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Introduction

An associative commutative ring R with a unit is called local, if it contains exactly one maximal
ideal (that coincides with the radical of R). Equivalently, the set of all non-invertible elements of R is
an ideal.

We describe automorphisms of Chevalley groups of type F4 over local rings with 1/2. Note that for
the root system F4 there exists only one weight lattice, that is simultaneously universal and adjoint,
therefore for every ring R there exists a unique Chevalley group of type F4, that is G(R) = Gad(F4, R).
Over local rings universal Chevalley groups coincide with their elementary subgroups, consequently
the Chevalley group G(R) is also an elementary Chevalley group.

Theorem 1 for the root systems Al , Dl, and El was obtained by the author in [5], in [7] all auto-
morphisms of Chevalley groups of given types over local rings with 1/2 were described. Theorem 1
for the root systems B2 and G2 is proved in [6].
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Similar results for Chevalley groups over fields were proved by R. Steinberg [25] for the finite
case and by J. Humphreys [18] for the infinite case. Many papers were devoted to description of
automorphisms of Chevalley groups over different commutative rings, we can mention here the papers
of Borel and Tits [4], Carter and Chen Yu [10], Chen Yu [11–15], A. Klyachko [21]. E. Abe [1] proved
that all automorphisms of Chevalley groups under Noetherian rings with 1/2 are standard.

The case Al was completely studied by the papers of W.C. Waterhouse [27], V.M. Petechuk [22],
Fuan Li and Zunxian Li [20], and also for rings without 1/2. The paper of I.Z. Golubchik and
A.V. Mikhalev [16] covers the case Cl , that is not considered in the present paper. Automorphisms
and isomorphisms of general linear groups over arbitrary associative rings were described by E.I. Zel-
manov in [28] and by I.Z. Golubchik, A.V. Mikhalev in [17].

We generalize some methods of V.M. Petechuk [23] to prove Theorem 1.

1. Definitions and main theorems

We fix the root system Φ of the type F4 (detailed texts about root systems and their properties
can be found in the books [19,8]). Let e1, e2, e3, e4 be an orthonorm basis of the space R

4. Then we
numerate the roots of F4 as follows:

α1 = e2 − e3, α2 = e3 − e4, α3 = e4, α4 = 1

2
(e1 − e2 − e3 − e4)

are simple roots;

α5 = α1 + α2 = e2 − e4,

α6 = α2 + α3 = e3,

α7 = α3 + α4 = 1

2
(e1 − e2 − e3 + e4),

α8 = α1 + α2 + α3 = e2,

α9 = α2 + α3 + α4 = 1

2
(e1 − e2 + e3 − e4),

α10 = α2 + 2α3 = e3 + e4,

α11 = α1 + α2 + α3 + α4 = 1

2
(e1 + e2 − e3 − e4),

α12 = α1 + α2 + 2α3 = e2 + e4,

α13 = α2 + 2α3 + α4 = 1

2
(e1 − e2 + e3 + e4),

α14 = α1 + 2α2 + 2α3 = e2 + e3,

α15 = α1 + α2 + 2α3 + α4 = 1

2
(e1 + e2 − e3 + e4),

α16 = α2 + 2α3 + 2α4 = e1 − e2,

α17 = α1 + 2α2 + 2α3 + α4 = 1

2
(e1 + e2 + e3 − e4),

α18 = α1 + α2 + 2α3 + 2α4 = e1 − e3,

α19 = α1 + 2α2 + 3α3 + α4 = 1

2
(e1 + e2 + e3 + e4),

α20 = α1 + 2α2 + 2α3 + 2α4 = e1 − e4,

α21 = α1 + 2α2 + 3α3 + 2α4 = e1,
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α22 = α1 + 2α2 + 4α3 + 2α4 = e1 + e4,

α23 = α1 + 3α2 + 4α3 + 2α4 = e1 + e3,

α24 = 2α1 + 3α2 + 4α3 + 2α4 = e1 + e2

are other positive roots.
Suppose now that we have a semi-simple complex Lie algebra L of type F4 with Cartan subalge-

bra H (detailed information about semi-simple Lie algebras can be found in the book [19]).
Then in the algebra L we can choose a Chevalley basis {hi | i = 1, . . . ,4; xα | α ∈ Φ} so that for

every two elements of this basis their commutator is an integral linear combination of the elements
of the same basis.

Namely,

(1) [hi,h j] = 0;
(2) [hi, xα] = 〈αi,α〉xα ;
(3) if α = n1α1 + · · · + n4α4, then [xα, x−α] = n1h1 + · · · + n4h4;
(4) if α + β /∈ Φ , then [xα, xβ ] = 0;
(5) if α + β ∈ Φ , and α,β are roots of the same length, then [xα, xβ ] = cxα+β ;
(6) if α + β ∈ Φ , α is a long root, β is a short root, then [xα, xβ ] = axα+β + bxα+2β .

Take now an arbitrary local ring with 1/2 and construct an elementary adjoint Chevalley group of
type F4 over this ring (see, for example [24]). For our convenience we briefly put here the construc-
tion.

In the Chevalley basis of L all operators (xα)k/k! for k ∈ N are written as integral (nilpotent)
matrices. An integral matrix also can be considered as a matrix over an arbitrary commutative ring
with 1. Let R be such a ring. Consider matrices 52 × 52 over R , matrices (xα)k/k! for α ∈ Φ , k ∈ N are
included in M52(R).

Now consider automorphisms of the free module Rn of the form

exp(txα) = xα(t) = 1 + txα + t2(xα)2/2 + · · · + tk(xα)k/k! + · · · .

Since all matrices xα are nilpotent, we have that this series is finite. Automorphisms xα(t) are called
elementary root elements. The subgroup in Aut(Rn), generated by all xα(t), α ∈ Φ , t ∈ R , is called an
elementary adjoint Chevalley group (notation: Ead(Φ, R) = Ead(R)).

In an elementary Chevalley group there are the following important elements:

– wα(t) = xα(t)x−α(−t−1)xα(t), α ∈ Φ , t ∈ R∗;

– hα(t) = wα(t)wα(1)−1.

The action of xα(t) on the Chevalley basis is described in [9,26], we write it below (see Section 3).
Over local rings for the root system F4 all Chevalley groups coincide with elementary adjoint

Chevalley groups Ead(R), therefore we do not introduce Chevalley groups themselves in this paper. In
this paper we denote our Chevalley groups by G(R), since they depend only of a ring R .

We will work with two types of standard automorphisms of a Chevalley group G(R) and with one
unusual, “temporary” type of automorphisms.

Ring automorphisms. Let ρ : R → R be an automorphism of the ring R . The mapping (ai, j) �→
(ρ(ai, j)) ((ai, j) is a matrix) from G(R) onto itself is an automorphism of the group G(R), that is
denoted by the same letter ρ and is called a ring automorphism of the group G(R). Note that for all
α ∈ Φ and t ∈ R an element xα(t) is mapped to xα(ρ(t)).
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Inner automorphisms. Let g ∈ G(R) be an element of a Chevalley group under consideration. Conju-
gation of the group G(R) with the element g is an automorphism of G(R), that is denoted by i g and
is called an inner automorphism of G(R).

These two types of automorphisms are called standard. There are central and graph automor-
phisms, which are also standard, but in our case (root system F4) they cannot appear. Therefore
we say that an automorphism of the group G(R) is standard, if it is a composition of ring and inner
automorphisms.

Besides that, we need also to introduce temporarily one more type of automorphisms:

Automorphisms–conjugations. Let V be a representation space of the Chevalley group G(R), C ∈
GL(V ) be a matrix from the normalizer of G(R):

C G(R)C−1 = G(R).

Then the mapping x �→ CxC−1 from G(R) onto itself is an automorphism of the Chevalley group,
which is denoted by i and is called an automorphism–conjugation of G(R), induced by the element C of
the group GL(V ).

In Section 5 we will prove that in our case all automorphisms–conjugations are inner, but the first
step is the proof of the following theorem:

Theorem 1. Let G(R) be a Chevalley group of type F4 , where R is a commutative local ring with 1/2. Then
every automorphism of G(R) is a composition of a ring automorphism and an automorphism–conjugation.

