U ∈ P , the quasi-transitivity of P implies Y ∈ P . Therefore, AS2t is
deduced in ZF.

Let X,Y ∈ P , X ∈ E ∈ P , and let Y ⊂ X. Then by the quasi-transitivity of U proved in Lemma 1
(Sec. 3.1), Y ⊂ X ∈ E ⊂ U implies Y ∈ U ∈ P . This means that A3′t is deduced in ZF.

We have deduced early that for X ∈ E ∈ P , the equality P(X)τ = P(X), where P(X) is defined
in Sec. 1.1, holds. By Axiom A5, in ZF, there exists P(X). Since U is universal, X ∈ E ⊂ U implies
P(X) ∈ U ∈ P . This means that A3′′t is deduced in ZF.

Let X,Y ∈ P , X ∈ E ∈ P , and let Y ∈ F ∈ P . We have deduced early that under these conditions, the
equality (X∪Y )τ = X∪Y holds. But, by the universality of U , X ∈ U and Y ∈ U imply X∪Y ∈ U ∈ P .
This means that A4t is deduced in ZF.

Let X,Y, Z ∈ P , and let X ∈ E ∈ P . We have deduced early that under these conditions, the equality
(X ∗ Y )τ = X ∗ Y holds, and if Z ⊂ X ∗ Y , then the equalities Z〈x〉σ = Z〈x〉 (rng Z)τ = rng Z hold.
If x ∈ X and Z〈x〉 ∈ F ∈ P , then X ∈ U , x ∈ U , and Z〈x〉 ∈ U . Since U is universal, it follows
that U ∗ U ⊂ U . Consider the set f ≡ {s ∈ U ∗ U |∀x ∈ X(s = 〈x, Z〈x〉〉) ∧ ∀x(x /∈ X ⇒ s = 〈x, ∅〉)}.
Clearly, f is a function from X into U such that f(x) = Z〈x〉. By the universality of U , we conclude that
S ≡ rng f ∈ U , and hence T ≡ ∪S ∈ U . If t ∈ T , then t ∈ s ∈ S implies t ∈ Z〈x〉 for a certain x ∈ X.
Therefore, t ∈ rng Z. Conversely, if t ∈ rng Z, then 〈x, t〉 ∈ Z for a certain x ∈ domZ ⊂ X. Hence
t ∈ Z〈x〉 = f(x) ∈ S. Therefore, t ∈ T . Thus, rng Z = T ∈ U ∈ P . This means that A5t is deduced in
ZF.

We have deduced earlier that ∅t = ∅ZF . Let X ∈ P , and let X 
= ∅ZF . Let us verify that Z2 ≡ (x∩X)τ

for x ∈ X in the formula A6τ coincides with x ∩X. Let z ∈ x ∩X. Then z ∈ X ∈ P implies z ∈ P by
the transitivity of P . By the formula for Z2, we obtain z ∈ Z2. Conversely, let z ∈ Z2 ∈ P . Then by the
formula for Z2, z ∈ P implies z ∈ x ∩X. Therefore, Z2 = x ∩X.

By the regularity axiom A9 in ZF, there exists x ∈ X such that x∩X = ∅ZF . It follows from x ∈ X ∈ P
that x ∈ P . This means that A6t is deduced in ZF.

We have deduced early that ∅t = ∅ZF in the formula A7τ , and, if x ∈ X ∈ E ∈ P , then (x ∪ {x})τ =
x ∪ {x}. Since U universal, it follows that ω ∈ U . Hence ω ∈ P . Since ω is an inductive set, ∅ZF ∈ X
and x ∈ X ⇒ x ∪ {x} ∈ X. From this, by logical means, we deduce formula A7t.

The axiom of choice A8 in NBG transfers into the formula A8t ⇔ A8τ ≡ ∀X ∈ P (∃E ∈ P (X ∈ E) ∧
X 
= ∅t ⇒ ∃z ∈ P ((z � P(X) \ {∅} → X)τ ∧ ∀Y ∈ P (Y ∈ (P(X) \ {∅})σ ⇒ ∀x ∈ P (x ∈ X ∧ 〈Y, x〉σ ∈
z ⇒ x ∈ Y ), where:

— the set Z1 ≡ Z1(X) ≡ (P(X) \ {∅})σ is determined from the formula ∃Z1 ∈ P∀u ∈ P (u ∈ Z1 ⇔ u ∈
P(X)ρ ∧ u /∈ {∅}ρ);

— the set Z2 ≡ 〈Y, x〉σ is determined from the formula ∃Z2 ∈ P∀u ∈ P (u ∈ Z2 ⇔ ∃F ∈ P (u ∈ F )∧(u =
{Y }σ ∨ u = {Y, x}σ));

— the set Z3 ≡ {Y, x}σ is determined from the formula ∃Z3 ∈ P∀u ∈ P (u ∈ Z3 ⇔ ∃G ∈ P (u ∈ G)∧(u =
Y ∨ u = x));

— the set Z4 ≡ {Y }σ is determined from the formula ∃Z4 ∈ P∀u ∈ P (u ∈ Z4 ⇔ ∃H ∈ P (u ∈ H)∧
u = Y );
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— the set Z5 ≡ {∅}ρ is determined from the formula ∃Z5 ∈ P ∀z ∈ P (z ∈ Z5 ⇔ (∃K ∈ P (z ∈ K)∧z =
∅t));

— ϕτ ≡ (z � P(X) \ {∅} → X)τ stands for the formula M � ϕ[sτ ], where sτ stands for the corre-
sponding change of the sequence s under the transfer of the quantifier overformulas ∀X(. . . ) and ∃z(. . . )
mentioned above.

In the above, we have established that ∅t = ∅ZF . Since ∅ZF ∈ ω ∈ U ∈ P , these conditions imply
Z5 = {∅ZF } as was proved above.

Fix the conditions X ∈ P , X ∈ E ∈ P , and X 
= ∅t = ∅ZF . We have proved above that this implies
P(X)ρ = P(X).

Let us verify that Z1 = P(X) \ {∅ZF } ≡ Z. Let u ∈ Z1 ∈ P . Since X ∈ E ⊂ U and U is universal,
P(X) ∈ U . Now the quasi-transitivity of U implies Z ∈ U . Since u ∈ P , the formula for Z1 implies
u ∈ Z. Therefore, Z1 ⊂ Z. Conversely, let u ∈ Z ∈ U ∈ P . The transitivity of P implies u ∈ P . Now the
formula for Z1 implies u ∈ Z. Therefore, Z ⊂ Z1, which proves the required equality. This leads to the
replacement of Z1 by Z in the formula A8τ .

Consider the formula ϕ ≡ (z � Z → X). It is the conjunction of the following three formulas: ϕ1 ≡
(z ⊂ Z ∗X), ϕ2 ≡ (domz = Z), and ϕ3 ≡ (∀x(x ∈ Z ⇒ ∀y(y ∈ X ⇒ ∀y′(y′ ∈ X ⇒ (〈x, y〉 ∈ z ∧ 〈x, y′〉 ∈
z ⇒ y = y′))))). Therefore, ϕτ = ϕτ1∧ϕτ2∧ϕτ3 . Since ϕ1 = (∀u(u ∈ z ⇒ ∃x∃y(x ∈ Z∧y ∈ X∧u = 〈x, y〉))),
it follows that ϕτ1 ⇔ (∀u ∈ P (u ∈ z ⇒ ∃x ∈ P∃y ∈ P (x ∈ Z ∧ y ∈ X ∧ u = 〈x, y〉σ))). Analogously,
ϕ2 = (∀x(x ∈ Z ⇒ ∃y(y ∈ X∧〈x, y〉 ∈ z))) implies ϕτ2 ⇔ (∀x ∈ P (x ∈ Z ⇒ ∃y ∈ P (y ∈ X∧〈x, y〉σ ∈ z))).

Finally, ϕτ3 ⇔ (∀x ∈ P (x ∈ Z ⇒ ∀y ∈ P (y ∈ X ⇒ ∀y′ ∈ P (y′ ∈ X ⇒ (〈x, y〉σ ∈ z ∧ 〈x, y′〉σ ∈ z ⇒ y =
y′))))). This implies that the formulas ϕτ1 , ϕ

τ
2 and ϕτ3 differ from the formulas ϕ1, ϕ2 and ϕ3 only by the

quantifier prefixes ∀ · · · ∈ P and ∃ · · · ∈ P , respectively.
By the axiom of choice, A10 in ZF, for X, there exists z such that χ ≡ (z � Z → X) ∧ ∀Y (Y ∈ Z ⇒

∀x(x ∈ X ∧ 〈Y, x〉 ∈ z ⇒ x ∈ Y )).
Therefore, the formula ϕ = ϕ1 ∧ ϕ2 ∧ ϕ3 and, therefore, the formulas ϕ1, ϕ2 and ϕ3 are deduced.
Let u ∈ P , and let u ∈ z. Then from the formula ϕ1, we deduce that there exist x ∈ Z and y ∈ X such

that u = 〈x, y〉. Since x ∈ Z ∈ U ∈ P and y ∈ X ∈ P , by the transitivity property, we have x, y ∈ P . This
means that under these conditions u ∈ P and u ∈ z, the formula ∃x ∈ P∃y ∈ P (x ∈ Z∧y ∈ X∧u = 〈x, y〉)
is deduced. Applying the deduction theorem twice and the deduction rule, we deduce the formula ϕτ1 .

Let x ∈ P and x ∈ Z. Then from the formula ϕ2 we deduce that for x, there exists y ∈ X such that
〈x, y〉 ∈ z. From y ∈ X ∈ P , it follows that y ∈ P . This means that under these conditions x ∈ P and
x ∈ Z, the formula ∃y ∈ P (y ∈ X ∧ 〈x, y〉 ∈ z) is deduced. As in the previous paragraph, we deduce from
this the formula ϕτ2 .

Let x ∈ P , x ∈ Z, y ∈ P , y ∈ X, y′ ∈ P , y′ ∈ X, 〈x, y〉 ∈ z, and let 〈x, y′〉 ∈ z. Then from the formula
ϕ3, we deduce that y = y′. Alternatively applying the deduction theorem and the deduction rules several
times, we deduce the formula ϕτ3 .

Thus, the formula ϕτ is deduced.
Let us verify that Z4 = {Y } under the conditions X ∈ E ∈ P , Y ∈ P , and Y ∈ Z. Let u ∈ {Y }, i.e.,

u = Y ∈ P . Since u = Y ∈ Z ∈ U ∈ P , u ∈ U ∈ P by the transitivity. Then from the formula for Z4, it
follows that u ∈ Z4. Conversely, if u ∈ Z4 ∈ P , then u ∈ P and the formula for Z4 imply u = Y ∈ {Y }.
This yields the necessary equality.

Let us verify that Z3 = {Y, x} under the conditions X ∈ E ∈ P , x ∈ X, Y ∈ P , and Y ∈ Z. Let
u ∈ {Y, x}. Then u = Y ∈ Z ∈ U ∈ P or u = x ∈ X ∈ E ∈ P implies u ∈ P , and, therefore, u ∈ Z3.
Conversely, if u ∈ Z3 ∈ P , then u ∈ P and the formula for Z3 imply u = Y ∨ u = x, i.e., u ∈ {Y, x}. This
yields the necessary equality.

Finally, let us verify that Z2 = 〈Y, x〉 under the previous conditions. Let u ∈ 〈Y, x〉, i.e., u = {Y } or
u = {Y, x}. The previous equalities lead to the disappearance of the index σ in the formula for Z2. Since
Y ∈ Z ∈ U , it follows that Y ∈ U . Moreover, x ∈ X ∈ E ∈ P implies x ∈ X ∈ P , i.e., x ∈ X ⊂ U . Now
the universality of U implies u = {Y } ∈ U or u = {Y, x} ∈ U . Therefore, u ∈ U ∈ P and u ∈ P imply
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u ∈ Z2. Conversely, if u ∈ Z2 ∈ P , then u ∈ P and the formula for Z2 imply u = {Y } or u = {Y, x}, i.e.,
u ∈ 〈Y, x〉. This yields the necessary equality.

Since Z ∈ U ∈ P andX ∈ E ∈ P , i,e., X ∈ E ⊂ U , from the universality of U , we obtain z ⊂ Z∗X ∈ U .
By Lemma 1 (Sec. 3.1), z ∈ U ∈ P and, therefore, z ∈ P .

Therefore, from the axiom of choice in ZF is deduced for fixed conditions of existence an object z ∈ P
satisfying the formula χ from which the formula ξ ≡ (ϕτ ∧ ∀Y ∈ P (Y ∈ Z ⇒ ∀x ∈ P (x ∈ X ∧ 〈Y, x〉 ∈
z ⇒ x ∈ Y ))) is deduced. Thus, from the fixed conditions, we deduce the formula ∃z ∈ Pξ. Applying
alternatively the deduction theorem and the generalization rule several times, as a result, we deduce the
formula A8t.

Therefore, M is a model of the NBG theory.

Now we can prove the Zermelo–Shepherdson theorem (see [28] and [23]).

Theorem 2. In the ZF theory, the following assertions are equivalent for a set P :
(1) P is a supertransitive standard model for the NBG theory ;
(2) P = Vκ+1 = P(Vκ) for a certain inaccessible cardinal number κ.

Proof. 1) � 2). By Theorem 1, P = P(U) for a certain universal set U . By Theorem 1 (Sec. 3.2), U = Vκ

for a certain inaccessible cardinal number κ. By Corollary 2 of Lemma 4 (Sec. 2.2) , P = P(Vκ) = Vκ+1.
2) � 1). By Corollary 2 of Lemma 4 (Sec. 2.2) Vκ+1 = P(Vκ). By Theorem 2 (Sec. 3.2), the set Vκ is

universal. Now the assertion follows from Theorem 1.

The standard models of the ZF and NBG set theories of the form (Vα,=,∈) are said to be natural
(see [27] and [21]). The Zermelo–Shepherdson theorem yields a complete description of all natural models
of the NBG set theory. The complete description of all natural models of the ZF set theory was given by
the authors (see [1]) and is further presented in Sec. 7.

6. Tarski Sets and Galactic Sets. Theorem on the Characterization
of Natural Models of the NBG Theory

6.1. Tarski sets and their properties. A set U is called a Tarski set in ZF if it has the following
properties: (see [26] and [17], IX, § 5):

(1) x ∈ U ⇒ x ⊂ U ;
(2) x ∈ U ⇒ P(x) ∈ U ;
(3) ((x ⊂ U) ∧ ∀f(f ∈ Ux ⇒ rng f 
= U)) ⇒ x ∈ U .
To the ZF theory, Tarski added the Tarski axiom AT according to which each set is an element of a

certain Tarski set. In [26], it was proved that Axiom AT is equivalent to the inaccessibility axiom AI (see
also [17], IX, § 1, Theorem 6, and § 5, Theorem 1).

Lemma 1. The following properties are equivalent for any sets U and X:
(3) (x ⊂ U) ∧ ∀f(f ∈ Ux ⇒ rng f 
= U) ⇒ x ∈ U ;
(3’) (x ⊂ U) ∧ (|x| < |U |) ⇒ x ∈ U .

Proof. (3′) � (3). Let x ⊂ U and ∀f(f ∈ Ux ⇒ rng f 
= U). Clearly, |x| ≤ |U |. Assume that |x| = |U |.
Then there exists a bijection f : x � U , which contradicts the condition. Therefore, |x| < |U |. By
Property (3′), x ∈ U .

(3) � (3′). Let f ∈ Ux. Then |rng f | ≤ |x| < |U | implies rng f 
= U . By Property (3), x ∈ U .

Let us deduce other properties of Tarski sets from these properties.

Lemma 2. If U is a Tarski set and x ∈ U , then |x| ∈ |U |.
Proof. By Properties (1) and (2), x ∈ U implies P(x) ∈ U and P(x) ⊂ U . By the Cantor theorem,
|x| < |P(x)| ≤ |U |.
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Lemma 3. If U is a Tarski set, then x ∈ U ∧ y ⊂ x⇒ y ∈ U .

