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Introduction

The crises that arose in naive set theory at the beginning of the 20th century brought to the fore some
strict axiomatic constructions of theories of mathematical totalities.

The most widely used of them are the theory of sets in Zermelo–Fraenkel’s axiomatics (ZF) (see [23])
and the theory of classes and sets in von Neumann–Bernays–Gödel’s axiomatics (NBG) (see [20] and
[28]).

These axiomatic theories eliminated all the known paradoxes of naive set theory at the expense of
a sharp restriction on possible expressive means. At the same time, they provided an opportunity to
include almost all the then existing mathematical objects and constructions within the framework of
these theories.

In 1945, a new mathematical notion of category was introduced by Eilenberg and MacLane in the initial
paper [11]. From that time, category theory became an independent field of mathematics. But from the
very beginning of its origin, category theory encountered the unpleasant circumstance that it did not fall
not only within the framework of the theory of sets in Zermelo–Fraenkel’s axiomatics but even within
the framework of the theory of classes and sets in von Neumann–Bernays–Gödel’s axiomatics (NBG)
(see [11]). For this reason, in 1959, in the paper [25], MacLane pose the general problem of constructing
a new and more flexible axiomatic set theory that could serve as an adequate logical foundation for the
whole naive category theory.

Different variants of new axiomatic theories of mathematical totalities, adjusted for one or another
need of category theory, were proposed by Ehresmann [10], Dedecker [9], Sonner [29], Grothendieck [14],
da Costa ([6] and [7]), Isbell [18], MacLane ([26] and [27]), Feferman [12], Herrlich and Strecker [17], and
others.

Ehresmann, Dedecker, Sonner, and Grothendieck introduced an important notion of (categorical) uni-
verse U , i. e., a totality of objects which satisfies the following properties of closedness:

(1) X ∈ U ⇒ X ⊂ U (Ehresmann–Dedecker did not propose this property);
(2) X ∈ U ⇒ P(X),∪X ∈ U ;
(3) X,Y ∈ U ⇒ X ∪ Y, {X,Y }, 〈X,Y 〉, X × Y ∈ U ;
(4) X ∈ U ∧ (F ∈ UX) ⇒ rng F ∈ U ;
(5) ω ∈ U (ω = {0, 1, 2, . . . } is here the set of all finite ordinal numbers).
Within the framework of such a universe, it is possible to develop a quite rich category theory, in

particular, the theory of categories with direct and inverse limits. To satisfy all needs of category theory,
these authors proposed to strengthen the ZF or NBG set theories by the strong universality axiom pos-
tulating that every set belongs to some universal set. In MacLane’s axiomatics, the existence of at least
one universal set is postulated. Similar versions were proposed by Isbell and Feferman. Herlich–Srecker’s
axiomatics dealt with objects of three types: sets, classes, and conglomerations.

Within the framework of each of these axiomatics, some definitions of category and functor are given.
But the notions of category given in [12, 17, 18, 26, 27] are not closed with respect to such important
operations of naive category theory as the “category of categories” and the “category of functors” (see [16],
8.4).

Within the framework of the axiomatic theories [9, 10, 14, 29] the definition of U-category, U-functor,
and natural U-tranformation consisting of subsets of a universal set U is given. This notion of category is
closed with respect to such operations as the V-category of U-categories and the V-category of U-functors,
where V is some universal set containing the universal set U as an element.
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The axiomatics from [6] and [7] also give definitions of a category and a functor closed under the
mentioned operations of naive category theory. But da Costa uses the logic with the nonconstructive
rule of deduction ϕ(V1), ϕ(V2), ϕ(V3), · · · 	 ∀t ϕ(t), where V1, V2, . . . , Vn, . . . is an infinite sequence of
constants, which denotes universes like the NBG-universe (see [7]).

In connection with the logical difficulties of conctructing a set-theoretical foundation for the whole naive
category theory, different attempts to construct purely arrow-axiomatic foundations were undertaken
(see Lawvere [24], Blanc and Preller [2], and Blanc and Donadieux [3]). But in attempts at an arrow-
axiomatic description of indexed categories and fiber categories, their own logical difficulties appeared
(see [16], 8.4).

Now let us consider more precisely what the formulation of MacLane’s problem mentioned above means.
To do this, we need to have a strict definition of category. This definition became possible after the
elementary (≡ first-order) category theories Tc took shape. There are many such theories, two-sorted and
one-sorted (see, for example, [27, I.3, I.8], [16, 8.2], [30, 2.3, 11.1]). But for every set theory S, there exist
canonical one-to-one correspondences between the totalities of models of these theories in the theory S.
Therefore, for the strict definition of a category one can use any elementary theory Tc. According to the
definition of Lawvere [24] (see also [16, 8.2]), a category in some set theory S is any model of the theory Tc

in the S theory (see 1.3 below). The complete (partial) formalization of naive category theory C in the
set theory S is an adequate translation of all (some) notions and constructions of naive category theory C
into strict notions and constructions for categories (as models of the theory Tc) in the set theory S.

Along with the notion of a category in the set theory S, there also exists the notion of abstract category
in S. An abstract category in the set theory S is any abstract model of the theory Tc in the set theory S
(see 7.1. below). The complete (partial) abstract formalization of naive category theory C in the set
theory S is an adequate translation of all (some) notions and constructions of naive category theory C
into strict notions and constructions for abstract categories (as abstract models of the theory Tc) in the
S set theory.

According to these definitions abstract categories in the ZF set theory can be considered also on classes
(as abstracts of the ZF theory), and abstract categories in the NBG set theory can be considered also
on assemblies (as abstracts of the NBG theory). However, the complete abstract formalization of naive
category theory C in any S set theory is impossible, because it is impossible to take abstracts of abstracts.
Only a partial abstract formalization of C in S is possible. This means that the notions of an abstract
category in S and a partial abstract formalization of C in S have only an auxiliary significance with
respect to the notions of a category in S and the complete formalization of C in S.

Therefore, more precisely MacLane’s problem is understood as constructing a set theory that admits a
complete formalization of naive category theory C in this set theory.

According to the definitions mentioned above, categories in the ZF set theory can be considered only on
sets, but categories in the NBG set theory can be considered also on classes. But a complete formalization
of naive category theory C in these set theories is impossible, because it is impossible to define the
operations “category of categories” and “category of functors” (at least nowadays, we have no methods
of approash to this formalization).

For this reason, Ehresman, Dedecker, Sonner, and Grothendieck proposed the idea of formalization of
naive category theory C within the framework of a ZF+U set theory stronger than the ZF set theory with
the axiom of universality U. Using the totality of universal sets, we can make a complete and adequate
translation of all notions and constructions of naive theory C to the strict notions and constructions for
categories in the ZF+U set theory. This also holds for the sets theories of da Costa.

For the other mentioned set theories such a complete translation is impossible. Therefore, the ZF+U
set theory and the set theories of da Costa are the most adequate with respect to MacLane’s problem.
Moreover, in virtue of the deficiency of da Costa’s set theories mentioned above, the ZF+U set theory is
preferred.

However the ZF+U theory is too strong for a complete formalization of category theory in virtue of
the redundancy of the totality of all universal sets, because for formalization of the operations “category

5765



of categories” and “category of functors”, it is sufficient to have only a countable totality of universal sets
as is done in da Costa’s axiomatics.

The ZF+U(ω) theory with the axiom of ω-universality U(ω) postulating the existence of an infinite
totality of universal sets is weaker than ZF+U and satisfies all the needs of the theory C. But it leaves
behind the limits of categorical consideration such mathematical systems that are not elements of universal
sets from this infinite totality.

Therefore, there arises a necessity to create a set theory S having an infinite totality U of some objects
of the theory S, called universes and satisfying the following conditions:

(1) S must be in some sense weaker than the redundant ZF+U theory;
(2) S must satisfy all the needs of the theory C to such an extent as the ZF+U(ω) theory does;
(3) Contrary to ZF+U(ω), the theory S must have objects occurring outside of the totality of uni-

verses U.

In 2000, V. K. Zakharov proposed the local theory of sets (LTS) in the capacity of a more adequate
foundation of category theory satisfying all these conditions (see anouncements in [30] and [1]), and in
2003, he proposed its equiconsistent strengthening: the locally-minimal theory of sets (LMTS). The main
idea of LTS and LMTS is that for the construction of a set theory with properties (1)–(3) it is not
necessary to assign a global set-theoretical structure, but it is sufficient to assign only local variants of this
structure in each universe U.

The local theory of sets tries to maintain all positive that is contained in the globally-internal concept
of Ehresmann–Dedecker–Sonner–Grothendieck.

The locally-external ideology of LTS is that it is necessary to take the NBG-universe as the basic one
and externally duplicate its local copies, therefore, to obtain some hierarchy of universes with the following
properties:

(1) every class belongs as a set to some universal class, which is the usual NBG-universe;
(2) all subclasses of a given universal class are sets of any larger universal class (property of value

change);
(3) there exists the least universal class (≡ the infra-universe) belonging to all other universal classes.

The first of these properties is similar to the axiom of universality mentioned above.
Thus, in the LTS, the notion of a large totality becomes relative: totalities that are “large” in one

universe become “small” in any larger universe.
The first section of the given paper describes the structure of an arbitrary first-order theory (including

LTS) and contains necessary notions from mathematical logic (see [28]).
In the second section, all proper axioms and axiom schemes of LTS are stated and the important

set-theoretical constructions are defined.
In the third section, in LTS such key categorical constructions as the “category of categories” and the

“category of functors” is formalized. As in the globally-internal concept here, all categorical notions and
consructions are defined only within the framework of local NBG-universes. Therefore, the categories
under consideration are said to be local.

In the fourth section, the proper axioms and axiom schemes of the ZF theory (Zermelo–Fraenkel with
the choice axiom) are cited, the notions of ordinals, cardinals, and inaccessible cardinals are introduced,
and properties of Mirimanov–von Neumann sets are studied.

In the fifth section, the notions of ordinals, cardinals, and inaccessible cardinals in LTS are introduced,
Mirimanov–von Neumann classes are constructed, and the connection between the universal classes and
the Mirimanov–von Neumann classes with indices that are inaccessible cardinals is stated. By means
of this, it is proved that the assembly of all universal classes in the LTS is well-ordered with respect
to the order by inclusion U ⊂ V , and also its structure is investigated. Here, for the assembly of all
classes (≡ globalization), we also define almost all local set-theoretical constructions, except for the most
important construction of the full union, which is basic for the construction by transfinite induction.
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In the sixth section, the relative consistency between LTS and the ZF theory with some additional
axioms is stated. Finally, the independence of the introduced additional axioms and the undeducibility
in the LTS of the global axiom scheme of replacement are stated.

For the reader’s converjence, this paper contains all the necessary notions. Proofs are given in detail,
so that they can be useful for young mathematicians.

The authors are very thankful to S. I. Adyan, N. K. Vereschagin, A. G. Vladimirov, P. V. Golubtsov,
V. G. Kanovey, V. A. Lyubetskiy, N. N. Nepejvoda, M. A. Pentus, V. A. Uspensky, and A. D. Yashin for
their interest in this work and for a series of valuable consultations.

1. First-Order Theories and LTS

1.1. Language of first-order theories. The proposed theory is a first-order theory. We will give the
definition of a first-order theory based on [28].

Special symbols of every first-order theory T are the following symbols:
parentheses (, );
connectives ⇒ (“implies”) and ¬ (“not”);
quantifier ∀ (for all);

a countable set of variables vi (i ≥ 0) (in our case, the variables are denoted by the letters x, X, y, Y ,
z, Z, u, U , v, V , w, W , and also these letters with primes);

a nonempty countable set of predicate letters Pn
i (n ≥ 1, i ≥ 0) (LTS contains the unary predicate

symbol �� and the binary symbol ∈);
a countable set of functional letters Fn

i (n ≥ 1, i ≥ 0) (in LTS, this set is empty);
finally, a countable set of constants ai (i ≥ 0) (in LTS, this set consists of symbols ∅ and a).
General symbols are symbols that are not special but are often used in mathematics. The special and

general symbols compose the initial alphabet.
A symbol-string is defined by induction in the following way:
(1) every symbol α of the initial alphabet, except for the blank-symbol, is a symbol-string ;
(2) if σ and ρ are symbol-strings, then σρ and ρσ are symbol-strings.
A designating (≡ shortening) symbol-string σ for a symbol-string ρ is introduced in the form of the

symbol-string σ ≡ ρ or ρ ≡ σ (σ is a designation for ρ).
If a symbol-string ρ is a part of a symbol-string σ staying at one of the following three positions: . . . ρ,

ρ . . . , . . . ρ . . . , then ρ is an occurrence in σ (≡ occurs in σ).
A text is defined by induction in the following way:
(1) every symbol-string σ is a text;
(2) if Φ and Ψ are texts, then Φ Ψ and Ψ Φ are texts.
If a text Φ is a part of a text Σ staying at one of the following three positions: . . . Φ, Φ . . . , . . . Φ . . . ,

then Φ is an occurrence in Σ (≡ Φ occures in Σ).
Some symbol-strings constructed from the special symbols mentioned above are called terms and for-

mulas of the first-order theory T .
Terms are defined in the following way:
(1) a variable is a term;
(2) a constant symbol is a term;
(3) if Fn

i is an n-placed functional letter and t0, . . . , tn−1 are terms, then Fn
i (t0, . . . , tn−1) is a term;

(4) a symbol-string is a term if and only if it follows from rules (1)–(3).
In the LTS theory, because of lack of functional symbols, terms are constant symbols and variables.
If Pn

i is some n-placed predicate letter and t0, . . . , tn−1 are terms, then the symbol-string

Pn
i (t0, . . . , tn−1)

is called an elementary formula.
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Formulas of the first-order theory T are defined in the following way:
(1) every elementary formula is a formula;
(2) if ϕ and ψ are formulas and v is a variable, then every symbol-string (¬ϕ), (ϕ⇒ ψ), and ∀v(ϕ) is

a formula;
(3) a symbol-string is a formula if and only if it follows from rules (1) and (2).
Let introduce the following abbrevations:
(ϕ ∧ ψ) for ¬(ϕ⇒ ¬ψ);
(ϕ ∨ ψ) for (¬ϕ) ⇒ ψ;
(ϕ ≡ ψ) for (ϕ⇒ ψ) ∧ (ψ ⇒ ϕ);
∃v ϕ is an abbrevation for (¬(∀v (¬ϕ))).
Introduce the notion of free and connected occurrence of a variable in a formula. An occurrence of a

variable v in a given formula is said to be connected if v is either a variable of the quantifier ∀v occurring in
this formula or is under the action of the quantifier ∀v occurring in this formula; otherwise an occurrence of
a variable in a given formula is said to be free. Thus, one variable can have free and connected occurrences
in the same formula. A variable is said to be a free (connected) variable in a given formula if there exist
free (connected) occurrences of this variable in this formula, i. e., a variable can be free and connected in
one formula at the same time.

A sentence is a formula with no free variables.
If ζ is a term or a formula, θ is a term, and v is a variable, then ζ(v‖θ) denotes a symbol-string obtained

by replacing every free occurrence of the variable v in the symbol-string ζ by the symbol-string θ.
The substitution v‖θ in ζ is said to be admissible if for every free occurrence of a variable w in the

symbol-string θ, every free occurrence v in ζ is not a free occurrence in some formula ψ occurring in some
formulas ∀w ψ(w) and ∃wψ(w) occurring in the symbol-string ζ.

In the sequel, if the substitution v‖θ in ζ is admissible, then, along with ζ(v‖θ), we will write ζ(θ).
If ζ is a term or a formula, θ is a term, and v is a variable such that the substitution v‖θ in ζ is

admissible, then the substitution ζ(v‖θ) is a term or a formula, respectively.
Every free occurrence of some variable u (except for v) in a symbol-string ζ and every free occurrence

of some variable w in a symbol-string θ are free occurrences of these variables in the symbol-string ζ(v‖θ).

1.2. Deducibility in a first-order theory. A symbol-string γ equipped with some rule is called a
formula scheme of a theory T , if:

(1) this rule marks some letters (in particular, free and connected variables) occurring in γ;
(2) this rule determines the necessary substitution of these marked letters in γ by some terms (partic-

ularly variables);
(3) after every such a substitution in γ, some propositional formula ϕ of the theory T is obtained.
Every such a propositional formula ϕ is called a propositional formula obtained by the application of

the formula scheme γ.
A text Γ consisting of symbol-strings separated by blank-symbols is called an axiom text if every

symbol-string γ occurring in Γ is either a formula or a formula scheme of the theory T . If γ is a formula,
then γ is called an explicit axiom of the theory T . If γ is a formula scheme, then it is called an axiom
scheme of the theory T . Every formula obtained by the application of the axiom scheme γ is called an
implicit axiom of the theory T .

Axioms and axiom schemes of every (in particular, the LTS) first-order theory are divided into two
classes: logical and proper (or mathematical).

Logical axiom schemes of any first-order theory are cited below:
LAS1. ϕ⇒ (ψ ⇒ ϕ);
LAS2. (ϕ⇒ (ψ ⇒ χ)) ⇒ ((ϕ⇒ ψ) ⇒ (ϕ⇒ χ));
LAS3. (ϕ ∧ ψ) ⇒ ϕ;
LAS4. (ϕ ∧ ψ) ⇒ ψ;
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LAS5. ϕ⇒ (ψ ⇒ (ϕ ∧ ψ));
LAS6. ϕ⇒ (ϕ ∨ ψ);
LAS7. ψ ⇒ (ϕ ∨ ψ);
LAS8. (ϕ⇒ χ) ⇒ ((ψ ⇒ χ) ⇒ ((ϕ ∨ ψ) ⇒ χ));
LAS9. (ϕ⇒ ψ) ⇒ ((ϕ⇒ ¬ψ) ⇒ ¬ϕ);
LAS10. (¬(¬ϕ)) ⇒ ϕ;
LAS11. (∀vϕ) ⇒ ϕ(v‖θ) if v is a variable and θ is a term such that the substitution v‖θ in θ is

admissible.
LAS12. ϕ(v‖θ) ⇒ (∃v ϕ) under the same conditions as in LAS11;
LAS13. (∀v(ψ ⇒ ϕ(v))) ⇒ (ψ ⇒ (∀vϕ)) if ψ does not contain a free variable v;
LAS14. (∀v(ϕ(v) ⇒ ψ)) ⇒ ((∃v ϕ) ⇒ ψ) under the same condition as in LAS13.
Proper axioms and axiom schemes cannot be formulated in the general case because they depend on a

theory. The first-order theory which does not contain any proper axioms is called the first-order predicate
calculus. Proper axioms and axiom schemes of LTS are stated in the next section.

The deduction rules in the first-order theory are as follows:
(1) the implication rule (≡ modus ponens (MP)): from ϕ and ϕ⇒ ψ, it follows that ψ;
(2) the generalization rule (Gen): from ϕ, it follows that ∀v ϕ.
Let Φ be a totality of formulas, and let ψ be a formula of the theory T . A sequence f ≡ (ϕi|i ∈

n+1) ≡ (ϕ0, . . . , ϕn) of formulas of the theory T is called a deduction of the formula ψ from the totality Φ
if ϕn = ψ, and for any 0 < i ≤ n, one of following conditions holds:

(1) ϕi belongs to Φ;
(2) there exist 0 ≤ k < j < i such that ϕj is (ϕk ⇒ ϕi), i.e., ϕi is obtained from ϕk and ϕk ⇒ ϕi by

the implication rule MP;
(3) there exists 0 ≤ j < i such that ϕi is ∀xϕj , where x is not a free variable of every formula from Φ,

i.e., ϕi is obtained from ϕj by the generalization rule Gen with the given structural requirement.
Denote this deduction either by f ≡ (ϕ0, . . . , ϕn) : Φ 	 ψ, or by (ϕ0, . . . , ϕn) : Φ 	 ψ, or by f : Φ 	 ψ.
A totality Φa is called a totality of axioms of the theory T if Φa consists of all explicit proper axioms of

the theory T , all implicit proper axioms of the theory T , and all implicit logical axioms of the predicate
calculus. If there exists a deduction f : Φa 	 ψ, then the formula ψ is said to be deducible in the axiomatic
theory (T,Φa), and the deduction f is said to be a proof of the formula ψ.

A totality of formulas Φ is said to be contradictory (≡ non-consistent) if every formula of the theory T
is deducible from it. In the opposite case, Φ is said to be noncontradictory (≡ consistent).

An axiomatic theory (T,Φa) is said to be contradictory (noncontradictory) if the totality of its axioms
Φa is contradictory (noncontradictory).

Lemma 1. A totality of formulas Φ is contradictory if and only if the formulas ϕ and ¬ϕ for some
sentence ϕ are deducible from Φ.

Proof. If the totality Φ is contradictory, then every sentence of the theory T is deducible from it, in
partcular, ϕ and ¬ϕ for an arbitrary sentence ϕ are deducible.

Now suppose that sentences ϕ and ¬ϕ are deducible from the totality Φ and σ is an arbitrary formula.
Let us show that the formula σ can be deduced from ϕ and ¬ϕ.

Actually, this is the following deduction:
1. ϕ⇒ (¬σ ⇒ ϕ) (LAS1);
2. ¬ϕ⇒ (¬σ ⇒ ¬ϕ) (LAS1);
3. ϕ;
4. ¬ϕ;
5. ¬σ ⇒ ϕ (MP, 1, and 3);
6. (¬σ ⇒ ϕ) ⇒ (¬σ ⇒ ¬ϕ) ⇒ ¬(¬σ)) (LAS9);
7. (¬σ ⇒ ¬ϕ) ⇒ ¬(¬σ) (MP, 5, and 6);
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8. ¬σ ⇒ ¬ϕ (MP, 2 and 4);
9. ¬(¬σ) (MP, 7, and 8)

10. (¬(¬σ)) ⇒ σ (LAS10);
11. σ (MP, 9, and 10).

1.3. An interpretation of a first-order theory in a set theory. The consistency of first-order
theories is often proved by the method of interpretations going back to Tarski (see [28]).

A first-order theory S is called a set theory if the binary predicate symbol ∈ belongs to the set of its
predicates symbols. This symbol denotes belonging (∈ (x, y) is read as “x belongs to y,” “x is an element
of y,” and so on.)

Let some object D be shosen by means of the set theory S. This chosen object D of the set theory S
is said to be equipped if in S, for all n ≥ 1, the notions of n-finite sequence (xi ∈ D|i ∈ n) of elements
of the object D, n-placed relation R ⊂ Dn, n-placed operation O : Dn → D, and also the notion of an
infinite sequence x0, . . . , xq, . . . of elements of the object D are defined.

Let S be some fixed set theory with some fixed equipped object D.
An interpretation of a first-order theory T in the set theory S with the equipped object D is a pair M

consisting of the object D and some correspondence I that assigns some n-placed operation to every
predicate letter Pn

i relation I(Pn
i ) in D, to every functional letter Fn

i some n-placed operation I(Fn
i )

in D, and to every constant symbol ai some element I(ai) of D.
Let s be an infinite sequence x0, . . . , xq, . . . of elements of the object D.
Define the value of a term t of the theory T on the sequence s under the interpetation M of the theory T

in the set theory S (denoted by tM [s]) by induction in the following way:
— if t ≡ vi, then tM [s] ≡ xi;
— if t ≡ ai, then tM [s] ≡ I(ai);
— if t ≡ F (t0, . . . , tn−1), where F is an n-placed functional symbol and t0, . . . , tn−1 are terms, then

tM [s] ≡ I(F )(t0M [s], . . . , tn−1M [s]).
Define the translation of a formula ϕ on the sequence s under the interpretation M of the theory T in

the set theory S (denoted by M � ϕ[s]) by induction in the following way:
— if ϕ ≡ (P (t0, . . . , tn−1)), where P is an n-placed predicate symbol and t0, . . . , tn−1 are terms, then

M � ϕ[s] ≡ ((t0M [s], . . . , tn−1M [s]) ∈ I(P ));
— if ϕ ≡ (¬θ), then M � ϕ[s] ≡ (¬M � θ[s]);
— if ϕ ≡ (θ1 ⇒ θ2), then M � ϕ[s] ≡ (M � θ1[s] ⇒M � θ2[s]);
— if ϕ ≡ (∀viθ), then M � ϕ[s] ≡ (∀x(x ∈ D ⇒M � θ[x0, . . . , xi−1, x, xi+1, . . . , xq, . . . ])).
Using the abbriviations cited above, we also have the following:
— if ϕ ≡ (θ1 ∧ θ2), then M � ϕ[s] ≡ (M � θ1[s] ∧M � θ2[s]);
— if ϕ ≡ (θ1 ∨ θ2), then M � ϕ[s] ≡ (M � θ1 ∨M � θ2[s]);
— if ϕ ≡ (∃viθ), then M � ϕ[s] ≡ (∃x(x ∈ D ∧M � θ[x0, . . . , xi−1, x, xi+1, . . . , xq, . . . ]));
— if ϕ ≡ (θ1 ⇔ θ2), then M � ϕ[s] ≡ (M � θ1[s] ⇔M � θ2[s]).
If, in the theory S, the symbol-string σ(s) ≡ ((t0M [s], . . . , tn−1M [s]) ∈ I(P )) is a formula of the

theory S, then this definition implies that M � ϕ[s] is always a formula of the theory S.
Further, in this section we will consider the set theory S for which all symbol-strings σ(s), are formulas

of the theory S for every sequence s from D. All concrete set theories considered later in this paper will
possess this property.

An interpretation M is called a model of the axiomatic theory (T,Φa) in the axiomatic set theory (S,Ξa)
with the chosen equipped object D if for every sequence s fromD, the translationM � ϕ[s] of every axiom ϕ
of the theory T is a deducible formula in the theory (S,Ξa).

Define now the translation of the deduction f ≡ (ϕ0, . . . , ϕn) : Φ 	 ψ of the formula ψ from the
totality Φ of formulas of the theory T on the sequence s under the interpretation M of the theory T in
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the set theory S in the form of the sequence g ≡ (M � ϕ0[s], . . . ,M � ϕn[s]), which is a D-bounded
deduction of the formula M � ψ[s] from the totality M � Φ[s] ≡ {M � ϕ[s]|ϕ ∈ Φ} in such a sense that
the generalization rule Gen ≡ σ

∀xσ is used in the following D-bounded form:

GenD ≡ σ

∀x(x ∈ D ⇒ σ)
,

where x and σ are a variable and a formula of the theory T , respectively.

Lemma 2. A sequence g ≡ (M � ϕ0[s], . . . ,M � ϕn[s]) can be canonically extended to some sequence
gext ≡ (M � ϕ0[s], . . . ,M � ϕn[s])ext so that gext : M � Φ[s] 	M � ψ[s], i.e., gext is a usual deduction of
the formula M � ψ[s] from the totality M � Φ[s].

Proof. We will look through all j from 1 to n. Let ϕj be ∀y ϕi for some i < j, where y is not a free
variable of every formula ϕ of the totality Φ. The parameters of every formula M � ϕ[s] from M � Φ[s]
are only some members of the sequence s. Then M � ϕj [s] is ∀x(x ∈ D ⇒ M � ϕi[s]), where x differs
from all the parameters of the totality M � Φ[s]. To the right after the formula M � ϕi[s], we insert in g
the explicit axiom

ξ ≡ (M � ϕi(s) ⇒ (x ∈ D ⇒M � ϕi[s]))
obtained from the logical axiom scheme LAS1. Then applying the rule MP to the two previous formulas
M � ϕi[s] and ξ, after ξ, we can insert in g the formula χ ≡ (x ∈ D ⇒ M � ϕi[s]). Then the formula
M � ϕj [s] ≡ ∀xχ is obtained as the usual application of the rule Gen to the formula χ.

This lemma implies that the translation of a deduction f ≡ (ϕ0, . . . , ϕn) : Φ 	 ψ leads to the deduction
gext ≡ (M � ϕ0[s], . . . ,M � ϕn[s])ext : M � Φ(s) 	 M � ψ[s]. This procedure is always used without any
stipulations.

Lemma 3. Let every formula from the translation M � Φ[s] of a totality Φ of formulas of the theory T
be deducible in the axiomatic theory (S,Ξa) from the totality Ξa of axioms of the theory S. Moreover,
let f ≡ (ϕ0, . . . , ϕn) : Φ 	 ψ. Then the deduction gext : M � Φ(s) 	 M � ψ[s] can be extended to some
deduction h : Ξa 	M � ψ[s] in the theory (S,Ξa).

Proof. Consider the deduction gext : M � Φ[s] 	 M � ψ[s]. Let gext = (ξ0, . . . , ξm). Every formula
ξi of the theory S in this deduction is either one of the formulas of the totality M � Φ[s] or follows
from the previous formulas of this sequence as a result of application of one of the rules of deduction.
First, we consider only ξi such that they do not follow from previous formulas of the deduction. These
formulas belong to the totality M � Φ[s]. By the condition of the lemma, each of these formulas ξi is
deduced in the theory (S,Ξa) from the totality Ξa of axioms of this theory, i.e., for each ξi, there exists
a deduction gi ≡ (η0

i , . . . , η
ki
i ) : (Ξa)i � ξi, where (Ξa)i is some finite subtotality of the totality Ξa. In

the finite subtotality (Ξa)0, . . . , (Ξa)m, change all free variables in such a way that they become different
from those variables which were touched by the application of the generalization rule in the deduction
gext. For i ∈ m + 1 such that ξi is a consecuence of the previous formulas, we set ki ≡ 0, η0

i ≡ ξi. Then
h ≡ (η0

0, . . . , η
k0
0 , η

0
1, . . . , η

k1
1 , . . . , η

0
m, . . . , η

kn
m ) is a deduction of the formula M � ψ[s] from the totality Ξa

in the theory (S,Ξa).

Lemma 4. Let, for every sequence s from D, every formula from the translation M � Φa[s] of axioms
of the theory (T,Φa) be deduced in the theory (S,Ξa) from the totality Ξa of axioms of the theory (S,Ξa),
i.e., M is a model of the theory (T,Φa) in the theory (S,Ξa). Under this condition, if the theory (S,Ξa)
is consistent, then the theory (T,Φa) is also consistent.

Proof. Suppose that the theory T is contradictory, i.e., there exist some formula ψ of the theory T and some
deduction f ≡ (ϕ0, . . . , ϕn) : Φa 	 ψ ∧ ¬ψ. On an arbitrary sequence s from D, consider its translation
g ≡ (M � ϕ0[s], . . . ,M � ϕn[s]) and its canonical extension gext : M � Φa[s] 	 (M � ψ[s] ∧ ¬M � ψ[s])
from Lemma 2. Then according to Lemma 3, there exists a deduction h : Ξa 	 (M � ψ[s] ∧ ¬M � ψ[s]).
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However, by the consistency of the theory S, such a deduction is impossible. Therefore, the theory T is
consistent.

2. Local Theory of Sets

2.1. Proper axioms and axiom schemes of the local theory of sets. The local theory of sets is a
first-order theory with two predicate symbols: the binary predicate symbol of belonging ∈ (write A ∈ B)
and the unary predicate symbol of universality �� (write A ��), and also with two constants ∅ (empty
class) and a (infra-universe).

Objects of the LTS are called classes.
The notation ϕ(�u) is used for the formula ϕ(u0, . . . , un−1), where u0, . . . , un−1 are free variables of the

formula ϕ.
For technical reasons, it is useful to consider the totality C of all classes A satisfying a given formula

ϕ(x). This totality C is called the assembly defined by the formula ϕ. The totality C of all classes A
satisfying a formula ϕ(x, �u), is called the assembly defined by the formula ϕ through the parameter �u.
Along with these words, we will use the notation

A ∈ C ≡ ϕ(A), A ∈ C ≡ ϕ(A, �u)

and
C ≡ {x|ϕ(x)}, C ≡ {x|ϕ(x, �u)}.

If C ≡ {x|ϕ(x)} and ϕ contains only one free variable x, then the assembly C is said to be well-defined
by the formula ϕ. Assembles will be usually denoted by semibold Latin letters.

Every class A can be considered as the assembly {x|x ∈ A}.
The universal assembly is the assembly of all classes V ≡ {x|x = x}.
An assembly C ≡ {x|ϕ(x)} is called a subassembly of an assembly D ≡ {x|ψ(x)} (denoted by C ⊂ D)

if ∀x(ϕ(x) ⇒ ψ(x)). Assemblies C and D are said to be equal if (C ⊂ D)∧(D ⊂ C) (denoted by C = D).
We will use the notation {x ∈ A|ϕ(x)} ≡ {x|x ∈ A ∧ ϕ(x)}.
A1 (extensionality axiom).

∀y ∀z ((y = z) ⇒ (∀X (y ∈ X ⇔ z ∈ X))).

Let α be some fixed class. A class A will be called a class of class α (≡ α-class) if A ⊂ α. A class A is
called a set of class α (≡ α-set) if A ∈ α.

A formula ϕ is said to be α-predicative (see [28], ch. 4, § 1) if for all variables x, all symbol-strings ∀x and
∃x, occurring in the formula ϕ stay only at the following positions: ∀x(x ∈ α⇒ . . . ) and ∃x(x ∈ α∧ . . . ).

AS2 (full comprehension axiom scheme). Let ϕ(x) be an X-predicative formula such that the substitu-
tion ϕ(x‖y) is admissible and ϕ does not contain Y as a free variable. Then

∀X(∃Y (∀y((y ∈ Y ) ⇔ (y ∈ X ∧ ϕ(y))))).

This axiom scheme postulates the existence of α-classes, which will be denoted as the assemblies {x ∈
α|ϕ(x)}.

Let A be a class, and let the assembly C ≡ {x|ϕ(x)} be defined by an A-predicative formula ϕ. If
C ⊂ A, then the assembly C is a class. Actually, by AS2, there exists a class B ≡ {x ∈ A|ϕ(x)}. If
x ∈ C, then ∀x(ϕ(x) ⇒ x ∈ A) implies x ∈ B. Therefore, C ⊂ B. Conversely, if x ∈ B, then, by AS2,
x ∈ A ∧ ϕ(x), i.e., x ∈ C. Hence C = B.

A3 (empty class axiom).
∀Z ((∀x(x /∈ Z)) ⇔ Z = ∅).

Lemma 1. ∀X (∅ ⊂ X).

Proof. Denote the formulas x ∈ ∅ and x ∈ X by ϕ and ψ, respectively. Apply the theorem ¬ϕ⇒ (ϕ⇒ ψ).
From A3, it follows that ¬ϕ. Hence, by the implication rule, it follows that ϕ ⇒ ψ. Applying the
generalization rule, we obtain ∀x (x ∈ ∅ ⇒ x ∈ X).
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A class α is said to be universal if α �� .
A4 (equiuniversality axiom).

∀U ∀V ((U = V ) ⇒ (U ��⇔ V �� )).

This axiom postulates that equal classes are simultaneously universal or not universal.
A5 (infra-universality axiom).

a �� ∧∀U (U ��⇒ a ⊂ U).

This axiom postulates that the class a is the “smallest” universal class. We will call it infra-universal
or the infra-universe.

A6 (universality axiom).
∀X ∃U (U �� ∧X ∈ U).

This axiom postulates that every class A is an element of some universal class.
The following axioms explain what the notion “universality” means.
A7 (transitivity axiom).

∀U (U ��⇒ ∀X (X ∈ U ⇒ X ⊂ U)).

This axiom postulates that if α is a universal class, then every α-set is an α-class.
A8 (quasitransitivity axiom).

∀U (U ��⇒ ∀X ∀Y (X ∈ U ∧ Y ⊂ X ⇒ Y ∈ U)).

This axiom postulates that if α is a universal class, then every subclass of every α-set is an α-set.
Within the framework of every class α, we can define all basic set-theoretical constructions.
For every class A, the α-class Pα(A) ≡ {x ∈ α | x ⊂ A} is called the full α-ensemble of the class A.
A9 (full ensemble axiom).

∀U (U ��⇒ ∀X (X ∈ U ⇒ PU (X) ∈ U)).

This axiom postulates that if α is a universal class and A is an α-set, then Pα(A) is an α-set.
For classes A and B, the α-class A

⋃
αB ≡ {x ∈ α | x ∈ A∨x ∈ B} is called the α-union of the classes

A and B; the α-class A
⋂

αB ≡ {x ∈ α | x ∈ A ∧ x ∈ B} is called the α-intersection of the classes A and
B.

A10 (binary union axiom).

∀U (U ��⇒ ∀X ∀Y (X ∈ U ∧ Y ∈ U ⇒ X ∪U Y ∈ U)).

This axiom postulates that if α is a universal class, then the binary α-union of α-sets is an α-set. A10
and A8 imply that the same also holds for the binary α-intersection.

For a class A, consider the solitary α-class {A}α ≡ {x ∈ α | x = A}.
Call the α-class

{A,B}α ≡ {A}α

⋃

α

{B}α

the unordered α-pair, and the α-class 〈A,B〉α ≡ {{A}α, {A,B}α}α the coordinate α-pair of the classes A
and B.

Lemma 2. Let α be a universal class, and let a, b ∈ α. Then {a}α, {a, b}α, and 〈a, b〉α are α-sets.

Proof. If a is an α-set, then by A9, Pα(a) ∈ α. From {a}α ⊂ Pα(a), by A8, it follows that {a}α is an
α-set.

From A10, we now have {a, b}α ∈ α. According to the proved property, this fact, together with
{a}α ∈ α, implies 〈a, b〉α ∈ α.

Corollary. Let α be a universal class, and let a, a′, b, b′ ∈ α and 〈a, b〉α = 〈a′, b′〉α. Then a = a′ and
b = b′.
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For classes A and B, the α-class

A ∗αB ≡ {x ∈ α | ∃y ∃z (y ∈ A ∧ z ∈ B ∧ x = 〈y, z〉α)}
will be called the coordinate α-product of classes A and B.

Lemma 3. Let α be a universal class and A,B ∈ α. Then A ∗α B ∈ α.

Proof. Let a ∈ A and b ∈ B. Then {a}α ⊂ A ∪α B and {b}α ⊂ A ∪α B implies {a, b}α ⊂ A ∪α B. By
A10, A ∪α B ∈ α. According to Lemma 2, {a}α ∈ Pα(A ∪α B) and {a, b}α ∈ Pα(A ∪α B). For the
same reason, 〈a, b〉α = {{a}α, {a, b}α}α ⊂ Pα(A ∪α B). Hence 〈a, b〉α ∈ Pα(Pα(A ∪α B)). Therefore,
A ∗α B ⊂ Pα(Pα(A ∪α B)) ∈ α. By A8, we have A ∗α B ∈ α.