Sections 2–4 are devoted to the proof of Theorem 1.

2. Changing the initial automorphism to a special isomorphism, images of wαi

Since in the papers [5] and [6] the root system in there second sections was arbitrary, we can
suppose all results of these sections to be proved also for our root system F4.

Namely, by the fixed automorphism ϕ we can construct a mapping ϕ′ = i g−1ϕ , which is an isomor-
phism of the group G(R) ⊂ GLn(R) onto some subgroup of GLn(R) with the property that its image
under factorization R by J (the radical of R) coincides with a ring automorphism ρ .

Besides, from Section 2 of the same papers we know that the image of any involution (a matrix of
order 2) under such an isomorphism is conjugate to this involution in the group GLn(R).

These are the main facts that we need to know.
The order of roots we have fixed in the previous section.
The basis of the space V (52-dimensional) we numerate as vi = xαi , v−i = x−αi , V 1 = h1, . . . ,

V 4 = h4.
Consider the matrices hα1 (−1), . . . ,hα4(−1) in our basis. They have the form

hα1(−1) = diag[1,1,−1,−1,1,1,1,1,−1,−1,−1,−1,1,1,−1,−1,−1,−1,−1,−1,−1,−1,

−1,−1,−1,−1,1,1,−1,−1,−1,−1,1,1,−1,−1,1,1,1,1,1,1,1,1,−1,−1,−1,

−1,1,1,1,1],
hα2(−1) = diag[−1,−1,1,1,−1,−1,1,1,−1,−1,−1,−1,−1,−1,1,1,−1,−1,1,1,1,1,

−1,−1,1,1,−1,−1,−1,−1,1,1,−1,−1,−1,−1,1,1,−1,−1,1,1,−1,−1,

−1,−1,1,1,1,1,1,1],
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hα3(−1) = diag[1,1,1,1,1,1,−1,−1,1,1,1,1,−1,−1,1,1,−1,−1,1,1,−1,−1,1,1,−1,

−1,1,1,−1,−1,1,1,−1,−1,1,1,−1,−1,1,1,1,1,1,1,1,1,1,1,1,1,1,1],
hα4(−1) = diag[1,1,1,1,−1,−1,1,1,1,1,−1,−1,−1,−1,−1,−1,−1,−1,1,1,−1,−1,1,

1,1,1,1,1,1,1,1,1,1,1,1,1,−1,−1,1,1,−1,−1,1,1,1,1,1,1,1,1,1,1].
As we see, for all i we have hαi (−1)2 = 1.
We know that every matrix hi = ϕ′(hαi (−1)) in some basis is diagonal with ±1 on its diagonal,

and the number of 1 and −1 coincides with their number for the matrix hαi (−1). Since all matrices
hi commute, then there exists a basis, where all hi has the same form as hαi (−1) in the initial
basis from weight vectors. Suppose that we came to this basis with the help of the matrix g1. Clear
that g1 ∈ GLn(R, J ) = {X ∈ GLn(R) | X − E ∈ Mn( J )}. Consider the mapping ϕ1 = i−1

g1
ϕ′ . It is also an

isomorphism of the group G(R) onto some subgroup of GLn(R) such that its image under factorization
R by J is ρ , and ϕ1(hαi (−1)) = hαi (−1) for all i = 1, . . . ,4.

Instead of ϕ′ we now consider the isomorphism ϕ1.
Every element wi = wαi (1) moves by conjugation hi to each other, therefore its image has a block-

monomial form. In particular, this image can be rewritten as a block-diagonal matrix, where the first
block is 48 × 48, and the second is 4 × 4.

Consider the first basis vector after the last basis change. Denote it by e. The Weil group W acts
transitively on the set of roots of the same length, therefore for every root αi of the same length as
the first one, there exists such w(αi) ∈ W , that w(αi)α1 = αi . Similarly, all roots of the second length
are also conjugate under the action of W . Let αk be the first root of the length that is not equal to the
length of α1, and let f be the k-th basis vector after the last basis change. If α j is a root conjugate
to αk , then let us denote by w(α j) an element of W such that w(α j)αk = α j . Consider now the basis

e1, . . . , e48, e49, . . . , e52, where e1 = e, ek = f , for 1 < i � 48 either ei = ϕ1(w(αi))e, or ei = ϕ1(w(αi)) f
(it depends of the length of αk); for 48 < i � 52 we do not move ei . Clear that the matrix of this basis
change is equivalent to the unit modulo radical. Therefore the obtained set of vectors also is a basis.

Clear that a matrix for ϕ1(wi) (i = 1, . . . ,4) in the basis part {e1, . . . , e2n} coincides with the
matrix for wi in the initial basis of weight vectors. Since hi(−1) are squares of wi , then there images
are not changed in the new basis.

Besides, we know that every matrix ϕ1(wi) is block-diagonal up to decomposition of basis in the
first 48 and last 4 elements. Therefore the last part of basis consisting of 4 elements, can be changed
independently.

Initially (in the basis of weight vectors) wi in this basis part are

w1:

⎛
⎜⎝

−1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎠ , w2:

⎛
⎜⎝

1 0 0 0
1 −1 1 0
0 0 1 0
0 0 0 1

⎞
⎟⎠ ,

w3:

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 2 −1 1
0 0 0 1

⎞
⎟⎠ , w4:

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 −1

⎞
⎟⎠ .

We have the following conditions for these elements (on the given basis part):

(1) for all i w2
i = E;

(2) wi and w j commute for |i − j| > 1;
(3) w1 w2 and w3 w4 have order 3, w2 w3 has order 2.

Therefore the images ϕ1(wi) satisfy the same conditions. Besides, we know, that these images are
equivalent to the initial wi modulo radical J .
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Let us make the basis change with the matrix, which is a product of (commuting with each other)
matrices

⎛
⎜⎝

1 1/2 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎠ and

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 1 1 1
0 0 0 2

⎞
⎟⎠ .

In this basis w1 = diag[−1,1,1,1], w3 = diag[1,1,−1,1],

w2 =
⎛
⎜⎝

1/2 1/4 −1/2 −1/2
1 1/2 1 1

−1 1/2 0 −1
0 0 0 1

⎞
⎟⎠ , w4 =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 −1/2 1/2 3/2
0 1/2 1/2 −1/2

⎞
⎟⎠ .

Consider now the images of ϕ1(wi) in the changed basis. All these images are involutions, and
every of them has exactly one −1 in its diagonal form, also ϕ1(w1) and ϕ1(w3) commute. Hence we
can choose such a basis (equivalent to the previous one modulo J ), where ϕ1(w1) and ϕ1(w3) have
a diagonal form with one −1 on the corresponding places.

Consider now where w4 can move under this basis change.
Since ϕ1(w4) commutes with ϕ1(w1), has order two and is equivalent to w4 modulo radical, we

have

ϕ1(w4) =
⎛
⎜⎝

1 0 0 0
0 a b c
0 d e f
0 g h i

⎞
⎟⎠ .

Use the facts that ϕ1(w4)
2 = E , ϕ1(w3 w4) has order 3. Then we obtain

{
ad + de + f g = 0,

ad − de + f g = −d,

therefore 2de = d, and since d ≡ 1/2 mod J , we have e = 1/2. Moreover,

{
ag + dh + gi = 0,

ag − dh + gi = g

consequently 2g(a + i) = g , i.e., a + i = 1/2. Make now a basis change with the matrix

⎛
⎜⎜⎝

1 0 0 0

0 1 0 a−1
g

0 0 1 0

0 0 0 1

⎞
⎟⎟⎠ .

This change does not move the elements ϕ1(w1) and ϕ1(w3), and ϕ1(w4) now has the form

⎛
⎜⎝

1 0 0 0
0 1 b c
0 d 1/2 f
0 g h −1/2

⎞
⎟⎠ .
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Using the above conditions, we obtain the equation bg + eh + hi = 0, consequently bg = 0, i.e., b = 0.
In this case from a2 + bd + cg = 1 it follows c = 0. All other conditions gives the system

{ f g = −3/2d,

dh = −g/2,

f h = −1/4.