Proof. If x ∈ U , then by Property (2), P(x) ∈ U , and, by Property (1), P(x) ⊂ U . Since y ∈ P(x), it
follows that y ∈ U , which is what was required.

Lemma 4. If U is a Tarski set, then x ∈ U ∧ (f ∈ Ux) ⇒ rng f ∈ U .

Proof. If x ∈ U , then |x| < |U | by Lemma 2. Since f ∈ Ux, it follows that rng f ⊂ U and |rng f | ≤ |x| <
|U |. By Property (3′), Lemma 1 implies rng f ∈ U .

Lemma 5. If U is a Tarski set, then |U | ⊂ U .

Proof. Consider the class C ≡ {x|x ∈ On∧ x /∈ U}. This class is nonempty, since otherwise the class On
is a set. Therefore, it contains a minimal element κ. Since ∀α ∈ κ(α ∈ U), it follows that κ ⊂ U . Hence
|κ| ≤ |U |. Assume that |κ| < |U |. Then by Lemma 1, κ ∈ U , which is not so. Therefore, |U | = |κ| ≤ κ,
i.e., |U | ⊂ κ ⊂ U .

Lemma 6. If U is a Tarski set, then |U | /∈ U .

Proof. Assume that κ ≡ |U | ∈ U . Then by Property (2), P(κ) ∈ U . By Lemma 2, α ≡ |P(κ)| ∈ |U |.
Taking Lemma 5 into account, we conclude that α ∈ U , and, by Property (1), it follows that α ⊂ U . By
the Cantor theorem, α > |U |. But since α ⊂ U , it follows that α ≤ |U |. We deduce from the obtained
contradiction that |U | /∈ U .

Lemma 7. If U is a Tarski set, then |P(α)| ∈ |U | holds for any ordinal number α ∈ |U |.
Proof. Since α ∈ |U | and |U | ⊂ U by Lemma 5, it follows that α ∈ U . Then by Property (2) of a Tarski
set, P(α) ∈ U . By Lemma 2, |P(α)| ∈ |U |.
Lemma 8. If U is a nonempty Tarski set, then ∅ ∈ U and |U | ≥ 5.

Proof. Since ∀x(∅ ⊂ x), it follows that x0 ≡ ∅ ⊂ U . Since |∅| = 0 < |U |, x0 ∈ U by Lemma 1. By
Property (2), x1 ≡ {x0} = P(∅) ∈ U . It follows from x0 
= x1 that |U | ≥ 2. It follows from the proved
properties that x2 ≡ {x1} ⊂ U and |x2| = 1 < |U |. Therefore, x2 ∈ U by property (3′) from Lemma 1.
Hence x3 ≡ {x2} ⊂ U , and |x3| = 1 < |U | implies x3 ∈ U once again. Analogously, x4 ≡ {x3} ∈ U . Since
all xi are different for i ∈ 5, it follows that |U | ≥ 5.

Lemma 9. If U is a Tarski set, then x, y ∈ U ⇒ {x}, {x, y}, 〈x, y〉 ∈ U .

Proof. By Lemma 8, |U | ≥ 5. Therefore, {x}, {x, y} ⊂ U , and, by Property (3′), |{x}| = 1 ≤ |{x, y}| ≤
2 < |U | implies {x}, {x, y} ∈ U . Whence 〈x, y〉 ≡ {{x}, {x, y}} ∈ U .

Lemma 10. If U is a Tarski set, then |x| ≥ |U | ⇒ x /∈ U .

Proof. Assume the contrary, i.e., for a certain x, |x| ≥ |U | ∧x ∈ U holds. By Property (2), y ≡ P(x) ∈ U .
Since |P(x)| > |x|, it follows that |y| > |U |. By Property (1), y ⊂ U . But |y| ≤ |U | in this case. The
obtained contradiction implies x /∈ U .

Lemma 11. If U is a Tarski set, then x, y ∈ U ⇒ x ∪ y ∈ U .

Proof. Since ∀z(z ∈ x ∨ z ∈ y ⇒ z ∈ U), it follows that x ∪ y ⊂ U . Since x, y ∈ U , by Lemma 10, we
have α ≡ |x| < |U | ≡ κ and β ≡ |y| < κ. We need to prove that |x ∪ y| < κ. First, let us consider the
case where α ≤ 2 and β ≤ 2. Then, obviously, |x ∪ y| ≤ 4 < |U | by Lemma 8. Therefore, x ∪ y ∈ U by
Property (3′) from Lemma 1.

In what follows, we will assume that α ≥ β > 2. Consider the sets P ≡ {0}×x, Q ≡ {1}×y, S ≡ x∪y,
and T ≡ P ∪ Q. Define the mapping u : T → S, u(0, a) ≡ a for any (0, a) ∈ P and u(1, b) ≡ b for any
(1, b) ∈ Q. Since the mapping u is surjective, it follows that |S| ≤ |T |.
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Clearly, there exist bijective functions g : P � α and h : Q � β ⊂ α. Define the function f : T → P(α)
setting f(p) ≡ {g(p)} for any p ∈ P and f(q) ≡ α \ {h(q)} for any q ∈ Q. Since P ∩Q = ∅, this definition
is correct. The function f is injective. Indeed, the function f is injective on P and Q. Let p ∈ P , q ∈ Q,
and let f(p) = f(q). Then {g(p)} = α \ {h(q)} implies α = {g(p)} ∪ {h(q)} = {g(p), h(q)} ≤ 2, which
contradicts our assumption. Therefore, f(p) 
= f(q).

By the injectivity of the function f , Lemma 7 implies |S| ≤ |T | ≤ |P(α)| < κ. Therefore, S ∈ U by
Property (3′) of Lemma 1.

Corollary 1. If U is a Tarski set, then ω ⊂ U .

Corollary 2. If U is a Tarski set, then |U | ≥ ω.

Corollary 3. If U is a tarski set, then x, y ∈ U ⇒ x ∗ y ∈ U .

Proof. By Lemma 11 and Property (2), B ≡ P(P(x ∪ y)) ∈ U . By Lemma 3, A ≡ x ∗ y ⊂ B implies
A ∈ U .

Lemma 12. If U is a Tarski set, then α < |U | ⇒ |α ∗ α| < |U | holds for any ordinal number α.

Proof. We first consider the case |α| ≤ 2. Then by Lemma 8, |α ∗ α| ≤ |2 ∗ 2| = 4 < |U |. In what follows,
we will assume that |α| > 2.

Since α < |U | ≡ κ, |P(α)| < κ by Lemma 7. The set X ≡ α ∗ α consists of ordered pairs 〈β, γ〉 such
that β, γ ∈ α. Divide the set X into three disjoint subsets X1 ≡ {〈β, γ〉|β < γ < α}, X2 ≡ {〈β, β〉|β < α},
and X3 ≡ {〈β, γ〉|γ < β < α}. Obviously, X1 ∪X2 ∪X3 = X. Construct the function f : X → P(α) as
follows: if x1 = 〈β, γ〉 ∈ X1, then f(x1) ≡ {β, γ} ∈ P(α); if x2 ≡ 〈β, β〉 ∈ X2, then f(x2) ≡ {β} ∈ P(α);
if x3 = 〈β, γ〉 ∈ X3, then f(x3) ≡ α \ {β, γ} ∈ P(α). The function f is injective on X1, X2, and X3.
If f(x1) = f(x2), then {β, γ} = {β} implies γ = β < γ, which is impossible. If f(x1) = f(x3), then
{β, γ} = α \ {β, γ}, which is impossible, since α 
= ∅. Finally, if f(x2) = f(x3), then {β} = α \ {β, γ}
implies α = {β} ∪ {β, γ} = {β, γ}, and, therefore, |α| ≤ 2, which contradicts our assumption. It follows
from the obtained contradiction that the function f is injective. Therefore, |X| ≤ |P(α)| < κ.

The following theorem and its Corollary 1 were proved by Tarski in [23] (see also [13], IX, § 5, Theo-
rem 1). Here, we give another proof.

Theorem 1. If U is a Tarski set, then κ ≡ |U | is a regular cardinal number.

Proof. Assume that the cardinal number κ is not regular. Then α′ ≡ cf(κ) < κ and, by Lemma 5,
α′ ∈ U . By definition, there exists a function ϕ : α′ → κ such that ∪rng ϕ = κ. Denote rng ϕ by A and
consider the cardinal number α ≡ |A| ≤ α′ < κ. By Lemma 5, A ⊂ U and α ∈ U . Construct the function
g : A → P(κ) as follows. Consider an arbitrary ordinal number β ∈ A and the set Aβ ≡ {γ ∈ A|γ < β}.
Define β′ ≡ supAβ = ∪Aβ for Aβ 
= ∅ (see Lemma 2 (Sec. 1.2)) and β′ ≡ 0 for Aβ = ∅. Consider the set
Cβ ≡ {γ ∈ κ|β′ ≤ γ < β} and put g(β) ≡ Cβ . Let us show that for β1 
= β2, g(β1) ∩ g(β2) = ∅ holds.
Indeed, let β1 < β2. Then β1 ∈ Aβ2 , and hence β1 ≤ β2

′. If x ∈ g(β1)∧x ∈ g(β2), then x ∈ Cβ1 ∧x ∈ Cβ2 ,
whence x ∈ κ ∧ x < β1 ∧ β2

′ ≤ x, which is impossible. We conclude from the obtained contradiction that
g(β1) ∩ g(β2) = ∅. Now let us show that B ≡ ∪ g(β)|β ∈ A = κ. It is obvious from the definition
of the sets g(β) that B ⊂ κ. Now assume that x ∈ κ. Since ∪A = κ, there exists β ∈ A such that
x ∈ β. Therefore, the set D ≡ {γ ∈ A|x ∈ γ} is nonempty, and hence it has a minimal element λ. By
the definition of the set D, we have ∀γ ∈ A(γ < λ ⇒ γ ≤ x), which implies x ≥ λ′. , λ′ ≤ x < λ, i.e.,
x ∈ g(λ). Therefore, B = κ.

Since U is a Tarski set and κ is its cardinality, there exists a one-to-one function f : κ � U . Since
κ = ∪ g(β)|β ∈ A and the sets g(β) are pairwise disjoint, it follows that U = ∪ f [g(β)]|β ∈ A .
Denote the set f [g(β)] by 4Uβ . Fix β ∈ A. It follows from Cβ ⊂ β that |Uβ| = |Cβ | ≤ |β|.

Consider the (possibly, empty) set Fβ ≡ {q ∈ Uβ| |q| = α}. By what was proved above, |Fβ | ≤ |Uβ | ≤
|β| ≤ β. Therefore, | ∪ Fβ | = | ∪ q|q ∈ Fβ | ≤ | ∪ q ∗ {q}|q ∈ Fβ | ≡ ∑

(|q| |q ∈ Fβ) = α|Fβ | ≤ α|β| =
∑

(αq|q ∈ β) ≡ | ∪ α ∗ {q}|q ∈ β |, where αq ≡ α for any q ∈ β. Since ∪ α ∗ {q}|q ∈ β ⊂ α ∗ β ⊂
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max(α, β) ∗max(α, β) and max(α, β) < κ, by Lemma 12, it follows that | ∪Fβ | < κ. Therefore, ∪Fβ ∈ U
and P(∪Fβ) ∈ U .

It follows from Fβ ⊂ Uβ ⊂ U and the transitivity of U that ∪Fβ ⊂ U . Therefore, by the inequality
proved above, we conclude that Vβ ≡ U \ ∪Fβ 
= ∅ for any β ∈ A. Assume that P(∪Fβ) ∈ ∪Fβ . Since
∪Fβ ∈ P(∪Fβ), we obtain an infinitely decreasing sequence P(∪Fβ) � ∪Fβ � P(∪Fβ) � ∪Fβ � . . . . By
the regularity axiom, this is impossible. Hence P(∪Fβ) ∈ Vβ . Define the function h : A → U setting
h(β) ≡ P(∪Fβ). Consider the function h′ = h ◦ ϕ : α′ → U . By Lemma 4, M ≡ rng h = rng h′ ∈ U .

Obviously, |M | ≤ α. The transitivity of U implies α ⊂ U . If α is an infinite number, then the following
inequalities hold for the set M ′ ≡M ∪ α ⊂ U : α ≤ |M ′| ≤ |(M ∗ {0}) ∪ (α ∗ {1})| ≡ |M | + α = α, which
implies |M ′| = α. By Lemma 11, α ∈ U and M ∈ U imply M ′ ∈ U . If α is a finite (i.e., natural) number,
then by Corollary 2 of Lemma 11, the set U \M is infinite. Therefore, there exists an injective mapping
v : ω → U \M . Consider the natural number n ≡ α − |M | and the finite set N ≡ v[n] ⊂ U \M . In
this case, |M ′| = α for the set M ′ ≡ M ∪ N . By Corollary 1 of Lemma 11, n ∈ ω ⊂ U . Therefore, by
Lemma 5, N = rng (u|n) ∈ U . By Lemma 11, M ∈ U and N ∈ U imply M ′ ∈ U .

Since we have proved in the above that U = ∪ Uβ |β ∈ A , it follows that M ′ ∈ Uβ for a certain β ∈ A.
Moreover, |M ′| = α. Therefore, M ′ ∈ Fβ . If x ∈ M ′ ∈ Fβ , then x ∈ ∪Fβ , i.e., M ′ ⊂ ∪Fβ . It follows
from h(β) ∈ Vβ = U \ ∪Fβ that h(β) /∈ M ′. However, h(β) ∈ M ⊂ M ′ by definition. The obtained
contradiction implies that the cardinal κ is regular.

Corollary. If U is a Tarski set and κ ≡ |U | > ω, then κ is an inaccessible cardinal number.

Proof. By Theorem 1, κ is a regular cardinal number. By Lemma 7, |P(α)| ∈ κ holds for any α < κ. By
the condition, κ > ω. Therefore, κ is an inaccessible cardinal number.

Theorem 2. If U is a Tarski set, then x ∈ U ⇒ ∪x ∈ U .

Proof. Consider the numbers α ≡ |x| and κ ≡ |U | and a certain bijection u : α � x. By Lemma 2, α ∈ κ.
The transitivity of U implies ∪x ⊂ U . Therefore, | ∪ x| ≤ κ.

Assume that |∪x| = κ. Then there exists a bijection f : ∪x � κ. Fix an element a ∈ α. Then u(a) ∈ x
implies u(a) ⊂ ∪x. Therefore, we can consider the injective mapping ga ≡ f |u(a) : u(a) � κ. Consider
the number βa ≡ |u(a)|, a certain bijection va : βa � u(a), and the injective mapping ha ≡ ga◦va : β � κ.
Assume that ∪rng ha = κ. Then by Theorem 1, βa ≥ κ. However, by Lemma 2, u(a) ∈ x ⊂ U implies
βa ≡ |u(a)| < κ. This contradiction implies sup rng ha = ∪rng ha < κ.

Therefore, we can define the function η : α → κ setting 4η(a) ≡ sup rng ha. Consider the set Z ≡
rng η ⊂ κ. By what was proved, z ≤ κ for any z ∈ Z. Let π be an order number such that z ≤ π for
any z ∈ Z. Take any element q ∈ κ and consider p ≡ f−1(q) ∈ ∪x. Then p ∈ y ∈ x for a certain y ∈ x.
Consider the element a ≡ u−1(y) ∈ α. Since p ∈ y = u(a), it follows that q = f(p) ∈ f [u(a)] = rng qa =
rng ha. Hence q ≤ sup rng ha ≡ η(a) ≤ π. This means that sup κ ≤ π. Since κ is a limit number,
κ = sup κ ≤ π by Lemma 3. This implies κ = supZ = ∪Z = ∪rng η. Now Theorem 1 implies α ≥ κ,
which contradicts the inequality α < κ.

Therefore, | ∪ x| < κ. By Property (3′) of Lemma 1, we now conclude that ∪x ∈ U .