Further, A and B will denote some fixed α-classes.
An α-subclass u of the α-class A ∗αB will be called an α-correspondence from the α-class A into the

α-class B and will be also denoted by u : A ≺α B. The formula u ⊂ A ∗αB will be denoted also by
u � A ≺α B. For the α-correspondence u : A ≺α B, consider the α-classes

domαu ≡ {x ∈ α | x ∈ A ∧ ((∃y (y ∈ B ∧ 〈x, y〉α ∈ u))}
and

rngαu ≡ {y ∈ α | y ∈ B ∧ ((∃x (x ∈ A ∧ 〈x, y〉α ∈ u))}.
The α-subclass Ba ≡ u〈a〉 ≡ {y ∈ α | y ∈ B ∧ 〈a, y〉α ∈ u} of the α-class B will be called the α-class

of values of the α-correspondence u on the element a ∈ A, and the α-subclass u[A′] ≡ {y ∈ α | y ∈
B ∧ (∃x (x ∈ A′ ∧ 〈x, y〉α ∈ u)} of the class B the image of the subclass A′ of the class A with respect to
the α-correspondence u. It is clear that u[{a}α] = u〈a〉 for each a ∈ A and u[A] = rngαu.

If u〈a〉 contains a single element b ∈ B (in such a sense that ∃y (y ∈ B ∧u〈a〉 = {y}α)), then this single
element b is called the value of the α-correspondence u on the element a ∈ A and is denoted by u(a) or
by ba.

An α-correspondence u is said to be total if domαu = A and single-valued if u〈a〉 = {u(a)}α for every
a ∈ domαu. A single-valued α-correspondence is also called an α-mapping (≡ α-function).

A total single-valued α-correspondence u : A ≺α B is called an α-mapping (≡ α-function) from the
α-class A into the α-class B and is denoted by u : A→α B. The formula expressing the property for the
α-class u to be an α-mapping from the α-class A into the α-class B will be denoted by u � A→α B.

An α-mapping u : A→α B is said to be
— injective if ∀x, y ∈ A(u(x) = u(y) ⇒ x = y) (this is denoted by u : A �α B);
— surjective if rngαu = B (this is denoted by u : A �α B);
— bijective (≡one-to-one) if it is injective and surjective (this is denoted by u : A �α B).
The α-class {x ∈ α|x � A →α B} of all α-mappings from the α-class A into the α-class B which are

α-sets will be denoted by BA
(α) or by Mapα(A,B).

A11 (full union axiom).

∀U(U ��⇒ ∀X∀Y ∀z(X ∈ U ∧ Y ⊂ U ∧ (z ⊂ X ∗U Y )

∧(∀x(x ∈ X ⇒ z〈x〉 ∈ U))) ⇒ (rngUz ∈ U))).

An α-correspondence u from α-class A into α-class B will be also called a (multivalued) α-collection
of α-subclasses Ba of the α-class B, indexed by the α-class A. In this case, the class u and the formula
u � A ≺α B will be also denoted by Ba ⊂ B|a ∈ A α and u � Ba ⊂ B|a ∈ A α, respectively. An
α-mapping u from A into B will also be called a simple α-collection of the elements bα of the α-class B
indexed by the α-class A. In this case, the class u, the class rng u and the formula u � A→α B are also
denoted by (ba ∈ B|a ∈ A)α, {ba ∈ B|a ∈ A}, and u � (ba ∈ B|a ∈ A)α, respectively.

The α-class {y ∈ α|∃x ∈ A(y ∈ Bx)} is called the α-union of α-collection Ba ⊂ B|a ∈ A α and is
denoted by ∪α Ba ⊂ B|a ∈ A α. The α-class {y ∈ α|∀x ∈ A(y ∈ Bx)} is called the α-intersection of
α-collection Ba ⊂ B|a ∈ A α and is denoted by ∩α Ba ⊂ B|a ∈ A α.
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In these terms and notation, the axiom of full union means that if α is a universal class and Ba ⊂
B|a ∈ A α is an α-collection of α-subsets Ba of the α-class B, indexed by the α-set A, then its α-union
∪α Ba ⊂ B|a ∈ A α is an α-set.

With α-class A, in the canonical way, one associates the α-collection a ⊂ α|a ∈ A α of one-element
α-sets of the α-class A (according to Axiom A7, a ∈ A ⊂ α implies a ⊂ α). The α-union of this α-
collection a ⊂ α|a ∈ A α is called the α-union (≡ α-sum) of the α-class A and is denoted by ∪αA. If α
is a universal class and A is an α-set, then ∪αA is also an α-set. With every α-class, A, in the canonical
way, one associates the simple α-collection (a ∈ A|a ∈ A)α of elements of the α-class A. It is clear that
{a ∈ A|a ∈ A}α = A.

The next axiom serves, in particular, for exclusion of the possibility for a set to be its own element.
A12 (regularity axiom).

∀U (U ��⇒ ∀X (X ⊂ U ∧X �= ∅ ⇒ ∃x (x ∈ X ∧ x ∩U X = ∅))).
The next axiom postulates the existence of an infinite set.
A13 (infra-infinity axiom).

∃X (X ∈ a ∧ ∅ ∈ X ∧ ∀x (x ∈ X ⇒ (x ∪a {x}a ∈ X))).

Denote the postulated a-set by π.
This axiom implies that the class ∅ is an a-set. By Axiom A5, ∅ is an α-set for every universe α.
Consider the a-class

κ ≡ {Y ∈ a | Y ⊂ π ∧ ∅ ∈ Y ∧ ∀y (y ∈ Y ⇒ (y ⊂ a ∧ y ∪a {y}a ∈ Y ))}.
Since κ ⊂ Pa(π), Axioms A9 and A8 imply that κ is an α-set.

Consider the a-class ω ≡ {y ∈ a | ∀Y (Y ∈ κ ⇒ y ∈ Y )}. Since ω ⊂ π, by Axiom A8, we infer that ω
is an a-set. Call it the a-set of natural numbers. By Axiom A5, ω is an α-set for every universe α.

Consider the initial natural numbers 0 ≡ ∅, 1 ≡ 0
⋃

a{0}a, 2 ≡ 1
⋃

a{1}a, . . . . From the definitions of
κ and ω, it follows that 0, 1, 2, · · · ∈ ω. By Axiom A7, 0, 1, 2, · · · ∈ α for every universe α.

The last axiom postulates the existence of a choice function.
A14 (axiom of choice).

∀U(U ��⇒ ∀X(X ∈ U∧X �= ∅ ⇒ ∃z((z � PU (X)\{∅}U →U X)∧∀Y (Y ∈ PU (X)\{∅}U ⇒ z(Y ) ∈ Y )))).

The description of mathematical axioms and axiom schemes is completed.

2.2. Some constructions in the local theory of sets. Almost all modern mathematics (except for
the naive category theory and the naive theory of mathematical systems) can be formalized within the
framework of the infra-universe a. Only the mentioned naive theories require the use of other higher
universes.

To show that all naive category theories can be formalized within the framework of the local theory
of sets, we need to introduce an analog of the coordinate α-pair 〈A,B〉α also working with improper
α-classes A and B (see the corollary of Lemma 2).

Now, let α be some fixed universal class.
Let A, A′, A′′, . . . be α-classes, where the prime symbol (′) is used only for the sake of uniformity of

the notation.
The α-collection αi ⊂ α | i ∈ 2 α such that α0 ≡ A and α1 ≡ A′ will be called the (multivalued)

sequential α-pair of α-classes A and A′ and will be denoted by A,A′
α. The α-collection αi ⊂ α |

i ∈ 3 α such that α0 ≡ A, α1 ≡ A′, and α2 ≡ A′′ will be called the (multivalued) sequential α-triplet of
α-classes A, A′, and A′′ and will be denoted by A,A′, A′′

α. And so on.
Now let a, a′, a′′, . . . be α-sets.
The simple α-collection (ai ∈ α | i ∈ 2)α such that a0 ≡ a and a1 ≡ a′ will be called the simple sequential

α-pair of α-sets a and a′ and will be denoted by (a, a′)α. The simple α-collection (ai ∈ α | i ∈ 3)α such
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that a0 ≡ a, a1 ≡ a′, and a2 ≡ a′′ will be called the simple sequential α-triplet of α-sets a, a′, and a′′ and
will be denoted by (a, a′, a′′)α. And so on.

If A, A′, B, and B′ are α-classes and A,A′
α = B,B′

α, then A = B and A′ = B′. If a, a′, b, and
b′ are α-sets and (a, a′)α = (b, b′)α, then a = b and a′ = b′. Similar properties also hold for every finite
α-collections. Thus, the α-pairs A,A′

α and (a, a′)α possess the mentioned property of the Kuratowski
α-pair 〈a, a′〉α (see the corollary of Lemma 2). However, in contract to the latter, the α-pair A,A′

α

works also for improper α-classes. Multivalued sets were introduced in [31] and [32].
Let some α-collection u ≡ Ai ⊂ α | i ∈ I α be indexed by α-class I �= ∅. The α-class

∏
α Ai ⊂

α | i ∈ I α ≡ {z ∈ α | (z : I →α α) ∧ (∀x (x ∈ I ⇒ z(x) ∈ Ax))} will be called the α-product of
the α-collection u. In a particular case, if A, A′, A′′, . . . are α-classes, then the α-classes

∏
α A,A′

α,∏
α A,A′, A′′

α, . . . will be called the α-product of the α-pair A,A′
α, the α-triplet A,A′, A′′

α, . . . and
will be denoted by A×α A

′, A×α A
′ ×α A

′′, . . .
One can verify that A ×α A

′ = {x ∈ α|(∃y∃y′(y ∈ A ∧ y′ ∈ A′ ∧ x = (y, y′)α))}. It is seen from this
equality that the α-product A×αA

′ is similar to the coordinate α-product A ∗αA
′, but in contrast to the

latter, it is a particular case of the general product
∏

α
Ai ⊂ α|i ∈ I α.

If A = A′ = A′′ = . . . , then A×α A = A2
(α) ≡ Mapα(2, A), A×α A×α A = A3

(α) ≡ Mapα(3, A), . . . At
the same time, A ∗α A �= A2

(α), and between the α-classes A ∗α A and A2
(α), there exists only a bijective

α-mapping of the canonical form 〈a, a′〉 �→ (a, a′). Precisely this stipulates the necessity of introducing
the noncoordinate α-product A×α A

′, A×α A
′ ×α A

′′, . . .
If n ∈ ω, then an α-subclass R of the α-class An

(α) ≡ Mapα(n,A) is called n-placed α-correspondence
on α-class A. The α-mapping O : An

(α) →α A is called n-placed α-operation on α-class A. Note that
O ⊂ An

(α) ∗α A �= An+1
(α) . Therefore an n-placed operation O cannot be considered as an (n + 1)-placed

correspondence.

3. Formalization of the Naive Category Theory within the Framework
of the Local Theory of Sets

3.1. Definition of a local category in the local theory of sets. By the naive notion of a category
we mean the notion of metacategory given by MacLane in [27]. According to [27], a metacategory consists
of objects a, b, c, . . . , arrows f , g, h, . . . , and four operations f �→ domf , f �→ codomf , a �→ ia, and f ,
g �→ g ◦ f satisfying some additional conditions. Unfortunately, even such a pathological object as the
metacategory of all metacategories satisfies this definition.

The problem of formalization of the naive category theory appeared because of the internal contradic-
toriness of the notion of metacategory. The aim of such a formalization consists in that in some precisely
described axiomatics (set-theoretical, arrow or mixed), it is necessary to give some strict definitions of
some notion that, first, corresponds to the naive understanding of a category, second, is closed with
respect to all operations and constructions of naive category theory, third, includes in itself all known
important concrete examples of categories, and fourth, cuts off such naive pathological examples as the
metacategory of all metacategories.

Using the notation of the previous section we can formalize the naive notion of a category in the
following way. For a universe α, we define an α-category as a large two-sorted algebraic system with two
relations and one operation (see [32] and [4]). For this purpose, we will use the notion of α-collection of
α-classes and α-pair of α-classes introduced in the previous sections.

Consider a fixed a-set Ωc, consisting of three elements of class α denoted by the signs #, ◦, and ↔ and
called the symbol of partition, the symbol of composition, and the symbol of identification, respectively.
The set Ωc is called the signature of the category. Since a ⊂ α, we infer that Ωc is also an α-set for every
universe α.

Fix some universe α.
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Consider an α-pair A ≡ Obj, Arr α containing two α-classes Obj and Arr and the α-collection sc ≡
ωA ⊂ α | ω ∈ Ωc α with the three components ζ ≡ sc〈#〉 ≡ #A, η ≡ sc〈◦〉 ≡ ◦A, and ϑ ≡ sc〈↔〉 ≡↔A.
An α-class C ≡ A, sc α will be called an α-category (≡ a category of the class α) if the α-classes Obj,

Arr, ζ, η, and ϑ occur in the sequential conjunction of the following formulas (written in an informal
way):
Pc1. (ζ ⊂ (Obj ×α Obj) ∗αArr) ∧ (η ⊂ (Arr ×α Arr) ∗αArr) ∧ (ϑ ⊂ Obj ∗αArr);

This formula postulates that to every pair of elements of Obj, the partition assigns some α-class
of elements of Arr; to every pair of elements of Arr, the composition assigns some third element
Arr, and to every element of Obj, the identification assigns some element of Arr.

Pc2. (rngαζ = Arr)∧ (∀x, y ∈ Obj×αObj (x �= y ⇒ ζ〈x〉⋂
α ζ〈y〉 = ∅)); ζ is usually written in the form

of the α-collection ζ ≡ Arr(π,κ) ⊂ Arr | (π,κ)α ∈ Obj×αObj α; in this notation, the indicated
property means that the α-class Arr is equal to the α-union of this pairwise disjoint α-collection.

Pc3. (domαη = {x ∈ α | ∃u ∃v ∃w ∃v′ ∃w′ ((u, v, w ∈ Obj) ∧ (v′, w′ ∈ Arr) ∧ (v′ ∈ Arr(u, v)) ∧ (w′ ∈
Arr(v, w)) ∧ (x = (v′, w′)α))}) ∧ (η : domαη → Arr);

Pc4. (ϑ : Obj →α Arr) ∧ (∀X ∈ Obj(ϑ(X) ∈ Arr(X,X))) ∧ (∀f ∈ Obj(ϑ(f) ∈ Arr(f, f))); ϑ is usually
written in the form of the simple α-collection ϑ ≡ (iπ ∈ Arr | π ∈ Obj)α, where iπ ≡ ϑ(π);

Pc5. η Arr(π,κ) ×α Arr(κ, ρ) ⊂ Arr(π, ρ) for every elements π,κ, ρ ∈ Obj;
Pc6. η(η(F,G), H)) = η(F, η(G,H)) for every element π,κ, ρ, σ ∈ Obj and every element F ∈ Arr(π,κ),

G ∈ Arr(κ, ρ) and H ∈ Arr(ρ, σ);
Pc7. η(F, iπ) = F and η(iπ, G) = G for every element π,κ, ρ ∈ Obj and every element F ∈ Arr(κ, π)

and G ∈ Arr(π, ρ).
α-Categories defined in such a way are said to be local.
Elements F of the class Arr(π,κ) are called arrows from the object π to the object κ. The formula

F ∈ Arr(π,κ) is also denoted by F : π .−→ κ. The correspondence η is called the composition and is
usually denoted simply by ◦; in this case, along with ◦(F,G), we also write G ◦ F .

An α-category C is said to be small if C is an α-set. An α-category C is said to be locally small if every
α-class Arr(π,κ) is an α-set.

Remark. In category theory the rejection of the term a “morphism F from an object π to an object κ”
was due to the following reason. For algebraic systems U and V , the notion of a homomorphism f from U
to V is usual; for smooth manifolds U and V the notion of a diffeomorphism f from U to V is usual and
so on; the generalization of all these notions is the notion of a morphism of mathematical systems (see [4,
31, 32]). However mathematical systems U , V, . . . of type C and morphisms f from U to V of status S do
not form a category, because the morphism f does not uniquely define the system V ; therefore, for some
systems, the property U, V �= U ′, V ′ ⇒Mor(U, V )

⋂
Mor(U ′, V ′) �= ∅ is possible. But this property

contradicts the property Pc2. To form the corresponding category, it is necessary to take not morphisms
f from U into V but triplets f, U, V , which can be naturally called arrows from the system U into the
system V , defined by the morphisms f (see. [27], I.8).

3.2. Functors and natural transformations and the “category of categories” and the “cat-
egory of functors” in the local theory of sets generated by them. Let C and D be α-categories.
An α-class Φ ≡ ΦO,ΦT α is called a (covariant) α-functor (≡ a functor of class α) from the α-category
C to the α-category D if:

(1) ΦO is an α-mapping from the α-class ObjC into the α-class ObjD;
(2) ΦT is an α-mapping from the α-class ArrC into the α-class ArrD;
(3) ΦT (F ) ∈ ArrD(ΦO(π),ΦO(κ)) for every object π, κ ∈ ObjC and every arrow F ∈ ArrC(π,κ);
(4) ΦT (G ◦ F ) = ΦT (G) ◦ ΦT (F ) for every object π,κ, ρ ∈ ObjC and every arrow F ∈ ArrC(π,κ) and

G ∈ ArrC(κ, ρ);
(5) ΦT (iπ) = iΦO(π) for every object π ∈ ObjC.
Usually α-mappings ΦO and ΦT are denoted by the same symbol Φ.
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α-Functors are exactly homomorphisms between α-categories considered as algebraic systems.
The composition Ψ◦Φ of an α-functor Φ ≡ ΦO,ΦT α from C to D and an α-functor Ψ ≡ ΨO,ΨT α

from D to E is the α-functor ΨO ◦ ΦO,ΨT ◦ ΦT α from C to E .
The identity α-functor IC for the α-category C is the α-functor idObjC, idArrC α containing the two

identical mappings for the α-classes ObjC and ArrC, respectively.
Now we will formalize the operation of the naive category theory known as the “category of categories.”
Take any universe β such that α ∈ β.
Consider the β-class Catβα ≡ {X ∈ β | X is a α-category} of all α-categories C.
Also, consider the β-class fArrβ

α ≡ {X ∈ β | ∃x∃Y ∃Z ((Y, Z are α-categories) ∧ (x is an α-functor
from Y to Z) ∧ (X = x, Y, Z α))} of all α-functorial arrows F ≡ Φ, C,D α.

For every simple β-pair (C,D)β of α-categories C and D, consider the β-class fArrβ
α(C,D) ≡ {X ∈ β |

∃x∃Y ∃Z ((Y, Z are α-categories)∧ (x is an α-functor from Y to Z)∧ (X = x, Y, Z α))}. Also, consider
the β-collection ζ ′ ≡ fArrβ

α(C,D) ⊂ fArrβ
α | (C,D)β ∈ Catβα ×β Cat

β
α β .

Consider the β-correspondence η′ from fArrβ
α ×β

fArrβ
α to fArrβ

α generated by the composition of
α-functors and consider the β-mapping ϑ′ from Catβα to fArrβ

α such that ϑ′(C) = IC , C, C α.
These β-classes give the opportunity to consider the β-correspondence s′c from Ωc into β such that

s′c〈#〉 ≡ ζ ′, s′c〈◦〉 ≡ η′, and s′c〈↔〉 ≡ ϑ′.
As a result, we obtain the β-category C

β
α ≡ Catβα, fArr

β
α β , s

′
c β. It will be called the β-category of

all α-categories and all α-functorial arrows between them.
Now let C and D be fixed α-categories. Suppose that Φ and Ψ are α-functors from C to D. A simple

α-collection T = (tπ ∈ ArrD | π ∈ ObjC)α will be called a (natural) α-transformation from the α-functor
Φ to the α-functor Ψ if:

(1) tπ ∈ ArrD(Φ(π),Ψ(π)) for every object π from ObjC;
(2) Ψ(F ) ◦ tπ = tκ ◦ Φ(F ) for every objects π, κ from ObjC and every arrow F from ArrC(π,κ).

The composition U ◦ T of an α-transformation T = (tπ ∈ ArrD | π ∈ ObjC)α from Φ to Ψ and an
α-transformation U = (uπ ∈ ArrD | π ∈ ObjC)α from Ψ to Ω is the α-transformation (uπ ◦ tπ ∈ ArrD |
π ∈ ObjC)α from Φ to Ω.

The identity α-transformation IΦ from the α-functor Φ to the α-functor Φ is the α-transformation
(IΦ(π) ∈ ArrD | π ∈ ObjC)α from Φ to Φ.

Finally, we will formalize the operation of naive category theory known as the “category of functors.”
Consider the β-class Functβα(C,D) of all α-functors from the α-category C to the α-category D. Also,

consider the β-class cArrβ
α ≡ {X ∈ β | ∃x∃Y ∃Z ((Y, Z are α-functors from C to D) ∧ (x is an α-

transformation from Y to Z) ∧ (X = x, Y, Z α))} of all α-transformational arrows F ≡ T,Φ,Ψ α.
For every simple β-pair (Φ,Ψ)β of α-functors Φ and Ψ from C to D, consider the β-class cArrβ

α(Φ,Ψ) ≡
{X ∈ β | ∃x ((x is an α-transformation from Φ to Ψ) ∧ (X = x,Φ,Ψ α))}. Consider the β-collection
ζ ′′ ≡ cArrβ

α(Φ,Ψ) ⊂ cArrβ
α | (Φ,Ψ)β ∈ FunctβαC,D) ×β Funct

β
α(C,D) β .

Consider the β-correspondence η′′ from cArrβ
α ×β

cArrβ
α to cArrβ

α generated by the composition of
α-transformations.

Also, consider the β-mapping ϑ′′ from Functβα(C,D) to cArrβ
α such that ϑ′′(Φ) = IΦ,Φ,Φ α.

These β-classes give the opportunity to consider the β-correspondence s′′c from Ωc into β such that
s′′c 〈#〉 ≡ ζ ′′, s′′c 〈◦〉 ≡ η′′, and s′′c 〈↔〉 ≡ ϑ′′.

As result, we obtain the β-category F
β
α(C,D) ≡ Functβα(C,D), cArrβ

α β , s
′′
c β . It will be called the

β-category of all α-functors from the α-category C to the α-category D and all α-transformational arrows
between α-functors.

The constructions C
β
α and F

β
α(C,D) show that the notion of α-category is closed with respect to such im-

portant operations of naive category theory as the “category of categories” and the “category of functors.”
Thus, the notion of α-category has all the good properties of the notion of U-category.
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4. Zermelo–Fraenkel Set Theory and Mirimanov–von Neumann Sets

4.1. The proper axioms and axiom schemes of the ZF set theory. To begin with, we will cite
the list of proper axioms and axiom schemes of the ZF theory (Zermelo-Fraenkel’s set theory with the
axiom of choice; see [13, 19, 21, 22, 33]).

This theory is a first-order theory with two binary predicate symbols of belonging ∈ (we write A ∈ B)
and equality = (we write A = B).

The predicate of equality = satisfies the following axiom and axiom scheme:
(1) ∀x(x = x) (reflexivity of equality);
(2) (x = y) ⇒ (ϕ(x, x) ⇒ ϕ(x, y)) (replacement of equals), where x and y are variables, ϕ(x, x) is an

arbitrary formula, and ϕ(x, y) is constructed from ϕ(x, x) by changing some (not necessarily all)
free occurences of x by occurrences of y with the condition that y is free for occurences of x that
are changed.

Objects of the given theory are called sets.
As above, it is useful to consider the totality C of all sets A satisfying a given formula ϕ(x). The

totality C is called the class (ZF ), defined by the formula ϕ. The totality C(�u) of all sets A satisfying
a formula ϕ(x, �u) is called the class (ZF ) defined by the formula ϕ through the parameter �u. Along with
these words, we will use the notation

A ∈ C ≡ ϕ(A), A ∈ C(�u) ≡ ϕ(A, �u)

and
C ≡ {x|ϕ(x)}, C(�u) ≡ {x|ϕ(x, �u)}.

If C ≡ {x|ϕ(x)} and ϕ contains only one free variable x, then the class C is called well-defined by the
formula ϕ.

Every set A can be considered as the class {x|x ∈ A}.
A class C ≡ {x|ϕ(x)} is called a subclass of a class D ≡ {x|ψ(x)} (denoted by C ⊂ D) if ∀x(ϕ(x) ⇒

ψ(x)). Classes C and D are called equal if (C ⊂ D) ∧ (D ⊂ C).
Further, we will use the notation {x ∈ A|ϕ(x)} ≡ {x|x ∈ A ∧ ϕ(x)}.
If a class C is not equal to any set, then C is called a proper class. Not every class is a set: the class

{x|x /∈ x} is a proper class.
The universal class is the class of all sets V ≡ {x|x = x}.
For classes C ≡ {x|ϕ(x)} and D ≡ {x|ψ(x)} define the binary union C∪D and the binary intersection

C ∩ D as the classes

C ∪ D ≡ {x|ϕ(x) ∨ ψ(x)} and C ∩ D ≡ {x|ϕ(x) ∧ ψ(x)}.
A1 (extensionality axiom).

∀X∀Y (∀u(u ∈ X ⇔ u ∈ Y ) ⇒ X = Y ).
This axiom postulates that if two sets consist of the same elements, then they are equal.
For sets A and B define the unordered pair {A,B} as the class

{A,B} ≡ {z|z = A ∨ z = b}.
A2 (pair axiom).

∀u∀v∃x∀z(z ∈ x⇔ z = u ∨ z = v).
A2 and A1 imply that an unordered pair of sets is a set.
For sets A and B define:
— the solitary set {A} ≡ {A,A};
— the ordered pair 〈A,B〉 ≡ {{A}, {A,B}};

From the previous assertions, we infer that {A} and 〈A,B〉 are sets.

Lemma 1. 〈A,B〉 = 〈A′, B′〉 if and only if A = A′ and B = B′.
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AS3 (separation axiom scheme).

∀X∃Y ∀u(u ∈ Y ⇔ u ∈ X ∧ ϕ(u, �p)),

where the formula ϕ(u, �p) does not contain Y as a free variable.
This axiom scheme postulates that the class {u|u ∈ X ∧ ϕ(u, �p)} is a set. This set is unique by A1.

Actually, suppose that there exist some sets Y and Y ′ such that ∀u(u ∈ Y ⇔ u ∈ X ∧ ϕ(u, p)) and
∀u(u ∈ Y ′ ⇔ u ∈ X ∧ ϕ(u, p)). Then, by LAS11, u ∈ Y ⇔ u ∈ X ∧ ϕ(u, �p) and u ∈ Y ′ ⇔ u ∈
X ∧ ϕ(u, �p). Whence, by LAS3 and LAS4, u ∈ Y ⇒ u ∈ X ∧ ϕ(u, �p), u ∈ Y ′ ⇒ u ∈ X ∧ ϕ(u, �p),
ϕ(u, �p) ∧ u ∈ X ⇒ u ∈ Y , and u ∈ X ∧ ϕ(u, �p) ⇒ u ∈ Y ′. Consequently, u ∈ Y ⇔ u ∈ Y ′, and by the
generalization Gen rule, ∀u(u ∈ Y ⇔ u ∈ Y ′), whence, by A1, Y = Y ′.

Consider the class C = {u|ϕ(u, �p)}. Then the scheme AS3 can be expressed in the following form:

∀X∃Y (Y = C(�p) ∩X).

For classes A and B, define the difference A \B as the class A \B ≡ {x ∈ A|x /∈ B}.
If A is a set, then, by AS3, the difference A \ B is a set.
Since A∩B = {x ∈ A|x ∈ B} ⊂ A, by AS3, we infer that for any sets A and B, the binary intersection

A ∩B is a set.
For a class C ≡ {x|ϕ(x)} define the union ∪C as the class

∪C ≡ {z|∃x(ϕ(x) ∧ z ∈ x)}.
A4 (union axiom).

∀X∃Y ∀u(u ∈ Y ⇔ ∃z(u ∈ z ∧ z ∈ X)) ∧ z ∈ X)).
We can deduce fromA4 and AS3 that for every set A, its union ∪A is a set.

We have the equality A∪B = ∪{A,B}. Therefore, for every set A and B, their binary union A∪B is
a set.

We will call the full ensemble of a class C the class P(C) ≡ {u|u ⊆ C}.
A5 (power set (≡ full ensemble) axiom).

∀X∃Y ∀u(u ∈ Y ⇒ u ⊂ X).

If A is a set, then, according to A5 and A1, P(A) is a set.
For classes A and B, define the (coordinate) product

A ∗ B ≡ {x|∃u∃v(u ∈ A ∧ v ∈ B ∧ x = 〈u, v〉}.
The fact that A ∗B is a set for sets A and B follows from AS3, because A ∗B ⊆ PP (A ∪B)).

A class (in particular, a set) C is called a correspondence if

∀u(u ∈ C ⇒ ∃x∃y(u = 〈x, y〉))).
For a correspondence C, consider the following classes:

domC ≡ {u|∃v(〈u, v〉 ∈ C)};
rngC ≡ {v|∃u(〈u, v〉 ∈ C}.

If C is a set, then domC ⊂ ∪ ∪ C, by A4 and AS3, implies that domC also is a set.
A correspondence F is called a function (≡ a mapping) if

∀x∀y∀y′(〈x, y〉 ∈ F ∧ 〈x, y′〉 ∈ F ⇒ y = y′).

For a class F, the formula expressing the property to be a mapping will be denoted by func(F). For the
expression 〈x, y〉 ∈ F, we also use the notations y = F(x), F : x �→ y, etc.

A correspondence C is called a correspondence from a class A into a class B if domC ⊂ A and
rngC ⊂ B (denoted by C : A ≺ B). A function F is called a function from a class A into a class B if
domF = A and rngF ⊂ B (denoted by F : A → B).

The class
{f |func(f) ∧ domf = A ∧ rng f ⊆ B}
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of all functions from a class A into a class B which are sets is denoted by BA or by Map(A,B). Since
BA ⊂ P(A ∗B), we infer that the class BA is a set for any sets A and B.

The restriction of the function F to the class A is defined as the class

F|A ≡ {x|∃u∃v(x = 〈u, v〉 ∧ x ∈ F ∧ u ∈ A}.
The image and the inverse image of the class A with respect to the function F are defined as the classes

F[A] ≡ {v|∃u ∈ A(v = F(u))} and F−1[A] ≡ {u|F(u) ∈ A}.
A correspondence C from a class A into a class B is also called a (multivalued) collection of subclasses

Ba ≡ C〈a〉 ≡ {y|y ∈ B ∧ 〈a, y〉 ∈ C} of the class B indexed by the class A. In this case, the correspon-
dence C and the class rngC are also denoted by Ba ⊂ B|a ∈ A and ∪ Ba ⊂ B|a ∈ A , respectively.
The class ∪ Ba ⊂ B|a ∈ A is also called the union of the collection Ba ⊂ B|a ∈ A . The class
{y|∀x ∈ A(y ∈ Bx)} is called the intersection of the collection Ba ⊂ B|a ∈ A and is denoted by
∩ Ba ⊂ B|a ∈ A . With every class A, in a canonical way, one associates the collection a ∈ V|a ∈ A
of element sets of the class A. For this collection, the equality ∪A = ∪ a ⊂ V|a ∈ A is holds.

A function F from a class A into the class B is also called the simple collection of elements ba ≡ F(a)
of the class B indexed by the class A. In this case, the function F and the class rngF are also denoted
by (ba ∈ B|a ∈ A) and {ba ∈ B|a ∈ A}, respectively. The collection (ba ∈ V|a ∈ A) is also denoted by
(ba|a ∈ A). With every class A, in a canonical way, one associates the simple collection (a ∈ A|a ∈ A)
of elements of the class A. It is clear that {a ∈ A|a ∈ A} = A.

AS6 (replacement axiom scheme).

∀x∀y∀y′(ϕ(x, y, �p) ∧ ϕ(x, y′, �p) ⇒ y = y′) ⇒
⇒ ∀X∃Y ∀x ∈ X∀y(ϕ(x, y, �p) ⇒ y ∈ Y ),

where the formula ϕ(x, y, �p) does not contain Y as a free variable.
To explain the essence of this axiom scheme, consider the class

F ≡ {u|∃x∃y(u = 〈x, y〉 ∧ ϕ(x, y, �p))}.
The premise in AS6 states that F is a function. Therefore, Scheme AS6 can be expressed in the following
way:

func(F) ⇒ ∀X∃Y (F[X] ⊆ Y ).

In other words, if F is a function, then for every set X, the class F[X] is a set.
If A is a set, then by AS6, we infer that the class rngF ≡ {ba ∈ B|a ∈ A} is a set. Then F ⊂ A×rngF

implies that the class F ≡ (ba ∈ B|a ∈ A) is also a set. Therefore, if A is a set, then we use the notation
F : A→ B and F ≡ (ba ∈ B|a ∈ A).

A7 (empty set axiom).
∃x∀z(¬(z ∈ x)).

Axiom A1 implies that the set containing no elements is unique. It is denoted by ∅.
A8 (infinity axiom).

∃Y (∅ ∈ Y ∧ ∀u(u ∈ Y ⇒ u ∪ {u} ∈ Y )).

According to this axiom, there exists a set I containing ∅, {∅}, {∅, {∅}}, and so on.

A9 (regularity axiom).
∀X(X �= ∅ ⇒ ∃x(x ∈ X ∧ x ∩X = ∅)).

A function f : P(A) \ {∅} → A is called a choice function for the set A, if f(X) ∈ X for every
X ∈ P(A) \ {∅}.

The last axiom postulates the existence of a choice function for every nonempty set.
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A10 (axiom of choice (AC )).

∀X(X �= ∅ ⇒ ∃z((z � P(X) \ {∅} → X)∧
∧∀Y (Y ∈ P(X) \ {∅} ⇒ z(Y ) ∈ Y ))).

The described first-order theory is called the axiomatic set theory of Zermelo–Fraenkel ZF (with the
choice axiom) (see Zermelo [4] and Fraenkel [33]).

4.2. Ordinals and cardinals in the ZF set theory. In the same manner as was done in LTS,
changing the word “α-class” to the word “class” and the word “α-set” to the word “set” in ZF, we define
the (multivalued) sequential pair A,A′ , the triplet A,A′,A′′ , . . . of classes A, A′, A′′, . . . , the simple
sequential pair (a, a′), the triplet (a, a′, a′′), . . . of the sets a, a′, a′′,. . . , the product

∏
Ai ⊂ A|i ∈ I of

a collection Ai ⊂ A|i ∈ I , the product A × A′, A × A′ × A′′, . . . of the pair A,A′ , the triplet
A,A′,A′′ , . . . , of classes A,A′,A′′, . . . , an n-placed relation R ⊂ An ≡ Map(n,A) on the class A,

an n-placed operation O : An → A on a class A, and so on.
It can be verified that A × A′ = {x|∃y∃y′(y ∈ A ∧ y′ ∈ A′ ∧ x = (y, y′))} and A2 �= A ∗ A.
A class P is said to be ordered by a binary relation ≤ on P if:
(1) ∀p ∈ P(p ≤ p);
(2) ∀p, q ∈ P(p ≤ q ∧ q ≤ p⇒ p = q);
(3) ∀p, q, r ∈ P(p ≤ q ∧ q ≤ r ⇒ p ≤ r).

If, in addition,
(4) ∀p, q ∈ P(p ≤ q ∨ q ≤ p),

then the relation ≤ is called the linear order on the class P.
An ordered class P is said to be well-ordered if

(5) ∀Q(∅ �= Q ⊆ P ⇒ ∃x ∈ Q(∀y ∈ Q(x ≤ y))), i.e., every nonempty subset of the class P has the
smallest element.

Let P and Q be ordered classes. A mapping F : P → Q is said to be monotone (≡ increasing, order
preserving) if p ≤ p′ implies F(p) ≤ F(p′). The mapping F is said to be strictly monotone if p < p′ implies
F(p) < F(p′). The mapping F is said to be isotone if it is monotone and F(p) ≤ F(p′) implies p ≤ p′. It
can be verified that:

(1) if F is isotone, then F is injective and strictly monotone;
(2) if F is isotone and surjective, then F is bijective and the inverse mapping F−1 : Q → P is also

isotone.
Ordered classes P,≤ and Q,≤ are said to be order equivalent (write P,≤ ≈ Q,≤ ) if

there exists some isotone bijective mapping F : P → Q.
If a class P is ordered by a relation ≤ and A is a nonempty subclass of the class P, then an element

p ∈ P is said to be the smallest upper bound or the supremum of the subclass A if ∀x ∈ A(x ≤ p) ∧ ∀y ∈
P((∀x′ ∈ A(x′ ≤ y)) ⇒ p ≤ y). This formula is denoted by p = supA.

A class S is said to be transitive if ∀x(x ∈ S ⇒ x ⊆ S).
A class (a set) S is called an ordinal (ordinal number) if S is transitive and well-ordered by the relation

∈ ∪ = on S. The property of a class S to be an ordinal will denoted by On(S).
In the form of the formula, this is

On(S) ≡ ∀x(x ∈ S ⇒ x ⊆ S) ∧ ∀x, y, z(x ∈ S ∧ y ∈ S ∧ z ∈ S ∧ x ∈ y ∧ y ∈ z ⇒ x ∈ z)

∧∀x, y(x ∈ S ∧ y ∈ S ⇒ x ∈ y ∨ x = y ∨ y ∈ x) ∧ ∀T (∅ �= T ⊆ S ⇒ ∃x(x ∈ T ∧ ∀y(y ∈ T ⇒ x ∈ y))).

Ordinal numbers are usually denoted by Greek letters α, β, γ, and so on. The class of all ordinal
numbers is denoted by On. The natural ordering of the class of ordinal numbers is the relation α ≤ β ≡
α = β ∨ α ∈ β. The class On is transitive and linearly ordered by the relation ∈ ∪ =.

There are some simple assertions about ordinal numbers:
(1) if α is an ordinal number, A is a set, and A ∈ α, then A is an ordinal number;
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(2) α = {β|β ∈ α} for every ordinal number α;
(3) α+ 1 ≡ α ∪ {α} is the smallest of all ordinal numbers that are greater than α;
(4) every nonempty set of ordinal numbers has the smallest element.

Therefore, the ordered class On is well-ordered. Thus, On is an ordinal.

Lemma 2. Let A be a nonempty subclass of the class On. Then A has the smallest element.

Proof. By condition, there exists some ordinal number α ∈ A. Consider the class B ≡ {x|x ∈ A ∧ x ∈
α + 1}. By separation axiom Scheme AS3 (ZF) this class is a set. Since α ∈ B ⊂ On and the class On
is well-ordered, the set B has the smallest element β. Take an arbitrary element γ ∈ A. If γ ≤ α, then
γ ∈ B, and, therefore, γ ≥ β. If γ > α, then γ > β. Thus, β is the smallest element of the class A.

Lemma 3. If A is a nonempty set of ordinal numbers, then:

(1) the class ∪A is an ordinal number ;
(2) ∪A = supA in the ordered class On.

Proof. (1) The set ∪A is transitive. In fact, if x ∈ y ∈ ∪A, then y ∈ α ∈ A for some ordinal α. By the
transitivity of α, we obtain x ∈ α, whence x ∈ ∪A. It is clear that the set ∪A is well-ordered by
the relation ∈ ∪ =.