Clear that with a diagonal basis change (which does not move ϕ1(w1) and ϕ1(w3)) we can come to
a basis, where ϕ1(w4) has the same form as w4 after the first our basis change. Making now the
inverse basis change, we obtain that ϕ1(w1), ϕ1(w3) and ϕ(w4) have the same form as w1, w3, w4,
respectively. Look at ϕ1(w2).

Since ϕ1(w2) commutes with ϕ1(w4), we have

ϕ1(w2) =
⎛
⎜⎝

a b c 0
d e f 0
g i h 0

g/2 i/2 k h − 2k

⎞
⎟⎠ .

Since (h − 2k)2 = 1, we have h − 2k = 1. Now similarly to the consideration of ϕ1(w4), we take the
conditions for ϕ1(w2). After suitable diagonal change we get ϕ1(wi) = wi in the new last basis.

Therefore we can now come from the isomorphism ϕ1 under consideration to an isomorphism ϕ2
with all properties of ϕ1 and such that ϕ2(wi) = wi for all i = 1, . . . ,4.

We suppose now that an isomorphism ϕ2 with all these properties is given.

3. Images of xαi (1) and diagonal matrices

Let us write the matrices wi , i = 1, . . . ,4:

w1 = −eα1,−α1 − e−α1,α1 + eα2,α5 + e−α2,−α5 − eα5,α2 − e−α5,α2 + eα3,α3

+ e−α3,−α3 + eα4,α4 + e−α4,−α4 + eα6,α8 + e−α6,−α8 − eα8,α6 − e−α8,−α6

+ eα7,α7 + e−α7,−α7 + eα9,α11 + e−α9,−α11 − eα11,α9 − e−α11,−α9 + eα10,α12

+ e−α10,−α12 − eα12,α10 − e−α12,−α10 + eα13,α15 + e−α13,−α15 − eα15,α13 − e−α15,−α13

+ eα14,α14 + e−α14,−α14 + eα16,α18 + e−α16,−α18 − eα18,α16 − e−α18,−α16

+ eα17,α17 + e−α17,−α17 + eα19,α19 + e−α19,−α19 + eα20,α20 + e−α20,−α20

+ eα21,α21 + e−α21,−α21 + eα22,α22 + e−α22,−α22 + +eα23,α24 + e−α23,−α24

− eα24,α23 − e−α24,−α23 − eh1,h1 + eh1,h2 + eh2,h2 + eh3,h3 + eh4,h4;

w2 = −eα2,−α2 − e−α2,α2 + eα1,α5 + e−α1,−α5 − eα5,α1 − e−α5,α1 − eα3,α6 − e−α3,−α6

+ eα6,α3 + e−α6,−α3 + eα4,α4 + e−α4,−α4 + eα7,α9 + e−α7,−α9 − eα9,α7

− e−α9,−α7 + eα8,α8 + e−α8,−α8 + eα10,α10 + e−α10,−α10 + eα11,α11 + e−α11,−α11

+ eα12,α14 + e−α12,−α14 − eα14,α12 − e−α14,−α12 + eα13,α13 + e−α13,−α13

+ eα15,α17 + e−α15,−α17 − eα17,α15 − e−α17,−α15 + eα16,α16 + e−α16,−α16

+ eα18,α20 + e−α18,−α20 − eα20,α18 − e−α20,−α18 + eα19,α19 + e−α19,−α19
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+ eα21,α21 + e−α21,−α21 + eα22,α23 + e−α22,−α23 − eα23,α22 − e−α23,−α22

+ eα24,α24 + e−α24,−α24 + eh1,h1 + eh2,h1 − eh2,h2 + eh2,h3 + eh3,h3 + eh4,h4;

w3 = eα1,−α1 + e−α1,α1 + eα2,α10 + e−α2,−α10 + eα10,α2 + e−α10,α2 − eα3,−α3

− e−α3,α3 + eα4,α7 + e−α4,−α7 − eα7,α4 − e−α7,−α4 + eα5,α12 + e−α5,−α12

+ eα12,α5 + e−α12,−α5 − eα6,α6 − e−α6,−α6 − eα8,α8 − e−α8,−α8 + eα9,α13

+ e−α9,−α13 − eα13,α9 − e−α13,−α9 + eα11,α15 + e−α11,−α15 − eα15,α11 − e−α15,−α11

+ eα14,α14 + e−α14,−α14 + eα16,α16 + e−α16,−α16 + eα17,α19 + e−α17,−α19

− eα19,α17 − e−α19,−α17 + eα18,α18 + e−α18,−α18 + eα20,α22 + e−α20,−α22

+ eα22,α20 + e−α22,−α20 − eα21,α21 − e−α21,−α21 + eα23,α23 + e−α23,−α23

+ eα24,α24 + e−α24,−α24 + eh1,h1 + eh2,h2 + 2eh3,h2 − eh3,h3 + eh3,h4 + eh4,h4;

w4 = eα1,−α1 + e−α1,α1 + eα2,−α2 + e−α2,α2 − eα3,α7 − e−α3,−α7 + eα7,α3 + e−α7,α3

− eα4,−α4 − e−α4,α4 + eα5,α5 + e−α5,−α5 + eα6,α9 + e−α6,−α9 − eα9,α6 − e−α9,−α6

+ eα8,α11 + e−α8,−α11 − eα11,α8 − e−α11,−α8 + eα10,α16 + e−α10,−α16 + eα16,α10

+ e−α16,−α10 + eα12,α18 + e−α12,−α18 + eα18,α12 + e−α18,−α12 − −eα13,α13 − e−α13,−α13

− eα15,α15 − e−α15,−α15 − eα17,α17 − e−α17,−α17 + eα14,α20 + e−α14,−α20

+ eα20,α14 + e−α20,−α14 + eα19,α21 + e−α19,−α21 − eα21,α19 − e−α21,−α19 + eα22,α22

+ e−α22,−α22 + eα23,α23 + e−α23,−α23 + eα24,α24 + e−α24,−α24

+ eh1,h1 + eh2,h2 + eh3,h3 + eh4,h3 − eh4,h4 .

Besides that, xα1 (t) = E + t X1 + t2 X2
1/2, where

X1 = 2eα1,h1 − eα1,h2 − eh1,−α1 + eα5,α2 − e−α2,−α5 + eα8,α6 − e−α6,−α8

+ eα11,α9 − e−α9,−α11 + eα12,α10 − e−α10,−α12 + eα15,α13 − e−α13,−α15

+ eα18,α16 − e−α16,−α18 + eα24,α23 − e−α23,−α24;

xα3 (t) = E + t X3 + t2 X2
3/2, where

X3 = −2eα3,h2 + 2eα3,h3 − eα3,h4 − eh3,−α3 + eα7,α4 − e−α4,−α7

+ eα13,α9 − e−α9,−α13 + eα15,α11 − e−α11,−α15 + eα19,α17 − e−α17,−α19

− 2eα6,α2 + e−α2,−α6 − eα10,α6 + 2e−α6,−α10 − 2eα8,α5 + e−α5,−α8

− eα12,α8 + 2e−α8,α12 − 2eα21,α20 + e−α20,−α21 − eα22,α21 + 2e−α21,−α22 .

We are interested in images of xαi (t). Let ϕ2(xα1 (1)) = x1 = (yi, j). Since x1 commutes with all
hαi (−1), i = 1,3,4, and also with w3, w4, and w14, then by direct calculus we obtain:
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1. The matrix x1 can be decomposed into following eight diagonal blocks:

B1 = {v1, v−1, v14, v−14, v20, v−20, v22, v−22, V 1, V 2, V 3, V 4};
B2 = {v2, v−2, v5, v−5, v10, v−10, v16, v−16, v18, v−18, v23, v−23, v24, v−24};
B3 = {v3, v−3, v21, v−21};
B4 = {v4, v−4, v17, v−17};
B5 = {v6, v−6, v8, v−8};
B6 = {v7, v−7, v19, v−19};
B7 = {v9, v−9, v11, v−11};
B8 = {v13, v−13, v15, v−15}.