6.2. Galactic sets and their connection with Tarski sets. Consider a certain set x. Any finite
sequence (xi|i ∈ n + 1) such that x0 = x and xi+1 ∈ xi for any i ∈ n is called a sequence of subelements
of the set x (of length n).

A set U is said to be dominant if the following conditions are equivalent for any set x:
(1) x ∈ U ;
(2) all elements of all chains of subelements of the set x are of cardinality less than |U |.

Lemma 1. Any dominant set is transitive.

Proof. Let a set U be dominant, x ∈ U , and let y ∈ x. Any chain of subelements of the set y is a
subchain of a certain chain of subelements of the set x, and, therefore, all its members are of cardinality
less than |U |. Therefore, y ∈ U .
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Lemma 2. Any dominant set U has Property (3′) of a Tarski set, i.e., x ⊂ U ∧ |x| < |U | ⇒ x ∈ U .

Proof. Let x ⊂ U , and let |x| < |U |. Consider an arbitrary chain of subelements (x0, x1, . . . , xn) of the
set x. Since x1 ∈ x0 = x ⊂ U , by induction, we deduce from x1 ∈ U and the transitivity of the set U
proved in Lemma 1 that xi ∈ U for any i = 1, . . . , n. Therefore, |xi| < |U | for any i = 1, . . . , n. Moreover,
|x0| = |x| < |U | by condition. Therefore, x ∈ U .

Proposition 1. Any Tarski set is dominant.

Proof. Let (xi|i ∈ n + 1) be a chain of subelements of a set x, and let x ∈ U . By induction, we deduce
from the transitivity that xi ∈ U for any i ∈ n+ 1. By Lemma 2 (Sec. 6.1), |xi| < |U |.

Denote by C the class consisting of sets satisfying the Condition (2) from the definition of dominance.
Let us show that C ⊂ U . Consider the class D ≡ {x|(x ∈ U ∧ x ∈ C) ∨ x /∈ C} and show that it satisfies
the ∈-induction principle. Consider a certain y ⊂ D. Then (z ∈ U ∧ z ∈ C)∨ z /∈ C holds for all z ∈ y. If
z /∈ C for a certain z ∈ y, then y /∈ C, and, therefore, y ∈ D. Now let ∀z ∈ y(z ∈ U ∧ z ∈ C). Consider
α ≡ |y| and κ ≡ |U |. If α ≥ κ, then y /∈ C, which implies y ∈ D. Let α < κ. In this case, y ∈ U by
Lemma 1 (Sec. 6.1). Let us show that y ∈ C. Indeed, consider any chain of subelements (yi|i ∈ n+ 1) of
the set y. Then the sequence (yi|i ∈ (n + 1) \ 1) is a chain of subelements of the set y1 ∈ y = y0. Since
y1 ∈ C by assumption, it follows that all elements of the sequence (yi|i ∈ (n + 1) \ 1) are of cardinality
less than κ. Therefore, y ∈ C. Hence y ∈ U ∧ y ∈ C, and, therefore, y ∈ D. We conclude from this that
the class D satisfies the ∈-induction principle. Therefore, D = V. Thus, ∀x((x ∈ U ∧ x ∈ C) ∨ x /∈ C,
i.e., C ⊂ U .

Lemma 3. For each cardinal number α, there can exist no more than one Tarski set of cardinality α.

Proof. Assume that there exist two Tarski sets U1 and U2 of the same cardinality α. Let x ∈ U1. Then
by Proposition 1, |x| < α = |U1|, and any chain of subelements of the set x consists of sets of cardinality
less than α = |U1|, which implies that |x| < |U2| and any chain of subelements of the set x consists of sets
of cardinality less than |U2|. Therefore, x ∈ U2 by the same proposition. Thus, U1 ⊂ U2. Analogously,
U2 ⊂ U1, which implies U1 = U2.

A set U is said to be exponential if ∀x ∈ U(P(x) ∈ U). A dominant and exponential set is said to be
galactic.

Theorem 1. The following assertions are equivalent for a set U :
(1) U is a Tarski set ;
(2) U is galactic.

Proof. (1) � (2). This deducibility follows from the exponentiality property of a Tarski set and Proposi-
tion 1.

(2) � (1). This deducibility follows from Lemmas 1 and 2 and Lemma 1 (Sec. 6.1).

Let us show that under the assumption of the continuum hypothesis, there exists a dominant set that
is not exponential.

Lemma 4. If |2ω| = ω1, then there exists a dominant set of cardinality ω1.

Proof. If |2ω| = ω1, then to prove the existence of a dominant set of cardinality ω1, it suffices to show that
the set consisting of all sets whose chains of subelements consist of only countable sets is of cardinality ω1.

Denote this set by X.
Since ω1 ⊂ X, it follows that |X| ≥ ω1.
Now let us show that |X| ≤ ω1, i.e., there exists an injective function from the set X into the set of

infinite sequences consisting of zeros and units.
Any set x ∈ X can be represented as a tree whose root is the set x itself, branches are chains of

subelements, and leaves are last elements of these chains, i.e., sets containing no sets (empty sets). All
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branches of such a tree are of finite length, and, moreover, the number of these branches is countable. The
number of stores of the tree is also countable, and on each store, there are countably many sets (nodes or
leaves of the tree). Clearly, certain trees correspond to the same set in X (these are the trees obtained
from each other by a renumbering of vertices), but only one set in X corresponds to each three X. We
will consider not trees themselves, but their “isomorphism classes” .

Let us enumerate leaves of the tree in a certain way (this can be done, since their number is countable).
To each such “numbered” tree, we put in correspondence the function f ∈ ωω×ω as follows: f(n,m) is
the maximum natural k such that the nth and the mth leaves end branches of a certain set from the
kth store (in the case n = m, we set f(n,m) ≡ n). Such a number k can always be defined, since first,
any two leaves end the branches of the initial set x, i.e., k ≥ 1, and, second, k ≤ min(m,n). According
to such a function f ∈ ωω×ω, the isomorphism class of a tree is uniquely reconstructed, and, therefore,
|X| ≤ |ωω×ω|.

Let us show that |ωω×ω| = 2ω = ω1. Since |ω × ω| = ω, it follows that |ωω×ω = |ωω|. The set ωω is
the set of infinite sequences of natural numbers. Since |ωω| ≥ |2ω|, it suffices to prove that |ωω| ≤ |2ω|,
i.e., to construct an injective mapping from the set of infinite sequences of natural numbers into the set
of infinite sequences consisting of zeros and units. We do this as follows. Let N ≡ (ni ∈ ω|i ∈ ω) be an
infinite sequence of natural numbers. To this sequence, we put in correspondence the following sequence
M ≡ {mj ∈ 2|j ∈ ω} of zeros and units: for each i ∈ ω, for j =

∑
(nk|k ∈ i) + i, we set mj ≡ 0, and for

all other j, we set mj ≡ 1. Foe example, if we have the sequence 1, 2, 3, 4, 5, . . . , then it is mapped into
the sequence 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0 . . . . Such a mapping is injective, and, therefore,
ωω| = |2ω|; thus, |X| ≤ |2ω|. Since |X| ≥ |2ω|, by the Cantor theorem, |X| = |2ω|. Since |2ω| = ω1 by the
assumption, it follows that |X| = ω1, and, therefore, X is dominant.

The fact that such a set X is not exponential is obvious, since ω1 is not an inaccessible cardinal number.

6.3. Characterization of Tarski sets. Characterization of natural models of the NBG the-
ory.

Proposition 1. Let U be a Tarski set, and let |U | = ω. Then U = Vω.

Proof. By Lemma 1 (Sec. 2.2), ω ⊂ Vω implies ω ≤ |Vω|. Since Vω = ∪ Vn|n ∈ ω and |Vn| < ω, it
follows that |Vω| ≤ ω. Hence |Vω| = ω. Let us show that Vω is a Tarski set. By Lemma 4 (Sec. 2.2), the
set Vω is transitive, and, by Lemma 7 (Sec. 2.2), it is exponential. Let us show that Vω satisfies Property
(3′). Consider a certain set x ⊂ Vω such that |x| < |Vω| = ω. If y ∈ x ⊂ Vω = ∪ Vn|n ∈ ω , then
N(y) ≡ {n ∈ ω|y ∈ Vn} 
= ∅. Therefore, the set N(y) has a minimal element n(y) ∈ ω. Since the set
x is finite, the set M ≡ {m ∈ ω|∃y ∈ x(m = n(y))} has a maximum element n. Hence x ⊂ Vn implies
x ∈ Vn+1 ⊂ Vω. Therefore, Vω is a Tarski set. Since a Tarski set of cardinality ω is unique by Lemma 1
(Sec. 6.2), it follows that U = Vω.

Theorem 1. Let U be a Tarski set, and let κ ≡ |U | > ω. Then:
(1) U is a universal set ;
(2) U = Vκ for an inaccessible cardinal number κ = sup(On ∩ U).

Proof. (1) Let us show that the set U has all the properties of a universal set.
Property (1) follows from Property (1) of a Tarski set.
The property x ∈ U ⇒ P(x) ∈ U follows from Property (2) of a Tarski set. The property x ∈ U ⇒

∪x ∈ U follows from Theorem 2 (Sec. 6.1);
The property x, y ∈ U ⇒ x ∪ y ∈ U follows from Lemma 11 (Sec. 6.1). The properties x, y ∈ U ⇒

{x, y}, 〈x, y〉 ∈ U follow from Lemma 9 (Sec. 6.1). The property x, y ∈ U ⇒ x ∗ y ∈ U follows from
Corollary 3 of Lemma 1 (Sec. 6.1).

Property (4) follows from Lemma 4 (Sec 6.1).
Since |U | > ω by condition, it follows by Lemma 1 (Sec. 6.1) that ω ∈ U .
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Therefore, the set U is universal.
(2) By Theorem 1 (Sec. 3.2), U = Vκ for the inaccessible cardinal number κ = sup(On ∩ U).

Now we can prove the main theorem on the characterization of natural models of the NBG theory.

Theorem 2. For a set U , the following assertions are equivalent in the ZF theory :
(1) U is an uncountable Tarski set ;
(2) U is a universal set ;
(3) U is an inaccessible cumulative set, i.e., U = Vκ for a certain inaccessible cardinal number κ;
(4) U is a supertransetive standard model set for the ZF theory and U has the strong subtitution

property ;
(5) P(U) is a supertransitive standard model set for the NBG theory ;
(6) U is an uncountable galactic set.

Proof. The deducibility (1) � (3) follows from Theorem 1.
The deducibility (3) � (1) follows from Lemma 4 (Sec. 2.2), Lemma 7 (Sec. 2.2), and Lemma 5 (Sec. 2.3).
The equivalence of (2) and (3) follows from Theorem 2 (Sec. 3.2).
The equivalence of (2) and (4) follows from Proposition 1 (Sec. 5.1).
The equivalence of (1) and (6) follows from Theorem 1 (Sec. 6.2).
The equivalence of (2) and (5) follows from Theorem 1 (Sec. 5.2).
The deducibility (3) � (1) was proved by Tarski [26].
The equivalence of (3) and (4) was in fact proved by Zermelo [28] and Shepherdson [23] (see also [2],

Theorem 1.3). All other assertions of the Theorem 2 belong to the authors (see also the announcement
in [2]).

Corollary. In the ZF theory, the following axioms are equivalent :
(1) the Tarski axiom AT ;
(2) the universality axiom AU ;
(3) the inaccessibility axiom AI ;
(4) the galacticity axiom AH according to which each set is an element of a certain galactic set.

The equivalence of (1) and (3) in this corollary was proved by Tarski in [26] (see also [17], IX, § 5,
Theorem 1). Here, we give another proof using the theorem characterization.

7. Characterization of Natural Models of the ZF Theory

7.1. Scheme-inaccessible cardinal numbers and scheme-inaccessible cumulative sets. If all
free variables of a formula ϕ are among the variables x0, . . . , xm−1, p0, . . . , pn−1, then we will denote this
by ϕ(�x; �p). When using the notation ϕ(�x; �p), the variables p0, . . . , pn−1 will be called parameters. Instead
of x0 ∈ A ∧ · · · ∧ xm−1 ∈ A, ∀x0 ∈ A . . .∀xm−1 ∈ A and ∃x0 ∈ A . . . xm−1 ∈ A, we will write �x ∈ A,
∀�x ∈ A and ∃�x ∈ A, respectively.

For each transitive set A, any formula ϕ(x, y; �p) of the ZF theory defines the scheme correspondence
[ϕ(x, y; �p)|A] ≡ {z ∈ A ∗A|∃x, y ∈ A(z = 〈x, y〉 ∧ ϕA(x, y; �p))} ⊂ A ∗A depending on the parameter �p.

An ordinal number κ is said to be scheme-regular if ∀�p ∈ Vκ∀α(α ∈ κ ∧ ([ϕ(x, y; �p)|Vκ] � α → κ ⇒
∪rng [ϕ(x, y; �p)|Vκ] ∈ κ), where ϕ is a metavariable used for designation of any formula of the ZF theory.

An ordinal number κ > ω is said to be (strongly) scheme-inaccessible if:
(1) ∀α(α ∈ κ ⇒ |P(α)| ∈ κ);
(2) κ is scheme-regular.

Lemma 1. Let an ordinal number κ satisfy the quasi-exponentiality condition ∀α(α ∈ κ ⇒ |P(α)| ⊂ κ).
Then κ is a cardinal number.

5876



Proof. Let α be an ordinal number such that α ≤ κ and α ∼ κ. Then |α| = |κ|. Assume that α < κ.
By the condition, |P(α)| ⊂ κ. Applying the Cantor theorem, we obtain |α| < |P(α)| ≤ |κ|, which
contradicted the previous relation. Therefore, α = κ.

Corollary. A scheme-inaccessible ordinal number κ is a cardinal number.

Proof. If α ∈ κ, then |P(α)| ∈ κ by Property (1). By the transitivity, |P(α)| ⊂ κ. Hence κ satisfies the
condition of Lemma 1. Therefore, κ is a cardinal number.

The sets Vκ of scheme-inaccessible cardinal numbers κ will be called scheme-inaccessible cumulative
sets.

Lemma 2. For any scheme-inaccessible cardinal number κ and any ordinal number α ∈ κ, we have
|Vα| < κ.

Proof. Consider the set C ′ ≡ {x ∈ κ| |Vx| < κ} and the classes C′′ ≡ On \ κ and C ≡ C ′ ∪ C′′. Since
V0 = ∅, it follows that |V0| = 0 < κ. Therefore, 0 ∈ C.

Let α ∈ C. If α ≥ κ, then α+1 ∈ C′′ ⊂ C. Let α < κ. Then α ∈ C ′. If α+1 = κ, then α+1 ∈ C′′ ⊂ C.
Let α + 1 < κ. Since Vα ∼ |Vα|, it follows that P(Vα) ∼ P(|Vα|). Hence |P(Vα)| = |P(|Vα|)|. By
Corollary 2 of Lemma 4 (Sec. 2.2), |Vα+1| = |P(Vα)| = |P(|Vα|)|. Since |Vα| < κ and the ordinal number
κ is scheme-inaccessible, |P(|Vα|)| < κ. Hence |Vα+1| < κ. Therefore, α+ 1 ∈ C ′ ⊂ C.

Let α be a limit ordinal number, and let α ⊂ C. If α ∩ C′′ 
= ∅, then there exists β ∈ α such that
β ≥ κ. Hence α > β ≥ κ implies α ∈ C′′ ⊂ C. Let α ∩ C′′ = ∅, i.e., α ⊂ C ′ ⊂ κ. If α = κ, then
α ∈ C′′ ⊂ C. Let α < κ. By α ⊂ C ′, |Vβ | < κ holds for any β ∈ α. Therefore, sup{|Vβ | |β ∈ α} ≤ κ.