(2) Let us show that p ≡ ∪A satisfies the formula p = supA. First, p is an ordinal number. Second,
assume that there is x ∈ A such that p < x, i.e., p ∈ x. Since p ∈ x and x ∈ A, we infer that
p ∈ ∪A ≡ p, but this is impossible. Therefore, ∀x ∈ A(x ≤ p). Third, let ∃y ∈ On((∀x′ ∈ A(x′ ≤
y))∧y ∈ p). Since y ∈ p, we infer that ∃x ∈ A(y ∈ x), but it contradicts ∀x′ ∈ A(x′ ≤ y). Therefore,
p = supA.

Corollary. The class On is a proper class.

An ordinal number α is said to be successive if α = β + 1 for some ordinal number β. In the opposite
case α is said to be limiting. This unique number β is denoted by α − 1. For an ordinal number α, the
formula expressing the property of being successive (limiting) will be denoted by Son(α) [Lon(α)].

Lemma 4. An ordinal number α is limiting if and only if α = supα.

The smallest (in the class On) nonzero limiting ordinal is denoted by ω. The existence of such an
ordinal follows from A7, AS6, and AS3. Ordinals which are smaller than ω are called natural numbers.

Collections Bn ⊂ B|n ∈ N ⊂ ω and (bn ∈ B|n ∈ N ⊂ ω), where N is an arbitrary subset of ω, are
called sequences. If N ⊂ n ∈ ω, then these collections are said to be finite; otherwise, they are said to be
infinite.

Theorem 1 (principle of transfinite induction). Let C be a class of ordinal numbers such that :

(1) ∅ ∈ C;
(2) α ∈ C ⇒ α+ 1 ∈ C;
(3) (α is a limiting ordinal number ∧α ⊂ C) ⇒ S ∈ C.

Then C = On.

Proof. Let this be not true. Consider the subclass D ≡ On \C. The class D is nonempty, and, therefore,
according to Lemma 2, it has the smallest element γ. Now γ �= ∅, because ∅ ∈ C. Thus, γ is either a
successive ordinal number, or limiting. Suppose that γ = γ′ + 1. Since γ′ ∈ γ, it follows that γ′ /∈ D and,
therefore, γ′ ∈ C. Then, by condition (2) of the theorem, γ = γ′ + 1 ∈ C. Suppose that γ is a limiting
ordinal number. Then γ ⊂ C and, by condition (3) of the theorem, γ ∈ C. In both cases, we come to the
contradiction with the fact that γ /∈ C. Therefore, C = On.
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Theorem 2 (construction by transfinite induction). For every function G : V → V, there exists a
unique function F : On → V such that for every α ∈ On the equality

F(α) = G(F|α)

holds.

Proof. Consider the class C ≡ {f |func(f) ∧On(domf) ∧ ∀x ∈ domf(f(x) = G(f |x))}.
Take any function f, g ∈ C and consider the numbers α ≡ domf and β ≡ domg. Let α ⊂ β. If α = 0,

then f = ∅ ⊂ g. If α �= 0, then consider the set P ≡ {x ∈ α|f(x) �= g(x)}. Suppose that the set P is
nonempty. Then P contains the smallest element π. Since f(0) = G(f |∅) = G(∅) = G(g|∅) = g(0), we
infer that π �= 0. By definition, for every x ∈ π, we have f(x) = g(x), whence f |π = g|π. This implies
f(π) = G(f |π) = G(g|π) = g(π). But it follows from π ∈ P that f(π) �= g(π). From this contradiction,
we infer that the set P is empty. Therefore, f ⊂ g. Thus, we have proved that α ⊂ β implies f ⊂ g. It
follows from this property that α = β implies f = g.

Consider the correspondence E ≡ {z|∃α ∈ On∃f ∈ C(α = domf ∧ z = 〈α, f〉)}. From what was
proved above, we infer that E is a mapping from the class D ≡ domE into the class V. We will consider
this mapping in the form of a simple collection E ≡ (fα ∈ C|α ∈ D). As was proved above, α ⊂ β implies
fα ⊂ fβ .

Let us prove that D = On by transfinite induction.
Since ∅ ∈ C and 〈0, ∅〉 ∈ E, we infer that 0 ∈ D.
Let α ∈ D. Using the function fα, we define the function g : α + 1 → V setting g|α ≡ fα and

f(α) ≡ G(fα). From α ∩ {α} = ∅, α + 1 = α ∪ {α}, g = fα ∪ {〈α,G(fα)〉}, and the union axiom
A4, it follows that this definition is correct. Let x ∈ α + 1. If x ∈ α, then g(x) = fα(x) = G(fα|x).
By the transitivity, x ⊂ α = domfα. Therefore, fα|x = g|x implies g(x) = G(g|x). If x ∈ {α}, then
g(x) ≡ G(fα) = G(g|x). Consequently, g ∈ C and 〈α+ 1, g〉 ∈ E implies α+ 1 ∈ D.

Let α be a limiting ordinal number, and let α ⊂ D. By Lemmas 4 and 3, α = supα = ∪α. Let x ∈ α.
Then x ∈ y for some y ∈ α ⊂ D. Let x ∈ z ∈ α. If y = z, then fy(x) = fz(x). If y ∈ z, then by of the
imbedding fy ⊂ fz, y ⊂ z implies fy(x) = fz(x). If z ∈ y, then in a similar way, fz(x) = fy(x).

Define the function g : α → V setting g(x) ≡ fy(x) for any y ∈ α such that x ∈ y. It is clear that
g|y = fy. From α = {y|y ∈ α}, g = ∪ fy|y ∈ g , the replacement axiom scheme AS6 and the union
axiom A4, it follows that this definition is correct. Let us verify that g ∈ C.

Let x ∈ domg = α. Then x ∈ y ∈ α implies g(x) = fy(x) = G(fy|x) = G(g|x), since x ⊂ y ⊂ α. Now
from g ∈ C and α = domg, it follows that α ∈ D.

By the principle of transfinite induction, we conclude that D = On.
Let x ∈ On. Then x ∈ x + 1 ≡ α. Let x ∈ β and x ∈ γ for some β, γ ∈ On. Since α ⊂ β, α ⊂ γ,

fα ⊂ fβ , and fα ⊂ fγ , we infer that fβ(x) = fα(x) = fγ(x). It follows that we can correctly define
a function F : On → V setting F(x) ≡ fβ(x) for every β ∈ On such that x ∈ β. It is clear that
F|β = fβ ∈ V for every β ∈ On.

If x ∈ On, then x ∈ x+ 1 ≡ α and x ⊂ α implies F(x) = fα(x) = G(fα|x) = G(F|x).
It remains to show that the function F is unique. Assume that there is a function F′ : On → V such

that F′(α) = G(F′|α) for any α ∈ On. Note that by the replacement axiom scheme AS6, F′|α ∈ V
for any α ∈ On. Consider the class A ≡ {α ∈ On|F(α) = F′(α)}. Since F(0) = G(F|∅) = G(∅) =
G(F′|∅) = F′(0), we infer that 0 ∈ A, i.e., this class is nonempty. Assume that the class B ≡ On \ A is
nonempty. Then it contains the smallest element β.

If α ∈ β, then α ∈ A implies F(α) = F′(α). So F|β = F′|β. Hence we obtain F(β) = G(F|β) =
G(F′|β) = F′(β), but this contradicts the inequality F(β) �= F′(β). It follows from the obtained contra-
diction that A = On.

In ZF, there exists the following principle of ∈-induction.

Lemma 5. If a class C satisfies the condition

∀x ⊆ C ⇒ x ∈ C,
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then C = V.

Proof. Suppose that C �= D, i. e., D ≡ V \ C �= ∅. Then there exists P ∈ D. If P ∩ D = ∅, then we set
X ≡ P .

Let P ∩ D �= ∅. Consider the set N containing all n ∈ ω satisfying the condition that there exists a
unique sequence u ≡ u(n) ≡ (Rk|k ∈ n+1) of sets Rk such that R0 = P and Rk+1 = ∪Rk for every k ∈ n.
Since the sequence (Rk|k ∈ 1) such that R0 ≡ X satisfies this property, we infer that 0 ∈ N . Let n ∈ N ,
i.e., for n, there exists a unique sequence u ≡ (Rk|k ∈ n + 1). Define the sequence v ≡ (Sk|k ∈ n + 2),
setting Sk ≡ Rk for every k ∈ n+ 1 and Sn+1 ≡ ∪Rn = ∪Sn, i.e., v = u ∪ {〈n+ 1,∪Rn〉}. It is clear that
the sequence v possesses all the necessary properties. Let us verify its uniqueness. Suppose that there
exists a sequence w ≡ (Tk|k ∈ n + 2) such that T0 = P and ∀k ∈ n + 1(Tk+1 = ∪Tk). Consider the set
M ′ consisting of all m ∈ n + 2 such that Sm = Tm. Let M ′′ ≡ ω \ (n + 2) and M ≡ M ′ ∪M ′′. Since
S0 = P = T0, we infer that 0 ∈M ′ ⊂M .

Let m ∈ M ′. If m = n + 1, then m + 1 = n + 2 ∈ M ′′ ⊂ M . If m < n + 1, then m + 1 ∈ n + 2 and
Sm+1 = ∪Sm = ∪Tm = Tm+1 implies m + 1 ∈ M ′ ⊂ M . If m ∈ M ′, then m + 1 ∈ M ′′ ⊂ M . Therefore,
m ∈ M implies m + 1 ∈ M . By the principle of transfinite induction, M = ω. Hence M ′ = n + 2 and
v = w, i. e., the sequence v is unique. Therefore, n + 1 ∈ N . By the principle of natural induction,
N = ω. Thus, for every n ∈ ω, there exists a unique sequence u(n). By the uniqueness, we can denote it
by (Rn

k |k ∈ n+ 1).
Consider the following formula of the ZF theory: ϕ(x, y) ≡ (x ∈ ω ⇒ y = Rx

x) ∧ (x /∈ ω ⇒ y = ∅). By
the axiom scheme of replacement AS6, for ω, there exists a set Y such that ∀x ∈ ω(∀y(ϕ(x, y) ⇒ y ∈ Y )).
If n ∈ ω, then ϕ(n,Rn

n) implies Rn
n ∈ Y . Therefore, in the set ω × Y , we can define an infinite sequence

u ≡ (Rn ∈ Y |n ∈ ω) setting u ≡ {z ∈ ω × Y |∃x ∈ ω(z = 〈x,Rx
x〉)}. The uniqueness property mentioned

above implies u(m) = u(n)|(m+ 1) for all m ≤ n. Thus u|(n+ 1) = u(n). Hence the sequence u satisfies
the following properties: R0 = P and Rk+1 = ∪Rk for every k ∈ ω. Having the set u, we can take the set
A ≡ rng u ≡ {Rn|n ∈ ω} and the set Q ≡ ∪A = {y|∃x ∈ ω(y ∈ Rx)} = ∪ Rn|n ∈ ω . It is clear that
Rn ⊂ Q for every n ∈ ω and, therefore, P = R0 ⊂ Q.

Since P ∩ D �= ∅, we infer that R ≡ Q ∩ D �= ∅. By the regularity axiom A8, there exists X ∈ R such
that X ∩ R = ∅. Let us verify that X ∩ D = ∅. Actually, suppose that there exists x ∈ X ∩ D. Since
X ∈ Q, we infer that X ∈ Rn for some n ∈ ω. Therefore, x ∈ X ∈ Rn implies x ∈ ∪Rn = Rn+1 ⊂ Q.
Thus, x ∈ R. As a result, we have x ∈ X∩R = ∅, but this is impossible. It follows from this contradiction
that X ∈ D and X ∩ D = ∅.

Thus, in both cases, X ⊂ C. By the condition, X ∈ C, but this is impossible, because X ∈ D. From
this contradiction, we infer that C = V.

Sets A and B are said to be equivalent (A ∼ B) if there exists a bijective function u : A � B.
An ordinal number α is said to be cardinal if for every ordinal number β, the conditions β ≤ α and

β ∼ α imply β = α. The class of all cardinal numbers will be denoted by Cn. The class Cn with the
order induced from the class On is well-ordered.

Lemma 6. For every set A, there exists an ordinal number α such that A ∼ α.

Now, for a set A, consider the class {β|β ∈ On ∧ β ∼ A}. By Lemma 6, this class is nonempty, and
therefore it contains the smallest element α. It is clear that α is a cardinal number. Moreover, this class
contains only one cardinal number α. This number α is said to be the power of the set A (it is denoted
by |A| or cardA). Two sets having the same power are said to be equivalent (it is denoted by |A| = |B|).
A set of the power ω is said to be denumerable. Sets of the power n ∈ ω are said to be finite. A set is
called countable if it is finite or denumerable. A set is said to be infinite if it is not finite.

Note that if κ is an infinite cardinal number, then κ is a limiting ordinal number.
Actually, if κ = α+ 1, then κ = cardκ = card (α+ 1) = cardα ≤ α < κ, but this is impossible.
Let α be an ordinal. A confinality of α is the ordinal number cf(α), which is equal to the smallest

ordinal number β for which there exists a function f from β into α such that ∪rng f = α.
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A cardinal κ is said to be regular if cf(κ) = κ, i.e., for every ordinal number β, for which there exists
a function f : β → κ such that ∪rng f = κ, κ ≤ β holds.

A cardinal κ > ω is said to be (strongly) inaccessible if κ is regular and cardP(λ) < κ for all ordinal
numbers λ < κ. The property of a cardinal number κ to be inaccessible will be denoted by Icn(κ). The
class of all inaccessible cardinal numbers will be denoted by In.

The existence of inaccessible cardinals cannot be proved in ZF (see [19], § 13).

4.3. Mirimanov–von Neumann sets in the ZF set theory. Now we will apply the construction
by transfinite induction in the following situation. Consider the class

G ≡ {Z|∃X∃Y (Z = 〈X,Y 〉) ∧ ((X = ∅ ⇒ Y = ∅)
∨(X �= ∅ ⇒ (¬func(X) ⇒ Y = ∅) ∨ (func(X) ⇒ (¬On(domX) ⇒ Y = ∅)
∨(On(domX) ⇒ (Son(domX) ⇒ Y = X(domX − 1) ∪ P(X(domX − 1)))

∨(Lon(domX) ⇒ Y = ∪rng X))))))}.
If we express the definition of the class G less formally, then G consists of all pairs 〈X,Y 〉 for which

there are the following five disjunctive cases:
(1) if X = ∅, then Y = ∅;
(2) if X �= ∅ and X is not a function, then Y = ∅;
(3) if X �= ∅, X is a function, and domX is not an ordinal number, then Y = ∅;
(4) if X �= ∅, X is a function, domX is an ordinal number, and domX = α + 1, then Y = X(α) ∪

P(X(α));
(5) if X �= ∅, X is a function, and domX is a limiting ordinal number, then Y = ∪rng X.
By definition, G is a correspondence. Since any set X possesses one of these properties, it follows that

domG = V. Since in each of these five cases the set Y is defined by a set X in a unique way, using the
property of an unordered pair from Lemma 1, we infer that G is a function from V into V.

According to Theorem 2, for the function G, there exists a function F : On → V for which for any
α ∈ On, we have

F(α) = G(F|α).
From case (1), for the function G, it follows that F(∅) = G(F|∅) = G(∅) = ∅.
From case (4), it follows that if β is a successive ordinal number and β = α+1, then F(β) = G(F|β) =

(F|β)(α) ∪ P((F|β)(α)) = F(α) ∪ P(F(α)).
Finally, from case (5), it follows that if α is a limiting ordinal number, then F(α) = G(F|α) =

∪rng (F|α) = ∪ F(β)|β ∈ α .
Denote F(α) by Vα. Thus, we obtained the collection Vα ⊂ V|α ∈ On , satisfying the following

conditions:
(1) V0 = ∅;
(2) Vα = ∪ Vβ |β ∈ α , if α is a limiting ordinal number;
(3) Vα+1 = Vα ∪ P(Vα).
This collection is called the Mirimanov–von Neumann collection, and its elements Vα are called

Mirimanov–von Neumann sets.
Let us prove now some lemmas on the sets Vα, which we will need later.

Lemma 7. If α and β are ordinal numbers then:
(1) α < β ⇔ Vα ∈ Vβ ;
(2) α = β ⇔ Vα = Vβ ;
(3) α ⊂ Vα and α ∈ Vα+1.

Proof. (1) and (2). By the transfinite induction, we will prove that for any ordinal number β (α ∈ β ⇒
Vα ∈ Vβ).

If β = ∅, then this is clear, because ∀α¬(α ∈ β).
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If for some ordinal number β (α ∈ β ⇒ Vα ∈ Vβ), then consider the ordinal number β + 1. From
α ∈ β + 1, we infer that α ∈ β ∨ α = β. If α ∈ β, then, by the inductive assumption, Vα ∈ Vβ , and
since Vβ+1 = Vβ ∪ P(Vβ), we infer that Vα ∈ Vβ+1. If α = β, then Vα = Vβ ∈ Vβ+1, because Vβ ∈ P(Vβ).
Therefore, for β + 1, the property α ∈ β + 1 ⇒ Vα ∈ Vβ+1 holds.

Suppose now that β is a limiting ordinal number and ∀γ ∈ β∀α(α ∈ γ ⇒ Vα ∈ Vγ). Let α belong to β.
Since β is a limiting ordinal number, it follows that α + 1 ∈ β. From Vβ = ∪ Vγ |γ ∈ β , it follows that
Vα+1 ⊂ Vβ . In this case, Vα ∈ Vα+1 implies Vα ∈ Vβ .

It is clear that α = β ⇒ Vα = Vβ . If Vα = Vβ , then either α < β, or α = β, or β < α. If α < β, then
Vα ∈ Vβ ; if β < α, then Vβ ∈ Vα. Therefore, β = α.

If Vα ∈ Vβ , then α < β, because for α = β, Vα = Vβ , and for β < α, Vβ ∈ Vα.
(3) Consider the class C ≡ {x|x ∈ On∧x ⊂ Vx}. Since 0 ⊂ ∅ = V0, we infer that 0 ∈ C. If α ∈ C, then

α ⊂ Vα implies α + 1 ≡ α ∪ {α} ⊂ Vα ⊂ Vα+1. Let α be a limiting ordinal number, and let α ⊂ C. By
construction, Vα = ∪ Vβ |β ∈ α . If x ∈ α, then x ∈ C means that x ⊂ Vx. Therefore, x ∈ P(Vx) ⊂ Vx+1.
Since α is a limiting ordinal number, x+ 1 ∈ α implies x ∈ Vα. Thus, α ⊂ Vα, and, therefore, α ∈ C. By
Theorem 1, C = On.

The lemma is proved.

Lemma 8. For every ordinal number α, the condition z ⊂ x ∈ Vα implies z ∈ Vα.

Proof. We will prove this assertion by transfinite induction.
Precisely, let C = {α|α ∈ On ∧ ∀x∀z(z ⊂ x ∈ Vα ⇒ z ∈ Vα)}. Let us show that C = On.
If α = ∅, then it is clear that α ∈ C.
Suppose that α ∈ C. We prove that in this case, α+1 ∈ C. Let z ⊂ x ∈ Vα+1. Since Vα+1 = Vα∪P(Vα),

we infer that x ∈ Vα or x ⊂ Vα. If z ⊂ x ∈ Vα, then z ∈ Vα by the inductive assumption, and, therefore,
z ∈ Vα+1. If x ⊂ Vα and z ⊂ x, then z ⊂ Vα, and, therefore, z ∈ Vα+1. Thus, α+ 1 ∈ C.

If α is a limiting ordinal number and ∀β ∈ α(β ∈ C), then from z ⊂ x ∈ Vα, we infer that ∃β ∈ α(z ⊂
x ∈ Vβ), and, by the inductive assumption, we conclude that ∃β ∈ α(z ∈ Vβ). From Vα = Vβ |β ∈ α , it
follows now that z ∈ Vα.

Therefore, by the transfinite induction, C = On.

This property is similar to the axiom of subset A8 from LTS.

Lemma 9. For any ordinal number α,

∀x(x ∈ Vα ⇒ x ⊂ Vα).

Proof. This lemma will also be proved by the transfinite induction.
For α = ∅, the given formula holds, because ∀x¬(x ∈ V∅).
Let for some ordinal number α,

∀x(x ∈ Vα ⇒ x ⊂ Vα).
Consider the ordinal number α+1. If x ∈ Vα+1, then x ∈ Vα∨x ∈ P(Vα), or, more presicely, x ∈ Vα∨x ⊂
Vα. In the case x ∈ Vα, by the inductive assumption, x ⊂ Vα, and Vα ⊂ Vα+1 implies x ⊂ Vα+1. If x ⊂ Vα,
then we infer that x ⊂ Vα+1 from Vα ⊂ Vα+1.

Now let α be a limiting ordinal number, and let ∀β ∈ α∀x(x ∈ Vβ ⇒ x ⊂ Vβ). Then from x ∈ Vα, we
infer that ∃β ∈ α(x ∈ Vβ). By the inductive assumption, ∃β ∈ α(x ⊂ Vβ), and, therefore, x ⊂ Vα.

The lemma is proved.

This property is similar to the transitivity axiom A7 from the LTS.

Corollary 1. If α and β are ordinal numbers and α ≤ β, then Vα ⊂ Vβ.

Corollary 2. For every ordinal number α the inclusion Vα ⊂ P(Vα) and the equality Vα+1 = P(Vα) are
valid.

Proof. If x ∈ Vα, then by the given lemma, x ⊂ Vα, i.e., x ∈ P(Vα). Thus, Vα ⊂ P(Vα). Therefore,
Vα+1 = Vα ∪ P(Vα) = P(Vα).
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Corollary 3. If α and β are ordinal numbers and α < β, then |Vα| < |Vβ |.
Proof. By the previous two corollaries, Vα ⊂ P(Vα) = Vα+1 ⊂ Vβ . Using Cantor’s theorem, we infer that
|Vα| < |P(Vα)| = |Vα+1| ≤ |Vβ |.
Lemma 10. For every ordinal number α, if x ∈ Vα+1, then x ⊂ Vα.

Proof. Suppose that x ∈ Vα+1. This means that x ∈ Vα ∨ x ⊂ Vα. If x ⊂ Vα, then everything is proved.
If x ∈ Vα, then by the previous lemma, x ⊂ Vα.

Lemma 11. For every ordinal number α,

∀x∀y(x ∈ Vα ∧ y ∈ Vα ⇒ x ∪ y ∈ Vα).

Proof. We will again use the principle of transfinite induction.
If α = ∅, then the conclusion of lemma is valid, because ∀x¬(x ∈ V∅).
Now let α = β + 1 for some ordinal number β. Then from the formula x ∈ Vα ∧ y ∈ Vα, by Lemma 10,

we infer that x ⊂ Vβ ∧ y ⊂ Vβ . Therefore, x ∪ y ⊂ Vβ , whence x ∪ y ∈ Vβ+1, i.e., x ∪ y ∈ Vα.
Now suppose that α is a limiting ordinal number and ∀β ∈ α∀x∀y(x ∈ Vβ ∧ y ∈ Vβ ⇒ x ∪ y ∈ Vβ).

Then x, y ∈ Vα implies ∃β ∈ α(x, y ∈ Vβ). Therefore, by the inductive assumption, ∃β ∈ α(x ∪ y ∈ Vβ),
and, therefore, x ∪ y ∈ Vα.

This property is similar to the axiom of binary union A10 from the LTS.

Lemma 12. For every limiting ordinal number α, the condition x ∈ Vα implies P(x) ∈ Vα.

Proof. Suppose that α is some limiting ordinal number and x ∈ Vα. Then there exists β ∈ α such that
x ∈ Vβ . Let us show that in this case, P(x) ⊂ Vβ. Actually, by Lemma 8, from x ∈ Vβ and z ⊂ x,
we infer z ∈ Vβ , whence ∀z(z ∈ P(x) ⇒ z ∈ Vβ), and this means that P(x) ⊂ Vβ . If P(x) ⊂ Vβ , then
P(x) ∈ Vβ+1 ⊂ Vα.

Corollary 1. For every limiting ordinal number α, the condition x, y ∈ Vα implies {x}, {x, y}, 〈x, y〉 ∈ Vα.

Proof. By Lemma 12, P(x) ∈ Vα. By Lemma 8, {x} ⊂ P(x) implies {x} ∈ Vα. Now, by Lemma 11,
{x, y} ∈ Vα. It follows from the proved properties that 〈x, y〉 ∈ Vα.

Corollary 2. For every limiting ordinal number α the condition X,Y ∈ Vα implies X ∗ Y ∈ Vα.

Proof. Let x ∈ X and y ∈ Y . Then {x} ⊂ X ∪Y and {y} ⊂ X ∪Y imply {x, y} ⊂ X ∪Y . By Lemma 11,
X∪Y ∈ Vα. Since {x} ∈ P(X∪Y ) and {x, y} ∈ P(X∪Y ), we infer that 〈x, y〉 ≡ {{x}, {x, y}} ⊂ P(X∪Y ).
Hence 〈x, y〉 ∈ P(P(X∪Y )). Therefore, X ∗Y ⊂ P(P(X∪Y )). By Lemmas 11, 12, and 8, X ∗Y ∈ Vα.

This property is similar to the axiom of full ensemble A9 from LTS.

Lemma 13. If α ≥ ω, then ω ⊂ Vα. If α > ω, then ω ∈ Vα.

Proof. By Lemma 7, ω ⊂ Vω ⊂ Vα. If α > ω, then by Lemma 8, ω ⊂ Vω ∈ Vω+1, implies ω ∈ Vω+1 ⊂ Vα.

Now we will adduce some assertions about sets Vκ for inaccessible cardinal numbers κ, which we will
need later.

Let λ be an ordinal number. Consider a collection K(λ) ≡ Mβ|β ∈ λ+ 1 of the sets Mβ ≡ {x| |x �
P(|Vβ |) � |P(|Vβ|)|} of all corresponding bijective mappings for all β ∈ λ + 1 and the set M(λ) ≡
∪ Mβ |β ∈ λ+ 1 . By the axiom of choice there exists a choice function ch(λ) : P(M(λ)) \ {∅} →M(λ)
such that ch(λ)(P ) ∈ P for every P ∈ P(M(λ)) \ {∅}. Since Mβ ⊂ M(λ) for β ∈ λ + 1, we infer that
cβ(λ) ≡ ch(λ)(Mβ) ∈Mβ, i.e., cβ(λ) is a bijection from P(|Vβ|) onto |P(|Vβ|)|.

The following assertion can be called the theorem on initial synchronization of powers of Mirimanov–von
Neumann sets.
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Theorem 3. Let λ be an ordinal number. Then for every ordinal number α ≤ λ, there exists a unique
collection u(α) ≡ u(λ)(α) ≡ (fβ |β ∈ α+ 1) of bijective functions fβ : Vβ � |Vβ | such that :

(1) f0 ≡ ∅;
(2) if γ < β ∈ α+ 1, then fγ = fβ |Vγ ;
(3) if β ∈ α + 1 and β = γ + 1, then fβ |Vγ = fγ and fβ(x) = cγ(λ)(fγ [x]) for every x ∈ Vβ \ Vγ =

P(Vγ) \ Vγ ;
(4) if β ∈ α+ 1 and β is a limiting ordinal number, then fβ = ∪ fγ |γ ∈ β .
It follows from the uniqueness property that u(α)|δ + 1 = u(δ) for every δ ≤ α, i.e., these collections

continue each other.

Proof. First, let us verify the uniqueness of the collection u ≡ u(α). For α, let there exist a collection
v ≡ (gβ |β ∈ α + 1) of bijective functions gβ : Vβ � |Vβ | possessing properties (1)–(4). Consider the set
D′ ≡ {β ∈ α + 1|fβ = gβ}, the class D′′ ≡ On \ (α + 1), and the class D ≡ D′ ∪ D′′. It is clear that
0 ∈ D′ ⊂ D.

Let β ∈ D. If β ≥ α, then β + 1 ∈ D′′ ⊂ D. Let β < α. Then β ∈ D′ and β + 1 ∈ α + 1. Therefore,
by property (3), fβ+1(x) = fβ(x) = gβ(x) = gβ+1(x) for every x ∈ Vβ and fβ+1(x) = cβ(λ)(fβ [x]) =
cβ(λ)(gβ [x]) = gβ+1(x) for every x ∈ Vβ+1 \ Vβ , i.e., fβ+1 = gβ+1. Therefore, β + 1 ∈ D′ ⊂ D. Thus,
β ∈ D implies β + 1 ∈ D.

Let β be a limiting ordinal number, and let β ⊂ D. If β ∩ D′′ �= ∅, then there exists γ ∈ β such that
γ ≥ α + 1. Therefore, β > γ ≥ α + 1 implies β ∈ D′′ ⊂ D. Let β ∩ D′′ = ∅, i.e., β ⊂ D′. Then for
every γ ∈ β, fγ = gγ holds. Since β ⊂ α + 1, then β ≤ α + 1. If β = α + 1, we infer that β ∈ D′′ ⊂ D.
Let β ∈ α + 1. If x ∈ Vβ = ∪ Vγ |γ ∈ β , then x ∈ Vγ for some γ ∈ β. Therefore, by property (2),
fβ(x) = fγ(x) = gγ(x) = gβ(x) for every x ∈ Vβ , i.e., fβ = gβ . So β ∈ D′ ⊂ D. Thus, the properties
Lon(β) and β ⊂ D imply β ∈ D.

By the principle of transfinite induction, D = On. Consequently, D′ = α+ 1. Therefore, u = v.
Now we will write cγ instead of cγ(λ).
Consider the set C ′ consisting of all ordinal numbers α ≤ λ for which there exists a collection u(α)

with properties (1)–(4). Also, consider the classes C′′ ≡ On \ (λ + 1) and C ≡ C ′ ∪ C′′. Since V0 = ∅
and |V0| = 0, we infer that the collection u(0) ≡ (fβ |β ∈ 1) with the bijective function f0 = ∅ : V0 � |V0|
possesses all properties (1)–(4), and, therefore, 0 ∈ C.

Let α ∈ C. If α ≥ λ, then α + 1 ∈ C′′ ⊂ C. Now let α < λ. Then α + 1 ∈ λ + 1 means that we can
use the function cα. Since α ∈ C ′, we infer that for α, there exists a unique collection u ≡ (fβ |β ∈ α+ 1).
Define the collection v ≡ (gβ |β ∈ α + 2) of bijective functions gβ : Vβ � |Vβ | setting gβ ≡ fβ for every
x ∈ Vα and gα+1(x) ≡ cα(fα[x]) for every x ∈ Vα+1 \ Vα = P(Vα) \ Vα.

Let us verify that v possesses properties (1)–(4). Let β ∈ α + 2. If β ∈ α + 1, then properties (1)–(4)
are obviously true. Let β = α + 1. Then gβ(x) = gα+1(x) = fα(x) = gα(x) for every x ∈ Vα and
gβ(x) = gα+1(x) = cα(fα[x]) = cα(gα[x]) for every x ∈ Vβ \ Vα. Moreover, gβ |Vα = fα = gα. Therefore,
γ < β implies gβ |Vγ = gα|Vγ = fα|Vγ = fγ = gγ . Therefore, α+ 1 ∈ C ′ ⊂ C.

Let α be a limiting ordinal number, and let α ⊂ C. If α ∩ C′′ �= ∅, then there exists β ∈ α such that
β ≥ α + 1. Consequently, α > β ≤ λ + 1 implies α ∈ C′′ ⊂ C. Let α ∩ C′′ = ∅, i.e., α ⊂ C ′. Then for
every β ∈ α, there exists a unique collection uβ ≡ (fβ

γ |γ ∈ β + 1) of bijective functions fβ
γ : Vγ � |Vγ |

with properties (1)–(4). Since α ⊂ λ + 1, it follows that α ≤ λ + 1. If α = λ + 1, then α ∈ C′′ ⊂ C.
Now let α ∈ λ + 1. For every δ ≤ β ∈ α, consider the collection w ≡ uβ|δ + 1 ≡ (fβ

γ |γ ∈ δ + 1). The
collection w possesses properties (1)–(4). By the uniqueness, which was proved above, w = uδ. Therefore,
uδ = uβ |δ + 1, i.e., f δ

γ = fβ
γ for every γ ∈ δ + 1. In particular, f δ

δ = fβ
δ for every δ ≤ β.

Define the collection v ≡ (gβ |β ∈ α + 1) of functions gβ setting gβ ≡ fβ
β for every β ∈ α and gα(x) ≡

fβ
γ (x) for every x ∈ Vα = ∪ Vγ |γ ∈ α and every γ ≤ β ∈ α such that x ∈ Vγ . It is clear that
gβ � Vβ � |Vβ | for every β ∈ α. Let us verify that g � Vα → |Vα|. By Corollary 1 of Lemma 9,
Vγ ⊂ Vα. Consequently, |Vγ | ⊂ |Vα|. Therefore, for every x ∈ Vα, gα(x) ≡ fβ

γ (x) ∈ |Vγ | ⊂ κ ≡
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∪ |Vγ | ⊂ |Vα| |γ ∈ α ⊂ |Vα|. Let x, y ∈ Vα, and let gα(x) = gα(y). Then x ∈ Vγ and y ∈ Vδ for
some γ, δ ∈ α. Consider the number β, which is the greatest of the numbers γ and δ. By definition,
fβ

β (x) = gα(x) = gα(y) = fβ
β (y). From the injectivity of this function, we infer that x = y. Therefore, the

function gα is surjective. Let z ∈ κ. Then z ∈ |Vγ | for some γ ∈ α. Since the function fγ
γ : Vγ � |Vγ | is

injective, we infer that z = fγ
γ (x) for some x ∈ Vγ ⊂ Vα. Consequently, z = gα(x). Thus, gα is a bijective

function from Vα onto κ, i.e., Vα ∼ κ.
By Corollary 3 of Lemma 9, |Vγ | ∈ |Vα|. Therefore, there exists a set A ≡ {x ∈ |Vα| |∃y ∈ α(x =

|Vy|)} = {|Vγ | |γ ∈ α} of all ordinal numbers |Vγ |. Since α is a limiting ordinal number, we infer that
A �= ∅. Therefore, by Lemma 3, the set ∪A = supA is an ordinal number. If z ∈ ∪A = {z|∃x ∈ A(z ∈ x)},
then z ∈ |Vγ | ⊂ κ for some γ ∈ α. Conversely, if z ∈ κ, then z ∈ |Vγ | ∈ A for some γ ∈ α. Therefore,
z ∈ ∪A. Consequently, κ = ∪A, i.e., κ is an ordinal number.

Prove that κ is a cardinal number. Let β be an ordinal number, β ≤ κ, and let β ∼ κ. Suppose that
β < κ. Then β ∈ κ implies β ∈ |Vγ | for some γ ∈ α. Consequently, β < |Vγ | = card |Vγ | ≤ |κ| = |β|.
Since β is an ordinal number, we infer that |β| ≤ β. As a result, we come to the inequality β < β, which
is impossible. It follows from this contradiction that β = κ. This means that κ is a cardinal number.

Since κ is a cardinal number and κ ∼ Vα, we infer that κ = |Vα|. Therefore, gα � Vα � |Vα|.
Let us verify that the collection v possesses properties (1)–(4). By the definition of this collection,

g0 ≡ f0
0 = ∅. Let γ < β ∈ α + 1. If β ∈ α, then the equality fγ

γ = fβ
γ , which was proved above, implies

gβ |Vγ = fβ
β |Vγ = fβ

γ = fγ
γ ≡ gγ . If β = α, then, by construction, gβ |Vγ = gα|Vγ = fγ

γ ≡ gγ . Thus,
property (2) holds for v.

Let β ∈ α + 1, β = γ + 1, and let x ∈ Vβ = P(Vγ). If β ∈ α, then the equality fγ
γ = fβ

γ , which was
proved above, implies gβ(x) = fβ

β (x) = fβ
γ (x) = fγ

γ (x) = gγ(x) for every x ∈ Vγ and gβ(x) = fβ
β (x) =

cγ(fβ
γ [x]) = cγ(fγ

γ [x]) = cγ(gγ [x]) for every x ∈ Vβ \ Vγ . Therefore, property (3) holds for v.
Property (4) follows from property (2). From the properties, which were already verified, we infer that

α ∈ C ′ ⊂ C.
By the principle of transfinite induction, C = On, and, therefore, C ′ = λ+ 1.

Note that since the functions cγ(λ) depend on the number λ, we cannot compose the (continuing each
other) collections u(λ)(α) into one global collection indexed by all ordinal numbers.

Corollary. For every limiting ordinal number α, the equalities |Vα| = ∪ |Vβ | |β ∈ α = ∪{|Vβ | |β ∈ α} =
sup{|Vβ | |β ∈ α} hold.

Proof. Consider the number λ ≡ α. By Theorem 3, there exists the corresponding collection u(α) ≡
(fβ |β ∈ α + 1). Since α is a limiting ordinal number and α ∈ α + 1, by property (4), it follows that
fα = ∪ fβ |β ∈ α . Therefore, |Vα| = rng fα = ∪ rng fβ |β ∈ α = ∪ |Vβ | |β ∈ α = ∪{|Vβ | |β ∈ α} =
sup{|Vβ | |β ∈ α}, where the latter equality follows from Lemma 3.

Lemma 14. For every inaccessible cardinal number κ and every ordinal number α ∈ κ, the property
|Vα| < κ holds.

Proof. Consider the set C ′ ≡ {x ∈ κ| |Vx| < κ} and the classes C′′ ≡ On \ κ and C ≡ C ′ ∪ C′′. Since
V0 = ∅, we have |V0| = 0 < κ. Therefore, 0 ∈ C.

Let α ∈ C. If α ≥ κ, then α+1 ∈ C′′ ⊂ C. Let α < κ. Then α ∈ C ′. If α+1 = κ, then α+1 ∈ C′′ ⊂ C.
Let α+1 < κ. Since Vα ∼ |Vα|, we have P(Vα) ∼ P(|Vα|). Therefore, |P(Vα)| = |P(|Vα|)|. By Corollary 2
of Lemma 9, |Vα+1| = |P(Vα)| = |P(|Vα|)|. Since |Vα| < κ and the cardinal number κ is inaccessible, we
obtain |P(|Vα|)| < κ. Hence |Vα+1| < κ. Thus, α+ 1 ∈ C ′ ⊂ C.

Let α be a limiting ordinal number, and let α ⊂ C. If α ∩ C′′ �= ∅, then there exists β ∈ α such that
β ≥ κ. Therefore, α > β ≥ κ implies α ∈ C′′ ⊂ C. Let α ∩ C′′ = ∅, i.e., α ⊂ C ′ ⊂ κ. If α = κ, then
α ∈ C′′ ⊂ C. Let α < κ. By α ⊂ C ′, for every β ∈ α, we have |Vβ| < κ. Therefore, sup{|Vβ| |β ∈ α} ≤ κ.