2. On the block B1 the matrix x1 has the form

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y1 y2 −y3 y3 −y3 y3 −y3 y3 −2y4 y4 0 0

y5 y6 −y7 y7 −y7 y7 −y7 y7 −2y8 y8 0 0

y9 y10 y11 y12 −y13 y13 −y13 y13 −2y14 + 2y15 y14 0 −y15

−y9 −y10 y12 y11 y13 −y13 y13 −y13 2y14 − 2y15 −y14 + 2y15 0 y15

y9 y10 −y13 y13 y11 y12 −y13 y13 2(−y14 + y15) y14 −y15 y15

−y9 −y10 y13 −y13 y12 y11 y13 −y13 2(y14 − y15) −y14 + 2y15 −y15 y15

y9 y10 −y13 y13 −y13 y13 y11 y12 2(−y14 + y15) −y14 + 2y15 y15 0

−y9 −y10 y13 −y13 y13 −y13 y12 y11 2(y14 − y15) −y14 y15 0

y16 y17 −y18 y18 −y18 y18 −y18 y18 y19 − 2y20 y20 0 0

0 0 0 0 0 0 0 0 0 y20 0 0

0 0 0 0 0 0 0 0 0 0 y20 0

0 0 0 0 0 0 0 0 0 0 0 y20

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

3. On the block B2 it is

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y21 y22 −y23 −y24 −y25 −y26 y27 y28 −y25 −y26 y27 y28 y28 y27 y26 y25
y29 y30 −y31 −y32 −y25 −y33 y34 y35 −y25 −y33 y34 y35 y35 y34 y33 y28
y32 y31 y30 y29 −y35 −y34 −y33 −y25 −y35 −y34 −y33 −y25 −y25 −y33 y34 y35
y24 y23 y22 y21 −y28 −y27 −y26 −y25 −y28 −y27 −y26 −y25 −y25 −y26 y27 y28

−y25 −y26 y27 y28 y21 y22 −y23 −y24 −y25 −y26 y27 y28 y28 y27 y26 y25
−y25 −y33 y34 y35 y29 y30 −y31 −y32 −y25 −y33 y34 y35 y35 y34 y33 y25
−y35 −y34 −y33 −y25 y32 y31 y30 y29 −y35 −y34 −y33 −y25 −y25 −y33 y34 y35
−y28 −y27 −y26 −y25 y24 y23 y22 y21 −y28 −y27 −y26 −y25 −y25 −y26 y27 y28
−y25 −y26 y27 y28 −y25 −y26 y27 y28 y21 y22 −y23 −y24 y28 y27 y26 y25
−y25 −y33 y34 y35 −y25 −y33 y34 y35 y29 y30 −y31 −y32 y35 y34 y33 y25
−y35 −y34 −y33 −y25 −y35 −y34 −y33 −y25 y32 y31 y30 y29 −y25 −y33 y34 y35
−y28 −y27 −y26 −y25 −y28 −y27 −y26 −y25 y24 y23 y22 y21 −y25 −y26 y27 y28
−y28 −y27 −y26 −y25 −y28 −y27 −y26 −y25 −y28 −y27 −y26 −y25 y21 y22 −y23 −y24
−y35 −y34 −y33 −y25 −y35 −y34 −y33 −y25 −y35 −y34 −y33 −y25 y29 y30 −y31 −y32

y25 y33 −y34 −y35 y25 y33 −y34 −y35 y25 y33 −y34 −y35 y32 y31 y30 y29
y25 y26 −y27 −y28 y25 y26 −y27 −y28 y25 y26 −y27 −y28 y24 y23 y22 y21

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

4. On the blocks B3, B4, B6 it has the form

⎛
⎜⎝

y36 y37 y38 y38
y37 y36 y38 y38

−y38 −y38 y36 y37
−y38 −y38 y37 y36

⎞
⎟⎠ .
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5. Finally, on the blocks B5, B7, B8 it is

⎛
⎜⎝

y39 y40 y41 y42
y43 y44 y45 y46

−y46 −y45 y44 y43
−y42 −y41 y39 y40

⎞
⎟⎠ .

Let now ϕ2(xα4 (1)) = x4 = (zi, j). Since x4 commutes with all hαi (−1), i = 1,2,4, and w1, w2, and
also for w13 we have w13x4 w−1

13 = x−1
4 = hα3 (−1)x4hα3(−1), then by direct calculation we obtain:

1. The matrix x4 can be decomposed into following eight diagonal blocks:

B ′
1 = {v4, v−4, V 1, V 2, V 3, V 4};

B ′
2 = {v1, v−1, v14, v−14, v17, v−17, v20, v−20, v22, v−22};

B ′
3 = {v2, v−2, v10, v−10, v13, v−13, v16, v−16, v24, v−24};

B ′
4 = {v5, v−5, v12, v−12, v15, v−15, v18, v−18, v23, v−23};

B ′
5 = {v6, v−6, v9, v−9};

B ′
6 = {v3, v−3, v7, v−7};

B ′
7 = {v8, v−8, v11, v−11};

B ′
8 = {v19, v−19, v21, v−21}.

2. On the first block the matrix x4 has the form

⎛
⎜⎜⎜⎜⎜⎝

z1 z2 0 0 z3 −2z3
z4 z5 0 0 z6 −2z6
0 0 z7 0 0 0
0 0 0 z7 0 0
0 0 0 0 z7 0
z8 z9 0 0 z10 z7 − 2z10

⎞
⎟⎟⎟⎟⎟⎠ .

3. On the second, third and fourth blocks it is

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

z11 z12 −z13 −z14 z15 z15 z14 z13 −z16 z16
z12 z11 z13 z14 −z15 −z15 −z14 −z13 z16 −z16

−z17 z17 z18 z19 z20 z21 z22 z23 z17 −z17
z24 −z24 z25 z26 z27 z28 z29 z30 −z24 z24

−z31 z31 z32 z33 z34 z35 z36 z37 z31 −z31
−z31 z31 −z37 −z36 z35 z34 −z33 −z32 z31 −z31
−z24 z24 z30 z29 −z28 −z27 z26 z25 z24 −z24
z17 −z17 z23 z22 −z21 −z20 z19 z18 −z17 z17

−z16 z16 z13 z14 −z15 −z15 −z14 −z13 z11 z12
z16 −z16 −z13 −z14 z15 z15 z14 z13 z12 z11

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

4. On all other blocks x4 has the form

⎛
⎜⎝

z38 z39 z40 z41
z42 z43 z44 z45

−z45 −z44 z43 z42
−z41 −z40 z39 z38

⎞
⎟⎠ .
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Therefore, we have 85 variables y1, . . . , y40, z1, . . . , z45, where y1, y6, y11, y20, y21, y30, y32, y36,
y39, y44, z1, z5, z7, z11, z18, z26, z28, z30, z38, z34, z43, z45 are 1 modulo radical, y2, y4, y17, y46, z2,
z3, z9 are −1 modulo radical, z32 is −2 modulo radical, all other variables are from radical.

We apply step by step four basis changes, commuting with each other and with all matrices wi .
These changes are represented by matrices C1, C2, C3, C4. Matrices C1 and C2 are block-diagonal,
where first 24 blocks have the size 2 × 2, the last block is 4 × 4. On all 2 × 2 blocks, corresponding
to short roots, the matrix C1 is unit, on all 2 × 2 blocks, corresponding to long roots, it is

(
1 −y16/y17

−y16/y17 1

)
.

On the last block it is unit.
Similarly, C2 is unit on the blocks corresponding to long roots, and on the last block. On the blocks

corresponding to the short roots, it is

(
1 −z8/z9

−z8/z9 1

)
.

Matrices C3 and C4 are diagonal, identical on the last 4 × 4 block, the matrix C3 is identical on all
places, corresponding to short root, and scalar with multiplier a on all places corresponding to long
roots. In the contrary, the matrix C4, is identical on all places, corresponding to long roots, and is
scalar with multiplier b on all places, corresponding to short roots.

Since all these four matrices commutes with all wi , i = 1,2,3,4, then after basis change with any
of these matrices all conditions for elements x1 and x4 still hold.

At the beginning we apply basis changes with the matrices C1 and C2. After that new y16 in the
matrix x1 and z8 in the matrix x4 are equal to zero (for the convenience of notations we do not
change names of variables). Then we choose a = −1/y17 (it is new y17) and apply the third basis
change. After it y17 in the matrix x1 becomes to be −1. Clear that y16 is still zero.