Consider the formula ϕ(x, y) ≡ (x ∈ α⇒ y = |Vx|) ∧ (x /∈ α⇒ y = ∅).
Let us show that under our conditions (i.e., for x ∈ α ∈ Vκ and y ∈ Vκ), the equivalence (y = |Vx|)Vκ ⇔

y = |Vx| holds.
The formula (y = |Vx|)Vκ is rewritten as (Cn(y))Vκ ∧ ∃f ∈ Vκ(f � y � Vx)Vκ . The formula Cn(y)Vκ

can be rewritten as On(y)Vκ ∧ ∀α ∈ Vκ(On(α)Vκ ∧ (α ⊂ y)Vκ ∧ ∃h ∈ Vκ(h � α � y)Vκ ⇒ α = y).
Consider the formula On(y)Vκ under the condition y ∈ Vκ. This formula has the form
On(y)Vκ ≡ ∀x ∈ Vκ(x ∈ y ⇒ (x ⊂ y)Vκ ) ∧ ∀x, x′, x′′ ∈ Vκ(x ∈ y ∧ x′ ∈ y ∧ x′′ ∈ y ∧ x ∈ x′ ∧ x′ ∈ x′′ ⇒

x ∈ x′′)∧ ∀x, x′ ∈ Vκ(x ∈ y ∧ x′ ∈ y ⇒ x ∈ x′ ∨ x = x′ ∨ x′ ∈ x)∧ ∀T ∈ Vκ((∅ 
= T ⊂ y)Vκ ⇒ ∃x ∈ Vκ(x ∈
T ∧ ∀x′ ∈ Vκ(x′ ∈ T ⇒ x ∈ x′))).

Note that under the condition y ∈ Vκ, the formula (x ⊆ y)Vκ ≡ ∀z ∈ Vκ(z ∈ x ⇒ z ∈ y) is equivalent
to the formula x ⊆ y by the supertransitivity of the set Vκ. Analogously, (∅ 
= T ⊆ y)Vκ ⇔ ∅ 
= T ⊆ y.
The formula ∀x ∈ Vκ(x ∈ y ⇒ x ⊆ y) is equivalent to the formula ∀x(x ∈ y ⇒ x ⊆ y), since x ∈ y implies
x ∈ Vκ. The formula ∀x, x′, x′′ ∈ Vκ(x ∈ y ∧ x′ ∈ y ∧ x′′ ∈ y ∧ x ∈ x′ ∧ x′ ∈ x′′ ⇒ x ∈ x′′) is equivalent
to the formula ∀x, x′, x′′(x ∈ y ∧ x′ ∈ y ∧ x′′ ∈ y ∧ x ∈ x′ ∧ x′ ∈ x′′ ⇒ x ∈ x′′), since x, x′, x′′ ∈ y implies
x, x′, x′′ ∈ Vκ. The formula ∀x, x′ ∈ Vκ(x ∈ y ∧ x′ ∈ y ⇒ x ∈ x′ ∨ x = x′ ∨ x′ ∈ x) is equivalent to the
formula ∀x, x′(x ∈ y ∧ x′ ∈ y ⇒ x ∈ x′ ∨ x = x′ ∨ x′ ∈ x), since x, x′ ∈ y implies x, x′ ∈ Vκ. Finally, the
formula ∀T ∈ Vκ(∅ 
= T ⊆ y ⇒ ∃x ∈ Vκ(x ∈ T ∧ ∀x′ ∈ Vκ(x′ ∈ T ⇒ x ∈ x′))) is equivalent to the formula
∀T (∅ 
= T ⊂ y ⇒ ∃x(x ∈ T ∧ ∀x′(x′ ∈ T ⇒ x ∈ x′))), since T ⊂ y implies T ∈ Vκ, and x, x′ ∈ T implies
x, x′ ∈ Vκ. Therefore, On(y)Vκ ⇔ On(y).

It is seen from this that the formula Cn(y)Vκ can be rewritten as On(y)∧∀α ∈ Vκ(On(α)∧(α ⊂ y)Vκ ∧
∃h ∈ Vκ(h � α � y)Vκ ⇒ α = y). Since y ∈ Vκ, it follows that (α ⊂ y)Vκ ⇔ α ⊂ y and, automatically,
α ∈ Vκ.

The formula ∃h ∈ Vκ(h � α � y)Vκ is rewritten as
∃h ∈ Vκ(∀x ∈ Vκ(x ∈ h ⇔ ∃z ∈ Vκ∃z′ ∈ Vκ(z ∈ α ∧ ∃z′ ∈ y ∧ x = 〈z, z′〉)) ∧ ∀z ∈ Vκ(z ∈ α ⇒ ∃z′ ∈

Vκ(z′ ∈ y ∧ 〈z, z′〉 ∈ h))∧∀z′ ∈ Vκ(z′ ∈ y ⇒ ∃z ∈ Vκ(z ∈ α∧ 〈z, z′〉 ∈ h))∧∀z, z′, z′′ ∈ Vκ(z ∈ α∧ z′, z′′ ∈
y∧〈z, z′〉 ∈ h∧〈z, z′′〉 ∈ h⇒ z′ = z′′)∧∀z, z′, z′′ ∈ Vκ(z, z′ ∈ α∧z′′ ∈ y∧〈z, z′′〉 ∈ h∧〈z′, z′′〉 ∈ h⇒ z = z′)).

The formula ∀x ∈ Vκ(x ∈ h ⇔ ∃z, z′ ∈ Vκ(z ∈ α ∧ z′ ∈ y ∧ x = 〈z, z′〉)) is equivalent to the formula
∀x(x ∈ h⇔ ∃z ∈ α∃z′ ∈ y(x = 〈z, z′〉)), since z ∈ α implies z ∈ Vκ, z′ ∈ y implies z′ ∈ Vκ, and x = 〈z, z′〉
implies x ∈ Vκ.
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The formula ∀z ∈ Vκ(z ∈ α ⇒ ∃z′ ∈ Vκ(z′ ∈ y ∧ 〈z, z′〉 ∈ h)) is equivalent to the formula ∀z ∈
α∃z′ ∈ y(〈z, z′〉 ∈ h), since z ∈ α implies z ∈ Vκ and z′ ∈ y implies z′ ∈ Vκ. Analogously, the formula
∀z′ ∈ Vκ(z′ ∈ y ⇒ ∃z ∈ Vκ(z ∈ α ∧ 〈z, z′〉 ∈ h)) is equivalent to the formula ∀z′ ∈ y∃z ∈ α(〈z, z′〉 ∈ h).

The formula ∀z, z′, z′′ ∈ Vκ(z ∈ α ∧ z′, z′′ ∈ y ∧ 〈z, z′〉 ∈ h ∧ 〈z, z′′〉 ∈ h ⇒ z′ = z′′) is equivalent to
the formula ∀z ∈ α∀z′, z′′ ∈ y(〈z, z′′〉 ∈ h ∧ 〈z, z′′〉 ∈ h ⇒ z′ = z′′), since z ∈ α and z′, z′′ ∈ y imply
z, z′, z′′ ∈ Vκ. Analogously, ∀z, z′, z′′ ∈ Vκ(z, z′ ∈ α ∧ z′′ ∈ y ∧ 〈z, z′′〉 ∈ h ∧ 〈z′, z′′〉 ∈ h⇒ z = z′).

Therefore, the formula Cn(y)Vκ is equivalent to the formula On(y)∧∀α(On(α)∧α ⊂ y∧∃h ∈ Vκ(h �
α � y) ⇒ α = y). Since h � α � y, it follows that h ⊂ α ∗ y, and by Corollary 2 of Lemma 7 (Sec. 2.2),
α, y ∈ Vκ implies α ∗ y ∈ Vκ and, therefore, h ∈ Vκ. We obtain from this that Cn(y)Vκ ⇔ Cn(y).

We know that for x < κ, Vx ∈ Vκ holds. Therefore, exactly in the same way as was done in the above,
we prove that the formula ∃f ∈ Vκ(f � y � Vx)Vκ is equivalent to the formula ∃f(f � y � Vx).

We conclude from all that was said that (y = |Vx|)Vκ ⇔ (y = |Vx|).
Then [ϕ|Vκ] = {z|∃x ∈ Vκ∃y ∈ Vκ(z = 〈x, y〉 ∧ (x ∈ α ⇒ y = |Vx|) ∧ (x /∈ α ⇒ y = ∅) ∧ α ∈ Vκ)}. If

y ∈ rng [ϕ|Vκ], then ∃x(〈x, y〉 ∈ [ϕ|Vκ]), i.e., y ∈ Vκ ∧∃x(x ∈ Vκ ∧ ((x ∈ α∧ y = |Vx|)∨ (x /∈ α∧ y = ∅))).
Therefore, either y = ∅ or y = Vx for a certain x ∈ α. Conversely, if y = Vx for a certain x ∈ α,
then y ∈ rng [ϕ|Vκ]. Therefore, rng [ϕ|Vκ] = {|Vβ | |β ∈ α}. By the corollary of Theorem 1, ∪rng f =
∪{|Vβ | |β ∈ α} = sup{|Vβ | |β ∈ α} = |Vα|. By the inequality proved above, we obtain |Vα| ≤ κ. Assume
that |Vα| = κ. Then by the scheme regularity of the number κ, κ = ∪rng [ϕ|Vκ] implies κ ≤ α, which
contradicts the initial inequality α < κ. Thus, |Vα| < κ. Therefore, α ∈ C ′ ⊂ C.

By the transfinite induction principle, C = On. Therefore, C ′ = κ.

Lemma 3. If κ is a scheme-inaccessible cardinal number, then κ = |Vκ|.
Proof. By Lemma 2, κ ⊂ Vκ. Hence κ = |κ| ≤ |Vκ|. By the corollary to Theorem 1 (Sec. 2.2),
|Vκ| = sup(|Vβ | |β ∈ κ). Since |Vβ | < κ by Lemma 2, it follows that |Vκ| ≤ κ. As a result, we obtain
κ = |Vκ|.
Lemma 4. If κ is a scheme-inaccessible cardinal number, α is an ordinal number such that α < κ, and
ϕ(x, y; �p) is a formula, then ∀�p ∈ Vκ([ϕ(x, y; �p)|Vκ � Vα → Vκ ⇒ rng [ϕ(x, y; �p)|Vκ] ∈ Vκ).

Proof. Since κ is a limit ordinal number, it follows that Vκ = ∪ Vδ|δ ∈ κ . For x ∈ Vα, there exists δ ∈ κ

such that [ϕ|Vκ](x) ∈ Vδ. Therefore, the nonempty set {y ≤ δ|[ϕ|Vκ](x) ∈ Vy} has a minimal element z.
Consider a certain bijective mapping h : |Vα| → Vα.
We have the formula ∀x ∈ Vα∃v[ϕ|Vκ](x) = v ∧ ϕVκ (x, v, �p) ∧ �p ∈ Vκ, since v ∈ Vκ by the condition.

Consider the functional formula ψ(u, z) ≡ (u ∈ |Vα| ⇒ z = sm{y ≤ δ|[ϕ|Vκ](h(u)) ∈ Vy}) ∧ (u /∈
|Vα| ⇒ z = ∅). In this case, [ψ|Vκ] = {v|∃u ∈ Vκ∃z ∈ Vκ(v = 〈u, z〉 ∧ ψVκ (u, z)). Consider the formula
ψVκ (u, z) in more detail. It is equivalent to the formula ((u ∈ |Vα|)Vκ ⇒ (z = sm{y ≤ δ|[ϕ|Vκ](h(u)) ∈
Vy})Vκ ) ∧ ((u /∈ |Vα|)Vκ ⇒ (z = ∅)Vκ ), which, in turn, is equivalent to the formula (u ∈ |Vα|Vκ ⇒ ((∀y ≤
δ([ϕ|Vκ](h(u)) ∈ Vy ⇒ z ⊂ y) ∧ ([ϕ|Vκ](h(u)) ∈ Vz)Vκ ) ∧ (u /∈ |Vα|Vκ ⇒ z = ∅), which is equivalent to
(u ∈ |Vα| ⇒ ([ϕ|Vκ](h(u)) ∈ Vz)Vκ ∧∀y ∈ Vκ(y ≤ δ∧([ϕ|Vκ](h(u)) ∈ Vy)Vκ ⇒ z ⊂ y)∧(u /∈ |Vα| ⇒ z = ∅).

The formula ([ϕ|Vκ](h(u)) ∈ Vz)Vκ ∧ ∀y ∈ Vκ(y ≤ δ ∧ ([ϕ|Vκ](h(u)) ∈ Vy)Vκ ⇒ z ⊂ y) is equivalent to
the formula ([ϕ|Vκ](h(u)) ∈ Vz)Vκ ∧ ∀y ≤ δ(([ϕ|Vκ](h(u)) ∈ Vy)Vκ ⇒ z ⊂ y), since y ≤ δ implies y ∈ Vκ.

Consider the formula ([ϕ|Vκ](h(u)) ∈ Vz)Vκ in more detail. It is equivalent to the formula ∃w(w ∈
Vz ∧ 〈h(u), w〉 ∈ [ϕ|Vκ]))Vκ , which is equivalent to ∃w ∈ Vκ(w ∈ Vz ∧ (〈h(u), w〉 ∈ {a|∃b ∈ Vκ∃c ∈
Vκ(a = 〈b, c〉 ∧ ϕVκ (b, c, �p) ∧ �p ∈ Vκ)})Vκ ), which means that ∃w ∈ Vκ(w ∈ Vz ∧ (u ∈ Vκ ∧ w ∈
Vκ ∧ ϕVκ (h(u), w, �p) ∧ �p ∈ Vκ)Vκ ), which, in turn, means that ∃w(w ∈ Vz ∧ ϕVκ (h(u), w, �p) ∧ �p ∈ Vκ).

Therefore, the formula [ψ|Vκ] is equivalent to the formula {v|∃u ∈ Vκ∃z ∈ Vκ(v = 〈u, z〉 ∧ (u ∈ |Vα| ⇒
∃w(w ∈ Vz ∧ ϕVκ (h(u), w, �p) ∧ �p ∈ Vκ) ∧ ∀y ∈ κ(∃w(w ∈ Vy ∧ ϕVκ (h(u), w, �p) ∧ �p ∈ Vκ) ⇒ z ⊂ y)) ∧ (u /∈
|Vα| ⇒ z = ∅). This formula is equivalent to the formula {v|∃u ∈ Vκ∃z ∈ Vκ(v = 〈u, z〉 ∧ (u ∈ |Vα| ⇒ z =
sm{y|∃w(w ∈ Vy ∧ ϕVκ (h(u), w, �p) ∧ �p ∈ Vκ)}) ∧ (u /∈ |Vα| ⇒ z = ∅)}.

We easily deduce from this that [ψ|Vκ] � |Vα| → κ.
Consider the ordinal number γ ≡ ∪rng [ψ|Vκ] = sup rng [ψ|Vκ] ≤ κ.

5878



Assume that γ = κ. Since the cardinal κ is quasi-regular, this is impossible. Therefore, γ < κ.
Let rng [ϕ|Vκ] /∈ Vκ. Then there exists t ∈ rng [ϕ|Vκ] such that t /∈ Vγ . A certain s ∈ dom [ϕ|Vκ] such

that 〈s, t〉 ∈ [ϕ|Vκ and s ∈ Vα corresponds to the set t. Moreover, h−1(s) ∈ |Vα|.
Consider β ≡ [ψ|Vκ](h−1(s)). Since h−1(s) ∈ |Vα|, it follows that β = sm{y|∃w(w ∈ Vy ∧ϕVκ (s, w, �p)∧

�p ∈ Vκ)}, and since the formula ϕ is functional, it follows that w = t, i.e., β = sm{y|t ∈ Vy}. Since t /∈ Vγ
by the condition, it follows that β > γ, which contradicts the condition rng [ψ|Vκ] ⊂ γ.

Therefore, rng [ϕ|Vκ] ⊂ Vγ ∈ Vκ.

Corollary. If κ is a scheme-inaccessible cardinal number, A ∈ Vκ, ϕ(x, y; �p) is a formula, and

[ϕ(x, y; �p)|Vκ] � A→ Vκ,

then rng [ϕ(x, y; �p)|Vκ] ∈ Vκ.