Using the property |Vβ | ∈ κ, we can correctly define the function f : α → κ, setting f(β) ≡ |Vβ|.
It is clear that rng f = {|Vβ | |β ∈ α}. By Corollary of Theorem 3, ∪rng f = ∪{|Vβ| |β ∈ α} =
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sup{|Vβ | |β ∈ α} = |Vα|. By the inequality which was proved above, we infer that |Vα| ≤ κ. Suppose that
|Vα| = κ. Then by the regularity of the number κ, κ = ∪rng f implies κ ≤ α, but this contradicts the
initial inequality α < κ. Therefore, |Vα| < κ. Consequently, α ∈ C ′ ⊂ C.

By the principle of transfinite induction, C = On. Thus, C ′ = κ.

Lemma 15. If κ is an inaccessible cardinal, then κ = |Vκ|.
Proof. By Lemma 7, κ ⊂ Vκ. Therefore, κ = |κ| ≤ |Vκ|. By Corollary 1 of Theorem 3, |Vκ| =
sup(|Vβ | |β ∈ κ). Since |Vβ| < κ, by Lemma 14 we have |Vκ| ≤ κ. As a result, we have κ = |Vκ|.
Lemma 16. If κ is an inaccessible cardinal number, α is an ordinal number such that α < κ, and f is a
correspondence from Vα into Vκ such that domf = Vα and f〈x〉 ∈ Vκ for every x ∈ Vα, then rng f ∈ Vκ.

Proof. Since κ is a limiting ordinal number, we have Vκ = ∪ Vδ|δ ∈ κ . For x ∈ Vα, there exists δ ∈ κ

such that f〈x〉 ∈ Vδ. Therefore, the nonempty set {y ∈ κ|f〈x〉 ∈ Vy} contains the smallest element z.
By the uniqueness of the element z, we can correctly define the function g : Vα → κ setting g(x) ≡ z.
Consider the ordinal number β ≡ |Vα| and take some bijective mapping h : β � Vα. Consider the mapping
ϕ ≡ g ◦ h : β → κ and the ordinal number γ ≡ ∪rng ϕ = sup rng ϕ ≤ κ.

Suppose that γ = κ. Since the cardinal κ is regular, the supposition ∪rng ϕ = κ implies κ ≤ β ≡ |Vα|.
But, by Lemma 16, |Vα| < κ. It follows from this contradiction that γ < κ.

Since h is bijective, rng ϕ = rng g. Therefore, γ = sup rng g. If x ∈ Vα, then f〈x〉 ∈ Vz = Vg(x).
From g(x) ≤ γ, by Lemma 7, we infer that Vg(x) ⊂ Vγ . Consequently, by Lemma 9, f〈x〉 ∈ Vγ implies
f〈x〉 ⊂ Vγ . Therefore, rng f ⊂ Vγ . By Lemma 7, rng f ∈ Vγ+1 ⊂ Vκ.

Lemma 17. If κ is an inaccessible cardinal number, A ∈ Vκ, and f is a correspondence from A into Vκ

such that f〈x〉 ∈ Vκ for every x ∈ A, then rng f ∈ Vκ.

Proof. Since κ is a limiting ordinal number, Vκ = ∪ Vα|α ∈ κ . Therefore, A ∈ Vα for some α ∈ κ. By
Lemma 9, A ⊂ Vα. Define the correspondence g from Vα into Vκ setting g|A ≡ f and g〈x〉 ≡ ∅ ⊂ Vκ

for every x ∈ Vα \ A. Then domg = Vα and rng g = rng f . If x ∈ A, then g〈x〉 = f〈x〉 ∈ Vκ, and if
x ∈ Vα \A, then g〈x〉 = ∅ ∈ Vκ. Therefore, by Lemma 16, we obtain rng f = rng g ∈ Vκ.

Consider the class Π ≡ {x|∃α ∈ On(x ∈ Vα)} ≡ ∪ Vα|α ∈ On .

Lemma 18. Π = V.

Proof. Let us show that Π satisfies the principle of ∈-induction.
Introduce the function ran : Π → On setting ran(x) ≡ the smallest ordinal α such that x ∈ Vα+1.
It follows from Lemma 7 that all ordinal numbers are contained in Π. Let us verify that x ⊂ Π implies

x ∈ Π for every set x. If x = ∅, then, by Lemma 7, x = 0 ∈ V1 ⊂ Π. Let x �= ∅. Consider the following
formula of the ZF theory: ϕ(y, z) ≡ (y ∈ Π ⇒ z = ran(y)) ∧ (y /∈ Π ⇒ z = ∅). By the axiom scheme
of replacement AS6, for the set x, there exists a set B such that ∀y ∈ x∀z(ϕ(y, z) ⇒ z ∈ B). If y ∈ x,
then ϕ(y, ran(y)) implies ran(y) ∈ B. Therefore, A ≡ {z ∈ B|∃y ∈ x(z = ran(y))} ⊂ B. By the axiom
scheme of separation AS3, A is a set. By Lemma 3, α ≡ ∪A = supA is an ordinal number.

If y ∈ x, then z ≡ ran(y) ∈ A implies z ≤ α. Therefore, by Lemma 7, y ∈ Vz+1 ⊂ Vα+1. So x ⊂ Vα+1.
Whence x ∈ P(Vα+1) ⊂ Vα+2 ⊂ Π.

By the principle of ∈-induction, we now infer that Π = V.

5. Universes, Ordinals, Cardinals, and Mirimanov–von Neumann Classes
in the Local Theory of Sets

5.1. The relativization of formulas of the LTS to universal classes. The interpretation of
the ZF set theory in universal classes. It is convenient to denote by �x a line of variables x0, . . . , xn−1.
Let all free variables of a formula ϕ be among y, �x. Denote by �x ∈ U the formula x0 ∈ U ∧ · · ·∧xn−1 ∈ U .
We use the abbreviations ∀x ∈ X(ϕ) for ∀x(x ∈ X ⇒ ϕ) and ∃x ∈ X(ϕ) for ∃x(x ∈ X ∧ ϕ). By ϕU we
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will denote the formula (the relativization of the formula ϕ to the class U) obtained by changing in ϕ all
subformulas of the form ∀xϕ′ and ∃xϕ′ by ∀x ∈ Uϕ′ and ∃x ∈ Uϕ′, respectively.

Statement 1. Let U be a universal class in the LTS. Consider the interpretation M ≡ (U, I) of the ZF
theory in the LTS in which to the predicate symbols ∈ZF and =ZF the correspondence I assigns the binary
U -correspondences B ≡ {z ∈ U |∃x ∈ U∃y ∈ U(z = (x, y)U ∧ x ∈LTS y)} and E ≡ {z ∈ U |∃x ∈ U∃y ∈
U(z = (x, y)U ∧ x =LTS y)} on the class U . The interpretation M is a model of ZF in the LTS.

Proof. We need to verify that in the LTS there exists a deduction of the formula or the scheme of formulas
M � ϕ[s] for every proper axiom or axiom scheme ϕ of the ZF theory and every sequence s ≡ x0, . . . , xq, . . .
of elements of the class U .

On s, Axiom A1 is translated into the formula

M � A1[s] = A1U ≡ ∀X ∈ U∀Y ∈ U(∀u ∈ U(u ∈ X ⇔ u ∈ Y ) ⇒ X = Y ).

By the definition of equality in the LTS, this formula is evidently deducible.
On s, Axiom A2 is translated into the formula

M � A2[s] = A2U ≡ ∀u ∈ U(∀v ∈ U∃x ∈ U∀z ∈ U(z ∈ x⇔ z = u ∨ z = v).

For the U -sets u and v, consider the unordered U -pair x ≡ {u, v}U . By Lemma 2 of Sec. 2, x ∈ U .
From the corresponding definitions, we infer that x = {u}U ∪ {v}U = {y ∈ U |y ∈ {u}U ∨ y ∈ {v}U} =
{y ∈ U |y = u ∨ y = v}. By the axiom scheme AS2 (LTS), we have ∀z ∈ U(z ∈ x ⇔ z = u ∨ z = v) and
obtain the desired deducibility.

On s, the axiom scheme of separation AS3 is translated into the scheme M � AS3[s] ≡ ∀X ∈ U∃Y ∈
U∀u ∈ U(u ∈ Y ⇔ u ∈ X ∧ ϕU (u, �pM [s])), where Y is not a free variable of the formula ϕ(u, �p).

By AS2 (LTS), for the U -predicative formula ϕU (u, �pM [s]) and U -set X, there exists an U -class Y ≡
{u ∈ U |ϕU (u, �pM [s])∧ u ∈ X} such that u ∈ Y ⇔ (u ∈ U ∧ u ∈ X ∧ ϕU (u, �pM [s])). Since Y ⊂ X ∈ U , by
the axiom of subset A8 (LTS) we have Y ∈ U , and this gives us the desired deducibility.

On s, the axiom of union A4 is translated into the formula M � A4[s] = A4U ≡ ∀X ∈ U∃Y ∈ U∀z ∈
U∀u ∈ U(u ∈ z ∧ z ∈ X ⇒ u ∈ Y ).

For the U -set X and the corresponding U -predicative formula, by AS2 (LTS), there exists the U -class
Z ≡ {w ∈ U |∃x, y ∈ U(x ∈ X ∧ y ∈ x ∧ w = 〈x, y〉U )} ⊂ X ∗U U . Since Z〈x〉 = x ∈ U for any x ∈ X, by
the axiom of full union A11 (LTS), Y ≡ ∪U [x ⊂ U |x ∈ X U ≡ rngUZ ∈ U . If u ∈ z ∈ X, then u ∈ Y ,
and we obtain the desired deducibility.

On s, the axiom of power set A5 is translated into the formula M � A5[s] = A5U ≡ ∀X ∈ U∃Y ∈
U∀u ∈ U(u ⊂ X ⇒ u ∈ Y ).

For the U -set X, by AS2 (LTS), there exists an U -class Y ≡ PU (X) ≡ {x ∈ U |x ⊂ X}. By Axiom A8
(LTS), Y ∈ U . If u ∈ U and u ⊂ X, then, by AS2, u ∈ Y , and we obtain the desired deducibility.

On the sequence s, the axiom scheme of replacement AS6 is translated into the scheme

M � AS6[s] ≡ ∀x ∈ U∀y ∈ U∀y′ ∈ U(ϕU (x, y, �pM [s])

∧ϕU (x, y′, �pM [s]) ⇒ y = y′) ⇒ ∀X ∈ U∃Y ∈ U(∀x ∈ U(x ∈ X

⇒ ∀y ∈ U(ϕU (x, y, �p[s]) ⇒ y ∈ Y )))))

where �pM [s] denotes the line of values of the terms p0, . . . , pm−1 on s under the interpretation M .
By AS2 (LTS), for the U -predicative formula ϕU (x, y, �p[s]), there exists the U -class F ≡ {z ∈ U |∃x, y ∈

U(z = 〈x, y〉U ∧ ϕU (x, y, �pM [s]))}. From the formula scheme cited above, we infer that the U -class F is
an U -function.

Consider any U -set X and the U -class Y ≡ F [X]. Consider the U -class G ≡ {z ∈ U |∃x, y ∈ U(z =
〈x, y〉U ∧ ϕU (x, y, �pM [s]) ∧ x ∈ X} = F |X ⊂ X ∗U Y . If x ∈ X, then G〈x〉 = ∅ ∈ U for x /∈ domUF and
G〈x〉 = {F (x)}U for x ∈ domUF . Therefore, by the axiom of full union A11 (LTS), Y = rngUG ∈ U .

If x ∈ X, y ∈ U , and ϕU (x, y, �pM [s]), then 〈x, y〉U ∈ F . Thus, y ∈ F [X] ≡ Y . This proves the formula
scheme M � AS6[s].
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On s, the axiom of empty set A7 is translated into the formula M � A7[s] = A7U ≡ ∃x ∈ U∀z ∈
U(¬(z ∈ x)).

By axiom A3 (LTS), the empty U -set ∅LTS possesses the necessary property ∀z ∈ U(z /∈ ∅LTS).
On s, the axiom of infinity A8 is translated into the formula M � A8[s] ≡ ∃Y ∈ U(∅ ∈ Y ∧∀y ∈ U(y ∈

Y ⇒ y ∪U {y}U ∈ Y )).
Consider the a-set π postulated by the axiom of infra-infinity A13 (LTS). By this axiom, ∅ ∈ π, and

if y ∈ U and y ∈ π, then y ∪a {y}a ∈ π. Let us verify that A ≡ y ∪a {y}a = y ∪U {y}U ≡ B. Let x ∈ A.
Then x ∈ a and x ∈ y ∨ x = y. Since by Axiom A5 (LTS), a ⊂ U , it follows x ∈ U . Therefore, x ∈ B.
Conversely, let x ∈ B, i.e., x ∈ U and x ∈ y ∨ x = y. Since y ∈ π ∈ a, by axiom A7 (LTS), we have,
y ∈ a. If x ∈ y, then for the same reason x ∈ a. If x = y, then x ∈ a once again. Therefore, in each case,
x ∈ a. Therefore, x ∈ A. From the equality which was proved above, we infer that y ∪U {y}U ∈ π. This
means that the translation of Axiom A8 (ZF) is deduced in the LTS.

On s, the axiom of regularity A9 is translated into the formula M � A9[s] ≡ ∀X ∈ U(X �= ∅ ⇒ ∃x ∈
U(x ∈ X ∧ x ∩U X = ∅)). This formula is obviously deduced from the axiom of transitivity A7 (LTS)
and the axiom of regularity A12 (LTS).

Finally, on s, the axiom of choice A10 is translated into the formula M � A10[s] ≡ ∀X ∈ U(X �= ∅ ⇒
∃z ∈ U((z � PU (X) \ {∅}U →U X) ∧ ∀Y ∈ U(Y ∈ PU (X) \ {∅}U ⇒ z(Y ) ∈ Y ))).

If ∅ �= X ∈ U , then by axiom of choice A14 (LTS), there exists the class z such that (z � PU (X) \
{∅}U →U X) ∧ ∀Y (Y ∈ PU (X) \ {∅}U ⇒ z(Y ) ∈ Y ). By Axiom A9, PU (X) ∈ U , and, by Axiom A8,
A ≡ PU (X) \ {∅}U ∈ U . Therefore, by Lemma 3 of Sec. 2, B ≡ A ∗U X ∈ U . From z ⊂ B, according to
Axiom A8, we infer that z ∈ U , and this gives us the required deducibility.

According to Statement 1, in every universal class U , we can use all assertions for U -classes and U -sets
which can be proved in ZF for the classes and sets.

5.2. The globalization of local constructions. In the same manner as was done in ZF for classes,
in the LTS, for assemblies A and B and classes A and B, we define the following assemblies:

(1) P(A) ≡ {x|x ⊂ A};
(2) A ∪ B ≡ {x|x ∈ A ∨ x ∈ B};
(3) A ∩ B ≡ {x|x ∈ A ∧ x ∈ B};
(4) {A} ≡ {x|x = A};
(5) {A,B} ≡ {A} ∪ {B} = {x|x = A ∨ x = B};
(6) 〈A,B〉 ≡ {A, {A,B}};
(7) A ∗ B ≡ {x|∃y ∈ A∃z ∈ B(x = 〈y, z〉)};
(8) ∪A ≡ {x|∃y ∈ A(x ∈ y)}.
In the same manner as was done in ZF, changing the word “class” to the word “assembly” and the

word “set” to the word “class”, in the LTS, we define a correspondence C with the domain domC and the
class of values rngC, a function (≡ a mapping) F, a correspondence C : A ≺ B, a function F : A → B,
a (multivalued) collection Ba ⊂ B|a ∈ A with the union ∪ Ba ⊂ B|a ∈ A and the intersection
∩ Ba ⊂ B|a ∈ A , a simple collection (ba ∈ B|a ∈ A) with the assembly of members {ba ∈ B|a ∈ A},
the (multivalued) sequential pair A,A′ , triplet A,A′,A′′ , . . . of assemblies A,A′,A′′, . . . , the simple
sequential pair (a, a′), the triplet (a, a′, a′′), . . . of classes a, a′, a′′, . . . , the product

∏
Ai ⊂ A|i ∈ I of

a collection Ai ⊂ A|i ∈ I , the product A × A′, A × A′ × A′′, . . . of the pair A,A′ , the triplet
A,A′,A′′ , . . . of assemblies A,A′,A′′, . . . , an n-placed relation R ⊂ An ≡Map(n,A) on an assembly

A, an n-placed operation O : An → A on an asembly A, and so on.
One can verify that the pairs 〈a, b〉 and (a, b) possesses the usual property: 〈a, b〉 = 〈a′, b′〉 ⇔ a =

a′ ∧ b = b′ and (a, b) = (a′, b′) ⇔ a = a′ ∧ b = b′ for every classes a and b.
With every assembly A, in a canonical way the collection a ⊂ V|a ∈ A of element classes of the

assembly A and the simple collection (a ∈ A|a ∈ A) of elements of the assembly A are associated. The
equalities ∪A = ∪ a ∈ V|a ∈ A and A = {a ∈ A|a ∈ A} are valid for them.
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Now we will state the connection between local notions and constructions and corresponding global
ones.

Lemma 1. Let α and β be universal classes, let A ∈ α, and let A ∈ β. Then Pα(A) = Pβ(A) = P(A).

Proof. Let x ∈ Pα(A), i. e., x ∈ α and x ⊂ A. Since A ∈ β, by Axiom A8, x ∈ β. Therefore, x ∈ Pβ(A).
Hence Pα(A) ⊂ Pβ(A). The converse implication is verified analogously.

It is clear that Pα(A) ⊂ P(A). The inclusion P(A) ⊂ Pα(A) can be verified as above.

Corollary. For every class A, the assembly P(A) is a class.

Proof. By the axiom of universality A6, for A, there exists a universal class α such that A ∈ α. Then,
by the proved lemma, P(A) = Pα(A). But by the axiom scheme AS2, Pα(A) is a class.

Lemma 2. Let α and β be universal classes, A,B ⊂ α, and let A,B ⊂ β. Then A∪αB = A∪βB = A∪B
and A ∩α B = A ∪β B = A ∩B.

Proof. Let x ∈ A ∪α B, i.e. x ∈ α and x ∈ A ∨ x ∈ B. Then x ∈ β, and, therefore, x ∈ A ∪β B. Thus,
A ∪α B ⊂ A ∪β B. The converse inclusion can be verified in the same way.

It is clear that A ∪α B ⊂ A ∪B. The inclusion A ∪B ⊂ A ∪α B is verified as above.

Lemma 3. Let α and β be universal classes, A,B ∈ α, and let A,B ∈ β. Then {A}α = {A}β = {A},
{A,B}α = {A,B}β = {A,B}, and 〈A,B〉α = 〈A,B〉β = 〈A,B〉.
Proof. If y ∈ {A}α ≡ {x ∈ α|x = A}, then y = A ∈ β, and, therefore, y ∈ {x ∈ β|x = A} ≡ {A}β .
Thus, {A}α ⊂ {A}β . The converse inclusion is verified in the same way. It is clear that {A}α ⊂ {a}. The
inclusion {A} ⊂ {A}α is verified as was done above.

Now according to the proved assertions and Lemma 2, {A,B}α ≡ {A}α ∪α {B}α = {A}β ∪α {B}β =
{A}β ∪β {B}β ≡ {A,B}α. Similarly, {A,B}α = {A,B}.

Finally, by Lemma 2 of Sec. 2, {A}α ∈ α, {A}β ∈ β, {A,B}α ∈ α, and {A,B}β ∈ β. Therefore, by the
properties proved above, {A}β ∈ α and {A,B}β ∈ α.

Consequently, applying the equality proved above, we obtain

〈A,B〉α ≡ {{A}α, {A,B}α}α = {{A}β , {A,B}β}α = {{A}β , {A,B}β}β ≡ 〈A,B〉β .
Similarly, 〈A,B〉α = 〈A,B〉.
Corollary. For every class A the assembly {A} is a class.

Proof. By the axiom of universality A6, for A, there exists a universal class α such that A ∈ α. Then,
by the proved lemma, {A} = {A}α. But, by the axiom scheme AS3, {A}α is a class.

Lemma 4. Let α and β be universal classes, A,B ⊂ α, and let A,B ⊂ β. Then A∗αB = A∗βB = A∗B.

Proof. Let x ∈ A ∗α B, i. e., x ∈ α and ∃y∃z(y ∈ A ∧ z ∈ B ∧ x = 〈y, z〉α). Since y ∈ A ⊂ β, we have
y ∈ β. Similarly, z ∈ β. By Lemmas 2 of Sec. 2 and 3 x = 〈y, z〉α = 〈y, z〉β ∈ β. Therefore, x ∈ β and
∃y∃z(y ∈ A ∧ z ∈ B ∧ x = 〈y, z〉β), i. e., x ∈ A ∗β B. Therefore, A ∗α B ⊂ A ∗β B. The converse inclusion
is verified in the same way.

It is clear that A ∗α B ⊂ A ∗B. The inclusion A ∗B ⊂ A ∗α B can be verified as above.

Lemma 5. Let α and β be universal classes, A,B ⊂ α, and let A,B ⊂ β. Then for every class u, the
following assertions are equivalent :

(1) u � A ≺α B [respectively u � A→α B];
(2) u � A ≺β B [respectively u � A→β B];
(3) u � A ≺ B [respectively u � A→ B].
Moreover, domαu = domβu = domu and rngαu = rngβu = rng u.
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Proof. (1) 	 (2). By Lemma 4, u ⊂ A ∗α B = A ∗β B. Therefore, domβu ⊂ A. If x ∈ A, then, by (1),
x ∈ A = domαu. Therefore, x ∈ α and 〈x, y〉α ∈ u for some y ∈ B. By Lemma 3, 〈x, y〉β ∈ u. Hence
x ∈ domβu. So A ⊂ domβu. As a result, domβu = A.

Let 〈x, y〉 ∈ u and 〈x, y′〉β ∈ u for some x ∈ A. Then y, y′ ∈ rngβu ⊂ B. Since x, y, y′ ∈ α and
x, y, y′ ∈ β, by Lemma 3, we infer that 〈x, y〉α = 〈x, y〉β ∈ u and 〈x, y′〉α = 〈x, y′〉β ∈ u. From (1), we now
infer that y = y′. This means that u � A→β B.

All other deducibilities are proved in the same manner.
The equalities domαu = domβu = domu and rngαu = rngβu = rng u are verified by using Lemma 3

in an obvious way.

Lemma 6. Let α and β be universal classes, A ⊂ α, and let A ⊂ β. Then ∪αA = ∪βA = ∪A.

Proof. By definition, ∪αA ≡ ∪α a ⊂ α|a ∈ A α ≡ {z ∈ α|∃y ∈ A(z ∈ y)}. Therefore, if x ∈ ∪αA, then
by Axiom A7, x ∈ y ∈ A ⊂ β implies x ∈ β. Therefore, x ∈ ∪βA. Thus, ∪αA ⊂ ∪βA. The converse
inclusion is verified similarly.

It is clear that ∪αA ⊂ ∪A. The inclusion ∪A ⊂ ∪αA is verified in the same way as above.

Corollary. For every class A the assembly ∪A, is a class.

Proof. By the axiom of universality A6, for A, there exists a universal class α such that A ∈ α. Then,
by the previous lemma, ∪A = ∪αA. But by the axiom scheme AS2, ∪αA, is a class.

Unfortunately, for classes A and B we cannot yet prove that the assemblies A ∪ B, A ∩ B, {A,B},
〈A,B〉, and A ∗B are classes. This will be done in Sec. 5.4.

5.3. Ordinals and cardinals in the local theory of sets. In the same manner as it was done in
ZF, changing the word “class” to the word “assembly” and the word “set” to the word “class,” in the
LTS, we can define ordered and well-ordered assemblies, ordinals, and ordinal numbers.

In the same manner as it was done in ZF, changing the word “class” to the word “U -class”, the word
“set” to the word “U -set,” and the word “relation” to the word “U -relation,” in the LTS, for every universal
class U we can define U -ordered and well-U -ordered U -classes, U -ordinals, and U -ordinal numbers with the
following change of the definition of a well-U -ordered U -class. Precisely, an U -ordered U -class P is said to
be well-U -ordered, if ∀Q(Q ⊂ U ∧ ∅ �= Q ⊂ P ⇒ ∃x ∈ U(x ∈ Q∧ ∀y ∈ U(y ∈ Q⇒ x ≤ y))), which means
that every nonempty U -subclass of the U -class P has the smallest element. From x, y ∈ Q ⊂ P ⊂ U ,
we infer that this formula is equivalent to the formula ∀Q(∅ �= Q ⊂ P ⇒ ∃x ∈ Q(∀y ∈ Q(x ≤ y))) cited
in condition (5) from the definition of a well-ordered class in ZF. But in the LTS, this formula has a
wider sense; precisely, this means that every nonempty subclass of the U -class P has the smallest element
(compare with Lemma 2, Sec. 4 in ZF).

This implies that the following lemma is fulfilled.

Lemma 7. Let U be a universal class and α ∈ U . Then the following assertions are equivalent :
(1) α is an ordinal number ;
(2) α is a U -ordinal number.

Now we will infer from this lemma that the assembly On ≡ {x|On(x)} of all ordinal numbers in the
LTS is well-ordered by the relation ∈ ∪ =.

Lemma 8. The assembly On is well-ordered by the relation ∈ ∪ =.

Proof. Let α and β be ordinal classes, and let α �= β. By the axiom of universality A6, α ∈ U and β ∈ V
for some universal classes U and V . Then either α �⊂ β or β �⊂ α. For certainty, let β �⊂ α. In this case,
by the axiom of subset A8, the nonempty V -set β \ α = {η ∈ V |η ∈ β ∧ η /∈ α} ∈ V has the smallest
element γ ∈ V . We have γ /∈ α by the definition of the V -set β \ α. Since every element γ is an element
of α by the minimality of γ, we have γ ⊆ α. By the axiom of subset, γ ∈ U . From γ /∈ α, and γ ≤ α it
follows that γ = α, i.e., α ∈ β.
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We have proved that ∈ ∪ = is a linear order on the assembly On. Let us show that this assembly is
well-ordered with respect to the given order. Suppose that we have some nonempty class S of ordinal
numbers. Consider a universe U , containing S. Then, by Axiom A7, S ⊂ U . By Lemma 7, S is an
U -class of U -ordinal numbers. Since, the universe U is a model of the theory ZF by Statement 1, we infer
that the U -class S of U -ordinal numbers has the smallest element.

The next lemma is similar to Lemma 2, Sec. 4, but it has another proof.

Lemma 9. Let A be a nonempty subassembly of the assembly On. Then A has the smallest element.

Proof. By the condition, there exists some ordinal number α ∈ A. By the axiom of universality A6
(LTS), there exists a universal class U such that α ∈ U . Consider the assembly B ≡ {x ∈ U |x ∈ A ∧ x ∈
α ∪U {α}U}. By the full comprehension axiom scheme AS2 (LTS), this assembly is an U -class. Since
α ∈ B ⊂ On and the assembly On is well-ordered, we infer that the class B has the smallest element β.
Take an arbitrary element γ ∈ A. If γ < α, then γ ∈ α ∈ U . Whence, by the axiom of transitivity A7
(LTS), γ ∈ U . Therefore, γ ∈ B in this case, and hence γ ≥ β. If γ = α, then γ ∈ B once again, and,
therefore γ ≥ β. Finally, if γ > α, then γ > β. Therefore, β is the smallest element of the assembly A.

Lemma 10. Let α be an ordinal number. Then:
(1) the assembly α+ ≡ α+ 1 ≡ α ∪ {α} is an ordinal number ;
(2) α+ is the smallest of all ordinal numbers which are greater than the number α.

Proof. (1) By Axiom A6, α ∈ U for some U ��. Let x ∈ α+
U ≡ (α + 1)U ≡ α ∪U {α}U . Then x ∈ U and

either x ∈ α or x = α. Therefore, x ∈ α+. Let y ∈ α+. In this case either y ∈ α or y ∈ α. In both cases,
y ∈ U . This means that y ∈ α+

U . Thus, α+ = α+
U and α+ is a U -ordinal number and, therefore, an ordinal

number. It is clear that α+ > α.
(2) Let β be an ordinal number such that β > α. Suppose that α+ > β. Then β ∈ α+, i.e., either β ∈ α

or β = α, but this contradicts the condition β > α. From this contradiction, we infer that β ≥ α+.

An ordinal number α+ will be called the successor of the ordinal number α.

Lemma 11. If A is a nonempty class of ordinal numbers, then:
(1) ∪A is an ordinal number ;
(2) ∪A = supA in the ordered assembly On.

Proof. By Axiom A6, A ∈ U for some universal class U . Then, by Axiom A7, A ⊂ U . Consider the
assembly X ≡ ∪A and the U -class Y ≡ ∪UA. By Lemma 6, X = Y . By Lemma 3, Sec. 4 from ZF and
Statement 1, Y is an U -ordinal number, and, therefore, by Lemma 7, it is an ordinal number. Thus, X is
also an ordinal number.

Let a ∈ A. If X < a, then X ∈ a ∈ A implies X ∈ ∪A = X, but this is impossible. Whence a ≤ X,
and, therefore, X is an upper bound of the class A. Let α be an ordinal number, and let α ≥ a for every
a ∈ A. Suppose that X > α. Then α ∈ X = ∪A implies α ∈ a for some a ∈ A. Hence α < a, but this is
impossible. Therefore, X ≤ α. Thus X = supA in On.

A limiting ordinal is an ordinal which is not equal to α+ for any ordinal number α.
As in Sec. 4, classes A and B are said to be equivalent (A ∼ B) if there exists a one-to-one (≡ bijective)

function u : A � B.
An ordinal number α wil be called cardinal if for every ordinal number β, the conditions β ≤ α and

β ∼ α imply β = α. The assembly of all cardinal numbers will be denoted by Cn. The assembly Cn with
the order induced from the assembly On is well-ordered.

Let U be a universal class. Two U -classes A and B are said to be U -equivalent (A ∼U B) if there exists
a bijective U -function u : A �U B.

A U -ordinal number α is said to be U -cardinal if for every U -ordinal number β, the conditions β ≤ α
and β ∼U α imply β = α.
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Proposition 1. Let U be a universal class and α ∈ U . Then the following assertions are equivalent :
(1) α is a cardinal number ;
(2) α is an U -cardinal number.

Proof. (1) 	 (2). By Lemma 7, α is a U -ordinal number. Let β be a U -ordinal number such that β ≤ α
and β ∼U α. This means that there exists a bijective U -mapping f : β �U α. By the axiom of transitivity
A7, β ⊂ α ⊂ U . Therefore, by Lemma 5, f � β � α. Hence β ∼ α. By condition (1), we obtain β = α.

(2) 	 (1). By Lemma 7, α is an ordinal number. Let β be an ordinal number such that β ≤ α and
β ∼ α. This means that there exists a bijective mapping f : β � α. By Axiom A7, β ⊂ α ⊂ U .
Therefore, by Lemma 5, f � β �U α, i. e., β ∼U α. By condition (2), we infer β = α.

The power cardUA of a set A ∈ U in a universe U is an U -cardinal α ∈ U such that there exists a
one-to-one U -mapping f : A �U α. The power cardA of a class A is a cardinal α such that A ∼ α.

Proposition 2. Suppose that A ∈ U ∈ V , U ��, and V ��. Then

cardA = cardUA = cardVA < cardV U.

Proof. Let cardUA = α, α ∈ U . Then α ∈ V . By definition, there exists a one-to-one function f : A �U α.
By Lemma 5, f � A �V α.

By Proposition 1, α is a U -cardinal number. Therefore, α = cardVA.
Similarly, by Lemma 5, f � A � α, and, by Proposition 1, α is a cardinal number. Thus, α = cardA.
Let us show now that

cardVA < cardV U.

According to Statement 1, cardVA ≤ cardV U . Suppose that

cardVA = cardV U = α, α ∈ V.

From the assertions proved above we infer that cardUA = cardVA = α implies α ∈ U . By Axiom A7,
α ⊂ U , α ⊂ V and U ⊂ V . By the definition of V -power, there exists a bijective V -function f : α �V U .
According to Lemma 5 f � α �U U . By the axiom of full union A11, U = rngUf ∈ U .

We infer that U ∈ U , but this is impossible.

An inaccessible cardinal number is defined in the LTS as was done in the theory ZF.
An U -cardinal number κ is said to be U -regular if for every U -ordinal number β for which there exists a

U -function f : β →U κ such that ∪UrngUf = κ, κ ≤ β. An U -cardinal number κ > ω0 ≡ ω is said to be
U -inaccessible if κ is U -regular and for every U -ordinal number λ, from λ ∈ κ, it follows that PU (λ) ∈ κ.

Proposition 3. Let U be a universal class and α ∈ U . Then the following conditions are equivalent :
(1) α is an inaccessible cardinal number ;
(2) α is a U -inaccessible U -cardinal number.

Proof. (1) 	 (2). By Proposition 1, α is an U -cardinal number. Let β ∈ U , β be an U -ordinal number,
and let there exist a U -mapping f : β →U α such that ∪UrngUf = α. By Lemma 7, β is an ordinal
number. Since β, α ∈ U , β, α ⊂ U by the axiom of transitivity. Therefore, by Lemma 5, f � β → α and
rngUf = rng f . Whence α = ∪Urng f . By Lemma 6, α = ∪rng f . Since α is a regular cardinal number,
we infer that α ≤ β. Hence α is a U -regular U -cardinal number.

Let β ∈ U , β be an U -ordinal number, and let β ∈ α. By Lemma 7, β is an ordinal number. Since
α is inaccessible, P(β) ∈ α. By Lemma 1, PU (β) = P(β) ∈ α. Therefore α is a U -inaccessible U -cardinal
number.

(2) 	 (1). By Proposition 1, α is a cardinal number. Let β be an ordinal number, and let f : β → α
be a mapping such that ∪rng f = α. Suppose that β ∈ α ∈ U . By the axiom of transitivity A7, β ∈ U .
By Lemma 7, β is an U -ordinal number. By A8, β, α ⊂ U . Therefore, by Lemma 7, f � β →U α and
rng f = rngUf . By Lemma 6, α = ∪rngUf = ∪UrngUf . Since α is a U -regular U -cardinal number, we
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infer that α ≤ β < α, but this is impossible. From this contradiction, we infer that the case β ∈ α is
impossible. Thus, α ≤ β. Hence α is a regular cardinal number.

Let β be an ordinal number, and let β ∈ α. By Axiom A7, β ∈ U . By Lemma 7, β is a U -ordinal
number. Since α is U -inaccessible, PU (β) ∈ α. By Lemma 1 and Proposition 2, cardP(β) = cardPU (β) =
cardUPU (β) ∈ α. Therefore, α is an inaccessible cardinal number.

In the LTS, we can use the principle of transfinite induction because of the well-ordering of the assembly
of all ordinals. Let us show this.

Theorem 1 (principle of transfinite induction in the LTS). Let C be an assembly of ordinal numbers
such that :

(1) ∅ ∈ C;
(2) α ∈ C ⇒ α+ 1 ∈ C;
(3) (α is a limiting ordinal number ∧α ⊂ C) ⇒ α ∈ C.

Then C = On.

Proof. Suppose that this is not true. Consider the subassembly D ≡ On \ C.
Since the assembly D is not empty, by Lemma 9, we infer that it has the smallest element.
Then γ �= ∅, because ∅ ∈ C. Therefore γ is either β+ for some ordinal number β or a limiting ordinal

number. Suppose that γ = β+1. Since β ∈ γ, it follows that β /∈ D, and, therefore, γ ∈ C. By condition
(2) of the theorem, γ = β+1 ∈ C. From this contradiction, we infer that γ �= β+1. Now the case remains
where γ is a limiting ordinal number. In this case, γ = sup γ and γ ⊂ C; therefore, by the condition (3)
of the theorem, γ = sup γ ∈ C. Therefore, the assembly D is empty, and, therefore, C = On.

Theorem 2 (principle of natural induction in the LTS). Let C be some assembly in LTS such that :
(1) ∅ ∈ C;
(2) for all n ∈ ω the condition n ∈ C implies n+ 1 ∈ C. Then ω ⊆ C.

Proof. Consider the assembly C̃ = C ∩ ω. This assembly is nonempty, because ∅ ∈ C ∧ ∅ ∈ ω ⇒ ∅ ∈ C̃,
and, moreover, it contains only ordinal numbers. Suppose that the assertion of the theorem is not fulfilled.
In this case, the assembly C = {x|x ∈ ω ∧ x /∈ C̃} is nonempty, because it is a subassembly of On and,
therefore, contains the smallest element α ∈ ω. We know that α �= ∅, because ∅ ∈ C̃. Since α ∈ ω and
α �= ∅, there exists β such that α = β + 1. In this case, β ∈ C̃, because α is the smallest ordinal number
in C. By condition (2) of the theorem, β + 1 ∈ C̃ in this case, i.e., α ∈ C̃, and we obtain a contradiction
with our assumption.

5.4. Mirimanov–von Neumann classes in the local theory of sets and their connection with
universal classes. Using all previous material, we will construct Mirimanov–von Neumann classes in
the LTS.

Consider an arbitrary universe U . Since it is a model of ZF, using the construction by transfinite
induction, we can, define Mirimanov–von Neumann U -sets V U

α for every U -ordinal number α ∈ U . By
the axiom of universality A6 and Lemma 12, for every ordinal number α, we define some Mirimanov–von
Neumann U -set V U

α for every universe U such that α ∈ U .

Lemma 12. Let U and W be universal classes, and let α be an ordinal number such that α ∈ U and
α ∈W . Then V U

α = V W
α .

Proof. We will prove this by the transfinite induction. Consider the subassembly C of the assembly On
consisting of all ordinal numbers α such that either α ∈ U , α ∈W , and V U

α = V W
α , or α /∈ U , or α /∈W .

Since ∅ ∈ U , ∅ ∈W , V U
∅ = ∅, and V W

∅ = ∅, it follows that V U
∅ = V W

∅ . Therefore, ∅ ∈ C.
Let α ∈ C. If α /∈ U or α /∈ W , then α + 1 /∈ U or α + 1 /∈ W respectively, i.e., α + 1 ∈ C. Let

α ∈ U , α ∈W . By the facts proved in Sec. 4, V U
α+1 = V U

α ∪U PU (V U
α ) and V W

α+1 = V W
α ∪W PW (V W

α ). By
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assumption, V U
α = V W

α ≡ Vα. Since Vα ∈ U and Vα ∈W , it follows that PU (Vα) = PW (Vα) by Lemma 1.
Hence V U

α+1 = Vα ∪U PU (Vα) ≡ P and V W
α+1 = Vα ∪W PU (Vα) ≡ Q. By Axiom A9 (LTS), PU (Vα) ∈ U

and PU (Vα) ∈ W . Using Axiom A7, we can easily verify that P = Q. Thus, V U
α+1 = V W

α+1. Therefore,
α+ 1 ∈ C.