Finally, apply the last basis change with b = −1/z9 (where z9 is the last one, obtained after all
previous changes). We have that y16, y17, z8 are not changed, and z9 is now −1.

Now we can suppose that y16 = 0, y17 = −1, z8 = 0, z9 = −1, we have now just 81 variables.
From the fact that x1 and x4 commute (cond. 1), it directly follows y37 = y38 = 0, y36 = y20.

From the condition hα2 (−1)x1hα2(−1)x1 = E (cond. 2, its position (52,52)) follows that y2
20 = 1,

consequently y20 = 1.
From the condition w2x1 w−1

2 x1 = x1 w2(1)x1 w2(1)−1 (cond. 3, the position (50,10)) it follows
y21 = 1, from its position (49,10) it follows y19 = 0.

The condition w2 w3 w2x1 w−1
2 w3(1)w−1

2 x1 = x1 w2 w3 w2x1 w−1
2 w−1

3 w−1
2 (cond. 4, the position

(51,52)) implies y15 = 0.
Again from cond. 3 (the position (18,13)) we have y46(y45 + y42) = 0, whence y45 = −y42. From

cond. 2 (the positions (11,12) and (12,11)) we obtain y40(y39 + y44) = 0 and y43(y39 + y44) = 0,
therefore y40 = y43 = 0. After that in the same condition the position (12,16) gives y44 = y39. The
position (12,16) of cond. 3 now gives us y46(y39 − 1) = 0 ⇒ y39 = 1.

In the condition hα3(−1)x4hα3(−1)x4 = E (cond. 5) the position (8,7) gives z4 = 0, the position
(7,7) gives z1 = 1; (51,51) gives z7 = 1;

In the condition w3x4x−1
3 x4 = x4 w3x4x−1

3 (cond. 6) the position (51,5) gives z41 = 0, the position
(51,6) gives z40 = 0, the position (52,7) gives z39 = 0, the position (51,8) gives z10 = 0, the position
(52,8) gives z38 = 1.

Again from cond. 5 (positions (52,52), (52,8), (7,8)) we obtain z6 = 0, z5 = 1, z2 = z3.
Returning to cond. 6, from (13,51) we have z43 = 1, from (5,51) we have z44 = 0, from (5,14)

we have z42 = 0, from (12,17) we have z35 = 0, from (12,18) we have z34 = 1, from (12,19) —
z37 = −z31, from (12,20) — z36 = z31, from (9,15) — z20 = −z15, and from (10,15) — z27 = z15.

The position (11,22) of cond. 1 now gives us y42 = 0, and the position (11,11) of cond. 2 gives
y41 = 0.
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Considering x1+2 = ϕ2(xα1+α2 (1)) = w2x1 w−1
2 , x2 = ϕ(xα2 (1)) = w1x1+2 w1 and cond. 7: x1x2 =

x1+2x2x1 (the position (6,16)), we obtain y46 = −1.
Similarly, considering x3+4 = ϕ2(xα3+α4 (1)) = w3x4 w−1

3 , x3 = ϕ(xα3 (1)) = w4x3+4 w−1
4 , and

cond. 8: x3x4 = x3+4x4x3 (applying positions (51,14), (13,52), (12,11), (29,9), (15,35), (15,36),
(16,36), (12,19), (12,20), (11,25), (12,26), (10,30), (47,11), (1,2), (1,1), (4,4), (3,4), (3,18),
(3,17), (4,17), (4,3), (3,3), (18,3)), we obtain z45 = 1, z3 = −1, z31 = 0, z32 = −2, z14 = 0, z13 = 0,
z30 = 1, z25 = 0, z26 = 1, z15 = 0, z28 = 1, z24 = 0, z16 = 0, z12 = 0, z11 = 1, z17 = 0, z19 = 0, z21 = 0,
z22 = 0, z29 = 0, z23 = 0, z18 = 1, z33 = 0, respectively.

Therefore we obtain that x4 = xα4 (1).
Directly from the first condition we now have y3 = y7 = y27 = y25 = y34 = y26 = y33 = y28 =

y35 = y22 = y24 = y29 = y31 = y12 = y13 = y9 = y10 = y23 = y18 = y14 = 0, y30 = y32 = y11 = 1.
Finally, from cond. 3 we get y5 = 0, y6 = 1, y1 = 1, y8 = 0, y4 = −1, from cond. 2 we get y2 = −1.
Now x1 = xα1(1), it is what we needed.
Since all long (and all short) roots are conjugate under the action of Weil group, it means that

ϕ2(xα(1)) = xα(1) for all α ∈ Φ .
Consider now the matrix dt = ϕ2(hα4 (t)).

Lemma 1. The matrix dt is hα4(s) for some s ∈ R∗ .

Proof. Since the matrix dt commutes with hα(−1) for all α ∈ Φ , then dt is decomposed to the fol-
lowing diagonal blocks:

D1 = {v1, v−1, v14, v−14, v20, v−20, v22, v−22},
D2 = {v2, v−2, v10, v−10, v16, v−16, v24, v−24},
D3 = {v3, v−3}, D4 = {v4, v−4},
D5 = {v5, v−5, v12, v−12, v18, v−18, v23, v−23},
D6 = {v6, v−6}, D7 = {v7, v−7},
D8 = {v8, v−8}, D9 = {v9, v−9},

D10 = {v11, v−11}, D11 = {v13, v−13},
D12 = {v15, v−15}, D13 = {v17, v−17},
D14 = {v19, v−19}, D15 = {v21, v−21},
D16 = {V 1, V 2, V 3, V 4}.

Using the fact that dt commutes with w1, w2, w13 and x1, we obtain that on the blocks D1, D2, D5
the matrix dt has the form

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t1 0 0 0 0 0 0 0
0 t1 0 0 0 0 0 0
0 0 t8 0 t9 0 0 0
0 0 0 t10 0 t11 0 0
0 0 t11 0 t10 0 0 0
0 0 0 t9 0 t8 0 0
0 0 0 0 0 0 t1 + 2t13 0
0 0 0 0 0 0 0 t1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

;
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on the blocks D3, D6, D8, D14 it is diag[t2, t3]; on the blocks D7, D9, D10, D15 it is diag[t3, t2], on
the block D4 it is (

t4 t5
t6 t7

)
;

on the blocks D11, D12, D13 it has the form diag[t12, t12]; and on the last block it is

⎛
⎜⎝

t1 0 0 0
0 t1 0 0
0 0 t1 0
0 0 t13 t1 − 2t13

⎞
⎟⎠ .

Using the condition w4dt w−1
4 dt = E , we obtain: from the position (1,1) it follows t2

1 = 1, con-
sequently t1 = 1, from (52,52) it follows (1 − 2t13)

2 = 1, therefore t13 = 0; (5,5) implies t3 = 1/t2;
(7,8) implies t7(t5 + t6) = 0, whence t6 = −t5; from (24,36) we have t8(t9 + t11) = 0, therefore
t11 = −t9; from (26,26) we have t2

12 = 1, and then t12 = 1.
Now consider the condition w3dt w−1

3 = dt w4 w3dt w−1
3 w−1

4 . Its position (13,14) gives t5 = 0, the
position (5,5) gives t4 = 1/t2

2, (6,6) gives t7 = t2
2; (3,19) gives t9 = 0; (19,19) gives t10 = 1/t8.

Finally, introduce ϕ2(hα3 (t)) = w4 w3dt w−1
3 w−1

3 , ϕ2(hα6(t)) = w2ϕ2(hα3 (t))w−1
2 , ϕ2(hα10(t)) =

ϕ2(hα6(t))ϕ2(hα3(t)). Since ϕ2(hα10(t)) commutes with xα8 (1), we obtain (the position (9,6)) that
t8 = t2

2.
Therefore, ϕ2(hα4 (t)) = hα4(1/t2), and the lemma is proved. �
Clear, that this lemma holds also for images of all hα(t), α ∈ Φ .