Proof. Since κ is a limit number, it follows that Vκ = ∪ Vα|α ∈ κ . Therefore, A ∈ Vα for a certain
α ∈ κ. By Lemma 4 (Sec. 2.2), A ⊂ Vα. Consider the formula ψ(x, y; �p,A, α) ≡ (x ∈ A∧ϕ(x, y; �p)∨ (x ∈
Vα \A∧ y = ∅). It follows from x ∈ Vα \A ⊂ Vα ∈ Vκ and the supertransitivity of Vα that x, Vα \A ∈ Vκ.
Therefore, (x ∈ Vα \ A)Vκ ⇔ x ∈ Vα \ A. Hence ψVκ ⇔ (x ∈ A ∧ ϕVκ ) ∨ (x ∈ Vα \ A) ∧ y = ∅). Since
g ≡ [ψ|Vκ] � Vα → Vκ, by Lemma 4, rng g ∈ Vκ. It follows from B ≡ rng [ϕ|Vκ] ⊂ rng g ∈ Vκ that
B ∈ Vκ.

Lemma 5. If κ is a scheme-inaccessible cordinal number and A ∈ Vκ, then ∪A ∈ Vκ.

Proof. Since κ is a limit ordinal number, it follows that Vκ = ∪ Vδ|δ ∈ κ . For A ∈ Vκ, there exists
δ ∈ κ such that A ∈ Vδ. Then for each a ∈ A, a ∈ Vδ. This implies that for each a ∈ A, the nonempty
set {y ≤ δ|a ∈ Vy} has a minimal element za.

Consider a certain bijective mapping h : |Vδ| → Vδ.
Consider the formula ψ(u, z) ≡ (u ∈ |Vδ| ∧ h(u) ∈ A ⇒ z = sm{y ≤ δ|h(u) ∈ Vy}) ∧ (u /∈ |vδ| ∨ h(u) /∈

A ⇒ z = ∅). In this case, [ψ|Vκ] = {v|∃u ∈ Vκ∃z ∈ Vκ(v = 〈u, z〉 ∧ ψVκ (u, z)). Consider the formula
ψVκ (u, z) in more detail. It is equivalent to the formula ((u ∈ |Vδ|)Vκ ∧ (h(u) ∈ A)Vκ ⇒ (z = sm{y ≤
δ|h(u) ∈ Vy})Vκ ) ∧ ((u /∈ |Vδ|)Vκ ∨ (h(u) /∈ A)Vκ ⇒ (z = ∅)Vκ ). Analogously to the previous lemma, this
formula is equivalent to the formula (u ∈ |Vδ| ∧ h(u) ∈ A ⇒ ((∀y ≤ δ(h(u) ∈ Vy) ⇒ z ⊂ y) ∧ (h(u) ∈
Vz))Vκ ) ∧ (u /∈ |Vδ| ∨ h(u) /∈ A⇒ z = ∅).

The formula ((∀y ≤ δ(h(u) ∈ Vy) ⇒ z ⊂ y) ∧ (h(u) ∈ Vz))Vκ is equivalent to the formula ∀y ∈ Vκ(y ≤
δ ∧h(u) ∈ Vy ⇒ z ⊂ y)∧ (h(u) ∈ Vz), since h, h(u), δ, Vy, Vz ∈ Vκ. Since y ≤ δ implies y ∈ Vκ in this case,
this formula is equivalent to the formula (∀y ≤ δ(h(u) ∈ Vy) ⇒ x ⊂ y) ∧ (h(u) ∈ Vz), i.e., to the formula
z = sm{y ≤ δ|h(u) ∈ Vy}.

Therefore, [ψ|Vκ] = {v|∃u ∈ Vκ∃z ∈ Vκ(v = 〈u, z〉∧((u ∈ |Vδ|∧h(u) ∈ A⇒ z = sm{v ≤ δ|h(u) ∈ Vy})∧
(u /∈ |Vδ| ∨ h(u) /∈ A⇒ z = ∅)).

We easily obtain from this that [ψ|Vκ] � |Vδ| → κ.
Consider the ordinal number γ ≡ ∪rng [ψ|Vκ] ∈ κ.
Let ∪A /∈ Vκ. Then there exists t ∈ ∪A such that t /∈ Vγ . Since t ∈ ∪A, there exists a ∈ A such that

t ∈ a, which implies a /∈ Vγ . But if we consider s ≡ [ψ|Vκ](h−1(a)), then we obtain s ≤ γ ∧ a ∈ Vs, which
implies a ∈ Vγ . Therefore, ∪A ∈ Vκ.

Any formula σ(x; �u) of the ZF theory and any transitive set A define the scheme set 〈σ(x; �u)|A〉 ≡ {x ∈
A|σA(x; �u)}, which depends on the parameter �u.

Lemma 6. If κ is a scheme-inaccessible cardinal number and ϕ(x, y; �p) and σ(x; �u) are formulas, then
∀�p∀�u ∈ Vκ∀ε ∈ |Vκ|([ϕ(x, y, ; �p)|Vκ] � 〈σ(x; �u)|Vκ〉 � ε⇒ 〈σ(x; �u)|Vκ〉 ∈ Vκ).

Proof. Denote [ϕ|Vκ], rng[ϕ|Vκ], and 〈σ|Vκ〉 for given �p, �u ∈ Vκ from the condition of the lemma by f ,
R, and S, respectively. Consider the formula ρ(y; �p, �u) ≡ ∃x(σ(x; �u) ∧ ϕ(x, y; �p)). Then ρVκ = ∃x ∈
Vκ(σVκ (x; �u) ∧ ϕVκ (x, y; �p)) implies 〈ρ(y; �p, �u)|Vκ〉 ≡ {y ∈ Vκ|∃x(x ∈ Vκ ∧ σVκ (x; �u) ∧ ϕVκ (x, y; �p))} = R
for given �p, �u ∈ Vκ. Since R ⊂ ε ∈ |Vκ| = κ ⊂ Vκ by Lemma 3, it follows that R ∈ Vκ.
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Consider the formula ψ(y, x; �p, �u) ≡ σ(x; �u) ∧ ϕ(x, y; �p). Then ψVκ = σVκ (x; �u) ∧ ϕVκ (x, y; �p) implies
g ≡ [ψ|Vκ] ≡ {t ∈ Vκ ∗ Vκ|∃y, x ∈ Vκ(t = 〈y, x〉 ∧ σVκ (x; �u) ∧ ϕVκ (x, y; �p))} = f−1. Therefore, g is a
bijective mapping from R onto S. Since R ∈ Vκ, S = rng g ∈ Vκ by the corollary to Lemma 4.

7.2. Scheme-universal sets and their connection with scheme-inaccessible cumulative sets.
A set U is said to be scheme-universal if it has the following properties:

(1) x ∈ U ⇒ x ⊂ U (transitivity property);
(2) x ∈ U ⇒ P(x),∪x ∈ U ;
(3) x, yU ⇒ x ∪ y, {x, y}, 〈x, y〉, x ∗ y ∈ U ;
(4) ∀�p ∈ U∀x(x ∈ U ∧ [ϕ(x, y; �p)|U ] � x→ U ⇒ rng [ϕ(x, y; �p)|U ] ∈ U ;
(5) ω ∈ U .
The following two lemmas are proved analogously to the corresponding lemmas of Sec. 3.1.

Lemma 1. If a set U is scheme-universal, then x ∈ U ∧ y ⊂ x⇒ y ∈ U .

This lemma shows that a scheme-universal set is quasi-transitive. This and the transitivity property
imply that a quasi-universal set is supertransitive.

Lemma 2. If a set U is scheme-universal, then ∅ ∈ U and 1 ∈ U .

The following theorem has a completely different proof than Lemma 4 (Sec. 3.1) analogous to it.

Theorem 1. If U is a scheme-universal set, then X ∈ U ⇒ |X| ∈ U .

Proof. If X = ∅, then |X| = 0 ∈ U . In what follows, we will assume that X 
= ∅. By the Zermelo
principle, we can assume that X is completely ordered. Take a minimal element m of the set X. Consider
the nonempty set A ≡ On ∩ U .

For all x ∈ X, by Xx we denote the interval {t ∈ X|t < x}. By Lemma 1, Xx ⊂ X ∈ U implies Xx ∈ U .
If for Xx, there exists a mapping f such that domf = Xx and rng f ∈ A, then by Lemma 1, f ⊂

Xx ∗ rng f ∈ U implies f ∈ U .
Assume that for x ∈ X, there exist isotone bijective mappings f and g such that domf = domg = Xx

and rng f, rng g ∈ On. If x = m, then f = g = ∅. If x > m, then consider the set X ′ ≡ {y ∈
Xx|f(y) 
= g(y)}. Assume that X ′ 
= ∅. Then X ′ contains a minimal element n. Consider the set
Xn ⊂ Xx. Assume that f(m) > 0 and consider z ∈ Xx such that f(z) = 0. Since f is isotone, it follows
that f(m) > f(z) implies m > z, which is impossible. Therefore, f(m) = 0 = g(m) implies m < n,
i.e., m ∈ Xn. Clearly, f |Xn = g|Xn. Since a bijective isotone mapping preserves all order boundaries,
it follows that f(n) = f(supXn) = sup f [Xn] = sup g[Xn] = g(supXn) = g(n), which contradicts the
property n ∈ X ′. The obtained contradiction implies X ′ = ∅, i.e., f = g.

Denote by bij(f) and isot(f) the formulas expressing the property of the mapping f to be bijective
and isotone, respectively. Consider the formula ϕ(x, a;X) ≡ (X 
= ∅ ∧ x ∈ X ∧ ∃f(func(f) ∧ dom (f) =
Xx ∧ rng (f) = a ∧ bij(f) ∧ isot(f) ∧On(a)). It follows from what was proved in the previous paragraph
that for x ∈ X, there can exist a unique f and, therefore, a unique a, i.e., the formula ϕ(x, a;X) is
functional. Consider the function H ≡ [ϕ|U ] ≡ {z ∈ U ∗ U |∃x, a ∈ U(z = 〈x, a〉 ∧ ϕU (x, a;X))} ⊂ U ∗ U
depending on the parameter X ∈ U .

Consider the formula ϕU (x, a;X) = (X 
= ∅∧x ∈ X∧∃f ∈ U(funcU (f)∧(dom (f) = Xx)U ∧(rng (f) =
a)U ∧ bijU (f) ∧ isotU (f)) ∧ OnU (a)) for x, a,X ∈ U . It follows from the absoluteness of these formula
and operations that funcU (f) ⇔ func(f), (dom (f) = Xx)U ⇔ (dom (f) = Xx), (rng (f) = a)U ⇔
(rng (f) = a), OnU (a) ⇔ On(a), bijU (f) ⇔ bij(f) and isotU (f) ⇔ isot(f) (see [13], 10). Hence
ϕU (x, a;X) ⇔ (X 
= 0∧x ∈ X ∧∃f ∈ U(func(f)∧ domf = Xx ∧ rng(f) = a∧ bij(f)∧ isot(f))∧On(a))
for a, x,X ∈ U . Consider the set Z ≡ domH. Since Z ⊂ X ∈ U and U is scheme-transitive, it follows that
Z ∈ U . Hence, by Property (4) from the definition of a quasitransitive set, it follows that c ≡ rng H ∈ U .
Therefore, H is a function from Z onto c. Since the set e ≡ ∅ ∈ U is an isotone bijective mapping such
that dome = Xm = ∅ ∈ U and rng e = ∅ = 0 ∈ A, it follows that H 
= ∅.
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Let α ∈ β ∈ c. Then β = H(y) for certain β ∈ On and y ∈ Z such that ϕU (y, β;X). This means that
y ∈ X and there exists an isotone bijection g ∈ U such that dom (g) = Xy and rng (g) = β. Since β is
an ordinal number, it follows that α is also an ordinal number and α ⊂ β. Consider x ≡ g−1(α) ∈ Xy.
If t ∈ Xx ⊂ Xy, then g(t) < g(x) = α, i.e., g(t) ∈ α. If γ ∈ α, then γ ∈ β, and we can take an element
z ≡ g−1(γ) ∈ Xy. It follows from g(z) = γ < α = g(x) that z < x, i.e., z ∈ Xx. Moreover, g(z) = γ. This
implies that the function f ≡ g|Xx maps Xx onto α. Clearly, it is bijective and isotone. Since f ⊂ g ∈ U ,
the quasi-transitivity of U implies f ∈ U . Hence α = H(x) ∈ c. This means that the set c is transitive.

Let α, β ∈ c. Then α = H(x) and β = H(y) for certain α, β ∈ On and x, y ∈ Z such that ϕU (x, α;X)
and ϕU (y, β;X). This means that x, y ∈ X and there exist isotone bijections f, g ∈ U such that dom (f) =
Xx, dom (g) = Xy, rng (f) = α, and rng (g) = β. Since α and β are ordinal numbers, it follows that
either α ∈ β, or β ∈ α, or α = β. Therefore, the set c is linearly ordered with respect to the binary
relation ∈ ∪ =.

Let ∅ 
= α ⊂ c. By the regularity axiom, there exists r ∈ α such that r ∩ α = ∅. Take any s ∈ α such
that s ∈ r or s = r. It follows from r∩α = ∅ that s /∈ r. Therefore, s = r. This means that r is a minimal
element in α. Therefore, c is completely ordered.

Therefore, we have proved that c is an ordinal number.
Let us verify that the function H is bijective and isotone. Let x, y ∈ Z, and let x < y. Then for

ordinal numbers a ≡ H(x) and b ≡ H(y), there exist isotone bijections f, g ∈ U such that dom(f) = Xx,
dom(g) = Xy, rng(f) = a, and rng(g) = b. Consider the ordinal number a′ ≡ g(x) ∈ b. If t ∈ Xx, then
t < x < y implies g(t) < g(x) ≡ a′, i.e., g(t) ∈ a′. If α ∈ a′ ⊂ b, then for the element s ≡ g−1(α), α < a′
implies s < x, i.e., s ∈ Xx and g(s) = α. Therefore, the function f ′ ≡ g|Xx is an isotone bijection from Xx

onto a′. It follows from the uniqueness proved early that f ′ = f . Therefore, f ⊂ g implies a ⊂ b. Assume
that a = b. Then Xx = f−1[a] = f ′−1[a] = g−1[a] = g−1[b] = Xy, which contradicts the inequality x < y.
Therefore, a ∈ b, i.e., a < b. Conversely, let x, y ∈ Z, and let a < b. Since a ∈ b, we can take the element
x′′ ≡ g−1(a) ∈ Xy. If t ∈ Xx′′ , then t < x′′ < y implies g(t) < g(x′′) = a, i.e., g(t) ∈ a. If α ∈ a ⊂ b,
then for the element s ≡ g−1(α), α < a implies s = g−1(α) < g−1(a) = x′′, i.e., s ∈ Xx′′ and g(s) = α.
Then the function f ′′ ≡ g|Xx′′ is an isotone bijection from Xx′′ onto a. Consider the isotone bijections
p ≡ f−1 : a � Xx and p′′ ≡ f ′′−1 : a � Xx′′ . In the same way as above, we prove that p = p′′. Therefore,
Xx = Xx′′ implies x = x′′ < y.

Therefore, the surjective function H is isotone. Therefore, it is bijective.
Thus, H is an isotone bijection from Z ⊂ X onto c ∈ A. Assume that Z 
= X. Then the set X \ Z

contains a minimal element y. Consider the initial interval Xy. If x ∈ Xy, then x ∈ Z, i.e., Xy ⊂ Z.
Conversely, let x ∈ Z. Assume that y ≤ x. Consider the ordinal number a ≡ H(x). For it, there exists
an isotone bijection f ∈ U such that dom(f) = Xx and rng(f) = a. If y = x, then y ∈ Z, which is
impossible. Let y < x. Consider the ordinal number b ≡ f(y) ∈ a and the isotone bijection g ≡ f |Xy

from Xy onto b. Since g ⊂ f ∈ U , by the transitivity of U , we obtain g ∈ U . Therefore, b = H(y) and
y ∈ Z, which is impossible. The obtained contradiction implies x < y, i.e., x ∈ Xy. As a result, we obtain
Xy = Z.