Let α be a limiting ordinal number such that α ⊂ C. If α /∈ U or α /∈ W , then α ∈ C. Consider the
case α ∈ U and α ∈ W . By Axiom A7, α ⊂ U and α ⊂ W . Since α ⊂ C, we have V U

β = V W
β ≡ Vβ for

all β ∈ α. By the assertions proved in Sec. 4,

V U
α = ∪U V U

β |β ∈ α U and V W
α = ∪W V W

β |β ∈ α W .

Since V U
β = V W

β = Vβ and Vβ ∈ U , Vβ ∈ W for all β ∈ α, we can write V U
α = ∪U Vβ |β ∈ α U and

V W
α = ∪W Vβ |β ∈ α W . Let us show that R ≡ ∪U Vβ |β ∈ α U = ∪W Vβ |β ∈ α W ≡ S.
Let x ∈ R. Then x ∈ U and x ∈ Vβ for some β ∈ α. Since x ∈ Vβ ∈W by Axiom A7, we have x ∈W .

Therefore, x ∈ S. Thus, R ⊂ S. The innverse implication is verified similarly. Therefore, we infer that
V U

α = R = S = V W
α . This means that α ∈ C.

By Theorem 3, C = On.

Using this lemma, for every α ∈ On, we can define the Mirimanov –von Neumann class V α in the LTS
(we draw a line over Vα to differentiate these classes from the corresponding classes in ZF) as the U -class
V U

α for every universe U satisfying the condition α ∈ U . As a result, we obtain the Mirimanov–von
Neumann collection Vα ⊂ V|α ∈ On in the LTS. It satisfies properties (1)–(3) of the Mirimanov–von
Neumann collection in ZF listed in paragraph 4.

Lemma 13. The collection Vα ⊂ V|α ∈ On possesses the following properties:
(1) α = β ⇐⇒ Vα = Vβ ;
(2) α < β ⇐⇒ Vα ∈ Vβ.

Proof. First, we show that α < β implies Vα ∈ Vβ . Suppose that β ∈ U for some universe U . Then
α ∈ U implies Vα = V U

α and Vβ = V U
β . By Statement 1, our assertion follows from the fact that in ZF,

by Lemma 7, Sec. 4, α < β ⇒ Vα ∈ Vβ. Now we will prove all the assertions of the lemma. The assertion
α = β ⇒ Vα = Vβ is proved above. If Vα = Vβ, then either α < β or α = β, or β < α. If α < β, then
Vα ∈ Vβ ; if β < α, then Vβ ∈ Vα; therefore, β = α.

The assertion α < β ⇒ Vα ∈ Vβ is already proved. If Vα ∈ Vβ , then α < β, because for α = β, we have
Vα = Vβ , and for β < α, we have Vβ ∈ Vα.

The following theorem shows that all universal classes in the LTS are Mirimanov–von Neumann sets
for inaccessible cardinal indices.

Theorem 3. Let U be an arbitrary universal class. Then:
(1) κ ≡ sup(On ∩ U) = ∪(On ∩ U) ⊂ U is an inaccessible cardinal number ;
(2) U = V κ;
(3) the correspondence q : U �→ κ such that U = Vκ is an injective isotone mapping from the assembly

U of all universal classes into the assembly In of all inaccessible cardinal numbers.

Proof. (1) Since A ≡ On ∩ U is a nonempty class, because it contains the element 0 ≡ ∅, by Lemma 11
we infer that κ is an ordinal number.

Suppose that κ is not a cardinal number. In this case, there exist an ordinal number α < κ and a
bijective function f : α � κ. Since κ ⊂ U and α ⊂ U , by Lemma 4, we have α ∗ κ = α ∗U κ. Therefore,
f is an U -function f : α �U κ. Since α ∈ κ ⊂ U and f(x) ∈ κ ⊂ U for every x ∈ β, by the axiom of
full union, for the universal class U , we infer that κ = rngUf ∈ U ∩ On and, therefore, by the axiom of
binary union, κ

+
U ≡ κ ∪U {κ}U ∈ U . By Lemma 10, κ

+
U = κ

+ ∈ On. Thus, κ
+
U ≤ κ < κ

+
U , but this is

impossible. From this contradiction, we infer that κ is a cardinal number.
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Suppose that the cardinal κ is not regular. Then α ≡ cf(κ) < κ. By definition, there exists a function
f : α → κ such that sup f [α] = κ. As above, f is an U -function f : α →U κ and rngUf ∈ U . It is clear
that rngUf ⊂ f [α]. Conversely, if y ∈ f [α], then y = f(x) for some x ∈ α. Since f(x) ∈ κ ⊂ U , we have
y ∈ U . Consequently, y ∈ rnguf . As a result, f [α] = rngUf ∈ U . By the axiom of full union,

κ = sup f [α] = ∪f [α] = ∪U [y ⊂ U |y ∈ f [α]]U ∈ U.

Similarly, as was done before, the property κ ∈ U leads to a contradiction. Therefore, κ is a regular
cardinal.

Let λ be a cardinal number such that λ < κ. Since λ ∈ κ ⊂ U , by the axiom of full ansemble and
by Lemma 1, we have P(λ) = PU (λ) ∈ U . Consequently, α ≡ cardP(λ) = cardPU (λ). According
to Proposition 2, this last number is equal to the number cardUPU (λ) ∈ U . Therefore, α ∈ U ∩ On.
Therefore, α ≤ κ. Suppose that κ = α. Then κ ∈ U . But, as above, this property leads to a contradiction.
As a result, we infer that α < κ.

Now it remains only to show that κ > ω. Actually, since ω ∈ a (see the end of Sec. 2.1), we have
ω ∈ U , and, therefore, ω + 1 = ω ∪ {ω} ∈ U . Therefore, ω ∈ ω + 1 ∈ A implies ω ∈ ∪A = κ.

The assertion (1) is proved.
(2) From (1) it follows that κ is a limiting ordinal number.
Therefore, Vκ = ∪ Vβ |β ∈ κ . Since β ∈ κ ⊂ U , by the definition, we have Vβ = V U

β ⊂ U .
Consequently, Vκ ⊂ U . Conversely, let x ∈ U . By Lemma 18, Sec. 4, Π = V in ZF. Similarly ∪U V U

α |α ∈
On∩U = U in the LTS. Therefore, x ∈ V U

α for some α ∈ A ⊂ U . Since V U
α = Vα, we have x ∈ Vα ⊂ Vκ.

Therefore, U ⊂ Vκ. As a result, we infer that U = Vκ.
(3) From Lemma 13, we infer that κ is unique. Therefore, we can define a mapping q : U → In such

that q(U) = κ, where U = Vκ. From Lemma 13 we also infer that q is isotone.

Corollary 1. If U is a universal class, then κ ≡ cardU is an inaccessible cardinal number and U = Vκ.

Proof. According to Theorem 3, we need to only show that for any inaccessible cardinal number κ,
card Vκ = κ.

Consider some universal class W such that κ ∈ W . In this case, Vκ = V W
κ

∈ W . By Proposition 2,
card Vκ = cardWVκ. Since the universe W is a model of ZF, by Lemma 15, Sec. 4, the property κ =
cardWV W

κ
= card Vκ is fulfilled in it.

Therefore, if U is a universal class, then, by Theorem 3, U = Vκ, where κ is an inaccessible cardinal
number. Now our assertion follows directly from the property cardU = card Vκ = κ.

Corollary 2. In the LTS, the equality ∪ Vα|α ∈ On = V is valid.

Proof. We need to show that for an arbitrary class x in the LTS, the assertion x ∈ ∪ Vα|α ∈ On is
valid, i.e., there exists α ∈ On such that x ∈ Vα.

By the axiom of universality, there exists a universe U such that x ∈ U , and, by Theorem 3, U = Vκ

for some κ ∈ On. Therefore, x ∈ Vκ, i.e., our assertion is true.

Theorem 3 allows to make the following conclusions about the structure of the assembly U ≡ {U |U ��}
of all universal classes.

The relation ∈ ∪ = is an order relation on the assembly U. We will denote it by ≤, i.e., U ≤ V if
U ∈ V or U = V . By Axiom A7, the assembly U is transitive. Therefore, U ∈ V implies U ⊂ V . Thus,
U ≤ V implies U ⊂ V . Now we will prove that these relations are equivalent.

Proposition 4. Let U and V be universal classes. Then the relation U ≤ V is equivalent to the relation
U ⊂ V .

Proof. We need only to verify that U ⊂ V implies U ≤ V . By Theorem 3, U = Vπ and V = Vκ for
some inaccessible cardinals π and κ. If π = κ, then U = Vπ = Vκ = V . If π < κ, then, by Lemma 13,
U = Vπ ∈ Vκ = V . Finally if π > κ, then, by the same lemma, V = Vκ ∈ Vπ = U ⊂ V , but this is
impossible. Therefore, U ≤ V .
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Corollary 1. The infra-universe a is the smallest element in the assembly U of all universal classes.

Corollary 2. If U is a universal class then either U = a or a ∈ U .

Corollary 3. With the universal class a is associated a unique inaccessible cardinal number κ
∗ such that

a = Vκ
∗. This number is the smallest in the assembly In of all inaccessible cardinal numbers.

Thus, in the LTS, there exists at least one inaccessible cardinal number.
Now let us prove now that in the LTS, there exists more than one inaccessible cardinal number.

5.5. The structure of the assemblies of all universal classes and all inaccessible cardinals
in the local theory of sets.

Proposition 5. In the LTS for every ordinal number α, there exists an inaccessible cardinal number κ

such that α < κ.

Proof. By the axiom of universality, α ∈ U for some universal class U . By Theorem 3, U = Vκ for
some inaccessible cardinal κ. By definition, Vα = V U

α ⊂ U = Vκ. By Lemma 13, α ≤ κ. Suppose that
κ = α. Then κ ∈ U . But this property leads to a contradiction, as was shown in the proof of Theorem 3.
Therefore, α < κ.

This property is similar to the axiom of universality, which postulates that every class in the LTS is an
element of some universal class.

The parallelism between properties of universal classes and inaccessible cardinals in the LTS is also
confirmed by the following assertions.

Theorem 4. The assembly U of all universal classes with respect to the order ⊂ is well-ordered. Fur-
thermore, every subassembly of the assembly U has the smallest element.

Proof. Let ∅ �= A ⊂ U. Using the injective and strictly monotone mapping q : U �→ κ from the assembly
U into the assembly On of the form U = Vκ from Theorem 3, we can consider for the assembly A the
subassembly B ≡ q[A] ≡ {x|x ∈ On ∧ ∃U ∈ A(z = q(U))} of the assembly On. By Lemma 9, it has the
smallest element π, which is an inaccessible cardinal. Since π ∈ B, we have π = q(U) for some U ∈ A,
i.e., U = Vπ. Since the mapping q is injective and strictly monotone, it follows that U is the smallest
element in the assembly A.

Corollary 1. For every class A there exists a universe U(A), which is the smallest in the assembly of all
universes U such that A ∈ U .

Corollary 2. The intersection ∩A ≡ {x|∀U ∈ A(x ∈ U)} of any nonempty assembly A of universal
classes is a universal class.

Proof. By Theorem 4, the subassembly A of the assembly U has the smallest element U. It is clear that
∩A ⊂ U . If V ∈ A, then U ≤ V implies U ⊂ V . Therefore, U ⊂ ∩A. So ∩A = U .

Theorem 4 allows us to complete the globalization of local constructions, which was started in Sec. 5.2.

Corollary 3. For every classes A and B, the assemblies A ∪ B, A ∩ B, {A,B}, 〈A,B〉, and A ∗ B are
classes.

Proof. By the axiom of universality A6, for A and B, there exist universal classes β and γ such that
A ∈ β and B ∈ γ. By Theorem 4, either β ⊂ γ or γ ⊂ β. Therefore, there exists a universal class α
(α = β or α = γ) such that β, γ ⊂ α. Therefore, A,B ∈ α. By the axiom of transitivity A7, A,B ⊂ α.
Therefore, by Lemmas 2–5, A ∪ B = A ∪α B, A ∩ B = A ∩α B, {A,B} = {A,B}α, 〈A,B〉 = 〈A,B〉α,
and A ∗ B = A ∗α B. By the axiom scheme AS2, the right-hand sides of all these equalities are classes,
because they are defined by α-predicative formulas.

Corollary 4. Let n ∈ ω \ 1, and let F be an assembly such that F is a mapping from the class n into the
assembly V. Then the assembly F is a class.
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Proof. Consider the assembly K′ ⊂ n consisting of all natural numbers k ∈ n such that the assembly
F|(k + 1) is a class. Consider the assembly K′′ ≡ ω \ n and the assembly K ≡ K′ ∪ K′′.

Since F|1 = 〈0,F(0)〉, by Corollary 3 to Theorem 4, we infer that F|1 is a class.
Let k ∈ ω and k ∈ K. If k < n− 1, then k + 1 ∈ n. Since k ∈ K′ in this case, the assembly F|(k + 1)

is a class. By Corollary 3 to Theorem 4, the assembly 〈k + 1,F(k + 1)〉 is also a class. Now from the
equality F|(k+2) = F|(k+1)∪{〈k+1,F(k+1)〉}, by the mentioned corollary, we infer that the assembly
F|(k + 2) also is a class. This means that k + 1 ∈ K′ ⊂ K.

If k ≥ n− 1, then k + 1 ≥ n implies k + 1 ∈ K′′ ⊂ K.
Applying Theorem 2, we conclude that ω ⊂ K ⊂ ω. Therefore, K′ = n. Consequently n − 1 ∈ K′

means that the assembly F = F|((n− 1) + 1) is a class.

Corollary 5. Let A,A′, A′′, . . . be classes. Then the assemblies (A,A′), (A,A′, A′′),. . . are classes.

Proof. By definition, the assemblies (A,A′), (A,A′, A′′), . . . are particular cases of sequences

(A0, . . . , An−1)

when n ∈ ω \ 2. But, by the previous corollary, the sequences (A0, . . . , An−1) are classes.

Thus, the assembly V of all classes in the LTS allows us to produce almost all set-theoretical con-
structions which are possible in a universal class or in the NBG-universe, except the construction of full
union, which is basic for the construction by the transfinite induction. The fact that the construction of
full union is actually impossible in the LTS follows from Statement 1, Sec. 8. This means that the global
assembly of all classes in the LTS with respect to its constructive possibilitites is much poorer than local
universal classes in it.

The next theorem describes the structure of the assembly U of all universes in the LTS. It is proved
by using of Theorem 4.

Theorem 5. In the LTS, for every n ∈ ω, there exist a unique universal class U and a unique U -sequence
of universal classes u(n) ≡ (Uk ∈ U |k ∈ n+1)U such that U0 = a, Uk ∈ Ul for every k ∈ l ∈ n+1 and if V
is a universal class and U0 ⊂ V ∈ U , then V = Uk for some k ∈ n+1 (the property of uncompressibility).

From the property of uniqueness, it follows that u(n)|m + 1 = u(m) for all m ≤ n, i. e., these finite
sequences continue each other.

Proof. Consider the set N consisting of all n ∈ ω for which there exist a unique universal class U and a
unique sequence of universal classes u ≡ u(n) ≡ (Uk ∈ U |k ∈ n+ 1)U such that U0 = a, Uk ∈ Ul for any
k ∈ l ∈ n+ 1 and if V is a universal class and U0 ⊂ V ∈ U , then V = Uk for some k ∈ n+ 1.

By Corollary 1 to Theorem 4, for the infra-universe a, there exists a universe U∗ which is the smallest
from all universes U such that a ∈ U . Since the universe U ≡ U∗ and the sequence (Uk ∈ U |k ∈ 1)
such that U0 ≡ a satisfies all mentioned properties, we have 0 ∈ N . Let n ∈ N . Consider the assembly
V ≡ {i|i �� ∧u �= U ∧ ∀k ∈ n + 1(u �= Uk)}. By Axiom A6, for U , there exists a universal class K such
that U ∈ K. Therefore, the assembly V is nonempty, and, consequently, by Theorem 4, it contains the
smallest element V . It is clear that V �= U and V ≥ U∗ > U0. Suppose that V ∈ U . Then by supposition,
U0 ≤ V ∈ U implies A = Uk for some k ∈ n+ 1, but this is impossible. Therefore, U ∈ V .

Thus, in the universe V , we can define a V -sequence v ≡ (Vk ∈ V |k ∈ n+2)V setting Vk ≡ Uk for every
k ∈ n+ 1 and Vn+1 ≡ U . It is clear that V0 = a and Vk ∈ Vl for every k ∈ l ∈ n+ 2. Let W be a universe,
and let V0 ≤ W ∈ V . Then U0 ⊂ W ∈ V . If W = U , then W = Vn+1. If W ∈ U , then U0 ⊂ W ∈ U
implies W = Uk = Vk for some k ∈ n + 1. Finally, if U ∈ W , then U0 ∈ U1 ∈ · · · ∈ Un ∈ U ∈ W
implies W ∈ V. Therefore, V ⊂ W . But this case is impossible. From the two previous cases, we
infer that W = Vk for some k ∈ n + 2. This means that the pair V and v possesses all the necessary
properties. Let us verify its uniqueness. Suppose that there exist a universe W and a W -sequence of
universes w ≡ (Wk ∈ W |k ∈ n + 2)|W such that W0 = a, Wk ∈ Wl for all k ∈ l ∈ n + 2 , and if K is a
universe and W0 ⊂ K ∈W , then K = Wk for some k ∈ n+ 2.
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Consider the universe U ′ ≡Wn+1 and the U ′-sequence u′ ≡ (Uk
′ ∈ U ′|k ∈ n+ 1)U ′ such that Uk

′ ≡Wk

for every k ∈ n + 1. It is clear that U ′
0 = W0 = a and Uk

′ ≡ Wk ∈ Wk ≡ Ul
′ for every k ∈ l ∈ n + 1.

If K is a universe and U0
′ ≤ K ∈ U ′, then U ′

0 ≤ K ∈ U ′ and W0 ≤ K ∈ Wn+1 ∈ W . By the axiom of
transitivity A7, W0 ⊂ K ∈W . Therefore, by assumption, K = Wk for some k ∈ n+ 2. Since K ∈Wn+1,
we have K = Wk = U ′

k for some k ∈ n + 1. Thus, the pair U ′ and u′ possesses all the properties for n
mentioned above. Therefore, because of the uniqueness of this pair, we infer that U = U ′ = Wn+1 and
u = u′ = w|n + 1, i. e., Wn+1 = U ≡ Vn+1 and Wk = Uk ≡ Vk for all k ∈ n + 1. Therefore, w = v. If
W ∈ V , then by the above V0 = W0 ⊂ W ∈ V implies W = Vk = Wk for some k ∈ n + 2, but this is
impossible. If V ∈ W , then W0 = V0 ⊂ V ∈ W in a similar manner implies V = Wk = Vk for some
k ∈ n + 2, but this is impossible. Therefore, W = V and the uniqueness of the universe V and the
sequence v is proved. Therefore, n+ 1 ∈ N . By the principle of natural induction, N = ω. Therefore, for
any n ∈ ω, there exists the mentioned unique pair V and u.

Unfortunately, in the LTS, in contrast to ZF, where there is the axiom scheme of replacement, we have
no means to combine all these finite sequences into one infinite sequence of universal classes.

By using Proposition 5 we can prove the following assertion

Theorem 6. In the LTS, for every n ∈ ω, there exists a unique sequence c(n) ≡ (κk ∈ I|k ∈ n + 1) of
inaccessible cardinals such that κ0 = κ

∗, κk ∈ κl for every k ∈ l ∈ n + 1, and if π is an inaccessible
cardinal and κ0 ≤ π < κn, then π = κk for some k ∈ n (the property of incompressibility).

From the property of uniqueness, it follows that c(n)|m + 1 = c(m) for all m ≤ n, i.e., these finite
sequences continue each other.

The proof is similar to the proof of the previous theorem.
The remark made after Theorem 5 is also valid in this case: in the LTS there are no means to construct

from these finite sequences continuing each other one infinite sequence of inaccessible cardinals. In the
next section, we show how to do this in the theory ZF.

6. Relative Consistency between LTS and the ZF Theory

6.1. Additional axioms on inaccessible cardinals in the ZF theory. To prove the relative con-
sistency, we need to write the axioms on inaccessible cardinals in a more formal way. Therefore, we are
forced to adduce the following formal definitions in the ZF theory:

— α is an ordinal number ≡ On(α) ≡ (∀x(x ∈ α ⇒ ∀y(y ∈ x ⇒ y ∈ α))) ∧ (∀x, y, z(x, y, z ∈ α ∧ x ∈
y∧y ∈ z ⇒ x ∈ z))∧ (∀x, y(x, y ∈ α⇒ x ∈ y∨x = y∨y ∈ x))∧∀z(∅ �= z ⊂ α⇒ ∃x(x ∈ z∧∀y(y ∈
z ⇒ x ∈ y)));

— f is a function ≡ func(f) ≡ ∀x∀y∀y′(〈x, y〉 ∈ f ∧ 〈x, y′〉 ∈ f ⇒ y = y′);
— f � A→ B ≡ func(f) ∧ domf = A ∧ rng f ⊂ B;
— κ is a cardinal number ≡ Cn(κ) ≡ On(κ)∧∀x(On(x)∧(x = κ∨x ∈ κ)∧∃u(u � x � κ) ⇒ x = κ);
— κ is a regular cardinal number ≡ Rcn(κ) ≡ Cn(κ) ∧ ∀x(On(x) ∧ ∃u(u � x→ κ ∧ ∪rng u = κ) ⇒

(κ = x ∨ x ∈ κ));
— κ is an inaccessible cardinal number ≡ Icn(κ) ≡ Rcn(κ) ∧ ∀x(On(x) ∧ x ∈ κ ⇒ cardP(x) ∈ κ);
— IC (inaccessible cardinal) ≡ ∃x(Icn(x));
— ISIC (infinite set of inaccessible cardinals) ≡ ∃X(∀x ∈ X(Icn(x)) ∧X �= ∅ ∧ ∀x ∈ X∃x′ ∈ X(x ∈

x′));
— ISIC2 (infinite set of inaccessible cardinals of type ω+ω) ≡ ∃X∃Y (∀x ∈ X∀y ∈ Y (Icn(x)∧Icn(y)∧

x ∈ y) ∧X �= ∅ ∧ Y �= ∅ ∧ ∀x ∈ X∃x′ ∈ X(x ∈ x′) ∧ ∀y ∈ Y ∃y′ ∈ Y (y ∈ y′));
— I (inaccessibility) ≡ ∀x(On(x) ⇒ ∃x′(Icn(x′) ∧ x ∈ x′)).
Consider the class (possibly empty) In ≡ {x|Icn(x)} of all inaccessible cardinal numbers in the ZF

theory.
The adduced list will allow us later in thwe process of investigation of corresponding interpretations to

look accurately at what values some derivative terms such as rng u, ∪rng u, P(x), {x}, x ∪ {x}, 〈x, y〉,
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domf , rng f , and others take under the interpretation, and also what formulas such formulas as z ⊂ α,
u � x→ κ, and others are translated into.

Theorem 1. In the ZF theory, the following assertions are equivalent :
(1) ISIC ;
(2) for every n ∈ ω there exists a finite set of inaccessible cardinals of the power n+ 1;
(3) for every n ∈ ω there exists a finite sequence u ≡ (ιk|k ∈ n+ 1) of inaccessible cardinals such that

ιk < ιl for all k ∈ l ∈ n+ 1, i. e., the sequence u is strictly increasing ;
(4) there exists an inaccessible cardinal κ

∗ and for every n ∈ ω, there exists a unique finite strictly
increasing sequence u(n) ≡ (ιnk |k ∈ n+ 1) of inaccessible cardinals such that ιn0 = κ

∗, and from the
fact that κ is an inaccessible cardinal and ιn0 ≤ κ ≤ ιnn, it follows that κ = ιnk for some k ∈ n + 1
(the property of uncompressibility);

(5) there exists a denumerable set of inaccessible cardinals:
(6) there exists an infinite sequence u ≡ (ιn|n ∈ ω) of inaccessible cardinals such that ιk < ιl for every

k ∈ l ∈ ω, i. e., the sequence u is strictly increasing ;
(7) there exists an infinite strictly increasing sequence u ≡ (ιn|n ∈ ω) of inaccessible cardinals such

that from n ∈ ω, κ is an inaccessible cardinal, and ι0 ≤ κ ≤ ιn, it follows that κ = ιk for some
k ∈ n+ 1 (the property of incompressibility);

(8) there exists an infinite set of inaccessible cardinals.

Proof. (1) 	 (4). Let I be a nonempty set, existence of which is postulated by Axiom ISIC. Consider the
nonempty class I ≡ {x|Icn(x) ∧ ∃y ∈ I(x ≤ y)}. If x ∈ I, then x ≤ y for some y ∈ I. By ISIC, for y ∈ I,
there exists z ∈ I such that y < z. Therefore, x < z ∈ I. Therefore, the class I possesses all the properties
listed in formula ISIC.

Since ∅ �= I ⊂ In, by Lemma 2, Sec. 4, in I, there exists the smallest element κ
∗. From κ

∗ ≤ y for
every y ∈ I, we infer that κ

∗ ∈ I. The class I possesses the following property: if z ∈ In and z ≤ y for
some y ∈ I, then z ∈ I.

Consider the set N consisting of all n ∈ ω for which there exists a unique sequence u ≡ u(n) ≡ (ιk ∈
I|k ∈ n+1) such that ι0 = κ

∗, ιk < ιl for every k ∈ l ∈ n+1 and κ ∈ In and = ι0 ≤ κ < ιn imply κ = ιk
for some k ∈ n.

Since the sequence (ιk ∈ I|k ∈ 1) such that ι0 ≡ κ
∗ possesses all the mentioned properties, we infer

that 0 ∈ N . Let n ∈ N . By the property of the class I, for ιn ∈ I, there exists z ∈ I such that ιn < z.
Therefore, the class J ≡ {x ∈ I|ιn < x} is nonempty. Hence, by Lemma 2, Sec. 4 it contains the smallest
element α.

Therefore, we can define a sequence v ≡ (πk ∈ I|k ∈ n + 2) setting πk ≡ ιk for every k ∈ n + 1 and
πn+1 ≡ α, i. e., v = u∪ {〈n+ 1, α〉}. It is clear that π0 = κ

∗ and πk < πl for all k ∈ l ∈ n+ 2. Let κ ∈ In
and π0 ≤ κ < πn+1. Then κ ∈ I and ι0 ≤ κ < α. If κ = ιn, then κ = πn. If κ < ιn, then ι0 ≤ κ < ιn
implies κ = ιk = πk for some k ∈ n. Finally, if κ > ιn, then κ ∈ J. Therefore, α ≤ κ, but this contradicts
the property κ < α. Therefore, this case is impossible. It follows from the two previous cases that κ = πk

for some k ∈ n+ 1. This means that the sequence v possesses all the necessary properties. Let us verify
its uniqueness. Suppose that there exists a sequence w ≡ (κk ∈ I|k ∈ n+ 2) such that κ0 = κ

∗, κk < κl

for all k ∈ l ∈ n + 2, and κ ∈ In and κ0 ≤ κ < κn+1 imply κ = κk for some k ∈ n + 1. Since the
sequence w|n+ 1 ≡ (κk ∈ I|k ∈ n+ 1) possesses all the mentioned properties for n, by the uniqueness of
the sequence u, we infer that u = w|(n+ 1), i.e., κk = ιk ≡ πk for all k ∈ n+ 1. If κn+1 < πn+1, then by
the above π0 = κ0 ≤ κn+1 < πn+1 implies κn+1 = πk = κk for some k ∈ n+ 1, but this is impossible. If
πn+1 < κn+1, then in a similar way, κ0 = π0 ≤ πn+1 < κn+1 implies πn+1 = κk = πk for some k ∈ n+ 1,
but this is also impossible. Therefore, κn+1 = πn+1. Hence the uniqueness of the sequence v is proved.
Consequently, n + 1 ∈ N . By the principle of natural induction, N = ω. Thus, for every n ∈ ω, there
exists an unique mentioned sequence u(n). By its uniqueness, we can denote it by (ιnk |k ∈ n+ 1).

(4) 	 (7). Consider the following formula of the ZF theory: ϕ(x, y) ≡ (x ∈ ω ⇒ y = ιxx) ∧ (x /∈
ω ⇒ y = ∅). By the axiom scheme of replacement AS6 (ZF), for ω, there exists a set Y such that
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∀x ∈ ω(∀y(ϕ(x, y) ⇒ y ∈ Y )). If n ∈ ω, then ϕ(n, ιnn) implies ιnn ∈ Y . Therefore, in the set ω × Y , we
can define an infinite sequence u ≡ (ιn ∈ Y |n ∈ ω) setting u ≡ {z ∈ ω × Y |∃x ∈ ω(z = 〈x, ιxx〉)}. It
follows from the above-mentioned property of uniqueness that u(m) = u(n)|m + 1 for all m ≤ n. Hence
u|n+ 1 = u(n). It is clear that the sequence u possesses all the necessary properties.

(6) 	 (1). Consider the following formula of the ZF theory: ϕ(x, y) ≡ (x ∈ ω ⇒ y = ιx) ∧ (x /∈
ω ⇒ y = ∅). By the axiom scheme of replacement AS6 (ZF), for ω, there exists a set Y such that
∀x ∈ ω(∀y(ϕ(x, y) ⇒ y ∈ Y )). If n ∈ ω, then ϕ(n, ιn) implies ιn ∈ Y . By the axiom scheme of separation
AS3 (ZF), a class X ≡ {ιn|n ∈ ω} ≡ {y|∃x ∈ ω(y = ιx)} = {y|y ∈ Y ∧ ∃x ∈ ω(y = ιx)} is a set. Since
the sequence u is strictly increasing, then the set X satisfies the axiom ISIC.

Deducibilities (7) 	 (6) 	 (5) 	 (2) are obvious.
Deducibilities (4) 	 (3) 	 (2) are also obvious.
(2) 	 (3) and (2) 	 (6). Consider the nonempty class A of all finite sets of inaccessible cardinals. Then

the class I ≡ ∪A is also nonempty, and, therefore, by Lemma 2, Sec. 4, in I there exists the smallest
element κ

∗.
Consider the set N consisting all n ∈ ω for which there exists a unique sequence u ≡ u(n) ≡ (ιk ∈ I|k ∈

n+ 1) such that ι0 = κ
∗, ιk < ιl for all k ∈ l ∈ n+ 1 and κ ∈ I and ι0 ≤ κ < ιn imply κ = ιk for some

k ∈ n (the property of I-uncompressibility). Since the sequence (ιk ∈ I|k ∈ 1) such that ι0 ≡ κ
∗ possesses

all the listed properties, we have 0 ∈ N . Let n ∈ N , i.e., for n, the sequence u ≡ (ιk ∈ I|k ∈ n + 1) is
constructed. Consider the finite set A ≡ {ιk ∈ I|k ∈ n+1} of power n+1. By condition (2), for n+2, there
exists a finite set B ∈ A of power n+2. In B take, the smallest element a and the greatest element b. By
definition, a ≥ κ

∗. Suppose that b ≤ ιn. Then for every c ∈ B, the inequality ι0 = κ
∗ ≤ a ≤ c ≤ b ≤ ιn

is valid. If c < ιn, then from c ∈ I, by the property of I-uncompressibility, we infer that c = ιk for some
k ∈ n, i.e., c ∈ A. If c = ιn, then c ∈ A once again. As a result we come to the inclusion B ⊂ A, but this
is impossible. From this contradiction, we infer that ιn < b. Since b ∈ I, the class J ≡ {x ∈ I|ιn < κ} is
nonempty. Therefore, by Lemma 2, Sec. 4 it contains the smallest element α.

Consequently, we can define the sequence v ≡ (πk ∈ I|k ∈ n + 2) setting πk ≡ ιk for every k ∈ n + 1
and πn+1 ≡ α, i. e. v = u ∪ {〈n + 1, α〉}. Then in almost the same manner as in the inference (1) 	 (4)
changing In by I, we make sure that the sequence v possessses all the necessary properties and that it is
unique. Therefore, n+ 1 ∈ N . By the principle of natural induction, N = ω. Therefore, for every n ∈ ω,
there exists the unique mentioned sequence u(n). By its uniqueness, we can denote it by (ιnk |k ∈ n+ 1).
Therefore, inference (2) 	 (3) is finished.

Now as in deducibility (4) 	 (7) using the sequences (ιnk |k ∈ n + 1), we construct an infinite strictly
increasing sequence u ≡ (ιn|n ∈ ω) of inaccessible cardinals. It gives the inference (2) 	 (6).

Thus, the following deducibilities and equivalences are proved: (1) 	 (4) 	 (7) 	 (6) 	 (1) and
(6) 	 (5) 	 (2) 	 (6) and (2) ∼ (3). This immediately implies the equivalence of all assertions (1)–(7).

(8) 	 (6). Let I be an infinite set of inaccessible cardinals. By Lemma 2, Sec. 4 in I there exists the
smallest κ

∗.
Consider the set N consisiting of all n ∈ ω for which there exists a unique sequence u ≡ u(n) ≡ (ιk ∈

I|k ∈ n+ 1) such that ι0 = κ
∗, ιk < ιl for every k ∈ l ∈ n+ 1, and κ ∈ I and ι0 ≤ κ < ιn imply κ = ιk

for some k ∈ n (the property of I-incompressibility).
Since a sequence (ιk ∈ I|k ∈ 1) such that ι0 = κ

∗ possesses all the listed properties, we infer that
0 ∈ N . Let n ∈ N . Consider the set J ≡ I \ {ιk|k ∈ n + 1}. It is nonempty because in the opposite
case, the set I must be finite; therefore, it contains the smallest element α. It is clear that α �= ιn and
α ≥ κ

∗ = ι0. Suppose that α < ιn. Then by the condition n ∈ N , ι0 ≤ α < ιn implies α = ιk for some
k ∈ n, but this is impossible. Therefore, ιn < α.

Therefore, we can define a sequence v ≡ (πk ∈ I|k ∈ n + 2) setting πk ≡ ιk for every k ∈ n + 1 and
πn+1 ≡ α, i.e., v = u ∪ {〈n+ 1, α〉}. It is clear that π0 = κ

∗ and πk < πl for all k ∈ l ∈ n+ 2. Let κ ∈ I,
and let π0 ≤ κ < πn+1. Then ι0 ≤ κ < α. If κ = ιn, then κ = πn. If κ < ιn, then ι0 ≤ κ < ιn implies
κ = ιk = πk for some k ∈ n. Finally, if κ > ιn, then κ > ιk for all k ∈ n + 1. Hence κ ∈ J . Therefore,
α ≤ κ, but this contradicts the property κ < α. Therefore, this case is impossible. This follows from the
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two previous cases that κ = πk for some k ∈ n + 1. This means that the sequence v possesses all the
necessary properties.

Let us verify its uniqueness. Suppose that there exists a sequence w ≡ (κk ∈ I|k ∈ n + 2) such that
κ0 = κ

∗, κk ∈ κl for all k ∈ l ∈ n+ 2, and κ ∈ I and κ0 ≤ κ < κn+1 imply κ = κk for some k ∈ n+ 1.
Since the sequence w|n + 1 ≡ (κk ∈ I|k ∈ n + 1) possesses all properties for n mentioned above, by
the uniqueness of the sequence u, we infer that u = w|n + 1, i. e., κk = ιk ≡ πk for all k ∈ n + 1. If
κn+1 < πn+1, then, by the above, π0 = κ0 ≤ κn+1 < πn+1 implies κn+1 = πk = κk for some k ∈ n+1, but
this is impossible. If πn+1 < κn+1, then in a similar way, κ0 = π0 ≤ πn+1 < κn+1 implies πn+1 = κk = πk

for some k ∈ n + 1, but this is also impossible. Therefore, κn+1 = πn+1. Therefore, the uniqueness of
the sequence v is proved. Consequently, n+ 1 ∈ N . By the principle of natural induction N = ω. Hence
for every n ∈ ω, there exists a unique mentioned sequence u(n). By its uniqueness, we can denote it by
(ιnk |k ∈ n+ 1). Further, as in the inference (4) 	 (7), using the sequences (ιnk |k ∈ n+ 1), we construct the
infinite strictly increasing sequence u ≡ (ιn|n ∈ ω) of inaccessible cardinals.

(6) 	 (8). In the same manner as in the proof of deducibility (6) 	 (1) for the sequence u, consider
the set X ≡ {ιn|n ∈ ω} of its members. Suppose that the set X is finite. Then X contains the greatest
element κ, but this contradicts the fact that the sequence U is strictly increasing.

It becomes clear from assertion (6) of this theorm why in the mathematical literature, the axiom ISIC
is also denoted by I(ω) and is called the axiom of ω-inaccessibility.

Proposition 1. In the ZF theory, the following assertions are equivalent :
(1) ISIC2;
(2) there exist infinite sequences u ≡ (ιm|m ∈ ω) and v ≡ (κn|n ∈ ω) of inaccessible cardinals such

that ιk < ιm < κl < κn for every k ∈ m ∈ ω and l ∈ n ∈ ω, i. e., the sequences u and v are strictly
increasing and continue each other.

Proof. (1) 	 (2). By ISIC2, there exist sets X and Y satisfying Axiom ISIC. Therefore, by Theorem 1,
there exist strictly increasing infinite sequences u ≡ (ιm ∈ X|m ∈ ω) and v ≡ (κn ∈ Y |n ∈ ω). By ISIC2,
ιk < κl for all k, l ∈ ω.

(2) 	 (1). Similarly as in the proof of the deducibility (6) 	 (1) from Theorem 1, we verify that the
classes X ≡ {ιm|m ∈ ω} and Y ≡ {κn|n ∈ ω} are sets. These sets satisfy Axiom ISIC2.

It becomes clear from assertion (2) of this proposition why in the mathematical literature the axiom
ISIC2 is denoted also by I(ω+ω). Roughly speaking, ZF+ISIC2 ensures the existence of ω+ω different
inaccessible cardinals.

Now we will clear up the correlation of the axioms on inaccessible cardinals:
— IC (inaccessible cardinal) ≡ there exists at least one inaccessible cardinal ;
— ISIC ∼ there exists an infinite set of inaccessible cardinals;
— ISIC2 ∼ there exist two infinite sets of inaccessible cardinals following one after another;
— I (inaccessibility) ≡ for every ordinal α there exists an inaccessible cardinal which is greater than α.

Proposition 2. In the ZF theory, the deducibilities LIC 	 ISIC2 	 ISIC 	 IC are valid.

Proof. Let us prove that from I, we can infer property (2) from Proposition 1. The arguments completely
repeats the proof of deducibility (1) 	 (2) from Proposition 1 and deducibility (1) 	 (2) from Theorem 1.

Using now the equivalence of (2) and ISIC2, we obtain the proof of deducibility I 	 ISIC2. All other
deducibilities are obvious.

In the [8], it is proved that in the ZF theory, the axiom of inaccessibility I is equivalent to the axiom
of universality U. Therefore, the set theories ZF+I and ZF+U are equivalent.