4. Images of xαi (t), proof of Theorem 1

We have shown that ϕ2(hα(t)) = hα(s), α ∈ Φ . Denote the mapping t �→ s by ρ : R∗ → R∗ . Note
that for t ∈ R∗ ϕ2(x1(t)) = ϕ2(hα2 (t

−1)x1(1)hα2 (t)) = hα2 (s−1)x1(1)hα2 (s) = x1(s). If t /∈ R∗ , then t ∈ J ,
i.e., t = 1+t1, where t1 ∈ R∗ . Then ϕ2(x1(t)) = ϕ2(x1(1)x1(t1)) = x1(1)x1(ρ(t1)) = x1(1+ρ(t1)). There-
fore if we extend the mapping ρ to the whole R (by the formula ρ(t) := 1+ρ(t −1), t ∈ R), we obtain
ϕ2(x1(t)) = x1(ρ(t)) for all t ∈ R . Clear that ρ is injective, additive, and also multiplicative on all in-
vertible elements. Since every element of R is a sum of two invertible elements, we have that ρ is an
isomorphism from the ring R onto some its subring R ′ . Note that in this situation C G(R)C−1 = G(R ′)
for some matrix C ∈ GL(V ). Let us show that R ′ = R .

Denote matrix units by Eij .

Lemma 2. The Chevalley group G(R) generates the matrix ring Mn(R).

Proof. The matrix (xα1 (1) − 1)2 has a unique nonzero element −2 · E12. Multiplying it to suitable
diagonal matrices, we can obtain an arbitrary matrix of the form λ · E12 (since −2 ∈ R∗ and R∗
generates R). Since the Weil group acts transitively on all roots of the same length, i.e., for every long
root αk there exists such w ∈ W , that w(α1) = αk , and then the matrix λE12 · w has the form λE1,2k ,
and the matrix w−1 · λE12 has the form λE2k−1,2. Besides, with the help of the Weil group element,
moving the first root to the opposite one, we can get the matrix unit E2,1. Taking now different
combinations of the obtained elements, we can get an arbitrary element λEij , 1 � i, j � 48, indices
i, j correspond to the numbers of long roots.

The matrix (xα4 (1) − 1)2 is −2E7,8 + 2E20,32 + 2E24,36 + 2E28,40 + 2E31,19 + 2E35,23 + 2E39,27. All
matrix units in this sum, except the first one, are already obtained, therefore we can subtract them
and get E7,8. Similarly to the longs roots, using the fact that all short roots are also conjugate under
the action of the Weil groups, we obtain all λEij , 1 � i, j � 48, indices i, j correspond to the short
roots.
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Now subtract from the matrix xα1 (1) − 1 suitable matrix units and obtain the matrix E49,2 −
2E1,49 + E1,50. Multiplying it (from the right side) to E2,i , 1 � i � 48, where i corresponds to a long
root, we obtain all E49,i , 1 � i � 48 for i corresponding to the long roots. Multiplying these last
elements from the left side to w2, we obtain E50,i , 1 � i � 48 for i, corresponding to the long roots;
then by multiplying them from the left side to w3 we obtain all E51,i , 1 � i � 48 for i, corresponding
to the long roots, and, similarly, E52,i . Therefore, now we have all Ei, j , 49 � i � 52, 1 � j � 52, where
j correspond to the long roots.

Then A = 1/8(hα1 (−1) + E) . . . (hα4 (−1) + E) = E49,49 + E50,50 + E51,51 + E52,52, B = A(w1 +
· · ·+ w4)A + 2A = E49,50 + E50,49 + E50,51 + 2E51,50 + E51,52 + E52,51, C = B2 − A = E49,51 + 2E50,50 +
E50,52 + 2E51,49 + 2E51,51 + 2E52,50, C2 − B2 = 2E52,50. So we have E52,50 and then all Ei, j , 48 < i, j �
52, therefore all Ei, j , 1 � i � 48, 48 < j � 52, where i corresponds to the long roots.

Then, taking the matrix xα4 (t) and multiplying it from the left and right side to some suitable
matrix units Ei,i , we can obtain Ei, j , where i corresponds to the long root, j corresponds to the short
one. After that it becomes clear, how to get all matrix units Ei, j , 1 � i, j � 48 with the help of the
Weil group. Finally, as above, we can obtain all Ei, j , 1 � i � 48, 48 < j � 52, where i correspond to
the short roots, and so all matrix units. �
Lemma 3. If for some C ∈ GLn(R) we have C G(R)C−1 = G(R ′), where R ′ is a subring of R, then R ′ = R.

Proof. Suppose that R ′ is a proper subring of R .
Then C Mn(R)C−1 = Mn(R ′), since the group G(R) generates the whole ring Mn(R) (the previous

lemma), and the group G(R ′) = C G(R)C−1 generated the ring Mn(R ′). It is impossible, since C ∈
GLn(R). �
Proof of Theorem 1. We have just proved that ρ is an automorphism of the ring R . Consequently,
the composition of the initial automorphism ϕ and some basis change with a matrix C ∈ GLn(R),
(mapping G(R) into itself) is a ring automorphism ρ . It proves Theorem 1. �
5. Theorem about normalizers and main theorem

To prove the main theorem of this paper (see Theorem 3 in the end of this section), we need to
obtain the following important fact (that has proper interest):

Theorem 2. Every automorphism–conjugation of a Chevalley group G(R) of type F4 over a local ring R
with 1/2 is an inner automorphism.

Proof. Suppose that we have some matrix C = (ci, j) ∈ GL52(R) such that

C · G · C−1 = G.

If J is the radical of R , then Mn( J ) is the radical in the matrix ring Mn(R), therefore

C · Mn( J ) · C−1 = Mn( J ),

consequently,

C · (E + Mn( J )
) · C−1 = E + Mn( J ),

i.e.,

C · G(R, J ) · C−1 = G(R, J ),

since G(R, J ) = G ∩ (E + Mn( J )).
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Thus, the image C of the matrix C under factorization R by J gives us an automorphism–
conjugation of the Chevalley group G(k), where k = R/ J is a residue field of R .

But over a field every automorphism–conjugation of a Chevalley group of type F4 is inner
(see [24]), therefore a conjugation by C (denote it by iC ) is

iC = i g,

where g ∈ G(k).
Since over a field our Chevalley group (of type F4) coincides with its elementary subgroup, every

its element is a product of some set of unipotents xα(t)) and the matrix g can be decomposed into a
product xαi1

(Y1) . . . xiN (Y N ), Y1, . . . , Y N ∈ k.
Since every element Y1, . . . , Y N is a residue class in R , we can choose (arbitrarily) elements y1 ∈

Y1, . . . , yN ∈ Y N , and the element

g′ = xαi1
(y1) . . . xiN (yN)

satisfies g′ ∈ G(R) and g′ = g .
Consider the matrix C ′ = g′−1 ◦ d−1 ◦ C . This matrix also normalizes the group G(R), and also

C ′ = E . Therefore, from the description of the normalizer of G(R) we come to the description of all
matrices from this normalizer equivalent to the unit matrix modulo J .

Therefore we can suppose that our initial matrix C is equivalent to the unit modulo J .
Our aim is to show that C ∈ λG(R).
Firstly we prove one technical lemma that we will need later.

Lemma 4. Let X = λtα1(s1) . . . tα4(s4)xα1 (t1) . . . xα24(t24)x−α1 (u1) . . . x−α24 (u24) ∈ λG(R, J ). Then the
matrix X has such 53 coefficients (precisely described in the proof of lemma), that uniquely define all
s1, . . . , s4, t1, . . . , t24, u1, . . . , u24, λ.

Proof. Consider the sequence of roots:

γ1 = α1,

γ2 = α5 = α1 + α2,

γ3 = α8 = α1 + α2 + α3,

γ4 = α12 = α1 + α2 + 2α3,

γ5 = α15 = α1 + α2 + 2α3 + α4,

γ6 = α17 = α1 + 2α2 + 2α3 + α4,

γ7 = α19 = α1 + 2α2 + 3α3 + α4,

γ8 = α21 = α1 + 2α2 + 3α3 + 2α4,

γ9 = α22 = α1 + 2α2 + 4α3 + 2α4,

γ10 = α23 = α1 + 3α2 + 4α3 + 2α4,

γ11 = α24 = 2α1 + 3α2 + 4α3 + 2α4.

All roots of F4, except α14 and α18, are differences between two distinct roots of this sequence (or its
member).