Consider a new set Y ≡ Z ∪ {y} and define the function f from Y onto a ≡ c+ 1 setting f |Z ≡ H and
f(y) ≡ c. Let x, x′ ∈ Y , and let x < x′. If x, x′ ∈ Z, then f(x) = H(x) < H(x′) = f(x′). If x ∈ Z and
x′ = y, then f(x) = H(x) ∈ c implies f(x) < c = f(x′). Therefore, f is strictly monotone. Conversely,
let f(x) < f(x′) for x, x′ ∈ Y . If x, x′ ∈ Z, then H(x) < H(x′) implies x < x′. If x ∈ Z and x′ = y, then
x < y = x′. If x′ ∈ Z and x = y, then f(x′) = H(x′) ∈ c. Hence f(x′) < c = f(x), which contradicts the
condition. As a result x < x′. Therefore, f is isotone. Since f is surjective, f is bijective.

Assume that X \Z 
= {y}. Then the nonempty set X \Y contains a minimal element x. If x = y, then
x ∈ Y , which is impossible. If x < y, then x /∈ X \Z, i.e., x ∈ Z ⊂ Y , which is also impossible. Therefore,
y < x. Let t ∈ Y . If t ∈ Z = Xy, then t < y < x, i.e., t ∈ Xx. If t = y < x, then t ∈ Xx once again.
Therefore, Y ⊂ Xx. Conversely, if t ∈ Xx, then t < x implies t /∈ X \ Y , i.e., t ∈ Y . As a result, Y = Xx.
Hence f is a bijective isotone function from Xx onto a. It follows from y ∈ X ∈ U that y ∈ U . Therefore,
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〈y, c〉 ∈ U and {〈y, c〉} ∈ U . Further, by the quasi-transitivity of U , H ⊂ Z ∗ c ∈ U implies H ∈ U . This
implies f = H ∪ {〈y, c〉} ∈ U . This means that a = H(x) ∈ c ∈ a, which is impossible. The obtained
contradiction implies X = Y . Therefore, f is an isotone bijection from X onto a. Since a = c ∪ {c} ∈ U ,
it follows that a ∈ A.

If Z = X, then we set a ≡ c and f ≡ H.
Thus, in both cases, we have constructed the isotone bijective mapping f ∈ U from X onto a ∈ A.

Since |X| ⊂ a ∈ U , the scheme-transitivity of U implies |X| ∈ U .

Let us prove that in a scheme-universal set, as in a universal set, there exists the ∈-induction principle,
which is analogous to the ∈-induction principle in ZF (see Lemma 4 (Sec. 1.2) and Lemma 5 (Sec. 3.1)).

Lemma 3. Let U be a scheme-universal set, C ⊂ U , and ∀x ∈ U < let (x ⊂ C ⇒ x ∈ C). Then C = U .

Proof. The proof is analogous to that of Lemma 5 (Sec. 5.1), except of the central part, which changes
as follows.

Denote Rxx by Rx. Consider the following formula of the ZF theory: ϕ(x, y) ≡ (x ∈ ω ∧ y = Rx).
Clearly, this formula is functional. Consider the formula ϕU (x, y) ≡ ((x ∈ ω)U ∧ (y = Rx)U ) for x, y ∈ U .
Since x, ω, y,R ∈ U , using the transitivity property of the set U , we can prove that (x ∈ ω)U ⇔ x ∈ ω
and (y = Rx)U ⇔ y = Rx. Therefore, ϕU (x, y) ⇔ ϕ(x, y) for x, y ∈ U . Consider the function [ϕ|U ] ≡
{z ∈ U ∗ U |∃x, y ∈ U(z = 〈x, y〉 ∧ ϕU (x, y))} = {z ∈ U ∗ U |∃x, y ∈ U(z = 〈x, y〉 ∧ ϕ(x, y))} = {z ∈
U ∗ U |∃x, y ∈ U(z = 〈x, y〉 ∧ x ∈ ω ∧ y = Rx)} ⊂ U ∗ U . Clearly, dom [ϕ|U ] = ω and A ≡ rng [ϕ|U ] =
{q ∈ U |∃p ∈ ω(q = Rp)}. Since [ϕ|U ] � ω → U , then by Properties (5), (4), and (2), from the definition
of scheme-universal set, it follows that A ∈ U and Q ≡ ∪A ∈ U . Clearly Q = {y|∃n ∈ ω(y ∈ Rn)}.
Therefore, Rn ⊂ Q for any n ∈ ω, and hence P = R0 ⊂ Q. It follows from the uniqueness property
mentioned above that u(m) = u(n)|(m + 1) for all m ≤ n, i.e., Rmk = Rnk for any k ∈ m + 1. Therefore,
∪Rk = ∪Rmm = ∪Rm+1

m = Rm+1
m+1 ≡ Rm+1.

For a scheme-universal set, as well as for a universal set, the following analog of the von Neumann
equality from Lemma 4 (Sec. 2.3) holds.

Lemma 4. Let U be a scheme-universal set. Then:
(1) Vα ∈ U for any α ∈ On ∩ U ;
(2) U = ∪ Vα ⊂ U |α ∈ On ∩ U .

Proof. (1) Consider the sets A ≡ On ∩ U and C ′ ≡ {α ∈ A|Vα ∈ U} and the classes C′′ ≡ On \ U and
C ≡ C ′ ∪ C′′. By Lemma 2, 0 = V0 = ∅ ∈ U . Hence 0 ∈ C. Let α ∈ C. Assume that α + 1 ∈ A. Since
α ∈ α+ 1 ∈ U , by Property (1), α ∈ U , and, therefore, α ∈ A ∩C = C ′. Then by Properties (2) and (3),
the condition Vα ∈ U implies Vα+1 = Vα ∪P(Vα) ∈ U . Therefore, α+ 1 ∈ C ′ ⊂ C. In the case α+ 1 /∈ A,
we immediately obtain α+ 1 ∈ C′′ ⊂ C.

Let α be a limit ordinal number, and let α ⊂ C. Assume that α ∈ A. If β ∈ α, then β ∈ α ∈ U implies
β ∈ A ∩ C = C ′.

Consider the functional formula ϕ(x, y) ≡ (x ∈ α⇒ y = Vx)∧ (x /∈ α⇒ y = ∅). Then [ϕ|U ] = {z|∃x ∈
U∃y ∈ U(z = 〈x, y〉∧ (x ∈ α⇒ y = Vx)U ∧ (x /∈ α⇒ y = ∅)U ∧α ∈ U}. Since α ∈ U and x ∈ α⇒ vx ∈ U
by condition, this formula is equivalent to the formula {z|∃x ∈ U∃y ∈ U(z = 〈x, y〉 ∧ (x ∈ α ⇒ y =
Vx) ∧ (x /∈ α ⇒ y = ∅)}. Obviously, in this case, [ϕ|U ] � α → U and rng[ϕ|U ] = Vy|y ∈ α . By
Property (4), Vy|y ∈ α ∈ U , and, therefore, Vα = ∪ Vy|y ∈ α ∈ U . Therefore, α ∈ C ′ ⊂ C. In the
case α /∈ A, we immediately obtain α ∈ C′′ ⊂ C.

By the transfinite induction principle, C = On, and hence C ′ = A.
(2) It follows from what was proved above that Vα⊂U for any α∈A. Therefore, P ≡ ∪ Vα|α ∈ A ⊂ U .

Let us show that P satisfies the ∈-induction principle from Lemma 3. Consider the formula ϕ(u, z) ≡
(u ∈ P ⇒ z = sm {α ∈ A|p ∈ Vα}) ∧ (u /∈ P ⇒ z = ∅).

Let x ∈ U , and let x ⊂ P . If x = ∅, then x ∈ P . In what follows, we will assume that x 
= ∅. If
y ∈ x ⊂ P , then y ∈ Vα for a certain α ∈ A. Hence, by Lemma 1, ϕ(y) ≤ α ∈ U implies ϕ(y) ∈ A.
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Therefore, we can consider the functional formula ψ ≡ ϕ|x. It is easy to show that [ψ|U ] � x → A. By
Property (4), R ≡ rng [ψ|A] ∈ U , and by Property (2), ρ ≡ ∪R ∈ U . Since ∅ 
= R ⊂ On, by Lemma 2
(Sec. 1.2), ρ is an ordinal number. Hence ρ ∈ A.

If y ∈ x, then by Lemma 1 (Sec. 1.2), [ψ|U ](y) ⊂ ρ implies y ∈ V[ψ|U ](y) ⊂ Vρ. Therefore, by
Lemma 3 (Sec. 1.2), x ⊂ Vρ ∈ Vρ+1 implies x ∈ Vρ+1. By Property (3), ρ + 1 = ρ ∪ {ρ} ∈ U implies
ρ+ 1 ∈ A. Therefore, x ∈ P .

Now Lemma 3 implies P = U .

Theorem 2. Let U be an arbitrary scheme-universal set. Then:
(1) U = Vκ for κ ≡ sup(On ∩ U) = ∪(On ∩ U) ⊂ U ;
(2) κ is a scheme-inaccessible cardinal number ;
(3) the correspondence q : U �→ κ such that U = Vκ is an injective isotone mapping from the class U′

of all scheme-universal sets into the class In′ of all scheme-inaccessible cardinal numbers

Proof. (1) Since A ≡ On ∩ U is a nonempty set, because by Property (5), it contains the element ω, by
Lemma 2 (Sec. 1.2), κ is an ordinal number.

Let κ ∈ U . Then by the properties of a scheme-universal set, κ + 1 = κ ∪{κ} ∈ U . Since κ + 1 ∈ On,
κ + 1 ∈ (On ∩ U) in this case, i.e., κ + 1 ≤ κ, which is not true. Therefore, κ /∈ U .

Assume that κ = α + 1 for a certain ordinal number α. In this case, α ∈ U , since κ ⊂ U and α ∈ κ.
Since κ = α ∪ {α}, by the properties of a quasi-universal set, it follows that κ ∈ U , which is impossible.

Therefore, κ is a limit ordinal number.
Hence Vκ = ∪ Vβ |β ∈ κ . By Lemma 4, U = ∪ Vα|α ∈ A . If α ∈ A, then α ≤ κ implies Vα ⊂ Vκ.

Therefore, U ⊂ Vκ. If β ∈ κ = ∪A, then β ∈ α ∈ A for a certain α. By Property (1), β ∈ A. Therefore,
Vκ ⊂ U .

Therefore, U = Vκ.
(2) Obviously, κ 
= 0.
Assume that the ordinal number κ is not scheme-regular. Then ∃α(α ∈ κ ∧ [ϕ|U ] � α → κ ∧

∪rng [ϕ|U ] = κ) for a certain functional formula ϕ(x, y, �p). But by Property (4) of a scheme-universal
set, α ∈ U and κ ⊂ U imply rng [ϕ|U ] ∈ U , and, therefore, ∪rng [ϕ|U ] ∈ U . Therefore ∪rng [ϕ|U ] 
= κ,
and the obtained contradiction implies that the ordinal number κ is scheme-regular.

Let λ be an ordinal number such that λ < κ. Since λ ∈ κ ⊂ U , by Property (2), P(λ) ∈ U . By
Theorem 1, |P(λ)| ∈ U . Hence |P(λ)| ≤ κ. Assuming that κ = |P(λ)| ∈ U , as above, we arrive at a
contradiction. Therefore, |P(λ)| < κ.

Assertion (2) is proved.
(3) Lemma 1 (Sec. 1.2) implies that κ is unique. Therefore, we can define the mapping q : U′ → In′

such that q(U) = κ, where U = Vκ. Lemma 1 (Sec. 1.2) also implies that q is isotone.

Corollary 1. If U is a scheme-universal set, then |U | is a scheme-inaccessible cardinal number, |U | =
sup(On ∩ U) and U = V|U |.

Proof. By Theorem 1 U = Vκ, for a scheme-inaccessible cardinal number, κ ≡ sup(On ∩ U). By
Lemma 3 Sec. 7.1, κ = |Vκ| = |U |.

Theorem 3. For any set U , the following assertions are equivalent :
(1) U is a scheme-inaccessible cumulative set ;
(2) U is scheme-universal set.

Proof. (1) � (2). Let U = Vκ for a certain scheme-inaccessible cardinal number κ > ω. Let us show that
the set U is quasi-universal.

The property x ∈ U ⇒ x ⊂ U follows from Lemma 4 (Sec. 2.2).
The property x ∈ U ⇒ P(x) ∈ U follows from Lemma 7 (Sec. 2.2).
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The property x ∈ U ∧ y ∈ U ⇒ x ∪ y ∈ U follows from Lemma 6 (Sec. 2.2).
The properties x ∈ U ∧ y ∈ U ⇒ {x, y}, 〈x, y〉, x × y ∈ U follow from Colloraries 1 and 2 of Lemma 7

(Sec. 2.2).
The property ω ∈ U follows from lemma 8 (Sec. 2.2).
The property x ∈ U ⇒ ∪x ∈ U follows from Lemma 5 (Sec. 7.1).
The property x ∈ U ∧ [ϕ|U ] � x→ U ⇒ rng [ϕ|U ] ∈ U follows from Lemma 4 (Sec. 7.1).
Therefore, the set U is quasi-universal.
(2) � (1). This deducibility obviously follows from the previous theorem

7.3. Supertransitive standard models of the ZF theory in the ZF theory. In this subsection,
we consider supertransitive standard models of the ZF theory in the ZF theory.

Proposition 1. In the ZF theory, the following assertions are equivalent for a set U :
(1) U is supertransitive standard model for the ZF theory in ZF ;
(2) U is scheme-universal.

Proof. (1) � (2). Consider an arbitrary sequence s ≡ x0, . . . , xq, . . . of elements of the set U and transla-
tions of certain axioms and axiom scheme of the ZF theory under the standard interpretation M ≡ (U, I)
on a sequence s.

Instead of θM [s] and M � ϕ[s], we write θt and ϕt for the terms θ and formulas ϕ, respectively.
To simplify the further presentation, we first consider translations of certain simple formulas. Let u

and v be certain sets.
The formula u ∈ v translates into the formula (u ∈ v)t = (〈ut, vt〉 ∈ B). Denote the latter formula by

γ. By definition, this formula is equivalent to the formula (∃x∃y(x ∈ U ∧y ∈ U ∧〈ut, vt〉 = 〈x, y〉∧x ∈ y)).
Using the property of an ordered pair, we conclude that ut = x and vt = y. Hence the formula δ ≡ (ut ∈ vt)
is deduced from γ. By the deduction theorem, γ ⇒ δ. Conversely, consider the formula δ. In the ZF
theory, it is proved that for sets ut and vt, there exists a set z such that z = 〈ut, vt〉. By the logical axiom
scheme LAS3 from ([16], III, § 1), the formula (z = 〈ut, vt〉 ⇒ ut ∈ U ∧ vt ∈ U ∧ z = 〈ut, vt〉 ∧ ut ∈ vt)
is deduced from the formula δ. Since the formula z = 〈ut, vt〉 is deduced from axioms, the formula
(ut ∈ U ∧ vt ∈ U ∧ z = 〈ut, vt〉 ∧ ut ∈ vt) is deduced. By LAS13, the formula ∃x∃y(x ∈ U ∧ y ∈ U ∧ z =
〈x, y〉 ∧ x ∈ y) is deduced; it is equivalent to the formula z ∈ B and, therefore, to the formula γ. By the
deduction theorem, δ ⇒ γ. Therefore, the first equivalence (u ∈ v)t ⇔ ut ∈ vt holds.