It can be also proved that in the ZF theory, the axiom of ω-inaccessibility I(ω) ≡ ISIC is equivalent
to the axiom of ω-universality

U(ω) ≡ ∃X(∀U ∈ X(U ��) ∧X �= ∅ ∧ ∀U ∈ X∃V ∈ X(U ∈ V ))
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postulating the existence of an infinite set of universal sets where U �� denotes the property of a set U to
be universal. Therefore, the set theories ZF+ISIC and ZF+U(ω) are also equivalent.

6.2. “Forks” of relative consistency. Using the globalization of local constructions in the LTS,
which was made above, we can prove the following statement.

Statement 1. All axioms of the ZF theory, except the axiom scheme of separation AS3 and the axiom
scheme of replacement AS6, are deducible in the LTS as formulas of the LTS.

Proof. For every formula ϕ in the first-order theory, the formula scheme ϕ ⇒ ϕ is deduced. By the
definition of equality in the LTS, this gives the formula ∀u(u ∈ X ⇔ u ∈ Y ) ⇒ X = Y . Formula A1 is
inferred from it by the rule Gen.

For classes u and v, by Corollary 3 to Theorem 4, Sec. 5, there exists the class {u, v}. By definition,
z ∈ {u, v} ≡ z = u∨ z = v. Using the scheme ϕ⇒ ϕ, we obtain the formula (z ∈ {u, v}) ⇔ z = u∨ z = v.
By the rule Gen, the logical axiom scheme LAS12, and the rule MP, we can infer from it the formula
∃x∀z(z ∈ x⇔ z = u ∨ z = v). Formula A2 (ZF) is inferred from it by the rule Gen.

For a classX, by Corollary to Lemma 6, Sec. 5, there exists a class ∪X. By definition, u ∈ ∪X ≡ ∃z(u ∈
z ∧ z ∈ X). Using the formula scheme ϕ ⇒ ϕ, we obtain the formula (u ∈ ∪X) ⇔ ∃z(u ∈ z ∧ z ∈ X).
By the rule Gen, the logical axiom scheme LAS12, and the rule MP, the formula ∃Y ∀u(u ∈ Y ⇔ ∃z(u ∈
z ∧ z ∈ X)) is inferred from it. Formula A4 (ZF) is inferred from it by the rule Gen.

For a class X, by Corollary to Lemma 1, Sec. 5, there exists the class P(X). By definition, u ∈ P(X) ≡
u ⊂ X. As was done above, we consecutively infer the formulas u ∈ P(X) ⇔ u ⊂ X, ∀u(u ∈ P(X) ⇔
u ⊂ X), ∃Y ∀u(u ∈ Y ⇔ u ⊂ X), and A5 (ZF).

Consider the class π, which exists by the axiom of infra-infinity A13 (LTS). Let u ∈ π. Then u ∈ π ∈ a
by the axiom of transitivity A7 implies u ∈ a. Therefore, by Lemma 3, Sec. 5, {u}a = {u}. By Lemma 2,
Sec. 2, {u} ∈ a. By A7, u, {u} ⊂ a. Hence, by Lemma 2, Sec. 5, u∪{u} = u∪a{u} = u∪a{u}a. By A13,
we infer u∪ {u} ∈ π. Since we did not apply the rule of generalization, then by the theorem of deduction
(see [28], Ch. 2, § 4) and by the rule Gen, the formula ∀u(u ∈ π ⇒ u∪{u} ∈ π) is deduced. Since, by A13,
π �= ∅, we infer that by the derivative rule of conjunction, the formula π �= ∅ ∧ ∀u(u ∈ π ⇒ u ∪ {u} ∈ π)
is deduced. Using logical axiom scheme LAS12 and the rule MP, we infer from it formula A7 (ZF).

For every nonempty class X, by the axiom of universality A6, there exists a universal class α such that
X ∈ α. By the axiom of transitivity A7, X ⊂ α. From the axiom of regularity A12 (LTS) the formula
∃x(x ∈ X ∧ x ∩α X = ∅) is deduced. Since x ∈ X ⊂ α, by A7, we have, x ⊂ α. Hence, by Lemma 2,
Sec. 5, x ∩α X = x ∩ X. Thus, the formula ∃x(x ∈ X ∧ x ∩ X = ∅) is deduced. By the theorem of
deduction, the formula X �= ∅ ⇒ ∃x(x ∈ X ∧ x ∩X = ∅) is deduced. By the rule Gen we infer from it
formula A8 (ZF).

In the LTS, consider the empty class ∅. From A3 (LTS), the formula ∀z(z /∈ ∅) is deduced. Using
LAS12 and MP, we infer formula A9 (ZF) from it.

For every nonempty class X, by A6, there exists a universal class α such that X ∈ α. From the axiom
of choice A14 (LTS), we infer the formula ∃z((z � Pα(X) \ {∅}α →α X) ∧ ∀Y (Y ∈ Pα(X) \ {∅}α ⇒
z(Y ) ∈ Y )). By the Lemmas 1, Sec. 5, and 3, Sec. 5, Pα(X) = P(X) and {∅}α = {∅}. Therefore, z �
P(X)\{∅} →α X. By the axiom of transitivity A7, X ⊂ α and ∅ ⊂ α. Consequently by, Lemma 5, Sec. 5,
z � P(X) \ {∅} → X. Thus, the formula ∃z(z � P(X) \ {∅} → X) ∧ ∀Y (Y ∈ P(X) \ {∅} ⇒ z(Y ) ∈ Y ))
is deduced. By the theorem of deduction and the rule Gen, formula A10 (ZF) is deduced from it.

The undeducibility of the axiom scheme of replacement in the LTS will be proved later.
The existence of inaccessible cardinal numbers in the LTS proved in the previous section allows to prove

the following statement.

Statement 2. If the LTS is consistent, then the ZF+IC theory is consistent, where IC denotes the axiom
postulated the existence of at least one inaccessible cardinal number.
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Proof. By the axiom of universality, for a fixed universe U0, there exists a universe U such that U0 ∈ U .
Consider the interpretation M ≡ (U, I) of the ZF theory in the LTS, described in the proof of Statement 1,
Sec. 5. Let us prove that this interpretation is a model of the ZF+IC theory. According to the proof of
Statement 1, Sec. 5, we need to only consider the translation of Axiom IC and prove its deducibility in
the LTS.

We will use the notation of the proof of Statement 1, Sec. 5.
On the sequence s Axiom IC is translated into the formula
— ϕ0 ≡M � IC[s] = ICU ≡ ∃x′ ∈ U(x′ is an inaccessible cardinal number)U , where
— ϕ1(x′) ≡ (Icn(x′))U ≡ (Rcn(x′))U ∧ ∀x′′ ∈ U((On(x′′))U ∧ x′′ ∈ x′ ⇒ cardUPU (x′′) ∈ x′), where
— ϕ2(x′) ≡ (Rcn(x′))U ≡ (Cn(x′))U ∧ ∀x′′′ ∈ U((On(x′′′))U ∧ ∃u ∈ U(u � x′′′ →U x′ ∧ ∪UrngUu =

x′) ⇒ (x′ = x′′′ ∨ x′ ∈ x′′′)); where
— ϕ3(x′) ≡ (Cn(x′))U ≡ (On(x′))U ∧ ∀x′′′ ∈ U((On(x′′′))U ∧ (x′′′ = x′ ∨ x′′′ ∈ x′) ∧ ∃u ∈ U(u �

x′′′ �U x′) ⇒ x′′′ = x′), where
— ϕ4(x′′) ≡ (On(x′′))U ≡ ∀x ∈ U(x ∈ x′′ ⇒ ∀y ∈ U(y ∈ x ⇒ y ∈ x′′))) ∧ (∀x, y, z ∈ U(x, y, z ∈

x′′∧x ∈ y∧y ∈ z ⇒ x ∈ z))∧ (∀x, y ∈ U(x, y ∈ x′′ ⇒ x ∈ y∨x = y∨y ∈ x))∧∀z ∈ U(z �= ∅∧∀x ∈
U(x ∈ z ⇒ x ∈ x′′) ⇒ ∃x ∈ U(x ∈ z ∧ ∀y ∈ U(y ∈ z ⇒ x ∈ y))),

— (On(x′))U = ϕ4(x′′‖x′) ≡ ϕ4(x′),
— (On(x′′′))U = ϕ4(x′′‖x′′′) ≡ ϕ4(x′′′).
Comparision of the formula ϕ4(x′′) with the definition shows that the subformula ψ ≡ ∀x ∈ U(x ∈ z ⇒

x ∈ x′′) is unusual in it. But in the place where it is staying, it is equivalent to the formula ψ′ ≡ z ⊂ x′′.
Actually, if x ∈ z, then from z ∈ U , by the axiom of transitivity A7 (LTS), it follows that x ∈ U , and,
therefore, x ∈ x′′. Therefore, we can substitute ψ′ for ψ. Under this substitution, we see that the formula
ϕ4(x′′) means that x′′ is an U -ordinal number in the universal class U . Consequently, ϕ4(x′) and ϕ4(x′′′)
mean that x′ and x′′′ are U -ordinal numbers.

This leads to the following form of the formula ϕ3(x′):
ϕ3(x′) = (x′ is an U -ordinal number)∧∀x′′′ ∈ U((x′′′ is an U -ordinal number)∧(x′′′ ≤ x′)∧∃u ∈ U(u �

x′′′ �U x′) ⇒ x′′′ = x′).
In this formula, the subformula χ ≡ ∃u ∈ U(u � x′′′ �U x′) is unusual. Since x′′′, x′ ∈ U , we infer

that, by the axiom of subset A8, u ⊂ x′′′ ∗U x′ ∈ U implies u ∈ U . Therefore, χ is equivalent to the
formula χ′ ≡ ∃u(u � x′′′ →U x′). Substituting χ′ for χ, we see that ϕ3(x′) means that x′ is an U -cardinal
number.

This leads to the following form of the formula ϕ2(x′):
ϕ2(x′) = (x′ is an U -cardinal number)∧∀x′′′ ∈ U((x′′′ is an U -ordinal number)∧∃u ∈ U(u � x′′′ →U

x′ ∧ ∪UrngUu = x′) ⇒ (x′ ≤ x′′′)).
For the same reasons as above, in ϕ2, the quantifier prefix ∃u ∈ U can be changed by ∃u. But then the

formula ϕ2(x′) means that x′ is an U -regular U -cardinal number.
This leads to the following form of the formula ϕ1(x′):
ϕ1(x′) = (x′ is an U -regular U -cardinal number)∧∀x′′ ∈ U((x′′ is an U -ordinal number)∧x′′ ∈ x′ ⇒

cardUPU (x′′) ∈ x′).
This means that x′ is an U -inaccessible U -cardinal number in the universe U . Thus, Axiom IC was

translated into the formula ϕ0 ≡M � IC[s] = ∃x′ ∈ U(x′ is a U -inaccessible U -cardinal number).
Let us infer this formula in the LTS. By Corollary 3 to Proposition 4, Sec. 5, there exists an inaccessible

cardinal number κ such that a = Vκ. Since κ ⊂ a ⊂ U0 ∈ U , by the axiom of subset A8, we have, κ ∈ U .
By Proposition 3, Sec. 5, κ is an U -inaccessible U -cardinal number. As a result, we deduced the desired
formula.

Statement 2 was proved by constructing a model of the ZF+IC theory in the LTS. It follows from
Theorem 6, Sec. 5 that to construct a model of the LTS in the ZF theory, it is necessary to have the
“metasequence” c(0), c(1), . . . , c(n), . . . of finite incompressible sequences c(n) ≡ (κn

k |k ∈ n + 1) of inac-
cessible cardinals in ZF at least the same as in Theorem 6, Sec. 5. But in ZF, this metasequence can be

5808



globalized by the axiom scheme of replacement into the usual unfinite sequence c ≡ (κn ≡ κ
n
n |n ∈ ω).

As Theorem 1 shows, the existence of such an infinite sequence of inaccessible cardinals is equivalent to
Axiom ISIC.

Using Theorem 1, we can prove the following statement.

Statement 3. If the ZF+ISIC theory is consistent, then the LTS is consistent.

Proof. Consider the sequence (ιn|n ∈ ω) from Theorem 1 and the set A ≡ {ιn|n ∈ ω}. By Lemma 3,
Sec. 4, α ≡ ∪A = supA is an ordinal number. Further, instead of Vιn we will write Wn. Since ιn ≤ α, we
have Wn ⊂ Vα. Therefore, D ≡ ∪ Wn|n ∈ ω ⊂ Vα. By AS3, D is a set. Since 0 < ιn < ιn + 1 ≤ ιn+1,
by Lemma 7, Sec. 4, we obtain, ∅ = V0 ∈Wn ∈Wn+1 ⊂ D for every n ∈ ω.

The set D is transitive. Actually, if y ∈ D, then by Lemma 9, Sec. 4, y ∈ Wm for some m implies
y ⊂ Wm ⊂ D. Similarly, using Lemma 8, Sec. 4, we can verify that if x ⊂ y ∈ D, then x ∈ D. Later, we
will often use these two properties.

Choose the set D in the capacity of the domain of interpretation of the LTS in the set ZF+ISIC theory.
Consider the subset R ≡ {x ∈ D|∃n ∈ ω(x = Wn)} in D. Define a correspondence I assigning to the
predicate symbol ∈ in the LTS the two-placed relation B ≡ {z ∈ D ×D|∃x, y ∈ D(z = (x, y) ∧ x ∈ y)},
to the symbol �� in LTS the one-placed relation R, and to the constant symbols ∅ and a in the LTS the
elements ∅ and W0 of the set D, respectively.

Let s be some sequence x0, . . . , xq, . . . of elements of D. We will consider translations M � ϕ[s] of
axioms and axiom schemes of the LTS on the sequence s under the interpretation M and will prove their
deducibility in the ZF+ISIC set theory. Instead of θM [s] and M � ϕ[s], we will write θt and ϕt for terms θ
and formulas ϕ, respectively.

To make our further account more simple, consider, first, the translations of some basic formulas. Let
u and v be some classes in the LTS.

The formula u ∈ v is translated into the formula (u ∈ v)t = ((ut, vt) ∈ B). Denote this last formula by γ.
By definition, this formula is equivalent to the formula (∃x∃y(x ∈ D∧ y ∈ D∧ (ut, vt) = (x, y) ∧ (x ∈ y)).
Using the property of a sequential pair, we conclude that ut = x and vt = y. Consequently, the formula
δ ≡ (ut ∈ vt) is deduced from γ. By the theorem of deduction, γ ⇒ δ. Conversely, consider the formula δ.
In the ZF theory, one can prove that for sets ut and vt, there exists a set z such that z = (ut, vt). By LAS3,
the formula (z = (ut, vt) ⇒ ut ∈ D ∧ vt ∈ D ∧ z = (ut, vt)∧ ut ∈ vt) is deduced from δ. Since the formula
z = (ut, vt) is deduced from axioms, we infer that the formula (ut ∈ D ∧ vt ∈ D ∧ z = (ut, vt) ∧ ut ∈ vt)
is also deduced. By LAS12, the formula ∃x∃y(x ∈ D ∧ y ∈ D ∧ z = (x, y) ∧ x ∈ y) is deduced, and it is
equivalent to the formula z ∈ B and, therefore, to the formula γ. By the theorem of deduction, δ ⇒ γ.
Thus, the first equivalence (u ∈ v)t ⇔ ut ∈ vt is valid.

The formula v ⊂ w is translanted into the formula (v ⊂ w)t. Denote this last formula by ε. By the
equivalence proved above it is equivalent to the formula ε′ ≡ ∀u ∈ D(u ∈ vt ⇒ u ∈ wt). According to
LAS11, the formula ε′′ ≡ (x ∈ D ⇒ (x ∈ vt ⇒ x ∈ wt)) is deduced from the formula ε′. If x ∈ vt, then
vt ∈ D, and the transitivity of the set D implies x ∈ D. Then the formula ε′′ implies x ∈ vt ⇒ x ∈ wt.
Consequently, by the theorem of deduction, the formula (ε⇒ (x ∈ vt ⇒ x ∈ wt)) is deduced. By the rule
of generalization, the formula ∀x(ε ⇒ (x ∈ vt ⇒ x ∈ wt)) is deduced. By LAS13, we infer the formula
(ε⇒ ∀x(x ∈ vt ⇒ x ∈ wt)), i.e., the formula (ε⇒ vt ⊂ wt).

Conversely, let the formula vt ⊂ wt be given. Using the logical axioms, we can consecutively infer from
it the formulas (u ∈ vt ⇒ u ∈ wt) and (u ∈ D ⇒ (u ∈ vt ⇒ u ∈ wt)). By the rule Gen, the formula ε′
is deduced. Therefore, by the theorem of deduction, the formula (vt ⊂ wt ⇒ ε) is deduced. Thus, the
second equivalence (v ⊂ w)t ⇔ vt ⊂ wt is valid.

It follows from this equivalence that we obtain the equivalence (v =LTS w)t ⇔ (vt ⊂ wt) ∧ (wt ⊂ vt).
By the axiom of extensionalty A1 (ZF), the last formula implies vt =ZF wt. By the theorem of deduction,
in the ZF theory, the formula ((vt ⊂ wt) ∧ (wt ⊂ vt) ⇒ vt = wt) is deduced. Conversely, if vt =ZF wt,
then, by the principle of changing equals (see Sec.4.1), the formula (u ∈ vt ⇒ u ∈ wt) is deduced. By
the rule Gen, the formula vt ⊂ wt is deduced. Similarly the formula wt ⊂ vt is deduced. Therefore,
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the formula (vt ⊂ wt) ∧ (wt ⊂ vt) is also deduced. By the theorem of deduction, in the ZF theory,
the formula (vt =ZF wt ⇒ (vt ⊂ wt) ∧ (wt ⊂ vt)) is deduced. Thus, we obtain the third equivalence
(v =LTS w)t ⇔ vt =ZF wt.

Further, we will write not literal translations of axioms and axiom schemes but their equivalent variants,
which are obtained by using the proved equivalences (u ∈LTS v)t ⇔ ut ∈ZF vt, (v ⊂LTS w)t ⇔ vt ⊂ZF wt,
and (v =LTS w)t ⇔ vt =ZF wt. We will denote these equivalent variants using the sign “˜” over them.

Ãt1. ∀y ∈ D∀z ∈ D((y = z) ⇒ (∀X ∈ D(y ∈ X ⇔ z ∈ X))).
In ZF, the formula y = z ⇒ z = y can be proved in the following way. By the property of changing

equals, we have (y = z ⇒ (y = y ⇒ z = y)). Since the formula y = y is valid for any y, we obtain
y = z ⇒ z = y. Moreover, by the property of changing equals, (y = z) ⇒ (y ∈ X ⇒ z ∈ X) and
(z = y) ⇒ (z ∈ X ⇒ y ∈ X) are deduced. By using y = z ⇒ z = y, (y = z) ⇒ (y ∈ X ⇐ z ∈ X)
and (y = z) ⇒ (y ∈ X ⇔ z ∈ X) are deduced. Now, by LAS1 and the rule of generalization,
∀X ∈ D((y = z) ⇒ (y ∈ X ⇔ z ∈ X)) is deduced. Whence, by LAS13 and the rule of generalization,
the formula Ãt1 is deduced.

˜ASt2. Let ϕ(x) be an X-predicative formula of the LTS such that the substitution ϕ(x‖y) is admissible
and ϕ does not contain Z as a free variable. Then ∀X ∈ D(∃Z ∈ D(∀y ∈ D((y ∈ Z) ⇔ (y ∈ X∧ϕτ (y))))),
where ϕτ denotes the formula M � [sτ ] in which by sτ we denote the corresponding change of the
sequence s under the translation of the quantifier over formulas ∀X(. . . ), ∃Y (. . . ) and ∀y(. . . ) indicated
above.

Since ϕτ is a formula of ZF, we infer that ˜ASt2 is deduced from AS3 (ZF). Actually, by AS3 (ZF), for
X ∈ D, there exists Z such that ∀y(y ∈ Z ⇔ y ∈ X ∧ ϕτ (y)). Therefore, Z ⊂ X ∈ D. By the definition
of D, there exists n ∈ ω such that X ∈ Wn. By Lemma 8, Sec. 4, Z ∈ Wn ⊂ D. Thus, for X ∈ D, there
exists Z ∈ D such that ∀y ∈ D(y ∈ Z ⇔ y ∈ X ∧ ϕτ (y)).

Ãt3. ∀Z ∈ D((∀x ∈ D(x /∈ Z)) ⇔ Z = ∅).
Fix the condition Z ∈ D. Consider the formula χ ≡ ∀x(x ∈ D ⇒ x /∈ Z). If x ∈ Z then, by the

condition, x ∈ D and then χ implies x /∈ Z. If x /∈ Z, then, obviously, χ implies x /∈ Z. Consequently,
under our condition, from χ is deduced x /∈ Z. By the rule of generalization, from χ is deduced ∀x(x /∈ Z).
By Axioms A1 and A7 (ZF), ∀x(x /∈ Z) implies Z = ∅. Thus, from the totality Z ∈ D and χ, Z = ∅
is deduced. By the theorem of deduction, Z ∈ D implies the formula χ ⇒ Z = ∅. Conversely, by A1
and A7, Z = ∅ implies ∀x(x /∈ Z). Therefore, from the totality Z ∈ D and Z = ∅, we can infer χ.
By the theorem of deduction, from Z ∈ D, we can infer the formula Z = ∅ ⇒ χ. Therefore, from
the condition Z ∈ D, the formula χ ⇔ Z = ∅ is deduced. By the theorem of deduction, the formula
Z ∈ D ⇒ (χ⇔ Z = ∅) is deduced. Therefore, by the rule of generalization, the formula Ãt3 is deduced.

Ãt4. ∀U ∈ D∀V ∈ D((U = V ) ⇒ (U ∈ R⇔ V ∈ R)).
By the property of changing equals, we have (U = V ) ⇒ (U ∈ R ⇒ V ∈ R). By the proved above,

(U = V ) ⇒ (V = U), and, therefore, (U = V ) ⇒ (V ∈ R ⇒ U ∈ R). It follows that (U = V ) ⇒ (U ∈
R⇔ V ∈ R), and by the rule of generalization, we infer the formula Ãt4.

Ãt5. W0 ∈ R ∧ ∀U ∈ D(U ∈ R⇒W0 ⊂ U).
The formula W0 ∈ R is deduced in ZF+ISIC by AS3. Therefore, we need to only deduce the formula

∀U ∈ D(U ∈ R ⇒ W0 ⊂ U). We can write this formula in another form as ∀U ∈ D(∃n ∈ ω(U = Wn) ⇒
W0 ⊂ U). By Corollary 1 to Lemma 9 from Sec. 4.3, ι0 ≤ ιn implies W0 ⊂Wn for every n ∈ ω. It follows
from this assertion that the mentioned formula is deduced in ZF+ISIC.

Ãt6. ∀X ∈ D∃U ∈ D(U ∈ R ∧X ∈ U).
It follows from X ∈ D that X ∈ Wn for some n ∈ ω. Consider U = Wn. Then X ∈ D implies

U ∈ D ∧ U ∈ R ∧X ∈ U , and it gives Ãt6 as a result.

5810



Ãt7. ∀U ∈ D(U ∈ R⇒ ∀X ∈ D(X ∈ U ⇒ X ⊂ U)).
It follows from U ∈ R that U = Wn for some n ∈ ω, and X ∈Wn implies X ⊂Wn by Lemma 9, Sec. 4.

This gives the desired formula.

Ãt8. ∀U ∈ D(U ∈ R⇒ ∀X ∈ D∀Y ∈ D(X ∈ U ∧ Y ⊂ X ⇒ Y ∈ U)).
Since from U ∈ R it follows that U = Wn for some n ∈ ω, we need only to prove that for any X,Y

from D (X ∈Wn ∧ Y ⊂ X ⇒ Y ∈Wn) holds. But this directly follows from Lemma 8, Sec. 4.

Ãt9. ∀U ∈ D(U ∈ R ⇒ ∀X ∈ D(X ∈ U ⇒ PU (X)τ ∈ U)), where the set Z ≡ PU (X)τ is defined by
the formula ∃Z ∈ D(∀y ∈ D((y ∈ Z) ⇔ (y ∈ U ∧ y ⊂ X))).

First, let us verify that if U ∈ R, X ∈ D, and X ∈ U , then Z = P(X). Let y ∈ Z. Since Z ∈ D,
it follows from the transitivity property that Z ⊂ D. Consequently, y ∈ D. But, in this case, y ∈ D
and y ∈ Z imply y ⊂ X, i.e., y ∈ P(X). Conversely, let y ∈ P(X), i.e., y ⊂ X. From X ∈ D, by the
property of the set D proved above, we obtain y ∈ D. It follows from U ∈ R that U = Wn for some
n ∈ ω. Consequently, by Lemma 8, Sec. 4, y ⊂ X ∈ Wn implies y ∈ Wn = U . But then y ∈ D, y ∈ U ,
and y ⊂ X imply y ∈ Z, and this proves the desired equality.

By Lemma 12, Sec. 4, X ∈ Wn implies Z = P(X) ∈ Wn = U . From here, the formula Ãt9 is deduced
by the logical means.

˜At10. ∀U ∈ D(U ∈ R ⇒ ∀X ∈ D∀Y ∈ D(X ∈ U ∧ Y ∈ U ⇒ (X ∪U Y )τ ∈ U)), where the set
Z ≡ (X ∪U Y )τ is defined from the formula ∃Z ∈ D(∀y ∈ D((y ∈ Z) ⇔ (y ∈ U ∧ (y ∈ X ∨ y ∈ Y )))).

In the same way as in the deduction of the formula Ãt9, we verify that the conditions U ∈ R, X ∈ D,
Y ∈ D, X ∈ U and Y ∈ U imply the equality Z = X ∪ Y , and also U = Wn for some n ∈ ω. By
Lemma 11, Sec. 4, X,Y ∈Wn implies Z = X ∪ Y ∈Wn = U . From here, the formula ˜At10 is deduced.

˜At11. ∀U ∈ D(U ∈ R ⇒ ∀X ∈ D∀Y ∈ D∀z ∈ D((X ∈ U ∧ Y ⊂ U ∧ (z ⊂ (X ∗U Y )σ) ∧ (∀x ∈ D(x ∈
X ⇒ z〈x〉τ ∈ U))) ⇒ ((rngUz)σ ∈ U))), where:

— the set Z1 ≡ (X ∗U Y )σ is defined from the formula ∃Z1 ∈ D(∀y ∈ D((y ∈ Z1) ⇔ (y ∈ U ∧ (∃u ∈
D∃v ∈ D(u ∈ X ∧ v ∈ Y ∧ y = 〈u, v〉∗U ))))),

— the set Z2 ≡ Z2(x) ≡ z〈x〉τ is defined from the formula ∃Z2 ∈ D(∀y ∈ D((y ∈ Z2) ⇔ (y ∈ U ∧ y ∈
Y ∧ 〈x, y〉∗U ∈ z))),

— the set Z3 ≡ (rngUz)σ is defined from the formula ∃Z3 ∈ D(∀y ∈ D((y ∈ Z3) ⇔ (y ∈ U ∧ y ∈
Y ∧ (∃x ∈ D(x ∈ X ∧ 〈x, y〉∗U ∈ z))))).

As before, we verify that the conditions U ∈ R, u ∈ D, v ∈ D, u ∈ U , and v ∈ U consecutively imply
the equalities {u}∗U = {u}, {u, v}∗U = {u, v}, and 〈u, v〉∗U = 〈u, v〉, where U = Wn for some n ∈ ω. By
Corollary 1 to Lemma 12, Sec. 4 u, v ∈Wn implies 〈u, v〉∗U = 〈u, v〉 ∈Wn = U .

Therefore, in turn, we infer that the conditions U ∈ R, X ∈ D, Y ∈ D, X ∈ U , Y ⊂ U , x ∈ D,
and x ∈ X imply the equalities Z1 = X ∗ Y , Z2 = z〈x〉 and Z3 = rng z. Let us also have the condition
∀x ∈ D(x ∈ X ⇒ z〈x〉τ ∈ U). Since z is a correspondence from X into Y ⊂ U , it follows that z is a
correspondence from X into Wn. If x ∈ X ∈ D, then from the transitivity of D follows x ∈ D. Therefore,
this additional condition implies z〈x〉 = z〈x〉τ ∈Wn. Since X ∈Wn, by Lemma 17, Sec. 4, it follows that

(rngUz)σ = rng z ∈Wn = U . From here, by logical means, we infer the formula ˜At11.

˜At12. ∀U ∈ D(U ∈ R ⇒ ∀X ∈ D(X ⊂ U ∧X �= ∅ ⇒ ∃x ∈ D(x ∈ X ∧ (x ∩U X)τ = ∅))), where the
set Z ≡ (x ∩U X)τ is defined from the formula ∃Z ∈ D(∀y ∈ D((y ∈ Z) ⇔ (y ∈ U ∧ (y ∈ x ∧ y ∈ X)))).

If we fix some U ∈ R, i. e., U = Wn for n ∈ ω, then we need to prove the formula ∀X ∈ D(X ⊂
Wn ∧X �= ∅ ⇒ ∃x ∈ D(x ∈ X ∧ (x ∩Wn X)τ = ∅)). Since X ⊂ Wn implies X ∈ D, and x ∈ X implies
x ∈ D, it follows that this formula can be transformed in to the formula ∀X(X ⊂Wn ∧X �= ∅ ⇒ ∃x(x ∈
X ∧ (x ∩Wn X)τ = ∅)). For x,X ∈Wn, we have ((x ∩Wn X)τ = x ∩X); therefore, we need only to prove

5811



that ∀X ⊂Wn(X �= ∅ ⇒ ∃x(x ∈ X∧x∩X = ∅)). But it is a direct consequence of the axiom of regularity
in ZF.

˜At13. ∃X ∈ D(X ∈W0 ∧ ∅ ∈ X ∧ ∀x ∈ D(x ∈ X ⇒ ((x ∪W0 {x}W0)
τ ∈ X))), where:

— the set Z1 ≡ (x ∪W0 {x}W0)
τ is defined from the formula ∃Z1 ∈ D(∀y ∈ D((y ∈ Z1) ⇔ (y ∈

W0 ∧ (y ∈ x ∨ y ∈ {x}∗W0
)))),

— the set Z2 ≡ {x}∗W0
is defined from the formula ∃Z2 ∈ D(∀y ∈ D((y ∈ Z2) ⇔ (y ∈W0 ∧ y = x))).

From the conditions X ∈ D, X ∈ W0, x ∈ D, and x ∈ X, it follows that Z2 = {x}, and, therefore,
Z1 = x ∪ {x}. In ZF, consider the set X ≡ ω. This set obviously satisfies the condition ∅ ∈ X ∧ ∀x ∈
X(x ∪ {x} ∈ X). We need to prove that ω ∈ W0. Actually, since W0 = Vι0 and ι0 > ω, by the definition
of an inaccessible cardinal, by Lemma 13, Sec. 4, it follows that ω ∈W0.

˜At14. ∀U ∈ D(U ∈ R ⇒ ∀X ∈ D(X ∈ U ∧X �= ∅ ⇒ ∃z ∈ D((z � PU (X) \ {∅}U →U X)σ ∧ ∀Y ∈
D(Y ∈ (PU (X) \ {∅}U )τ ⇒ z(Y )τ ∈ Y )))), where:

— the set Z1 ≡ (PU (X) \ {∅}U )τ is defined from the formula ∃Z1 ∈ D(∀y ∈ D((y ∈ Z1) ⇔ (y ∈
U ∧ (y ∈ PU (X)∗ ∧ y /∈ {∅}∗U )))),

— the set Z2 ≡ z(Y )τ is defined from the formula Z2 ∈ U ∧ 〈Y, Z2〉τU ∈ z.
— ητ denotes the formula M � η[sτ ] in which sτ denotes the corresponding change of the sequence s

under the translation of the quantifier over-formulas ∀U(. . . ), ∀X(. . . ), and ∃z(. . . ) indicated above.

Fix the conditions U ∈ D, U ∈ R, X ∈ D, and X ∈ U . Denote PU (X)\{∅}U by S and P(X)\{∅} by T .
We have proved above that X ∈ U and ∅ ∈ U imply PU (X)∗ = P(X) and {∅}∗U = {∅}. Since U ∈ R, it
follows that U = Wn for some n ∈ ω. Therefore, by Lemma 12, Sec. 4, X ∈ U implies P(X) ∈ U , and, by
Lemma 8, Sec. 4, it implies T ∈ U . By Lemma 9, Sec. 4, y ∈ T ∈ U implies y ∈ U . All these properties
imply Z1 = T .

If Y ∈ D and Y ∈ Z1, then Y ∈ T ∈ U implies Y ∈ U . As was stated above, Z2 ∈ U and Y ∈ U imply
〈Y, Z2〉τU = 〈Y, Z2〉. Then 〈Y, Z2〉 ∈ z implies Z2 ∈ z〈Y 〉. From here and from the previous conditions, we
cannot yet infer that Z2 = z(Y ).

Consider the formula ϕ ≡ (z � PU (X) \ {∅}U →U X). It is the conjunction of the three following
formulas: ϕ1 ≡ (z ⊂ S ∗U X), ϕ2 ≡ (domUz = S), and ϕ3 ≡ (∀x(x ∈ S ⇒ ∀y(y ∈ X ⇒ ∀y′(y′ ∈ X ⇒
(〈x, y〉U ∈ z ∧ 〈x, y′〉U ∈ z ⇒ y = y′))))).

Therefore, ϕσ = ϕσ
1 ∧ ϕσ

2 ∧ ϕσ
3 . Since ϕ1 = (∀u(u ∈ z ⇒ u ∈ U ∧ ∃x∃y(x ∈ S ∧ y ∈ X ∧ u = 〈x, y〉U ))),

it follows that ϕσ
1 ⇔ (∀u ∈ D(u ∈ z ⇒ u ∈ U ∧∃x ∈ D∃y ∈ D(x ∈ Z1 ∧ y ∈ X ∧u = 〈x, y〉∗U ))). Similarly,

ϕ2 = (∀x(x ∈ S ⇒ x ∈ U ∧ x ∈ S ∧ ∃y(y ∈ X ∧ 〈x, y〉U ∈ z))) implies ϕσ
2 ⇔ (∀x ∈ D(x ∈ Z1 ⇒ x ∈

U ∧ x ∈ Z1 ∧ ∃y ∈ D(y ∈ X ∧ 〈x, y〉∗U ∈ z))).
Finally, ϕσ

3 ⇔ (∀x ∈ D(x ∈ Z1 ⇒ ∀y ∈ D(y ∈ X ⇒ ∀y′ ∈ D(y′ ∈ X ⇒ (〈x, y〉∗U ∈ z ∧ 〈x, y′〉∗U ∈ z ⇒
y = y′))))).

For X, by the axiom of choice A10 (ZF), there exists z such that χ ≡ (z � P(X)\{∅} → X)∧∀Y (Y ∈
P(X) \ {∅} ⇒ z(Y ) ∈ Y ).

Consider the formula ψ ≡ (z � P(X) \ {∅} → X). As above, ψ = ψ1 ∧ ψ2 ∧ ψ3, where ψ1 = (∀u(u ∈
z ⇒ ∃x∃y(x ∈ T ∧ y ∈ X ∧ u = 〈x, y〉))), ψ2 = (∀x(x ∈ T ⇒ x ∈ T ∧ ∃y(y ∈ ∧〈x, y〉 ∈ z))) and
ψ3 = (∀x(x ∈ T ⇒ ∀y(y ∈ X ⇒ ∀y′(y′ ∈ X ⇒ (〈x, y〉 ∈ z ∧ 〈x, y′〉 ∈ z ⇒ y = y′))))).

Since T ∈ U , by Corollary 2 to Lemma 12, Sec. 4, we obtain T ∗X ∈ U . The formula ψ1 means that
z ⊂ T ∗X. Therefore, z ∈ U and z ∈ D.

Let us deduce from these properties the formula ϕσ
1 . Let u ∈ D and u ∈ z. Then, by Lemma 9,

Sec. 4, u ∈ z ∈ U implies u ∈ U . From the formula ψ1, it follows that for u, there exist x ∈ T
and y ∈ X such that u = 〈x, y〉. By Lemma 9, Sec. 4, x, y ∈ U ⊂ D. We have stated above that
〈x, y〉∗U = 〈x, y〉 in this case. Since x ∈ T and T = Z1, it follows that x ∈ Z1. Thus, from u ∈ z, the
formula (u ∈ U ∧ ∃x ∈ D∃y ∈ D(x ∈ Z1 ∧ y ∈ X ∧ u = 〈x, y〉∗U )) is deduced. Applying the theorem of
deduction and the rules of deduction, we deduce the formula ϕσ

1 .
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Let x ∈ D, and let x ∈ Z1 = T . Since T ∈ U , by Lemma 9, Sec. 4, it follows, that x ∈ U . From the
formula ψ2, we infer that for x, there exists y ∈ X such that 〈x, y〉 ∈ z. By the transitivity of D, the
condition y ∈ X ∈ D, implies y ∈ D. Similarly, by Lemma 9, Sec. 4, y ∈ X ∈ U implies y ∈ U . But
〈x, y〉 = 〈x, y〉∗U in this case. Thus from x ∈ Z1, the formula (x ∈ U∧x ∈ Z1∧∃y ∈ D(y ∈ X∧〈x, y〉∗U ∈ z))
is deduced. As above, from here, we deduce the formula ϕσ

2 .
Let x ∈ Z1 = T , y ∈ D, y ∈ X, y′ ∈ D, y′ ∈ X, 〈x, y〉∗U ∈ z, and let 〈x, y′〉∗U ∈ z. As above, these

conditions imply 〈x, y〉 ∈ z and 〈x, y′〉 ∈ z. But then the formula ψ3 implies y = y′. In turn, applying
several times the theorem of deduction and the rules of deduction, we deduce the formula ϕσ

3 from the
formula ψ.

Thus, the formula ϕσ is deduced.
Since z � T → X, it follows that z〈Y 〉 = {z(Y )}. Consequently, from Z2 ∈ {z(Y )}, we infer that

Z2 = z(Y ). Therefore, for the function z, the conditions Y ∈ D and Y ∈ Z1 = T imply Z2 = z(Y ) ∈ Y .
All this means that from Axiom A10 (ZF) is deduced the existence of an object z satisfying the

formula χ, from which the formula ξ ≡ ϕσ ∧ ∀Y ∈ D(Y ∈ Z1 ⇒ Z2 ∈ Y ) is deduced. Therefore, in ZF,
from the fixed conditions, the formula ∃z ∈ D(ξ) is deduced. In turn, applying several times the theorem

of deduction and the rule of generalization, we deduce as result the formula ˜At14.
Since all the translations of the axioms of LTS turn out to be deducible formulas of the ZF+ISIC

theory, it follows that the LTS is consistent.