Besides, γ1 is a simple root, γ11 is a maximal root of the system, every root of the sequence is
obtained from the previous one by adding some simple root.
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Consider in the matrix X some place (μ,ν), μ,ν ∈ Φ .
To find an element on this position we need to define all sequences of roots β1, . . . , βp , satisfying

the following properties:
1. μ + β1 ∈ Φ , μ + β1 + β2 ∈ Φ , . . . , μ + β1 + · · · + βi ∈ Φ , . . . , μ + β1 + · · · + βp = ν .
2. In the initial numerated sequence α1, . . . ,α24,−α1, . . . ,−α24 the roots β1, . . . , βk are replaced

strictly from right to left.
Finally in the matrix X on the position (μ,ν) there is the sum of all products ±β1 ·β2 . . . βp by all

sequences with these two properties, multiplying to dμ = λs〈α1,μ〉
1 . . . s〈α4,μ〉

4 . If μ = ν , we must add 1
to the sum.

We will find the obtained elements s1, . . . , s4, t1, . . . , tm, u1, . . . , um step by step.
Firstly we consider in the matrix X the position (−γ11,−γ11). We cannot add to the root −γ11

any negative root to obtain a root in the result. If in a sequence β1, . . . , βp the first root is positive,
then all other roots must be positive. Thus, this position contains an element 1 · dν . So we know
d−γ11 . By the previous arguments if we consider the position (−γ11,−γ10), the suitable sequence is
only α1 = γ11 − γ10. Since there is d−γ11t1 on this position and we already know d−γ11 , we can find
t1 on the position (−α24,−α23). Considering the positions (−γ10,−γ10) and (−γ10,−γ11), we see
that by similar reasons there are d−γ10 (1 ± u1t1) and ±d−γ10 u1 there. So we find d−γ10 and u1.

Now we come to the second step. As we have written above, in the matrix X on the position
(−γ10,−γ9) there is d−γ10 (±t2 ± u1t5); on the position (−γ9,−γ10) there is d−γ9 (±u2 ± u5t1); on
the position (−γ11,−γ9) there is ±d−γ11 t5 (the second summand is absent, since α1 is staying earlier
than α2); on the position (−γ9,−γ11) there is d−γ9 (±u5 ± u2u1); finally, on the position (−γ9,−γ9)

there is d−γ9 (1 + ±u5t5 ± u2t2). From the position (−γ11,−γ9) we find t5, then from the position
(−γ10,−γ9) we find t2, and from other three positions together we can know u2, u5,d−γ9 . Therefore,
now we know t1, t2, t5, u1, u2, u5,d−γ9 ,d−γ10 ,d−γ11 .

On the third step we consider the positions (−γ9,−γ8) with d−γ9 (±t3 ± u2t6 ± u5t8), (−γ8,−γ9)

with d−γ8 (±u3 ± t2u6 ± t5u8), (−γ10,−γ8) with d−γ10 (±t6 ± u1t8), (−γ8,−γ10) with d−γ8 (±u6 ±
u2u3 ± t1u8), (−γ11,−γ8) with d−γ11 (±t8 ± t5t3), (−γ8,−γ11) with d−γ8 (±u8 ± u3u2u1 ± u6u1), and
(−γ8,−γ8) with d−γ8 (1 ± u3t3 ± u5t5 ± u8t8 ± u8t5t3). From these seven equations with seven un-
known variables (all of them from radical) we can find all variables t3, u3, t6, u6, t8, u8 and d−γ8 .

Similarly on the next step we consider the positions (−γ8,−γ7), (−γ7,−γ8), (−γ9,−γ7),
(−γ7,−γ9), (−γ10,−γ7), (−γ7,−γ10), (−γ11,−γ7), (−γ7,−γ11), and (−γ7,−γ7), and find t4, u4,
t7, u7, t9, u9, t11, u11, d−γ7 .

Now we know d−γ7 ,d−γ8 ,d−γ9 ,d−γ10 and d−γ11 , i.e., λs4/s3, λ/s4, λs2/s3, λs1/s2 and λ/s1. So we
know all si , i = 1, . . . ,4, λ, and, consequently, all d−γi .

Suppose now that we know all elements ti , u j for all indices corresponding to the roots of the form
γp −γq , 11 � p,q > s. Consider the positions (−γ11,−γs), (−γs,−γ11), (−γ10,−γs), (−γs,−γ10), . . . ,
(−γs+1,−γs), (−γs,−γs+1) in the matrix X . Clear that on every place (−γi,−γs), 1 � i > s, there is
sum of tp , where p is a number of the root γi − γs (if it is a root), and products of different elements
ta , ub , where only one member of the product is not known yet, all other elements are known and
lie in radical; and all this sum is multiplying to the known element d−γi . The same situation is on
the positions (−γs,−γi), 1 � i > s, but there is not tp , but up without multipliers here. Therefore, we
have exactly the same number of (not uniform) linear equations as the number of roots of the form
±(γi − γs), with the same number of variables, in every equation exactly on variable has invertible
coefficient, other coefficients are from radical, for distinct equations such variables are different. Clear
that such a system has the solution, and it is unique. Consequently, we have made the induction step
and now we know elements ti, u j for all indices, corresponding to the roots γp − γq , 11 � p,q � s.

On the last step we know elements ti, u j for all indices, corresponding to the roots γp − γq , 11 �
p,q � 1. Consider now in X the positions (−γ11,hγ11), (hγ11 ,−γ11), (−γ10,hγ10), (hγ10 ,−γ10), . . . ,
(−γ1,hγ1 ), (hγ1 ,−γ1). Similarly to the previous arguments we can find all t and u, corresponding to
the roots ±γ1, . . . ,±γk .

We have not found yet the obtained coefficients for two pairs of roots: ±α14 and ±α18. Note that
α14 + α18 = α24.

Consider in X the positions (−α24,−α14), (−α14,−α24), (−α24,−α18), (−α18,−α24). On these
positions there are sums of t18 (respectively, u18, t14, u14), and products of elements ti, u j , corre-
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sponding to roots of smaller heights. Since for all heights smaller than the height of α14, we know
t, u, then we can directly find the obtained coefficients.

Therefore, lemma is completely proved. �
Now return to our main proof. Recall that we work with a matrix C , equivalent to the unit matrix

modulo radical, and normalizing Chevalley group G(R).
For every root α ∈ Φ we have

Cxα(1)C−1 = xα(1) · gα, gα ∈ G(R, J ). (1)

Every gα ∈ G(R, J ) can be decomposed into a product

tα1(1 + a1) . . . tα4(1 + a4)xα1(b1) . . . xα24(b24)xα−1(c1) . . . xα−24(c24), (2)

where a1, . . . ,a4,b1, . . . ,b24, c1, . . . , c24 ∈ J (see, for example, [2]).
Let C = E + X = E + (xi, j). Then for every root α ∈ Φ we can write a matrix equation (1) with

variables xi, j,a1, . . . ,a4,b1, . . . ,b24, c1, . . . , c24, every of them is from radical.
Let us change these equations. We consider the matrix C and “imagine”, that it is some matrix

from Lemma 4 (i.e., it is from λG(R)). Then by some its concrete 53 positions we can “define” all
coefficients λ, s1, . . . , s4, t1, . . . , t24, u1, . . . , u24 in the decomposition of this matrix from Lemma 4. In
the result we obtain a matrix D ∈ λG(R), every matrix coefficient in it is some (known) function of
coefficients of C . Change now Eq. (1) to the equations

D−1Cxα(1)C−1 D = xα(1) · g′
α, g′

α ∈ G(R, J ). (3)

We again have matrix equations, but with variables yi, j,a′
1, . . . ,a′

4,b′
1, . . . ,b′

24, c′
1, . . . , c′

24, every of
them still is from radical, and also every yp,q is some known function of (all) xi, j . The matrix D−1C
will be denoted by C ′ .

We want to show that a solution exists only for all variables with primes equal to zero. Some
xi, j also will equal to zero, and other are reduced in the equations. Since the equations are very
complicated we will consider the linearized system. It is sufficient to show that all variables from
the linearized system (let it be the system of q variables) are members of some system from q linear
equations with invertible in R determinant.

In other words, from the matrix equalities we will show that all variables from them are equal to
zeros.

Clear that linearizing the product Y −1(E + X) we obtain some matrix E + (zi, j), with all positions
described in Lemma 4 equal to zero.