The formula v ⊂ w translates into the formula (v ⊂ w)t. Denote the latter formula by ε. By the first
equivalence proved above, it is equivalent to the formula ε′ ≡ ∀u ∈ U(u ∈ vt ⇒ u ∈ wt). According to
LAS11, the formula ε′′ ≡ (x ∈ U ⇒ (x ∈ vt ⇒ x ∈ wt)) is deduced from the formula ε′. If x ∈ vt, then
vt ∈ U and the transitivity of the set U imply x ∈ U . Then the formula ε′′ implies x ∈ vt ⇒ x ∈ wt.
Hence, by the deduction theorem, the formula (ε⇒ (x ∈ vt ⇒ x ∈ wt)) is deduced. By the inversion rule,
the formula ∀x(ε⇒ (x ∈ vt ⇒ x ∈ wt)) is deduced. By LAS12, the formula (ε⇒ ∀x(x ∈ vt ⇒ x ∈ wt)),
i.e., the formula (ε⇒ vt ⊂ wt), is deduced.

Conversely, assume that we have the formula vt ⊂ wt. By logical axioms, from it, we sequentially
deduce the formulas (u ∈ vt ⇒ u ∈ wt) and (u ∈ U ⇒ (u ∈ vt ⇒ u ∈ wt)). By the generalization
rule, we deduce the formula ε′. Hence, by the deduction theorem, the formula (vt ⊂ wt ⇒ ε) is deduced.
Therefore, the second equivalence (v ⊂ w)t ⇔ vt ⊂ wt holds.

Exactly in the same way as the first equivalence was deduced, the third equivalence (u = v)t ⇔ ut = vt

is deduced.
In what follows, we will write not literal translations of axioms and axiom schemes, but their equivalent

variants, which are obtained by using the mentioned equivalence.
The volume axiom A1 translates into the formula A1t ⇔ A1U = ∀X ∈ U∀Y ∈ U(∀u ∈ U(u ∈ X ⇔

u ∈ Y ) ⇒ X = Y ).
The pair axiom A2 translates into the formula A2t ⇔ A2U = ∀u ∈ U∀v ∈ U∃x ∈ U∀z ∈ U(z ∈ x ⇔

z = u ∨ z = v).
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The union axiom A4 translates into the formula A4t ⇔ A4U = ∀X ∈ U∃Y ∈ U∀u ∈ U(u ∈ X ⇔ ∃z ∈
U(u ∈ z ∧ z ∈ X)).

The axiom of set of subsets A5 translates into the formula A5t ⇔ A5U = ∀X ∈ U∃Y ∈ U∀u ∈ U(u ⊂
X ⇔ u ∈ Y ).

The axiom scheme of substitution AS6 translates into the formula scheme AS6t ⇔ ∀x ∈ U∀y ∈ U∀y′ ∈
U(ϕτ (x, y) ∧ ϕτ (x, y′) ⇒ y = y′) ⇒ ∀X ∈ U∃Y ∈ U∀x ∈ U(x ∈ X ⇒ ∀y ∈ U(ϕσ(x, y) ⇒ y ∈ Y )), where
ϕτ and ϕσ stand for the formulas M � ϕ[sτ ] and M � ϕ[sσ] in which sτ and sσ stand for the corresponding
changes of the sequence s under the translation of the quantor overformulas mentioned above.

The axiom of empty set A7 translates into the formula A7t ⇔ A7U = ∃x ∈ U∀z ∈ U(z /∈ x).
The infinity axiom A8 translates into the formula A8t ⇔ A8τ ≡ ∃Y ∈ U(∅t ∈ V ∧ ∀y ∈ U(y ∈ Y ⇒

(y ∪ {y})τ ∈ Y )), where:
— the set ∅t is defined from the formula A7U ;
— the set Z1 ≡ Z1(y) ≡ (y ∪ {y})τ is defined from the formula ∃Z1 ∈ U∀u ∈ U(u ∈ Z1 ⇔ ∃z ∈ U(u ∈

z ∧ z ∈ {y, {y}}σ)),
— the set Z2 ≡ Z2(y) ≡ {y, {y}}σ is defined from the formula ∃Z2 ∈ U∀u ∈ U(u ∈ Z2 ⇔ u = y ∨ u =

{y}ρ);
— the set Z3 ≡ Z3(y) ≡ {y}ρ is defined from the formula ∃Z3 ∈ U∀u ∈ U(u ∈ Z3 ⇔ u = y).
Since M is a model of the ZF theory, all the translations written above are deducible formulas in the

ZF theory.
Therefore, the formula A7U states the existence of a certain x ∈ U , which is denoted by ∅t. If z ∈ U ,

then A7U implies z /∈ x. Now let z /∈ U ; assume that z ∈ x. Then by the transitivity of the set U ,
we obtain z ∈ U , which contradicts the condition. Therefore, z /∈ x. Thus, z /∈ x is deduced. By the
generalization rule, we deduce the formula ∀z(z /∈ x), which means that x = ∅. Therefore, ∅t = ∅ and
∅ ∈ U .

Now let us verify that if y ∈ U , then Z3 = {y}. Let u ∈ Z3. Sience Z3 ∈ U and U is transitive, then
u ∈ U . If u ∈ U , then the formula for Z3 presented above implies u = y. Therefore, u ∈ {y}. Thus,
Z3 ⊂ {y}. Conversely, let u ∈ {y}. Then u = y. Since y ∈ U , it follows that u ∈ U . Therefore, by the
same formula, u ∈ Z3. Therefore, {y} ⊂ Z3, which implies the required equality. This equality leads to
the disappearance of the index ρ in the formula for Z2.

Using this equality, let us prove that Z2 = {y, {y}}. Let u ∈ Z2. Then as above, u ∈ U . Therefore, the
formula for Z2 presented above implies u = y or u{y}. Therefore, u ∈ {y, {y}}. Therefore, Z2 ⊂ {y, {y}}.
Conversely, let u ∈ {y, {y}}. Then u = y ∈ U or u = {y} = Z3 ∈ U . Therefore, u ∈ U in both cases.
Hence, by the same formula, u ∈ Z2. Therefore, {y, {y}} ⊂ Z2, which implies the required equality. This
equality leads to the disappearance of the index σ in the formula for Z1.

Finally, let us verify that if y ∈ U , then Z1 = y ∪ {y}. Let u ∈ Z1. Since Z1 ∈ U and U is transitive,
it follows that u ∈ U . Therefore, the formula for Z1 implies that there exists z ∈ U such that u ∈ z
and z ∈ {y, {y}}. Therefore, u ∈ ∪{y, {y}} ≡ Z, i.e., Z1 ⊂ Z. Conversely, let u ∈ Z. Then there exists
z ∈ {y, {y}} such that u ∈ z. We conclude from z = y ∈ U or z = {y} = Z3 ∈ U that z ∈ U . Therefore,
the mentioned formula implies u ∈ Z1. Therefore, Z ⊂ Z1, which implies the required equality. This
equality leads to the disappearance of the index τ in the formula for A8τ .

All that was said above implies A8τ ≡ ∃Y ∈ U(∅ ∈ Y ∧ ∀y ∈ U(y ∈ Y ⇒ y ∪ {y} ∈ Y )). If
y ∈ Y , then Y ∈ U and the transitivity of U imply y ∈ U . Then y ∪ {y} ∈ Y is deduced from
this formula. By the deduction theorem, the formula y ∈ Y ⇒ y ∪ {y} ∈ Y is deduced, and by the
generalization rule, the formula ∀y ∈ Y (y ∪ {y} ∈ Y ) is deduced. Therefore, from A8t, we deduce the
formula ∃Y ∈ U(∅ ∈ Y ∧∀y ∈ Y (y∪{y} ∈ Y )), which almost coincides with the infinity axiom and asserts
that there exists an inductive set Y ∈ U .

Using the obtained translations, let us prove that the set U is scheme-universal.
Consider the formula A2U . According to this formula, for any u, v ∈ U , there exists the corresponding

set x ∈ U . If z ∈ x, then the transitivity of U implies z ∈ U . Therefore, the formula z = u ∨ z = v is
deduced from this formula. If z = u∨z = v, then z ∈ U , and, therefore, the formula z ∈ x is deduced from
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A2U . Since A2U is deducible in ZF, by the deduction theorem and the generalization rule, we deduce
the formula ∀z(z ∈ x ⇔ z = u ∨ z = v), which means that x = {u, v}. Therefore, {u, v} ∈ U . By the
deduction theorem, we deduce the formula u, v ∈ U ⇒ {u, v} ∈ U . This implies {u} ∈ U and 〈u, v〉 ∈ U .

Consider the formula A4U . According to this formula, for any X ∈ U , there exists the corresponding
set Y ∈ U . As above, the transitivity of U implies Y = ∪X. Therefore, ∪X ∈ U , and by the deduction
theorem, we deduce the formula X ∈ U ⇒ ∪X ∈ U . This implies that X,Y ∈ U implies X ∪ Y ≡
∪{X,Y } ∈ U .

Consider the formula A5U . According to this formula, for any X ∈ U , there exists the corresponding
set Y ∈ U . Clearly, Y ⊂ P(X). Let y ∈ P(X). Then by the cumulativity of U , y ⊂ X ∈ U implies
y ∈ U . Hence Y = P(X). Therefore, P(X) ∈ U , and by the deduction theorem, we deduce the formula
X ∈ U ⇒ P(X) ∈ U .

If X,Y ∈ U , then by the cumulativity property, X ∗ Y ⊂ P(P(X ∪ Y )) ∈ U implies X ∗ Y ∈ U .
Consider an inductive set Y ∈ U whose existence was proved above. Since ω is a minimal set among

all inductive sets, it follows that ω ⊂ Y . By the cumulativity property, this implies ω ⊂ U .
Property (4) from the definition of a scheme-universal set holds automatically.
Therefore, we have proved that (1) � (2).
(2) � (1). Let U be a scheme-universal set. According to Sec. 3.1, it is supertransitive. Consider the

standard interpretation M ≡ (U, I) of the ZF theory. In above, we have translated certain axioms and
axiom schemes of the ZF theory on the sequence s under the interpretation M. Let us prove that they are
deducible in ZF.

Consider the formula A1U . Let X,Y ∈ U , and let χ ≡ ∀u ∈ U(u ∈ X ⇔ u ∈ Y ). Take an arbitrary
set u. If u ∈ X, then the transitivity of U implies u ∈ U , and then u ∈ Y is deduced. Analogously, u ∈ Y
is deduced from u ∈ X. Therefore, by the deduction theorem, the formula u ∈ X ⇔ u ∈ Y is deduced,
and by the generalization rule, the formula ∀u(u ∈ X ⇔ u ∈ Y ) is deduced. According to the volume
axiom, the equality X = Y is deduced from this. By the deduction theorem, the formula χ ⇒ X = Y is
deduced in ZF. Further, by logical means A1t is deduced.

Consider the formula A2U . Let u, v ∈ U . By the property of a quasi-universal set, {u, v} ∈ U .
The pair axiom implies ∀z ∈ U(z ∈ {u, v} ⇔ z = u ∨ z = v). Therefore, by LAS13, the formula
∃x ∈ U∀z ∈ U(z ∈ x⇔ z = u∨ z = v) is deduced. Further, by logical means, the formula A2t is deduced.

The axiom separation scheme AS3 transforms into the formula scheme AS3t ⇔ ∀X ∈ U∃Y ∈ U∀u ∈
U(u ∈ Y ⇔ u ∈ X ∧ ϕτ (u)), where Y is not a free variable of the formula ϕ(u) and ϕτ stands for
the formula M � ϕ[sτ ], in which sτ stands for the corresponding change of the sequence s under the
transformation of the quantor overformulas ∀x(. . . ), ∃Y (. . . ) and ∀u(. . . ) mentioned above. According
to AS3, for X ∈ U , there exists Y such that ∀u ∈ U(u ∈ Y ⇔ u ∈ X ∧ ϕτ (u)). Since Y ⊂ X ∈ U , by
Lemma 1 (Sec. 3.1), Y ∈ U . Therefore, AS3t is deduced in ZF.

The deducibilities A4t and A5t are verified similarly to the deducibility A2t.
Let us verify the deducibility of AS6t. Denote the formula ϕU (x, y, �pM [s]) by ψ(x, y). Let the formula

α hold. Consider any set X ∈ U . According to the axiom separation scheme, there exists the set F ≡ {z ∈
U |∃x, y ∈ U(z = 〈x, y〉 ∧ϕσ(x, y))}. Clearly, F ⊂ U ∗U . The transitivity of U implies X ⊂ U . Therefore,
there exists the set Z ≡ F [X] ⊂ U . Consider the set G ≡ {z ∈ U |∃x, y ∈ U(z = 〈x, y〉 ∧ ϕσ(x, y) ∧ x ∈
X)} = F |X ⊂ X ∗ Z. Let x ∈ X ⊂ U . If x /∈ domG, then G〈x〉 = ∅ ∈ U . Let x ∈ domG, i.e., G〈x〉 
= ∅.
If y, y′ ∈ G〈x〉 ⊂ U , then ϕσ(x, y)∧ϕσ(x, y′), or more precisely, ϕσ(x, y,X, Y )∧ϕσ(x, y′, X, Y ) holds, since
X and Y cannot be free variables of the formula ϕσ. Since ϕτ (x, y) = ϕσ(x, y,X‖XM [s], Y ‖YM [s]), and
similar for y′, by LAS11, ϕτ (x, y) ∧ ϕτ (x, y′) holds. Therefore, the formula α implies y = y′. Therefore,
G〈x〉 = {y} ∈ U . Therefore, G〈x〉 ∈ U for any x ∈ X. By Lemma 3 (Sec. 3.1), Y0 ≡ rng G = ∪ G〈x〉|x ∈
X ∈ U .

If x ∈ X ⊂ U , y ∈ U and ϕσ(x, y), then 〈x, y〉 ∈ G implies y ∈ Y0. This means that the formula β is
deduced from the formula α. By the deduction theorem, the formula α ⇒ β and, therefore, the scheme
AS6t is deduced.

According to Lemma 2, ∅ ∈ U . From this and A7, A7t is deduced.
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Consider the formula A8τ and the set ω ∈ U . It follows from the previous paragraph that ∅t = ∅ ∈ ω.
Let y ∈ U , and let y ∈ ω. Then as above, it is verified that Z3 = {y}, Z2 = {y, {y}} and Z1 = y∪{y} ∈ ω.
By the deduction theorem, the formula (y ∈ ω ⇒ Z1 ∈ ω) is deduced. Further, by logical means, the
formula (∅t ∈ ω ∧ ∀y ∈ U(y ∈ ω ⇒ (y ∪ {y})τ ∈ ω)) and hence the formula A8t are deduced.

The regularity axiom A9 transforms into the formula A9t ⇔ A9τ ≡ ∀X ∈ U(X 
= ∅t ⇒ ∃x ∈ U(x ∈
X ∧ (x ∩X)τ = ∅t)), where:

— the set ∅t is defined from the formula A7U and, as was proved above, coincides with empty set ∅,
— the set Z ≡ (x ∩X)τ is defined from the formula ∃Z ∈ U∀u ∈ U(u ∈ Z ⇔ u ∈ x ∧ u ∈ X).
Let us verify that if X ∈ U and x ∈ U , then Z = x ∩X. Let u ∈ Z. Since Z ∈ U and U is transitive,

it follows that u ∈ U . Therefore, the formula for Z implies u ∈ x ∧ u ∈ X, i.e., u ∈ x ∩ X. Therefore,
Z ⊂ x ∩ X. Conversely, let u ∈ x ∩ X, i.e., u ∈ x ∧ u ∈ X. By the transitivity, u ∈ U . Therefore,
the mentioned formula implies u ∈ Z. Therefore, x ∩ X ⊂ Z, which proves the required equality. This
equality leads to the disappearance of the index τ in the formula for A9τ .

Let X ∈ U , and let X 
= ∅t = ∅. By the regularity axiom, there exists x ∈ X such that x ∩X = ∅. By
the transitivity, x ∈ U . From this, by logical means, we deduce 9t.