The absence of an axiom scheme like the axiom scheme of replacement in the ZF theory in the LTS
apparently makes impossible an interpretation of the ZF+ISIC theory in the LTS. But this interpretation
becomes possible if we strengthen the LTS by the axiom of an infinite class of universes

ICU ≡ ∃X(∀U ∈ X(U ��) ∧X �= ∅ ∧ ∀V ∈ X∃W ∈ X(V ∈W )).

Lemma 1. The following assertions are equivalent in the LTS :
(1) ICU ;
(2) ITCU (an infinite transitive class of universes) ≡ there exists a class Y such that :

(a) ∀U ∈ Y (U ��);
(b) Y �= ∅;
(c) ∀U∀V (U �� ∧U ∈ V ∈ Y ⇒ U ∈ Y ) (the property of transitivity with respect to universes);
(d) ∀V ∈ Y ∃W ∈ Y (V ∈W ) (the property of unboundedness).

Proof. (1) 	 (2). Denote by D the class the existence of which is postulated by Axiom ICU. It follows
from the axiom of universality A6 that D ∈ α for some universal class α. By the axiom of transitivity
A7, ∀V ∈ D(V ∈ α). By Corollary 2 to Proposition 4, a ∈ α or a = α. It is clear that the second case
contradicts ICU. Therefore, a ∈ α.

Consider the class E ≡ {U ∈ α|U �� ∧∃V ∈ D(U ∈ V )}. If U ∈ D, then, by ICU, ∃V ∈ D(U ∈ V ).
Therefore, D ⊂ E. The class E is universally transitive. Actually, if U �� and U ∈ V ∈ E, then
U ∈ V ∈ W ∈ D for some W . Using Axiom A7, we obtain U ∈ W ∈ D ∈ α, U ∈ W ∈ α, and U ∈ α.
Therefore U ∈ E.

If V ∈ E, then V ∈W ∈ D ⊂ E for some W , by definition. Therefore, E has property (d).
The deducibility (2) 	 (1) is obvious.

A similar lemma is valid for inaccessible cardinals in the ZF theory if we replace ICU by ISIC.

Lemma 2. Let E be a nonempty class of universes with the transitivity property with respect to universes,
i.e., E possesses properties (a)–(c) from Lemma 1. Then a ∈ E.

Proof. Let V ∈ E. By Corollary 2 to Proposition 4, Sec. 5, V = a or a ∈ V . In the first case, a ∈ E. In
the second case, a ∈ V ∈ E implies a ∈ E.

Statement 4. If the LTS+ICU is consistent, then the ZF+ISIC theory is consistent.
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Proof. Consider the class C the existence of which is postulated by axiom ICU. According to the axiom of
universality A6, there exists a universal class D such that C ∈ D. Consider the interpretation M ≡ (D, I)
of the ZF theory in the LTS described in the proof of Statement 1, Sec. 5. In the proof of Statement 1,
Sec. 5, it was established that the interpretation M is a model of ZF in the LTS, and therefore, a
model of ZF in the LTS+ICU. Let us verify the deducibility of the translation of Axiom ISIC under the
interpretation M on an arbitrary infinite sequence s ≡ x0, . . . , xq, . . . of elements of the class D. This
translation has the form

ϕ ≡M � ISIC[s] = ∃X ∈ D(∀x ∈ D(x ∈ X ⇒ Icn(x)D) ∧X �= ∅∧
∀y ∈ D(y ∈ X ⇒ ∃z ∈ D(z ∈ X ∧ y ∈ z))).

In the proof of Statement 2, it was established that the formula Icn(x)D means that x is aD-inaccessible
D-cardinal number in the LTS.

By Theorem 3, Sec. 5, there exists the injective mapping q : U � In such that q(α) ⊂ α and α = Vq(α).
If α ∈ C, then q(α) ⊂ α ∈ C ∈ D, by Axioms A7 and A8, implies q(α) ∈ D. Therefore, p ≡ q|C is an
injective mapping from C into D. Since C ⊂ D, it follows, by Lemma 5, Sec. 5, that p � C �D D and
K ≡ rng p = rngDp ⊂ D. Hence p � C �D K. Since p(α) ∈ D, by the axiom of the full union A11, it
follows that K ∈ D. From C �= ∅, it follows that K �= ∅. If κ ∈ K, then κ ∈ D. By Proposition 3, Sec. 5,
κ is a D-inaccessible D-cardinal. Consequently K consists of D-inaccessible D-cardinals.

By Axiom ICU, for κ ∈ K and β ≡ Vκ ∈ C, there exists γ ∈ C such that β ∈ γ. Consider the
inaccessible cardinal λ ≡ p(γ) ∈ K ⊂ D. Since q is strictly monotone, it follows that κ ∈ λ. Consequently,
the formula ψ(K) ≡ (∀x ∈ D(x ∈ K ⇒ (x is a D-inaccessible D-cardinal)) ∧K �= ∅ ∧ ∀y ∈ D(y ∈ K ⇒
∃z ∈ D(z ∈ K ∧ y ∈ z)))) is deduced in the LTS+ICU. Therefore, the formula ϕ = ∃X ∈ Dψ(X) is also
deduced.

Axiom ICU allows us to combine the finite sequences of universal classes continuing each other from
Theorem 5, Sec. 5 into one infinite sequence.

Proposition 3. In the LTS, the following assertions are equivalent :
(1) ICU ;
(2) there exist a universal class Xand an infinite strictly increasing X-sequence u ≡ (Un ∈ X|n ∈ ω)X

of universal classes such that from n ∈ ω, V is a universal class, and U0 ⊂ V ⊂ Vn it follows that
V = Vk for some k ∈ n+ 1 (the property of incompressibility);

(3) there exists a universal class X such that Un
k ∈ X for any k ∈ n + 1 and any n ∈ ω, where

u(n) ≡ (Un
k ∈ U(n)|k ∈ n + 1)U(n) are the increasing incompressible U(n)-sequences of universal

classes continuing each other strictly from Theorem 5, Sec. 5.

Proof. (1) 	 (2). Consider the class A the existence of which is postulated by Axiom ICU. By the axiom
of universality, there exists a universal class X such that A ∈ X. By Theorem 4, Sec. 5, in the class A,
there exists the smallest element α.

In the same way as in the proof of Theorem 5, Sec. 5, it is proved that for every n ∈ ω, there exists a
unique X-sequence of universal classes u(n) ≡ (Uk ∈ A|k ∈ n+ 1)X such that U0 = α, Uk ∈ Ul for every
k ∈ l ∈ n+1, and if V is a universal class and U0 ⊂ V ⊂ Un, then V = Uk for some k ∈ n+1 (the property
of incompressibility). It follows from the property of uniqueness that u(n)|(m+ 1) = u(m) for all m ≤ n,
i.e., these finite sequences continue each other. By this uniqueness, we can denote the sequence u(n) by
(Un

k |k ∈ n+ 1).
Consider the X-class ω ∗X A and the X-correspondence u ≡ {z ∈ ω ∗X A|∃x ∈ ω(z = 〈x, Ux

x 〉X)}.
Since u〈n〉 = {Un

n }X ∈ X for every n ∈ ω, it follows that u � ω →X A. By the axiom of transitivity,
Un ≡ Un

n ∈ A ∈ X implies Un ∈ X. Therefore, u is an X-sequence (Un ∈ X|n ∈ ω).
(2) 	 (3). From the property of uniqueness of the U(n)-sequence u(n) and the class U(n) from The-

orem 5, Sec. 5, it follows that u|n + 1 = u(n), i. e., Un+1 = U(n) and Uk = Un
k for any n ∈ ω and any

k ∈ n+ 1. Therefore, Un
k ∈ X.
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(3) 	 (1). Consider the X-class Y ≡ {y ∈ X|∃x ∈ ω(y = Ux
x )} = {Un

n ∈ X|n ∈ ω}X . Since the
U(n)-sequences u(n) are strictly increasing and continue each other, it follows that the class Y satisfies
Axiom ICU.

It follows from assumption (2) of this statement that the LTS+ICU resembles the axiomatics of da
Costa (see [6] and [7]) with the denumerable set of constants U1, . . . ,Un, . . . for universes with axioms
like the axiom X ⊂ Un ⇒ X ∈ Un+1. However, the theory of da Costa uses the nonconstructive rule of
deduction (precisely, the ω-rule of Carnap) and some properties of natural numbers.

Corollary. In the LTS+ICU there exist a universal class X and an infinite strictly increasing incom-
pressible X-sequence of universal classes u ≡ (Um ∈ X|m ∈ ω)X , and also for every n ∈ ω, there exist
a unique universal class V and a unique finite strictly increasing incompressible V -sequence of universal
classes v(n) ≡ (Vk ∈ V |k ∈ n+ 1)V such that V0 = X.

From the property of uniqueness, it follows that v(n)|(l + 1) = v(l) for all l ≤ n, i. e., these finite
sequences continue each other.

Proof. By Proposition 3, there exist the corresponding X and u ≡ (Um ∈ X|m ∈ ω)X . Further similarly
to the proof of Theorem 5, Sec. 5 is deduced the existence of the corresponding V and v(n) ≡ (Vk ∈ V |k ∈
n+ 1)V .

Roughly speaking, the LTS+ICU ensures the existence of ω + ∀n different universal classes.
It follows from this corollary and the remark made before Theorem 1 that to construct a model of the

LTS+ICU in the ZF theory, it is necessary to have at least two infinite sequences u ≡ (ιm|m ∈ ω) and
v ≡ (κn|n ∈ ω) of inaccessible cardinals in ZF such that ιk < ιm < κl < κn for every k ∈ m ∈ ω and
l ∈ n ∈ ω. But, as Proposition 1 shows, the existence of such infinite sequences is equivalent to Axiom
ISIC2.

With the help of Proposition 1 we can prove the following statement.

Statement 5. If the ZF+ISIC2 theory is consistent, then the LTS+ICU is also consistent.

Proof. In the same way as in the proof of Statement 3, consider the sequences (ιm|m ∈ ω) and (κn|n ∈ ω)
from Proposition 1. Consider the sets A ≡ {ιm|m ∈ ω} and B ≡ {κn|n ∈ ω}. Further, instead of Vιm

and Vκn we will write Wm
′ and Wn

′′, respectively. Consider the ordinal numbers α ≡ ∪A = supA and
β ≡ ∪B = supB and the sets D ≡ ∪ Wm

′|m ∈ ω ⊂ Vα and E ≡ D ∪ ∪ Wn
′′|n ∈ ω ⊂ Vβ . It is clear

that ∅ = V0 ∈ W0
′ ∈ Wk

′ ∈ Wm
′ ⊂ D ⊂ Vα ⊂ W0

′′ ∈ Wl
′′ ∈ Wn

′′ ⊂ E ⊂ Vβ for every 0 ∈ k ∈ m ∈ ω and
0 ∈ l ∈ n ∈ ω. Therefore, by Lemma 8, Sec. 4, we infer that Wk

′,Wl
′′ ∈ E for all k, l ∈ ω.

Choose the set E as the domain of interpretation of the LTS+ICU in the set ZF+ISIC2 theory. In E,
consider the subsets R ≡ {x ∈ E|∃m ∈ ω(x = Wm

′)} and S ≡ {x ∈ E|∃n ∈ ω(x = Wn
′ ∨ x = Wn

′′)}.
Define a correspondence J assigning to the predicate symbol ∈ in the LTS the two-placed relation C ≡
{z ∈ E × E|∃x, y ∈ E(z = (x, y) ∧ x ∈ y)}, to the symbol �� in the LTS the one-placed relation S ⊂ E,
and to the constant symbols ∅ and a in LTS the elements ∅ and W0

′ of the domain E. Consider the
interpretation N ≡ (E, J) of the LTS in the ZF+ISIC2 set theory, which is similar to the interpretation
M ≡ (D, I), described in the proof of Statement 3. Let us prove that this interpretation is a model of
the LTS+ICU. According to the proof of Statement 3, we need to only consider the translation of Axiom
ICU and to prove its deducibility in ZF+ISIC2.

Let s ≡ x0, . . . , xq, . . . be an arbitrary sequence of elements of the set E. The translation of Axiom
ICU under the interpretation N on the sequence s has the form
ϕ ≡ N � ICU [s] ≡ ∃X ∈ E(∀U ∈ E(U ∈ X ⇒ U ∈ R) ∧X �= ∅ ∧ ∀V ∈ E(V ∈ X ⇒ ∃W ∈ E(W ∈

X ∧ V ∈W ))).
Since ιm < κ0 < κ1 for every m ∈ ω, it follows that Wm

′ ∈W0
′′ ∈W1

′′. By Lemma 8, Sec. 4, R ∈W1
′′

and, therefore, R ∈ E. From W0
′ ∈ R, it follows that R �= ∅. If U ∈ E and U ∈ R, then U = Wm

′ for some
m ∈ ω. Since ιm < ιm + 1 ≤ ιm1, by Lemma 7, Sec. 4, we infer that U = Wm

′ ∈ Wm+1
′ ≡ V ∈ R ⊂ E.

Consequently, for the set R in ZF+ISIC2, the formula ψ(R) ≡ (∀U ∈ E(U ∈ R⇒ U ∈ R)∧R �= ∅∧∀V ∈
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E(V ∈ R ⇒ ∃W ∈ E(W ∈ R ∧ V ∈ W ))) is deduced. Therefore, the formula ϕ ≡ ∃X ∈ Eψ(X) is also
deduced.

Thus, we have proved the following chain of interpretations:

ZF + IC ≺ LTS ≺ ZF + ISIC ≺ LTS + ICU ≺ ZF + ISIC2 ≺ ZF + I,

where T ≺ S denotes the interpretation of the theory T in the set S theory. Denoting by cons(T ) the
consistency of the theory T , we obtain the inverse chain of relative consistency:

cons(ZF + I) ⇒ cons(ZF + ISIC2) ⇒ cons(LTS + ICU) ⇒
⇒ cons(ZF + ISIC) ⇒ cons(LTS) ⇒ cons(ZF + IC).

The similar chains remain valid, apparently, if we replace the ZF theory by the NBG theory.
It follows from Proposition 2 that inside the ZF+I theory, which is the strongest of the mentioned ones,

the chain of mutual interpretations can be continued further if we take as the next steps the LTS+ICU2,
ZF + ISIC3 theories, and so on.

Since, according to Sec. 6.1, ZF + U ∼ ZF + I, it follows from Proposition 2 that the ZF + ISIC
theory is weaker than the ZF + U theory. From Statement 3 of this section, it follows that the LTS is
weaker than ZF + ISIC. Therefore, the LTS is weaker than the ZF +U theory. Thus, the LTS satisfies
condition (1) formulated in the Introduction.

It follows from Theorem 5, Sec. 5, that the LTS, as well as the theory ZF + U(ω) ∼ ZF + ISIC
(see Sec. 6.1), has a countable totality of different universes and, therefore, satisfies all needs of category
theory to such an extent as the theory ZF + U(ω) does. Therefore, the LTS satisfies condition (2).

Finally, the axiom of universality A6 from the Sec. 2.1 asserts that in the LTS, there are no objects
which are not elements of this countable totality of universes. For the same reasons, the LTS satisfies
condition (3).

It follows from here that the LTS is a more adequate foundation for category theory than the ZF +U
and ZF + U(ω) theories. Moreover, the consistency of the ZF + U(ω) theory implies the consistency
of the LTS. Moreover, the LTS is a more adequate foundation for category theory than the set theory
of da Costa, because the existence of a countable totality of universes in the LTS is deduced but is not
postulated beforehand as in the axiomatics of da Costa. This saves us from the necessity of attracting
externally the natural numbers and their properties.

Note also that in Sec. 8.2 we will show that in the LTS we cannot prove that the assembly sequence of
finite U(n)-sequences u(n) ≡ (Un

k ∈ U(n)|k ∈ n+1)U(n) of universal classes Un
k constructed in Theorem 5,

Sec. 5 can be continued as was done in the assertion (3) of Proposition 3. This means that in the LTS we
have only a countable assembly of universes from Theorem 5, Sec. 5.

7. Proof of Relative Consistency by the Method of Abstract Interpretation

The method of abstract interpretation going back to Gödel (see [19], 10) is a direct generalization of
the method of interpretation stated in Sec. 1.3.

7.1. Abstracts of a set theory. Let S be some set theory (see Sec. 1.3). We will consider that either
S is a theory with the equality or in S the equality is introduced by the formula (A ⊂ B) ∧ (B ⊂ A).

In exactly the same way as in the ZF set theory, we introduced classes (see 4.1), and in the LTS, we
introduced assemblies (see 2.1), and in an arbitrary set theory S, we introduce the abstracts C ≡ {x|ϕ(x)}
and C(�u) ≡ {x|ϕ(x, �u)}. For the abstracts C ≡ {x|ϕ(x)} and D ≡ {x|ψ(x)}, as in Sec. 2.1, we define the
formulas C ⊂ D and C = D. Define the formula C ∈ y as the notation for the formula ∃z(z ∈ y∧z = C).

As in the Sec. 5.2, for abstracts A and B and objects A and B of the S set theory, we introduce the
abstracts P(A), A ∪ B, A ∩ B, {A}, {A,B}, 〈A,B〉, A ∗ B, and ∪A.

Similarly, in S, we define a correspondence C with the domain of definition domC and the range of
values rngC, a function (≡ a mapping) F, a correspondence C : A ≺ B, a function F : A → B,
a (multivalued) collection Ba ⊂ B|a ∈ A with the union ∪ Ba ⊂ B|a ∈ A and the intersection
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∩ Ba ⊂ B|a ∈ A , a simple collection (ba ∈ B|a ∈ A) with the abstract of members {ba ∈ B|a ∈ A},
the (multivalued) sequential pair A,A′ , triplet A,A′,A′′ , . . . of abstracts A,A′,A′′, . . . , the simple
sequential pair (a, a′), triplet (a, a′, a′′),. . . of objects a, a′, a′′, . . . , the product

∏
Ai ⊂ A|i ∈ I of a

collection Ai ⊂ A|i ∈ I , the product A×A′, A×A′×A′′, . . . of the pair A,A′ , triplet A,A′,A′′ ,
. . . of abstracts A,A′,A′′, . . . , an n-placed relation R ⊂ An ≡ Map(n,A) on an abstract A, an n-placed
operation O : An → A, and so on.

The abstract U ≡ {x|x = x} consisting of all objects of the theory S is said to be universal.
Note that operating with abstracts, we always stay within the framework of formulas of the S set

theory.

7.2. The abstract interpretation of a first-order theory in a set theory. A set theory S is
said to be finitely-closed (≡ closed up to finite collections) if in the theory S, some formula on(x) defines
natural numbers as the objects of this theory, and for every natural number n ≥ 1 every abstract F that
is a mapping from the object n into the universal abstract U is an object of the S theory.

In a finitely-closed S set theory, we define the abstract ω ≡ {x|on(x)} consisting of all natural numbers.
Therefore, in such a theory, abstracts s : ω → A are defined. They can be called abstract infinite sequences
of elements of the abstract A.

Suppose that in a S set theory, by means of this theory, we have selected some abstract D ≡ {x|ϕ(x)}.
Let S be some fixed finitely-closed set theory with some selected abstract D.
An abstract interpretation of a first-order theory T in the finitely-closed set theory S with the selected

abstract D is a pair M consisting of the abstract D and some correspondence I assigning to every predicate
letter Pn

i some n-placed relation I(Pn
i ) in D, every functional letter Fn

i some n-placed operation I(Fn
i )

in D, and every constant symbol ai some element I(ai) of D.
Let s be some abstract infinite sequence x0, . . . , xq, . . . of elements of the abstract D ≡ {x|ϕ(x)}.
Define the value of a term t of the theory T on the sequence s under the abstract interpretation M of

the theory T in the S set theory (in the notation tM[s]) by induction in the following way:

— if t ≡ vi, then tM[s] ≡ xi;
— if t ≡ ai, then tM[s] ≡ I(ai);
— if t ≡ F (t0, . . . , tn−1), where F is an n-placed functional symbol and t0, . . . , tn−1 are terms, then

tM[s] ≡ I(F )(t0M[s], . . . , tn−1M[s]).

Since I(F ) is an operation from Dn into D, it follows that for the term t ≡ F (t0, . . . , tn−1), we have
tM[s] ∈ D. Consequently, the value of a term is always an element of the abstract D, i. e., it is some
object of the theory S.

Define the translation of the formula ϕ on the sequence s under the abstract interpretation M of the
theory T in the finitely-closed set theory S (in the notation M � ϕ[s]) by induction in the following way:

— if ϕ ≡ (P (t0, . . . , tn−1), where P is a n-placed predicate symbol and t0, . . . , tn−1 are terms, then
M � ϕ[s] ≡ ((t0M[s], . . . , tn−1M[s]) ∈ I(P ));

— if ϕ ≡ (¬θ), then M � ϕ[s] ≡ (¬M � θ[s]);
— if ϕ ≡ (θ1 ⇒ θ2), then M � ϕ[s] ≡ (M � θ1[s] ⇒ M � θ2[s]);
— if ϕ ≡ (∀viθ), then M � ϕ[s] ≡ (∀x(x ∈ D ⇒ M � θ[x0, . . . , xi−1, x, xi+1, . . . , xq, . . . ])).

On other formulas the translation is continued similarly to Sec. 1.3.
This definition needs some explanation.
For the formula ϕ ≡ (P (t0, . . . , tn−1)), the symbol-string ((t0M[s], . . . , tn−1M[s]) ∈ I(P )) is a formula

of the theory S. Actually, we have mentioned above that the values of the terms tiM[s] are objects of
the theory S. Since the theory S is finitely-closed, it follows that the abstract v ≡ (t0M[s], . . . , tn−1M[s])
is an object of the theory S. By definition, I(P ) is a subabstract of the abstract Dn. Therefore, the
symbol-string (v ∈ I(P )) is, in fact, a formula of the theory S. It follows from the other items of this
definition that as a result of the translation, we always obtain formulas of the theory S. Thus M � ϕ[s]
is a formula of the theory S.
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An abstract interpretation M is called an abstract model of the axiomatic theory (T,Φa) in the axiomatic
finitely-closed set theory (S,Ξa) with the selected abstract D if for every abstract sequence s of elements
of D, the translation M � ϕ[s] of every axiom ϕ of the theory T is a deducible formula in the theory
(S,Ξa).

All other definitions and assertions from Sec. 1.3 are transferred to the case of abstract interpretation
under the corresponding insignificant changes.

8. Undeducibility of Some Axioms in LTS

In this section, all proofs are given by the method of abstract interpretation described in the previous
section.

8.1. The undeducibility of the axiom scheme of replacement. In Secs. 5.2 and 5.4, we have
made the globalization of almost all main constructions used in naive set theory.

Now we need only to know if one can deduce the global axiom scheme of replacement in the LTS:
ASR (the axiom scheme of replacement). Let ϕ(x, y) be a formula of the LTS, and let ϕ not contain

Y as a free variable. Then ∀x∀y∀y′(ϕ(x, y) ∧ ϕ(x, y′) ⇒ y = y′) ⇒ ∀X∃Y ∀x ∈ X∀y(ϕ(x, y) ⇒ y ∈ Y ).

Statement 1. (1) If the LTS is consistent, then LTS + ¬ASR is consistent.
(2) If the LTS is consistent, then the axiom scheme ASR is not deducible in the LTS.

Proof. (1) For n ∈ ω, consider the class U and the U -sequence u(n) from Theorem 5, Sec. 5. By their
uniqueness, we can denote them by U(n) and u(n) ≡ (Un

k ∈ U(n)|k ∈ n+ 1)U(n).
Consider the assembly C ≡ {z|∃x∃y(x ∈ ω ∧ y ∈ U(x) ∧ z = 〈x, y〉)}. It is clear that C is

a correspondence from the class ω into the assembly V such that C〈n〉 = Un for every n ∈ ω.
Therefore, C can be written as the collection C ≡ U(n) ∈ V|n ∈ ω]. Consider the assemblies
D ≡ ∪ U(n)|n ∈ ω = {y|∃x ∈ ω(y ∈ U(x))} and R ≡ {y|∃x ∈ ω(y = U(x))}. By Theorem 5,
Sec. 5, U(m) = Um+1

m+1 = Un+1
m+1 ∈ Un+1

n+1 = U(n) ⊂ D for any m ∈ n ∈ ω. Therefore, R ⊂ D. Moreover,
∅ ∈ U0 ⊂ D implies ∅ ∈ D.

By Corollaries 4 and 5 to Theorem 4, Sec. 5, the LTS is a finitely-closed set theory.
Choose the assembly D in the capacity of the domain of abstract interpretation of the theory T ≡

LTS + ¬ASR in the finitely-closed set theory S ≡ LTS.
Define a correspondence I assigning to the predicate symbol ∈ in T the two-placed relation B ≡

{z|∃x∃y(x ∈ D ∧ y ∈ D ∧ z = (x, y) ∧ x ∈ y)} on D, to the predicate symbol �� in T the one-placed
relation R on D, and to the constants ∅ and a in T the elements ∅ and U0 of the domain D, respectively.
Consider the abstract interpretation M ≡ (D, I).

Let s be an abstract sequence x0, . . . , xq, . . . of elements of D. We will consider the translations
M � ϕ[s] of axioms and axiom schemes of the theory T on the sequence s under the interpretation M
and will prove their deducibility in the S set theory. Instead of θM[s] and M � ϕ[s], we will write θt and
ϕt for terms θ and formulas ϕ, respectively.

The assembly D is transitive. Actually, if y ∈ D, then y ∈ U(m) for some m. By Axiom A7,
y ⊂ U(m) ⊂ D. Moreover, if x ⊂ y ∈ D, then x ∈ D. Actually, by Axiom A8, x ⊂ y ∈ U(m), implies
x ∈ U(m) ⊂ D. We will often use these two properties in our proofs further.

For simplifying the further presentation, we first consider the translations of some simple formulas. Let
u and v be some classes in the LTS.

The formula u ∈ v is translated into the formula (u ∈ v)t = ((ut, vt) ∈ B). By Corollary 5 to Theorem 4,
Sec. 5, the assembly (ut, vt) is a class, i.e., there exists a class z such that z = (ut, vt). Therefore,
similarly to the arguments from the proof of Statement 3, Sec. 6, we establish the first equivalence
(u ∈ v)t ⇔ ut ∈ vt.

Further, similarly to the proof of Statement 3, Sec. 6, we establish the second equivalence (v ⊂ w)t ⇔
vt ⊂ wt.

This equivalence immeditely implies the third equivalence (v = w)t ⇔ vt = wt.
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We will now write not the literal translations of axioms and axiom schemes but their equivalent variants
which are obtained by using the proved equivalences (u ∈ v)t ⇔ ut ∈ vt, (v ⊂ w)t ⇔ vt ⊂ wt and
(v = w)t ⇔ vt = wt. We will denote these equivalent variants using the sign “˜” over them.

Ãt1. ∀y ∈ D∀z ∈ D((y = z) ⇒ (∀X ∈ D(y ∈ X ⇔ z ∈ X))).
This formula is directly deduced from the axiom of extensionality A1 in the LTS.

˜ASt2. Let ϕ(x) be an X-predicative formula in the LTS such that the substitution ϕ(x‖y) is admissible
and ϕ does not contain Y as a free variable. Then ∀X ∈ D(∃Y ∈ D(∀y ∈ D((y ∈ Y ) ⇔ (y ∈ X∧ϕτ (y))))),
where ϕτ denotes the formula M � ϕ[sτ ] in which by sτ we denote the corresponding change of the
sequence s under the translation of the quantifier over-formulas ∀X(. . . ), ∃Y (. . . ), and ∀y(. . . ) indicated
above.

Let X ∈ D. Let us verify that the formula ϕτ is also X-predicative.
Suppose that the subformula ψ ≡ ∃x(x ∈ X ∧ . . . ) occurs in the formula ϕ. Then the subformula ψτ

occurs in the formulas ϕτ . By the proved equivalence, taking into account the external quantification
by X, the formula ψτ is equivalent to the formula ψ′ ≡ ∃x(x ∈ D ∧ x ∈ X ∧ . . . ). If x ∈ X, then
it follows from the transitivity of D that x ∈ D. Consequently, the formula ψ′ is equivalent to the
formula ψ∗ ≡ ∃x(x ∈ X ∧ . . . ). Substituting the subformula ψτ in the formula ϕτ by the equivalent
formula ψ∗, we obtain the formula ϕ∗, which is equivalent to the formula ϕτ and contains the subformula
ψ∗ ≡ ∃x(x ∈ X ∧ . . . ). Making this substitution with all subformulas of the form ψ in the formula ϕ,
we obtain the formula ϕ×, which is equivalent to the formula ϕτ and contains only subformulas of the
form ψ∗.

Now suppose that the formula ϕ contains the subformula χ ≡ ∀x(x ∈ X ⇒ . . . ). Then the subformula
χτ occurs in the formula ϕτ . Therefore, it also occurs in the formula ϕ×. As above, the formula χτ is
equivalent to the formula χ′ ≡ ∀x(x ∈ D ⇒ (x ∈ X ⇒ . . . )).

Consider the formula χ′. We deduce from it the formula σ ≡ (x ∈ D ⇒ (x ∈ X ⇒ . . . ). If x ∈ X, then,
by the transitivity of D, x ∈ X ∈ D implies x ∈ D. This means that χ′ and x ∈ X imply the subformula
(x ∈ X ⇒ . . . of the formula σ and, therefore, the formula χ∗ ≡ ∀x(x ∈ X ⇒ . . . ). By the theorem of
deduction in the LTS, we deduce the formula χ′ ⇒ χ∗.

Conversely, consider the formula χ∗. By LAS12, it implies the subformula (x ∈ X ⇒ . . . ). By LAS1,
the formula σ is deduced. By the deduction theorem in the LTS, the formula χ∗ ⇒ σ is deduced. By
the generalization rule, the formula ∀x(χ∗ ⇒ σ) is deduced. In virtue of LAS13, the formula χ∗ ⇒ χ′ is
deduced. Thus, in the LTS, we deduce the equivalence of the formulas χ′ and χ∗.

Substituting the subformula χτ in the formula ϕ× by the equivalent formula χ∗, we obtain the for-
mula ϕ×∗, which is equivalent to the formula ϕ× and contains the subformula χ∗ ≡ ∀x(x ∈ X ⇒ . . . ).
Making this substitution with all subformulas of the form χ in the formula ϕ, we obtain the formula ϕ××,
which is equivalent to the formula ϕτ and contains only subformulas of the form ψ∗ and χ∗. Consequently,
the formula ϕ×× is X-predicative.

Therefore, by AS2 from the LTS,X ∈ D implies the formula π ≡ (∃Y (∀y(y ∈ Y ⇔ (y ∈ X∧ϕ××(y))))).
Consider the formula α ≡ (∀y ∈ Y ⇔ (y ∈ X ∧ϕ××(y)))). By LAS11, the formula α implies the formula
β ≡ (y ∈ Y ⇔ (y ∈ X ∧ ϕ××(y))). By LAS1, from α, we infer the formula γ ≡ (y ∈ D ⇒ β).
Consequently, from X ∈ D and α, we infer the formula δ ≡ (y ∈ D ⇒ (y ∈ Y ⇔ (y ∈ X ∧ ϕτ (y)))). By
the generalization rule, we infer the formula ε ≡ (∀y ∈ D(y ∈ Y ⇔ (y ∈ X ∧ ϕτ (y)))).

Moreover, from α, we infer the formula Y ⊂ X. Since X ∈ D, by the second property of the totality D
proved above, we obtain Y ∈ D. Therefore, from X ∈ D and α, we infer the formula Y ∈ D ∧ ε. By
LAS12 is implied the formula κ ≡ ∃Y ∈ Dε.

Thus, by the deduction theorem, from X ∈ D, we infer the formula α⇒ κ. By the generalization rule,
we infer the formula ∀Y (α⇒ κ). Then, by LAS14, from X ∈ D, we infer the formula π ⇒ κ.
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Since we have already deduced above the formula π under the condition X ∈ D, by the implication
rule, we infer the formula κ. By the theorem of deduction in the LTS, the formula (X ∈ D ⇒ κ) is

deduced. Therefore, by the rule of generalization, the formula ˜ASt2 is deduced.

Ãt3. ∀Z ∈ D((∀x ∈ D(x /∈ Z)) ⇔ z = ∅).
Fix the condition Z ∈ D. Consider the formula χ ≡ ∀x(x ∈ D ⇒ x /∈ Z). If x ∈ Z, then, by the

property of transitivity, x ∈ D and then χ implies x /∈ Z. If x /∈ Z, then obviously χ implies x /∈ Z.
Therefore, under our condition, we infer that χ implies x /∈ Z. By the rule of generalization, χ implies
∀x(x /∈ Z). By Axiom A3, χ implies Z = ∅. By the theorem of deduction Z ∈ D implies the formula
χ ⇒ Z = ∅. Conversely, by A3, Z = ∅, implies ∀x(x /∈ Z). Therefore, Z ∈ D and Z = ∅ imply the
formula (Z = ∅ ⇒ χ). Thus, the condition Z ∈ D implies the formula (χ ⇔ Z = ∅). By the theorem of
deduction, we infer the formula Z ∈ D ⇒ (χ⇔ Z = ∅). Therefore, by the rule of generalization, we infer
the formula Ãt3.

Ãt4. ∀U ∈ D∀V ∈ D((U = V ⇒ (U ∈ D ⇔ V ∈ R)).
Let U = V . If U ∈ R, then U = Un for some n ∈ ω. Then V = Un implies V ∈ R. And vice versa.

Therefore, U ∈ R ⇔ V ∈ R.

Ãt5. U0 ∈ R ∧ ∀U ∈ D(U ∈ R ⇒ U0 ⊂ U)).
Consider the formulas ϕ(x, y) ≡ (x ∈ ω ∧ y = U(x)) and ψ ≡ ∃xϕ(x, y). Since 0 ∈ ω ∧ U(0) = U(0),

by LAS12 in the LTS, we infer the formula ∃x(x ∈ ω ∧ U(0) = U(x)), i. e., the formula ψ(y‖U(0)). By
definition, this means that U(0) ∈ R.

If U ∈ R, then U = U(n) for some n ∈ ω. If n = 0, then U(0) = U . If n > 0, then, as was indicated
at the beginning of the proof, U(0) ∈ U(n). By the axiom of transitivity A7, U(0) ⊂ U(n) = U . By the
theorem of deduction in the LTS, we infer the formula α ≡ (U ∈ R ⇒ U(0) ⊂ U). By LAS1, we infer
the formula (U ∈ D ⇒ α) and, by the rule of generalization, we infer the formula ∀U ∈ Dα. Therefore,
we infer the formula Ãt5.

Ãt6. ∀X ∈ D∃U ∈ D(U ∈ R ∧X ∈ U).
From X ∈ D, it follows that X ∈ U(n) for some n ∈ ω. In the same way as in the deduction of At5,

we prove the deducibility of the formula U(n) ∈ R ⊂ D. Consequently, from X ∈ D, we infer the formula
α ≡ (U(n) ∈ D∧U(n) ∈ R∧X ∈ U(n)). By LAS12, we infer the formula β ≡ ∃U ∈ D(U ∈ R∧X ∈ U).
By the theorem of deduction in the LTS, we infer the formula γ ≡ (X ∈ D ⇒ β). By the rule of
generalization, we infer Ãt6.

Ãt7. ∀U ∈ D(U ∈ R ⇒ ∀X ∈ D(x ∈ U ⇒ x ⊂ U)).
This formula is deduced from the axiom of transitivity A7 in the LTS.

Ãt8. ∀U ∈ D(U ∈ R ⇒ ∀X ∈ D∀Y ∈ D(X ∈ U ∧ Y ⊂ X ⇒ Y ∈ U)).
This formula is deduced from the axiom of subset A8 in the LTS.

Ãt9. ∀U ∈ D(U ∈ R ⇒ ∀X ∈ D(X ∈ U ⇒ PU (X)τ ∈ U)), where the U -class Z ≡ PU (X)τ is defined
from the formula ∃Z ∈ D(∀y ∈ D((y ∈ Z) ⇔ (y ∈ U ∧ y ⊂ X))).

First, verify that if U ∈ R, X ∈ D, and X ∈ U , then Z = PU (X) ≡ Y . Let y ∈ Z. Since Z ∈ D,
by the proved-above transitivity, y ∈ D. But then y ∈ D and y ∈ Z imply y ∈ U ∧ y ⊂ X, i.e., y ∈ Y .
Conversely, let y ∈ Y , i.e., y ∈ U ∧ y ⊂ X. Since X ∈ D, by the proved-above second property of the
assembly D, we obtain y ∈ D. From U ∈ R, it follows that U is a universal class. Therefore, by the
axiom of subset A8, y ⊂ X ∈ U implies y ∈ U . But then y ∈ D, y ∈ U , and y ⊂ X imply y ∈ Z, which
proves the required equality.

By Axiom A9, X ∈ U implies Z = Y ∈ U . From here, by logical means, we infer the formula Ãt9.

˜At10. ∀U ∈ D(U ∈ R ⇒ ∀X ∈ D∀Y ∈ D(X ∈ U ∧ Y ∈ U ⇒ (X ∪U Y )τ ∈ U)), where the U -class
Z ≡ (X ∪U Y )τ is defined from the formula ∃z ∈ D(∀y ∈ D((y ∈ z) ⇔ (y ∈ U ∧ (y ∈ X ∨ y ∈ Y )))).
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In the same way as in the deduction of the formula Ãt9, we verify that the conditions U ∈ R, X ∈ D,
Y ∈ D, X ∈ U , and Y ∈ U imply the equality Z = X ∪U Y , where U is a universal class. By Axiom
A10, Z = X ∪U Y ∈ U . From here, we infer the formula ˜At10.

˜At11. ∀U ∈ D(U ∈ R ⇒ ∀X ∈ D∀Y ∈ D∀z ∈ D((X ∈ U ∧ Y ⊂ U ∧ (z ⊂ (X ∗U Y )σ) ∧ (∀x ∈ D(x ∈
X ⇒ z〈x〉τ ∈ U))) ⇒ ((rngUz)σ ∈ U))), where:

— the U -class Z1 ≡ (X ∗U Y )σ is defined from the formula ∃Z1 ∈ D((∀y ∈ D((y ∈ Z1) ⇔ (y ∈
U ∧ (∃u ∈ D∃v ∈ D(u ∈ X ∧ v ∈ Y ∧ y = 〈u, v〉∗U ))))),

— the U -class Z2 ≡ Z2(x) ≡ z〈x〉τ is defined from the formula ∃Z2 ∈ D(∀y ∈ D((y ∈ Z2) ⇔ (y ∈
U ∧ y ∈ Y ∧ 〈x, y〉∗U ∈ z))),

— the U -class Z3 ≡ (rngUz)σ is defined from the formula ∃Z3 ∈ D(∀y ∈ D((y ∈ Z3) ⇔ (y ∈ U ∧ y ∈
Y ∧ (∃x ∈ D(x ∈ X ∧ 〈x, y〉tU ∈ z))))).