Finally, the axiom of choice A10 translates into the formula A10t ⇔ A10τ ≡ ∀X ∈ U(X 
= ∅t ⇒ ∃z ∈
U((z � P(X) \ {∅} → X)τ ∧ ∀Y ∈ U(Y ∈ (P(X) \ {∅})σ ⇒ z(Y )σ ∈ Y ))), where:

— the set Z1 ≡ Z1(X) ≡ (P(X) \ {∅})σ is defined from the formula ∃Z1 ∈ U∀u ∈ U(u ∈ Z1 ⇔ u ∈
P(X)ρ ∧ u /∈ {∅}ρ),

— the set Z2 ≡ z(Y )σ is defined from the formula 〈Y, Z2〉ρ ∈ z,
— ητ ≡ (z � P(X) \ {∅} → X)τ stands for the formula M � η[sτ ], in which sτ stands for the

corresponding change of the sequence s under the transformation of the quantor overformulas ∀X(. . . )
and ∃z(. . . ) mentioned above.

Fix the conditions X ∈ U and X 
= ∅t = ∅ ∈ U . It was stated above that this implies P(X)ρ = P(X)
and {∅}ρ = {∅}. This leads to the disappearance of the index ρ in the formula for Z1.

Let us verify that Z1 = P(X) \ {∅} ≡ Z. Let u ∈ Z1. Since Z1 ∈ U and U is transitive, it follows that
u ∈ U . Therefore, the formula for Z1 implies y ∈ Z. Therefore, Z1 ⊂ Z. Conversely, let u ∈ Z. Since
P(X) ∈ U , P(X) ⊂ U by the transitivity. This implies u ∈ U . Therefore, the mentioned formula implies
u ∈ Z1. Therefore, Z ⊂ Z1, which proves the required equality. This leads to the replacement of Z1 by Z
in the formula A10τ .

Consider the formula ϕ ≡ (z � Z → X). It is the conjunction of the following three formulas:
ϕ1 ≡ (z ⊂ Z ∗ X), ϕ2 ≡ (domz = Z) and ϕ3 ≡ (∀x(x ∈ Z ⇒ ∀y(y ∈ X ⇒ ∀y′(y′ ∈ X ⇒ (〈x, y〉 ∈
z ∧ 〈x, y′〉 ∈ z ⇒ y = y′))))).

Therefore, ϕτ = ϕτ1 ∧ ϕτ2 ∧ ϕτ3 . Since ϕ1 = (∀u(u ∈ z ⇒ ∃x∃y(x ∈ Z ∧ y ∈ X ∧ u = 〈x, y〉))), it follows
that ϕτ1 ⇔ (∀u ∈ U(u ∈ z ⇒ ∃x ∈ U∃y ∈ U(x ∈ Z1 ∧ y ∈ X ∧ u = 〈x, y〉σ))). Analogously, ϕ2 = (∀x(x ∈
Z ⇒ ∃y(y ∈ X ∧ 〈x, y〉 ∈ z))) implies ϕτ2 ⇔ (∀x ∈ U(x ∈ Z1 ⇒ ∃y ∈ U(y ∈ X ∧ 〈x, y〉σ ∈ z))).

Finally, ϕτ3 ⇔ (∀x ∈ U(x ∈ Z1 ⇒ ∀y ∈ U(y ∈ X ⇒ ∀y′ ∈ U(y′ ∈ X ⇒ (〈x, y〉σ ∈ z ∧ 〈x, y′〉σ ∈ z ⇒ y =
y′))))).

By the transitivity property, for x, y and y′ in the formulas ϕτ1 , ϕ
τ
2 and ϕτ3 , we have x, y, y′ ∈ U .

Therefore, by what was proved above, in these formulas, the following equality hold: Z1 = Z, 〈x, y〉σ =
〈x, y〉 and 〈x, y′〉σ = 〈x, y′〉. This implies that the formulas ϕτ1 , ϕ

τ
2 , and ϕτ3 differ from the formulas ϕ1,

ϕ2 and ϕ3, respectively, by only bounded quantor prefices ∀ · · · ∈ U and ∃ · · · ∈ U .
For X, by the axiom of choice A10, there exists z such that χ ≡ (z � Z → X)∧∀Y (Y ∈ Z ⇒ z(Y ) ∈

Y ).
Therefore, the formula ϕ = ϕ1∧ϕ2∧ϕ3 is deduced, and hence the formulas ϕ1, ϕ2 and ϕ3 are deduced.
Let u ∈ U , and let u ∈ z. Then from the formula ϕ1, it is deduced that there exist x ∈ Z and y ∈ X such

that u = 〈x, y〉. Since x ∈ Z ∈ U and y ∈ X ∈ U , it follows that x, y ∈ U by the transitivity property. This
means that for given conditions u ∈ U and u ∈ z, the formula ∃x ∈ U∃y ∈ U(x ∈ Z1∧y ∈ X∧u = 〈x, y〉σ)
is deduced. Applying the deduction theorem twice and the deduction rule, we deduce the formula ϕτ1 .
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Let x ∈ U , and let x ∈ Z1 = Z. Then from the formula ϕ2, it is deduced that for x, there exists y ∈ X
such that 〈x, y〉 ∈ z. It follows from y ∈ X ∈ U that y ∈ U . This means that for given conditions x ∈ U
and x ∈ Z1, the formula ∃y ∈ U(y ∈ X∧〈x, y〉σ ∈ z) is deduced. As in the previous paragraph, we deduce
from this the formula ϕτ2 .

Let x ∈ U , x ∈ Z1 = Z, y ∈ U , y ∈ X, y′ ∈ U , y′ ∈ X, 〈x, y〉 ∈ z, and let 〈x, y′〉 ∈ z. Then y = y′
is deduced from the formula ϕ3. Applying alternately the deduction theorem and the deductions rules
several times, we deduce the formula ϕτ3 .

Therefore, the formula ϕτ is deduced.
Since z � Z → X, it follows that z〈Y 〉 = {z(Y )}. If Y ∈ U and Y ∈ Z1 = Z, then Z2 ∈ U implies

〈Y, Z2〉ρ = 〈Y, Z2〉. Then 〈Y, Z2〉 ∈ z implies Z2 ∈ z〈Y 〉, whence Z2 = z(Y ). Therefore, for the function z,
the conditions Y ∈ U and Y ∈ Z1 imply Z2 = z(Y ) ∈ Y .

Since Z = Z1 ∈ U and X ∈ U , it follows that Z ∗X ∈ U . By Lemma 1 (Sec. 7.2), z ⊂ Z ∗X implies
z ∈ U .

All this means that from Axiom A10 is deduced he existence of the object z satisfying the formula χ
from which the formula ξ ≡ (ϕτ∧∀Y ∈ U(Y ∈ Z1 ⇒ Z2 ∈ Y )) is deduced. Thus, from the fixed conditions,
the formula ∃z ∈ Uξ is deduced. Applying alternately the deduction theorem and the generalization rule
several time, as a result, we deduce the formula A10t.

Therefore, M is a supertransitive standard model for the ZF theory.

Corollary. Any uncountable scheme-inaccessible cumulative set Vκ is a supertransitive standard model
for the ZF theory.

Proof. The assertion follows from Proposition 1 and Theorem 3 (Sec. 7.2).

Using Theorems 2 and 3 (Sec. 7.2) and Proposition 1, we obtain the following theorem.

Theorem 1. In the ZF theory, the following assertions are equivalent for a set U :
(1) U = Vκ for the scheme-inaccessible cardinal number κ = |U | = sup(On ∩ U);
(2) U is a supertransitive standard model for the ZF theory.

Proof. (1) � (2). By Theorem 3 (Sec. 7.1), the set U = Vκ is scheme-universal. By Proposition 1, the
set U is a supertransitive standard model.

(2) � (1). By Proposition 1, U is quasi-universal. By Theorem 2 (Sec. 7.2), U = Vκ and κ =
sup(On ∩ U). By Corollary 1 of Theorem 2 (Sec. 7.2), κ = |U |.

This theorem yields the canonical form of supertransitive standard model sets of the ZF theory. Thus,
we have described all natural models of the ZF set theory.

7.4. Tarski scheme sets. Theorem on the characterization of natural model of the ZF
theory. A set U in the ZF theory is called a Tarski scheme set if

(1) x ∈ U ⇒ x ⊂ U ;
(2) x ∈ U ⇒ P(x),∪ ∈ U,∪x ∈ U ;
(3) ∀�p, �u ∈ U(([ϕ(x, y; �p)|U ] � 〈σ(x; �u)|U〈� ε) ∧ ε ∈ |U | ⇒ 〈σ(x; �u)|U〉 ∈ U), where ϕ and σ are

metavariables for designation on any formulas of the ZF theory;
(4) ω ∈ U and |U | ⊂ U .
It follows from Sec. 6.1 that any Tarski set of uncountable cardinality is a scheme Tarski set.

Lemma 1. If U is a scheme Tarski set and x ∈ U , then |x| ∈ |U |.
The proof completely coincides with the proof of Lemma 2 of Sec. 6.1.

Lemma 2. A scheme Tarski set is supertransitive.

The proof completely coincides with the proof of Lemma 3 in Sec. 6.1.
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Lemma 3. If U is a scheme Tarski set and x, y ∈ U , then {x}, {x, y}, 〈x, y〉 ∈ U .

Proof. Consider the formulas σ1(s;u) ≡ (s = u), σ2(s;u, v) ≡ (s = u∨s = v), ϕ1(s, t;u) ≡ (s = u⇒ t = 0)
and ϕ2(s, t;u, v) ≡ (s = u⇒ t = 0) ∧ (s = v ∧ v = u⇒ t = 0) ∧ (s = v ∧ v 
= u⇒ t = 1). Then under the
conditions of the lemma, X1 ≡ 〈σ1(s;x)|U〉 = {x} and X2 ≡ 〈σ2(s;x, y)|U〉 = {x, y}.

Consider the correspondences f1 ≡ [ϕ1(s, t;x)|U ] and f2 ≡ [ϕ2(s, t;x, y)|U ]. If s ∈ X1 and 〈s, t〉 ∈ f1,
then s = x and t = 0. Therefore, f1 is an injective mapping from X1 into {0} ≡ 1 ∈ |U |. By Property 3.
X1 ∈ U .

Now let s ∈ X2, and let 〈s, t〉 ∈ f2. If s = x, then t = 0. If s = y ∧ y = x, then t = 0. If s = y ∧ y 
= x,
then t = 1. Therefore, f2 is an injective mapping from X2 into {0, 1} = 2 ∈ |U |. By Property (3), X2 ∈ U .
What was proved above implies 〈x, y〉 ∈ U .

Corollary 1. If U is a scheme Tarski set and x, y ∈ U , then x ∪ y ∈ U .

Proof. It follows from Lemma 3 and Property (2) that x ∪ y = ∪{x, y} ∈ U .

Corollary 2. If U is a scheme Tarski set and x, y ∈ U , then x ∗ y ∈ U .

Proof. Since x ∗ y ⊂ P(P(x ∪ y)) ∈ U , by Lemma 2, x ∗ y ∈ U .

Lemma 4. Let U be a scheme Tarski set, ϕ(a, b;�r) be a formula of the ZF theory, and let x ∈ U . If
�r ∈ U and [ϕ(a, b;�r)|U ] � x→ U , then rng [ϕ(a, b;�r)|U ] ∈ U .

Proof. Denote [ϕ(a, b;�r)|U ] and rng [ϕ|U ] for a given �r ∈ U from the condition of the lemma by f and R,
respectively. Consider the formula ρ(b;�r, y) ≡ ∃a ∈ yϕ(a, b;�r). Then 〈ρ(b;�r, x)|U〉 = {b ∈ U |∃a ∈ U(a ∈
x ∧ ϕU (a, b;�r))} = R for given �r, x ∈ U .

Consider the formula ψ(b, c;�r, y) ≡ ∀a ∈ c(a ∈ y ∧ ϕ(a, b;�r)) ∧ ∀a ∈ y(ϕ(a, b;�r) ⇒ a ∈ c) and the
correspondence [ψ(b, c;�r, y)|U ] = {t ∈ U ∗ U |∃b, c ∈ U(t = 〈b, c〉 ∧ ∀a ∈ c(a ∈ y ∧ ϕU (a, b;�r)) ∧ ∀a ∈
y(ϕU (a, b;�r) ⇒ a ∈ c))}. It is easy to verify that the correspondence g ≡ [ψ(b, c;�r, x)|U ] is an injective
mapping from R into S ≡ P(x) such that g(b) = f−1(b) for any b ∈ R.

By Properties (2) and (4) and Lemma 1, S ∈ U , |S| ∈ |U | and |S| ∈ U . Consider a certain bijection
h : S � |S|. By Corollary 2 to Lemma 3, S ∗ |S| ∈ U . By Lemma 2, h ⊂ S ∗ |S| implies h ∈ U .
Consider the formula χ(s, t; e) ≡ (〈s, t〉 ∈ e). Then for the value of the parameter e equal to h, we have
[χ(s, t;h)|U ] ≡ {z ∈ U ∗ U |∃s, t ∈ U(z = 〈s, t〉 ∧ 〈s, t〉 ∈ h)} = h. It remains to take the composition
of the mappings g and h. For this purpose, consider the formula ζ(b, tl�r, y, e) ≡ ∃s ∈ P(y)(∀a ∈ s(a ∈
y ∧ ϕ(a, b;�r)) ∧ ∀a ∈ y(ϕ(a, b;�r) ⇒ a ∈ s) ∧ 〈s, t〉 ∈ e) and the correspondence [ζ(b, t;�r, y, e)|U ] = {z ∈
U ∗U |∃b, t ∈ U(z = 〈b, t〉∧∃s ∈ P(y)(∀a ∈ s(a ∈ y∧ϕU (a, b;�r))∧∀a ∈ y(ϕU (a, b;�r) ⇒ a ∈ s)∧〈s, t〉 ∈ e)}.
Clearly, F ≡ [ζ(b, t;�r, x, h)|U ] = h ◦ g. Therefore, F is an injective mapping from R into |S| ∈ U . By
Property (3), R ∈ U .

Proposition 1. Any scheme Tarski set is scheme-universal.

Proof. The assertion follows from Properties (2) and (4), Lemma 3, and Corollaries 1 and 2 of Lemma 3
and Lemma 4.

Now we can prove the theorem on the characterization of natural models of the ZF theory.

Theorem 1. For a set U , the following assertions are equivalent in the ZF theory :
(1) U is a scheme-inaccessible cumulative set, i.e., U = Vκ for a certain scheme-inaccessible cardinal

number κ;
(2) U is a scheme-universal set ;
(3) U is a supertransitive standard model set for the ZF theory ;
(4) U is a scheme Tarski set.
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Proof. The equivalence of (1) and (2) was proved in Theorem 3 (Sec. 7.2). The equivalence of (2) and (3)
was proved in Theorem 1 (Sec. 7.3).

The deducibility (4) � (2) was proved in Proposition 1.
(1) � (4). Let U = Vκ for a certain scheme-inaccessible cardinal number κ > ω. Let us show that U is

a scheme Tarski set.
The property x ∈ U ⇒ x ⊂ U follows from Lemma 4 (Sec. 2.2).
The property x ∈ U ⇒ P(x) ∈ U follows from Lemma 7 of (Sec. 2.2).
The property x ∈ U ⇒ ∪x ∈ U follows from Lemma 5 of (Sec. 7.1).
Property (3) follows from Lemma 6 of Sec. 7.1.
The property ω ∈ U follows from Lemma 8 of Sec. 2.2.
Finally, the property |U | ⊂ U follows from Lemma 1 of Sec. 2.2 and Lemma 3 of Sec. 7.1.
Therefore, U is a scheme Tarski set.

Theorem 1 belong to the authors and was announced in [1].

Question. Are all properties of the defined scheme Tarski set independent, i.e. is this collection of
properties minimal?
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26. A. Tarski, “Über unerreichbare Kardinalzahlen,” Fund. Math., 30, 68–89 (1938).
27. A. Tarski, “Notions of proper models for set theories,” Bull. Amer. Math. Soc., 62, 601 (1956).
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