As above, we verify that the conditions U ∈ R, u ∈ D, v ∈ D, u ∈ U , and v ∈ U successively imply
the equalities {u}∗U = {u}U , {u, v}∗U = {u, v}U , and 〈u, v〉∗U = 〈u, v〉U , where U is a universal class. By
Lemma 2, Sec. 2, u, v ∈ U implies 〈u, v〉∗U = 〈u, v〉U ∈ U .

From here, in turn, we infer that the conditions U ∈ R, X ∈ D, Y ∈ D, X ∈ U , Y ⊂ U , x ∈ D, and
x ∈ X imply the equalities Z1 = X ∗U Y , Z2 = z〈x〉, and Z3 = rngUz. Let us have one more condition
∀x ∈ D(x ∈ X ⇒ z〈x〉τ ∈ U). Since z is an U -correspondence from X into Y ⊂ U , it follows that z is an
U -correspondence from X into U . If x ∈ X ∈ D, then from the transitivity of D, we infer that x ∈ D.
Therefore, the additional condition implies z〈x〉 = z〈x〉τ ∈ U . Since X ∈ U , by the axiom of full union

A11, it follows that Z3 = rngUz ∈ U . From here, by logical means, we infer the formula ˜At11.

˜At12. ∀U ∈ D(U ∈ R ⇒ ∀X ∈ D(X ⊂ U ∧X �= ∅ ⇒ ∃x ∈ D(x ∈ X ∧ (x ∩U X)τ = ∅))), where the
U -class Z ≡ (x∩UX)τ is defined from the formula ∃Z ∈ D(∀y ∈ D((y ∈ Z) ⇔ (y ∈ U∧(y ∈ x∧y ∈ X)))).

Let us verify that the conditions U ∈ R and X ∈ D imply the equality Z = x ∩U X ≡ Y . Let y ∈ Z.
Since X ∈ D, it follows that y ∈ D. But in this case, y ∈ D and y ∈ Z imply y ∈ U ∧ y ∈ x ∧ y ∈ X,
i.e., y ∈ Y . Conversely, let y ∈ Y , i.e., y ∈ U ∧ y ∈ x ∧ y ∈ X. Since y ∈ X ∈ D, it follows that y ∈ D.
Consequently, y ∈ Z, which proves the required equality. From U ∈ R, it follows that U is a universal
class.

By the axiom of regularity A12, for ∅ �= X ⊂ U , there exists x ∈ X such that Z = Y = ∅. Since
x ∈ X ∈ D, it follows that x ∈ D. From here, by logical means, we infer the formula ˜At12.

˜At13. ∃X ∈ D(X ∈ U0 ∧ ∅ ∈ X ∧ ∀x ∈ D(x ∈ X ⇒ ((x ∪U0 {x}U0)
τ ∈ X))), where:

— the U0-class Z1 ≡ Z1(x) ≡ (x∪U0 {x}U0)
τ is defined from the formula ∃Z1 ∈ D(∀y ∈ D((y ∈ Z1) ⇔

(y ∈ U0 ∧ (y ∈ x ∨ y ∈ {x}∗U0
)))),

— the U0-class Z2 ≡ Z2(x) ≡ {x}∗U0
is defined from the formula ∃Z2 ∈ D(∀y ∈ D((y ∈ Z2) ⇔ (y ∈

U0 ∧ y = x))).

From the conditions X ∈ D, X ∈ U0 = a, x ∈ D, and x ∈ X it follows that Z2 = {x}a, and, therefore,
Z1 = x ∪a {x}a.

Consider the a-set π from the axiom of infra-infinity A13. It is clear that π ∈ a = U0 ⊂ D. Since
π possesses the property π ∈ U0 ∧∅ ∈ π∧∀x ∈ π(Z1(x) ∈ π), it follows that in the LTS the formula ˜At13
is deduced.

˜At14. ∀U ∈ D(U ∈ R ⇒ ∀X ∈ D(X ∈ U ∧X �= ∅ ⇒ ∃z ∈ D((z � PU (X) \ {∅}U →U X)σ ∧ ∀Y ∈
D(Y ∈ PU (X) \ {∅}U )τ ⇒ z(Y )τ ∈ Y )))), where:

— the U -class Z1 ≡ Z1(X) ≡ (PU (X) \ {∅}U )τ is defined from the formula ∃Z1 ∈ D(∀y ∈ D((y ∈
Z1) ⇔ (y ∈ U ∧ (y ∈ PU (X)∗ ∧ y /∈ {∅}∗U )))),

— the U -class Z2 ≡ Z2(Y ) ≡ z(Y )τ is defined from the formula Z2 ∈ U ∧ 〈Y, Z2〉τU ∈ z,
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— ητ denotes the formula M � η[sτ ] in which sτ denotes the corresponding change of the sequence s
under the translation of the quantifier over-subformulas ∀U(. . . ), ∀X(. . . ), ∃z(. . . ), and ∀Y (. . . ),
indicated above.

Fix the conditions U ∈ U, U ∈ R, X ∈ D, and X ∈ U . We established above that under these
conditions, PU (X)∗ = PU (X) and {∅}∗U = {∅}U∗. From here, by the transitivity of D, as above, we infer
Z1 = PU (X) \ {∅}U ≡ T . From U ∈ R, it follows that U is a universal class. Consequently, by A9,
PU (X) ∈ U . Therefore, T ∈ U by A8.

If Y ∈ D and Y ∈ Z1, then Y ∈ T ∈ U implies Y ∈ U . As was established above, Z2 ∈ U and Y ∈ U
imply 〈Y, Z2〉τU = 〈Y, Z2〉U . Then 〈Y, Z2〉U ∈ z implies Z2 ∈ z〈Y 〉. From here and from the previous
conditions, we cannot yet infer that Z2 = z(Y ).

Consider the formula ϕ ≡ (z � T →U X). It is the conjunction of the three following formulas:
ϕ1 ≡ (z ⊂ T ∗U X), ϕ2 ≡ (domUz = T ), and ϕ3 ≡ (∀x(x ∈ T ⇒ ∀y(y ∈ X ⇒ ∀y′(y′ ∈ X ⇒ (〈x, y〉u ∈
z ∧ 〈x, y′〉U ∈ z ⇒ y = y′))))).

Therefore, ϕσ = ϕσ
1 ∧ ϕσ

2 ∧ ϕσ
3 . Since ϕ1 = (∀u(u ∈ z ⇒ u ∈ U ∧ ∃x∃y(x ∈ T ∧ y ∈ X ∧ u = 〈x, y〉U ))),

it follows that ϕσ
1 ⇔ (∀u ∈ D(u ∈ z ⇒ u ∈ U ∧∃x ∈ D∃y ∈ D(x ∈ Z1 ∧ y ∈ X ∧u = 〈x, y〉∗U ))). Similarly,

ϕ2 = (∀x(x ∈ T ⇒ x ∈ U ∧ x ∈ T ∧ ∃y(y ∈ X ∧ 〈x, y〉U ∈ z))) implies ϕσ
2 ⇔ (∀x ∈ D(x ∈ Z1 ⇒ x ∈

U ∧ x ∈ Z1 ∧ ∧∃y ∈ D(y ∈ X ∧ 〈x, y〉∗U ∈ z))).
Finally, ϕσ

3 ⇔ (∀x ∈ D(x ∈ Z1 ⇒ ∀y ∈ D(y ∈ X ⇒ ∀y′ ∈ D(y′ ∈ X ⇒ (〈x, y〉∗U ∈ z ∧ 〈x, y′〉∗U ∈ z ⇒
y = y′))))).

By the properties of transitivity for x, y, and y′ in the formulas ϕσ
1 , ϕσ

2 , and ϕσ
3 , we have x, y, y′ ∈ U .

Therefore, by the proved above (see the proof of deducibility of ˜At11), in this formulas, we have the
equalities Z1 = T , 〈x, y〉∗U = 〈x, y〉U , and 〈x, y′〉∗U = 〈x, y′〉U . It follows from here that the formulas
ϕσ

1 , ϕ
σ
2 , and ϕσ

3 differ from the formulas ϕ1, ϕ2, and ϕ3, respectively, only by the bounded quantifier
prefixes ∀ . . . ∈ D and ∃ . . . ∈ D.

For X, by the axiom of choice A14, there exists z such that χ ≡ (z � PU (X) \ {∅}U →U X)∧∀Y (Y ∈
PU (X) \ {∅}U ⇒ z(Y ) ∈ Y ).

Therefore, in the LTS, we infer the formula ϕ = ϕ1 ∧ ϕ2 ∧ ϕ3 and, consequently, the formulas ϕ1, ϕ2,
and ϕ3.

Let u ∈ D and u ∈ z. Then from the formula ϕ1, we infer that there exist x ∈ T and y ∈ X
such that u = 〈x, y〉U . Since x ∈ T ∈ U and y ∈ X ∈ U , by the transitivity property, it follows that
x, y ∈ U ⊂ D. This means that under the given conditions u ∈ D and u ∈ z, in the LTS we infer the
formula (u ∈ U ∧∃x ∈ D∃y ∈ D(x ∈ T ∧ y ∈ X ∧u = 〈x, y〉U )). Applying the deduction theorem and the
deduction rules two times, we infer the formula ϕσ

1 .
Let x ∈ D and x ∈ Z1 = T . Then from the formula ϕ2, we infer that for x, there exists y ∈ X such

that 〈x, y〉U ∈ z. From y ∈ X ∈ D, by the transitivity of D, it follows that y ∈ D. This means that under
the given coditions x ∈ D and x ∈ T , in the LTS, we infer the formula (x ∈ U ∧ x ∈ T ∧ ∃y ∈ D(y ∈
X ∧ 〈x, y〉U ∈ z)). From here, as above, we infer the formula ϕσ

2 .
Let x ∈ D, x ∈ Z1 = T , y ∈ D, y ∈ X, y′ ∈ D, y′ ∈ X, 〈x, y〉U ∈ z, and let 〈x, y〉U ∈ z. Then from the

formula ϕ3, we infer that y = y′. In turn applying several times the deduction theorem and the deduction
rule, we infer the formula ϕσ

3 .
Thus, the formula ϕσ is deduced.
Since z � T →U X, it follows that z〈Y 〉 = {z(Y )}U .
Consequently, from Z2 ∈ U{z(Y )}U , we conclude that Z2 = z(Y ). Therefore, for the U -mapping z, the

conditions Y ∈ D and Y ∈ Z1 = T imply Z2 = z(Y ) ∈ Y .
Since T ∈ U and X ∈ U , by Lemma 3, Sec. 2, it follows that, T ∗U X ∈ U . By Axiom A8, from

z ⊂ T ∗U X, it follows that z ∈ U ⊂ D.
All this means that from axiom A14, we deduce the existence of an object z satisfying the formula χ

from which we infer the formula ξ ≡ ϕσ ∧ ∀Y ∈ D(Y ∈ Z1 ⇒ Z2 ∈ Y ). For the same reason, in the LTS,
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from the fixed conditions, we infer the formula ∃z ∈ Dξ. In turn, applying several times the deduction
theorem and the generalization rule, as a result, we infer the formula ˜At14.

Consider now the translation of the axiom scheme of replacement ASR.

˜ASRt. Let ϕ(x, y) be a formula of the theory T that does not contain Y as a free variable. Then
∀x ∈ D∀y ∈ D∀y′ ∈ D(ϕ∨(x, y) ∧ ϕ∨(x, y′) ⇒ y = y′) ⇒ ∀X ∈ D∃Y ∈ D∀x ∈ D(x ∈ X ⇒ ∀y ∈
D(ϕ∧(c, y) ⇒ y ∈ Y )), where ϕ∨ and ϕ∧ denote the formulas M � ϕ[s∨] and M � ϕ[s∧], respectively, in
which by s∨ we denote the corresponding change of the sequence s under the translation of the quantifier
over-formulas ∀x(. . . ), ∀y(. . . ), and ∀y′(. . . ) indicated above, and by s∧ indicated above we denote the
corresponding change of the sequence s under the translation of the quantifier over-formulas ∀X(. . . ),
∃Y (. . . ), ∀x(. . . ), and ∀y(. . . ).

Denote the first part of this scheme by α and the second part by β. Then ˜ASRt = (α⇒ β). Therefore,
the equivalence (¬(α⇒ β)) ⇔ (α ∧ ¬β) implies

(¬ÃSR)t = (∀y ∈ D∀y ∈ D∀y′ ∈ D(ϕ∨(x, y) ∧ ϕ∧(x, y′) ⇒ y = y′)) ∧ (∃X ∈ D∀Y ∈ D∃x ∈ D(x ∈
X ∧ ∃y ∈ D(ϕ∧(x, y) ∧ y /∈ Y ))).

Further, the first part of this scheme we will denote by α′, and the second part by β′. For the adduced
below concrete formula ϕ the symbol-strings α′ and β′ will be formulas of the LTS.

Consider the following formulas of the theory T :

— ϕ(x, y, z) ≡ (x ∈ ω ∧ a ∈ y ∧ y �� ∧(z � x + 1 →y y) ∧ ∀k ∈ x + 1(z(k) ��) ∧ z(0) = a ∧ ∀k ∈
x+ 1(∀l ∈ x+ 1(k ∈ l ⇒ z(k) ∈ z(l))) ∧ ∀V ((V �� ∧z(0) ⊂ V ∧ V ∈ y) ⇒ ∃k ∈ x+ 1(V = z(k)))),

— ϕ(x, y) ≡ ∃zψ(x, y, z),

where x+ 1 denotes the class x ∪a {x}a.
For the formula ϕ we have the following translations:

— ϕ∨(x, y) ⇔ ∃z ∈ D(x ∈ ωσ ∧ a ∈ y ∧ y ∈ R∧ (z � x+ 1 →y y)σ ∧ ∀k ∈ D(k ∈ (x+ 1)σ ⇒ z(k)(k ∈
(x+1)σ ⇒ ∀l ∈ D(l ∈ (x+1)σ ⇒ (k ∈ l ⇒ z(k)σ ∈ z(l)σ)))∧∀V ∈ D((V ∈ R∧ (z(0)σ ⊂ V )∧V ∈
y) ⇒ ∃k ∈ D(k ∈ (x+ 1)σ ∧ (V = z(k)σ))),

— ϕ∧(x, y) ⇔ ∃z ∈ D(x ∈ ωτ ∧ a ∈ y ∧ y ∈ R ∧ (z � x+ 1 →y y)τ ∧ ∀k ∈ D(k ∈ (x+ 1)τ ⇒ z(k)τ ∈
R) ∧ z(0)τ = a ∧ ∀k ∈ D(k ∈ (x+ 1)τ ⇒ ∀l ∈ D(l ∈ (x+ 1)τ ⇒ (k ∈ l ⇒ z(k)τ ∈ z(l)τ ))) ∧ ∀V ∈
D((V ∈ R ∧ (z(0)τ ⊂ V ) ∧ V ∈ y) ⇒ ∃k ∈ D(k ∈ (x+ 1)τ ∧ (V = z(k)τ )))),

where θσ, θτ , ησ, and ητ denote the terms θM[sσ] and θM[sτ ] and the formulas M � η[sσ] and M � η[sτ ]
in which sσ and sτ denote the corresponding changes of the sequences s∨ and s∧ under the translation of
the quantifier over-formula ∃z ∈ D(. . . ).

Let us verify that ωσ = ω and ωτ = ω. By the formula On(x) defined in Sec. 6.1, the class ω is assigned
by the formula ν ≡ ∃!z(On(z)∧z �= ∅∧∀x(On(x) ⇒ z �= x∪a{x}a)∧∀y((On(y)∧y �= ∅∧∀x(On(x) ⇒ y �=
x ∪a {x}a)) ⇒ z ⊂ y)), which is deduced in the theory T . Therefore, by what was the three equivalences
proved above, the value ωσ is defined from the formula νσ ⇔ ∃!z ∈ D(OnD(z) ∧ z �= ∅ ∧ z ∈ a ∧ ∀x ∈
D(OnD(x) ∧ x ∈ a ⇒ z �= (x ∪a {x}a)∗ ∧ ∀y ∈ D((OnD(y) ∧ y �= ∅ ∧ y ∈ a ∧ ∀x ∈ D(OnD(x) ∧ x ∈ a ⇒
y �= (x ∪a {x}a)∗)) ⇒ z ⊂ y)), because a is translated into a.

Since the assembly D is transitive, by a direct verification, using the definition of the formula On(z)
from 6.1, we can prove that for z ∈ D, the equivalence onD(z) ⇔ On(z) holds.

When we verfied the deducibility of the formula ˜At13, we established that the conditions x ∈ D and
x ∈ a imply the equality (x∪a{x}a)∗ = x∪a{x}a. Therefore, the formula νσ is equivalent to the formula ν ′,
which differs from the formula ν by only bounded quantifier prefixes ∃ . . . ∈ D and ∀ . . . ∈ D. But since
the formula ν and the formula ν ′ contain the subformulas z ∈ a, x ∈ a, and y ∈ a, which immediately
imply the restrictions z ∈ D, x ∈ D, and y ∈ D, it follows that in the LTS, we infer the equivalence
ν ⇔ ν ′ ⇔ νσ. From the equivalence ν ⇔ νσ, it follows that ωσ = ω. In just the same way, it is verified
that ωτ = ω.
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We have verified above that under the conditions x ∈ ω, ω ∈ a, and a ∈ D, by the transitivity D,
the equality (x + 1)σ = x ∪a {x}a = x + 1 holds. We also verified that under the condition y ∈ R, the
equivalence (z � x + 1 →y y)σ ⇔ (z � x + 1 →y y) holds. Therefore, z(i)σ = z(i) for every i ∈ x + 1.
The same holds for the variant with the sign τ .

Therefore, ϕ∨(x, y) and ϕ∧(x, y) are equivalent to the same formula ϕ∗(x, y) ≡ ∃z ∈ D(x ∈ ω ∧ a ∈
y∧y ∈ R∧ (z � x+1 →y y)∧∀k ∈ D(k ∈ x+1 ⇒ z(k) ∈ R)∧z(0) = a∧∀k ∈ D(k ∈ x+1 ⇒ ∀l ∈ D(l ∈
x+1 ⇒ (k ∈ l ⇒ z(k) ∈ z(l))))∧∀V ∈ D((V ∈ D∧(z(0) ⊂ V )∧V ∈ y) ⇒ ∃k ∈ D(k ∈ x+1∧V = z(k))))).

In the same way as in the proof of Theorem 4, Sec. 6, in the LTS, we infer the formula

∀x∀y∀y′∀z∀z′(ψ(x, y, z) ∧ ψ(x, y′, z′) ⇒ y = y′ ∧ z = z′),

which means that y and z are uniquely defined by x. We also infer the formula

∀x∀x′∀y∀y′∀z∀z′((ψ(x, y, z) ∧ ψ(x′, y′, z′) ∧ x ∈ x′) ⇒ ∀k ∈ k + 1(z′(k) = z(k)) ∧ (z′(x+ 1) = y′))),

which means that for m ∈ n, the sequence u(n) continues the sequence u(m) and Un
m+1 = U(m).

Now, let us deduce the formula

∀x∀y∀z(ψ(x, y, z) ⇒ ∀k ∈ ((x+ 1) \ 1)∃x′∃y′∃z′(x′ ∈ x ∧ ϕ(x′, y′, z′) ∧ z(k) = y′)),

which means that all members of the sequence u(n) starting from the first one are constructed from the
previous classes U(m) for m ∈ n.

Denote the formula ∀k ∈ ((x+ 1) \ 1)∃x′∃y′∃z′(x′ ∈ x ∧ ψ(x′, y′, z′) ∧ z(k) = y′) by η(x, y, z). We will
infer this formula under the condition ψ(x, y, z). The formula ψ(x, y, z) postulates that x is a natural
number, y is a universal class greater than a and there exists a finite y-sequence of universal classes
u(x) ≡ (yk ∈ y|k ∈ x + 1)y such that y0 = a, yk ∈ yl for all k ∈ l ∈ x + 1, and if V is a universal class
and y0 ⊂ V ∈ y, then V = yk for some k ∈ x+ 1. By Theorem 5, Sec. 5, for every x ∈ ω such a sequence
exists and is unique, and, moreover, u(x)|m+ 1 = u(m) for all m ≤ x.

The formula η(x, y, z) has the form ∀k(k ∈ (x + 1) \ 1 ⇒ ∃x′∃y′∃z′(x′ ∈ x ∧ ψ(x′, y′, z′) ∧ z(k) = y′).
Let us show that from our conditions and the condition k ∈ (x + 1) \ 1, the formula η′(x, y, z, k) ≡
∃x′∃y′∃z′(x′ ∈ x ∧ ψ(x′, y′, z′) ∧ z(k) = y′) is deduced.

Consider x′ such that x′ + 1 = k. This is possible, because 1 ⊆ k. By Theorem 5, Sec. 5, for the
given x′ there exist y′ and z′ such that ψ(x′, y′, z′). Since x′ ∈ k ⊆ x, it follows that x′ ∈ x. It remains to
show that z(k) = y′, i. e., y′ = yk in the sequence u(x). Since ψ(x′, y′, z′), it follows that a = y0 ∈ y′, i. e.,
y0 ∈ y′. Since y′ ��, there are only three possibilities: (1) y ∈ y′; (2) y = y′; (3) y′ ∈ y. In the first case,
y = z′(l) for some l ≤ x′ < x; but this is impossible; in the second case, the sequences u(x) and u(x′)
must coincide, but this is impossible, because x′ < x. As a result, only case (3) y′ ∈ y is possible. Thus,
y0 ⊂ y′ ∈ y, and, consequently, by the condition, y′ = ym for some m ∈ x + 1. Let us show that m = k.
Actually, if m < k, then ym = z′(m), but this is impossible, because z′(m) ∈ y′ for all m < k. If m > k,
then, taking V ≡ yk, we obtain the condition y0

′ ⊂ V ∈ y′, which implies V = yl
′ for l < k, but this is also

impossible. Therefore, y′ = yk, i.e., z(k) = y′. Thus, under the conditions ψ(x, y, z) and k ∈ (x+1)\1, we
infer the formula η′(x, y, z, k), and, therefore, by the deduction theorem, under the condition ψ(x, y, z),
we infer the formula k ∈ (x + 1) \ 1 ⇒ η′(x, y, z, k); from here, by the generalization rule, the formula
η(x, y, z) is deduced. Then, applying once more the deduction theorem and the generalization rule, we
obtain the required formula.

Consequently, z(k) ∈ R for all k ∈ x+ 1. Take in the capacity of value of the variable X the class ω.
Since ω ∈ a = U(0) ⊂ D, it follows that ω ∈ D. Take any Y ∈ D. Then Y ∈ U(x0) for some x0 ∈ ω. This
means that in the LTS, the formula ∃x∃y(∃!z(ψ(x, y, z) ∧ Y ∈ y) is deduced. Denote the unique values
of the variables y and z corresponding to the value x0 by y0 and z0. From all this, it follows that the
formula ψ(x0, y0, z0) ∧ Y ∈ y0 is deduced.

By definition, y0 ∈ R ⊂ D. From the previous arguments, it follows that z0(k) ∈ R for any k ∈ x0 + 1.
It is clear that k ∈ D and l ∈ D.

If V ∈ D and V ∈ R, then V ��, and, therefore, the conditions z0(0) ⊂ V and V ∈ y0 imply
∃k ∈ D(k ∈ x0 + 1 ∧ V = z0(k)). Thus, in the LTS, the following formula is deduced:
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δ(x0, y0, z0) ≡ (x0 ∈ ω ∧ a ∈ y0 ∧ y0 ∈ R ∧ (z0 � x0 + 1 →y0 y0) ∧ ∀k ∈ D(k ∈ x0 + 1 ⇒ z0(k) ∈
R) ∧ z0(0) = a ∧ ∀k ∈ D(k ∈ x0 + 1 ⇒ ∀l ∈ D(l ∈ x0 + 1 ⇒ (k ∈ l ⇒ z0(k) ∈ z0(l)))) ∧ ∀V ∈ D((V ∈
R ∧ z0(0) ⊂ V ∧ V ∈ y0) ⇒ ∃k ∈ D(k ∈ x0 + 1 ∧ V = z0(k))))).

Since z0 � x0 + 1 →y0 y0, by Axiom A11, it follows that, P ≡ rngy0z0 ∈ y0. Therefore, z0 ⊂
((x0 + 1)∗y0

P ) ≡ Q. Moreover, x0 + 1 ∈ ω ∈ a ∈ y0 implies x0 + 1 ∈ y0. By Lemma 3, Sec. 2, Q ∈ y0.
Consequently, by Axiom A8, z0 ∈ y0 ∈ D. Hence we obtain z0 ∈ D. Therefore, in the LTS, the formula
ϕ∗(x0, y0) = ∃z ∈ Dδ(x0, y0, z0) is deduced. Moreover, the formula Y ∈ y0 was deduced. By the axiom of
regularity A12, the formula y0 /∈ Y is deduced.

For the same reason, we deduced the formula ϕ∧ (x0, y0)∧ y0 /∈ Y . Since x0 ∈ D, x0 ∈ ω, and y0 ∈ D,
by logical means, we infer the formula ∃x ∈ D(x ∈ ω ∧ ∃y ∈ D(ϕ∧(x, y) ∧ y ∈ Y ). Since ω ∈ D and
Y ∈ D, then by logical means, we infer the formula β′.

Now let x, y, y′ ∈ D, x ∈ ω, ∈y, a ∈ y′, y ∈ R, and let y′ ∈ R.
Let us infer the formula ϕ∗(x, y) ∧ ϕ∗(x, y′) ⇒ y = y′. Consider the condition, µ(x, y, y′) ≡ ϕ∗(x, y) ∧

ϕ∗(x, y′). According to this condition for a natural number x, there exist universal classes y and y′ from R
greater than a and finite sequences of universal classes u(x) ≡ (yk ∈ y|k ∈ x + 1)y and u′(x) ≡ (yk

′ ∈
y′|k ∈ x + 1)y′ such that y0 = y0

′ = a, yk ∈ yl and yk
′ ∈ yl

′ for any k ∈ l ∈ x + 1, and if V and W are
universal classes from R and y0 ⊂ V ∈ y, y0

′ ⊂ W ∈ y′, then V = ym, W = yl
′ for some m, l ∈ x + 1.

Suppose that y �= y′. Since y and y′ are universal classes, it follows that in this case either y ∈ y′ or
y′ ∈ y. Suppose, for example, that y ∈ y′. Set W ≡ y. We obtain W ∈ R ∧ a ⊂W ∧W ∈ y′, W = yl

′ for
some l ∈ x+ 1. Thus y = yl

′ for l ∈ x+ 1. Similarly, for any k < x+ 1 there exists l(k) < x+ 1 such that
yk = yl(k)

′. Since ∀k ∈ x+ 1(yk ∈ y), it follows that ∀k ∈ x+ 1(yl(k)
′ ∈ yl

′), i. e., l(k) ∈ l for all k ∈ x+ 1.
Moreover, if k,m ∈ x + 1 and k �= m, then yl(k)

′ �= yl(m)
′. Consequently, there exists an inclusion of the

set x + 1 into the set l ∈ x + 1, but this is impossible. The case y′ ∈ y is verified in just the same way.
Consequently, y = y′. Applying the deduction theorem, we deduce the formula µ(x, y, y′) ⇒ y = y′.

Therefore, the formula ϕ∨(x, y) ∧ ϕ∨(x, y′) ⇒ y = y′ is deduced. From here, by logical means, the
formula α′ is deduced.

As a result, in the theory S, the formula α′ ∧ β′ is deduced, which is equal to the formula (¬̃ASR)t

with a given concrete formula ϕ.
Since all the translations of the axioms of the theory T turned out to be deducible formulas of the

theory S, it follows that the theory T is consistent.
(2) We will argue in the naive propositional logic with the symbol of implication ⊃.
Denote by Φa and Ξa the totalities of axioms of the theories T ≡ LTS + ¬ASR and S ≡ LTS,

respectively.
Consider the propositions A ≡ cons(S) ⊃ ¬(Ξa 	 ASR) and B ≡ cons(S) ∧ (Ξa 	 ASR). Then

¬A = cons(S) ∧ ¬¬(Ξa 	 ASR). Using LAS10, we obtain ¬A ⊃ B.
It is clear that B ⊃ (Φa 	 ASR) and Φa 	 ¬ASR. Therefore, the proposition B ⊃ (Φa 	 ASR)∧ (Φa 	

¬ASR), i.e., the expression B ⊃ ¬cons(T ) is valid.
By the deduction rule, ¬A ⊃ ¬cons(T ).
According to item (1) of our statement, the proposition cons(S) ⊃ cons(T ) is valid. Therefore, B ⊃

cons(T ) is valid. By the deduction rule, we have ¬A ⊃ cons(T ).
Thus, the proposition (¬A ⊃ cons(T )) ∧ (¬A ⊃ ¬cons(T )) is deduced. Applying the tautology (¬A ⊃

C) ∧ (¬A ⊃ ¬C) ⊃ A (see [21], chap. 1, § 7), we infer the proposition A.

Using a more complicated abstract interpretation, one can also prove that if the LTS is consistent, then
the axiom scheme ASR is not deducible in the LTS+ICU.

In Secs. 5.2 and 5.4, we have proved the closureness of the assembly V of all classes in the LTS with
respect to all basic finite set-theoretical operations. Therefore, in the assembly V we can define such
basic mathematical systems as groups, topological spaces, automata, and other on classes, and also define
morphisms between them. For the same reason in V, we can consider abstract categories of all such
mathematical systems and morphisms between them.
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From the undeducibility in the LTS of the global axiom scheme of replacement, it follows that the assem-
bly V does not possess the fourth of the five properties of the Eresmann–Dedecker–Sonner–Grothendieck
universe listed in the Introduction and necessary for developing in this universe valuable category theories.
Therefore, the theory of abstract categories in the LTS will be essentially poorer than the theory of (local)
categories in the LTS.

In particular, these abstract categories of mathematical systems will not be closed with respect to such
infinite operations as the sum ∪ Ai|i ∈ I and the product

∏
Ai|i ∈ I of the collection Ai|i ∈ I

of objects Ai of these categories and consequently will be abstract categories without direct and inverse
limits (see [5], ch. 2, § 1; chap. 3, § 2).

On the contrary, in the ZF or NBG set theories with the axiom of universality abstract categories of
mathematical systems from the point of view of naive category theory do not differ absolutely from local
U -categories of mathematical systems.

8.2. The nondependence of axiom ICU on the axioms of the LTS. In Sec. 6, we have compared
the LTS with the ZF theory with some additional axioms. The fact that axiom IC postulating the existence
of an inaccessible cardinal is independent of the axioms of the ZF theory is well-known (see [19], 13).
Consequently, Axioms ISIC and ISIC2 postulating the existence of infinite sets of inaccessible cardinals
are also independent of the axioms of the ZF theory.

It remains only to clarify the nondependence of Axiom ICU postulating the existence of an infinite
class of universal classes on the axioms of local theory of sets.

Statement 2. (1) If the LTS is consistent, then LTS + ICU is consistent.
(2) If the LTS is consistent, then Axiom ICU is not deducible in LTS.

Proof. (1) By Lemma 1, Sec. 6, Axiom ICU is equivalent to Axiom ITCU. Therefore, we will consider the
equivalent theory T ≡ LTS+¬ITCU . Consider the abstract interpretation M ≡ (D, I) of the theory T in
the finitely-closed set theory S ≡ LTS, described in the proof of Statement 1. In the proof of Statement 1,
we have established that the interpretation M is an abstract model of the LTS in the S set theory.

In virtue of Lemma 2, Sec. 6, in the conjunctive kernel of Axiom ITCU, we can insert one more formula
a ∈ Y . Therefore, consider the formula
ϕ ≡ ITCU ≡ ∃Y (∀U(U ∈ Y ⇒ U ��) ∧ a ∈ Y ∧ ∀U∀V (U �� ∧U ∈ V ∧ V ∈ Y ⇒ U ∈ Y ) ∧ ∀V (V ∈

Y ⇒ ∃W (W ∈ Y ∧ V ∈W ))).
The translation of this formula on some abstract sequence s of elements of the assembly D under the

interpretation M has the form of the formula
ψ ≡ M � ϕ[s] = ∃Y ∈ D(∀U ∈ D(U ∈ Y ⇒ U ∈ R) ∧ a ∈ Y ∧ ∀U ∈ D∀V ∈ D(U ∈ R ∧ U ∈ V ∧ V ∈

Y ⇒ U ∈ Y ) ∧ ∀V ∈ D(V ∈ Y ⇒ ∃W ∈ D(W ∈ Y ∧ V ∈W ))).
Suppose that the condition ψ is fixed and consider a class E ∈ D the existence of which follows from

this condition. Consider the classes An ≡ {x ∈ U(n)|∃k ∈ n + 1(x = Un
k )}, consisting of all members of

the U(n)-sequences u(n) from Theorem 5, Sec. 6. Further, along with Un
n , we will write Un.

Let us prove by the natural induction that An ⊂ E for every n ∈ ω. Consider the assembly X ≡ {x|x ∈
ω ∧Ax ⊂ E}. If n = 0, then U0 ∈ E implies A0 ≡ {x ∈ U(0)|∃k ∈ 1(x = U0

k )} ⊂ E. Therefore, 0 ∈ X.
Let n ∈ X, i. e., Un

k ∈ E for every k ∈ n+ 1. By the property of the class E, there exists V ∈ D such
that V ∈ E and Un ∈ V . Moreover, Un ≡ Un

n = Un+1
n ∈ Un+1

n+1 ≡ Un+1. If Un+1 = V , then Un+1 ∈ E. Let
Un+1 ∈ V . In the proof of Theorem 5, Sec. 6, we have established that Un+1 = U(n) ∈ R. Since V ∈ E,
by the property of the class E, we conclude that Un+1 ∈ E. Finally, let V ∈ Un+1. Then V ∈ D and
V ∈ E implies V ∈ R. Consequently, V is a universal class. From V ∈ Un+1 ∈ U(n+ 1), by the axiom of
universality, we infer that V ∈ U(n+1). Therefore, by the property of incompressibility from Theorem 5,
Sec. 6, the condition Un+1

0 = a ⊂ V ∈ U(n+ 1) implies the equality U = Un+1
k for some k ∈ n+ 2. From

V ∈ Un+1
n+1 , it follows that k < n+1. Hence Un+1

n = Un
n ≡ Un ∈ V = Un+1

k implies n < k < n+1, but this
is impossible. From the obtained contradiction, we infer that the third case V ∈ Un+1 is impossible. By
Proposition 4, Sec. 6, and Theorem 4, Sec. 6, there is no other possibilities, except the considered three
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cases. In the first and the second cases, we obtain Un+1 ∈ E. Moreover, Un+1
k = Un

k ∈ E for all k ∈ n+1.
Therefore, An+1 ⊂ E implies n + 1 ∈ X. By the principle of natural induction in the LTS (Theorem 2,
Sec. 5), ω ⊂ X.

Thus, from the formula ψ, we deduced the formula χ ≡ ∀x ∈ ω(Ux ∈ E). Moreover, from ψ, one can
infer E ∈ D. Consequently, E ∈ U(m) = Um+1 for some m ∈ ω. Therefore, Um+1 /∈ E. This means that
from ψ the formula ¬χ is inferred. By the theorem of deduction, in the theory S, we deduce the formulas
(ψ ⇒ χ) and (ψ ⇒ ¬χ).

Applying LAS9 and the logical explicit axiom (ψ ⇒ χ) ⇒ ((ψ ⇒ ¬χ) ⇒ ¬ψ), we consecutively deduce
the formulas (ψ ⇒ ¬χ) ⇒ ¬ψ and ¬ψ. The last formula is equal to the formula M � (¬ϕ)[s]. Therefore,
M is an abstract model of T in S.

(2) The proof is similar to the proof of assertion (2) from Statement 1.

Thus, ICU does not depend on axioms of the LTS, i. e., is actually a new axiom for the LTS.

Corollary. If the LTS is consistent, then the assertion (3) from Proposition 3, Sec. 6, is not deducible
in the LTS.

It follows from here that in the LTS there is only a countable assembly of universes, constructed in
Theorem 5, Sec. 5, and there are no means to continue it further on like what was done in assertion 3)
from Proposition 3, Sec. 6.

8.3. Locally-minimal theory of sets. A local theory of sets with an additional axiom, which states
that infinite class of universes does not exist, will be called a locally-minimal theory of sets (LMTS), i.e.
LMTS ≡ LTS + ¬ICU . Statement 2 implies that LTS and LMTS are mutually consistent.

In LMTS, the assembly U of all universal classes has the following complete description.

Theorem 1. In LMTS, an assembly sequence (u(n)|n ∈ ω) of finite U(n)-sequences u(n) ≡ (Un
k ∈

U(n)|k ∈ n + 1)U(n) of universal classes from Theorem 5, Sec. 5, includes all universal classes; more
strictly, ∀U(U ��⇒ ∃n ∈ ω(U = Un

n )).

Proof. Consider an assembly U∗ ≡ {U |U �� ∧∃n ∈ ω(U = Un
n )}. Suppose that U∗ �= U, i.e., there exists

a universal class X such that X /∈ U∗.
Fix numbers n ∈ ω and k ∈ n + 1. Suppose that X = Un

k . Then by Theorem 5, Sec. 5, X = Un
k =

Uk
k ∈ U∗, but this is not true. Therefore, X �= Un

k for all n ∈ ω and k ∈ n+1. By Theorem 4, Sec. 5, and
Proposition 4, Sec. 5, either X ∈ Un

k or Un
k ∈ X. Suppose that X ∈ Un

k . By Corollary 2 to Proposition 4,
Sec. 5, Un

0 = a ⊂ X ∈ Un
k . By Axiom A8, from LTS, we have Un

0 ∈ Un
k . Since k ≤ n, we have n ≥ 1.

Thus, Un−1
0 = a ⊂ X ∈ Un

k ⊂ Un
n − U(n − 1). By the property of incompressibility from Theorem 5,

Sec. 5, X = Un
l for some k ∈ n+ 1. But we have proved above that this is impossible. This contradiction

implies that Un
k ∈ X for all n ∈ ω and k ∈ n+ 1.

Therefore, according to Proposition 3, Sec. 6, we deduce Axiom ICU, but this is impossible if LMTS is
consistent. Consequently, our assumption is not true and U∗ = U.

We have proved that LMTS satisfies the following two properties:

(1) it has the property of universal comprehension, which is expressed as the universality axiom A6
(∀x∃U(x ∈ U ∧ U ��));

(2) it has a countable metasequence (assembly) of all universes. Neither the ZF + U theory nor the
ZF + U(ω) theory (see Introduction) satisfy these two properties.

Moreover, Statement 1 implies that LMTS is strictly weaker than the ZF +U and ZF +U(ω) theories.
Therefore, LMTS satisfies Conditions (1)–(3) given in the Introduction. Thus, this theory is more natural
for category theory than the ZF + U and ZF + U(ω) theories.
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