To find the final form of the linearized system, we write it as follows:

(E + Z)xα(1) = xα(1)
(

E + a1T1 + a2
1 . . .

)
. . .

(
E + a4Tl + a2

4 . . .
)

· (E + b1 Xα1 + b2
1 X2

α1
/2

)
. . .

(
E + c24 X−α24 + c2

24 X2−α24
/2

)
(E + Z),

where Xα is a corresponding Lie algebra element in the adjoint representation, the matrix Ti is diag-
onal, has on its diagonal 〈αi,αk on the place corresponding to vk; on the places corresponding to the
vectors V j , this matrix has zeros.

Then the linearized system has the form

Z xα(1) − xα(1)(Z + a1T1 + · · · + a4T4 + b1 Xα1 + · · · + c24 Xα24) = 0.
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This equation can be written for every α ∈ Φ (naturally, with another a j,b j, c j), and can be written
only for generating roots: for α1, . . . ,α4,−α1, . . . ,−α4:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z xα1(1) − xα1(1)(Z + a1,1T1 + · · · + a4,1T4

+ b1,1 Xα1 + b2,1 Xα2 + · · · + b24,1 Xα24 + c1,1 X−α1 + · · · + c24,1 X−α24) = 0;
. . .

Z xα4(1) − xα4(1)(Z + a1,4T1 + · · · + a4,4T4

+ b1,4 Xα1 + · · · + Xα24 b24,1 Xα24 + c1,4 X−α1 + · · · + c24,4 X−α24) = 0;
. . .

Z x−α1(1) − x−α1(1)(Z + a1,5T1 + · · · + a4,5T4

+ b1,5 Xα1 + · · · + b24,5 Xα24 + c1,5 X−α1 + · · · + c24,5 X−α5) = 0;
. . .

Z x−α4(1) − x−α4(1)(Z + a1,8T1 + · · · + a4,8T4

+ b1,8 Xα1 + · · · + b24,8 Xα24 + c1,8 X−α1 + · · · + c24,8 X−α24) = 0.

The matrix T1 is

diag[2,−2,−1,1,0,0,0,0,1,−1,−1,1,0,0,1,−1,−1,1,−1,1,1,−1,

1,−1,−1,1,0,0,1,−1,−1,1,0,0,1,−1,0,0,0,0,0,0,0,0,−1,1,1,−1,0,0,0,0];
T2 is w1 w2T1 w−1

2 w−1
1 ; T3 is

diag[0,0,−2,2,2,−2,−1,1,−2,2,0,0,1,−1,0,0,−1,1,2,−2,−1,1,

2,−2,1,−1,0,0,1,−1,0,0,−1,1,0,0,1,−1,−2,2,0,0,2,−2,0,0,0,0,0,0,0,0];
the matrix T4 is w3 w4T3 w−1

4 w−1
3 .

The matrices Xα1 , Xα3 were written above. Besides them, X−α1 = w1 Xα1 w−1
1 , X−α3 = w3 Xα3 w−1

3 .

Other matrices Xα are obtained as follows: X±α5 = w2 X±α1 w−1
2 , X±α2 = w1 X±α5 w−1

1 , X±α10 =
w3 X±α2 w−1

3 , X±α12 = w1 X±α10 w−1
1 , X±α14 = w2 X±α12 w−1

2 , X±α16 = w4 X±α10 w−1
4 , X±α18 =

w1 X±α16 w−1
1 , X±α20 = w2 X±α18 w−1

2 , X±α22 = w3 X±α20 w−1
3 , X±α23 = w2 X±α22 w−1

2 , X±α24 =
w1 X±α23 w−1

1 , X±α7 = w4 X±α3 w−1
4 , X±α4 = w3 X±α7 w−1

3 , X±α6 = w2 X±α3 w−1
2 , X±α8 = w1 X±α6 w−1

1 ,

X±α9 = w4 X±α6 w−1
4 , X±α11 = w1 X±α9 w−1

1 , X±α13 = w3 X±α9 w−1
3 , X±α15 = w1 X±α13 w−1

1 , X±α17 =
w2 X±α15 w−1

2 , X±α19 = w3 X±α17 w−1
3 , X±α21 = w4 X±α19 w−1

4 .
From Lemma 4 we obtain that the following positions of Z are zeros: (48,48), (48,46), (46,46),

(46,48), (46,44), (44,44), (44,46), (44,42), (42,42), (42,44), (42,38), (38,38), (38,42), (48,44),
(44,48), (46,42), (42,46), (44,38), (38,44), (48,42), (42,48), (46,38), (38,46), (24,2), (2,24),
(48,38), (38,48), (24,49), (49,24), (46,34), (34,46), (48,36), (36,48), (48,34), (34,48), (44,24),
(24,44), (48,30), (30,48), (48,28), (28,48), (38,51), (51,38), (48,24), (24,48), (48,16), (16,48),
(48,10), (10,48), (48,2), (2,48), (48,49), (49,48).

Suppose that we fixed the obtained uniform linear system of equation. Recall that our aim is to
show that all values zi, j , as,t ,bs,t , cs,t are equal to zero.

Consider the first condition. It implies a4,1 = 0 (pos. (42,42)); a1,1 = 0 (pos. (48,48)); a3,1 = 0
(pos. (38,38)); a2,1 = 0 (pos. (39,39)). Therefore, T1, T2, T3, T4 do not entry to this condition.
Later, c1,1 = 0 (pos. (3,9)); b2,1 = 0 (pos. (3,51)); c2,1 = 0 (pos. (46,44)); b3,1 = 0 (pos. (5,51));
c3,1 = 0 (pos. (6,51)); b4,1 = 0 (pos. (7,51)); c4,1 = 0 (pos. (8,51)); b5,1 = 0 (pos. (44,48)); c5,1 = 0
(pos. (10,51)); b6,1 = 0 (pos. (3,6)); c6,1 = 0 (pos. (46,42)); b7,1 = 0 (pos. (13,51)); c7,1 = 0
(pos. (14,51)); b8,1 = 0 (pos. (42,48)); c8,1 = 0 (pos. (16,52)); b9,1 = 0 (pos. (17,51)); c9,1 = 0
(pos. (46,38)); b10,1 = 0 (pos. (19,51)); b11,1 = 0 (pos. (38,48)); c11,1 = 0 (pos. (22,51)); c12,1 = 0
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(pos. (24,51)); b13,1 = 0 (pos. (25,51)); c13,1 = 0 (pos. (46,34)); b14,1 = 0 (pos. (27,52)); c14,1 = 0
(pos. (28,51)); b15,1 = 0 (pos. (34,48)); c15,1 = 0 (pos. (30,51)); b16,1 = 0 (pos. (31,52)); c16,1 = 0
(pos. (46,28)); b17,1 = 0 (pos. (33,51)); c17,1 = 0 (pos. (34,51)); b18,1 = 0 (pos. (20,44)); c18,1 = 0
(pos. (36,52)); b19,1 = 0 (pos. (37,51)); c19,1 = 0 (pos. (38,51)); b20,1 = 0 (pos. (39,51)); c20,1 = 0
(pos. (40,51)); b21,1 = 0 (pos. (41,52)); c21,1 = 0 (pos. (42,52)); b22,1 = 0 (pos. (43,51)); c22,1 = 0
(pos. (44,51)); b23,1 = 0 (pos. (3,44)); c24,1 = 0 (pos. (10,43)).

Consequently the right side of the condition contains only Xα12 , Xα24 , X−α10 , X−α23 , the condition
itself is simplified, many elements of Z are equal to zero. Firstly, these are elements on the positions
(i, j), i = 2,3,5,6,7,8,10,11,13,14,16,17,19,22,24,25,27,28,30,31,33,36,37,38,39,40,41,42,

43,44,45,48,50,51,52, j = 1,4,9,12,15,18,20,21,23,26,29,32,35,46,47,49 (except z6,15 =
c10,1, z5,12 = b12,1, z7,29 = c10,1, z8,26 = b12,1, z24,49 = −c10,1, z28,35 = c23,1, z27,32 = b24,1, z33,26 =
−b24,1, z34,29 = −c23,1, z37,18 = b24,1, z38,21 = c23,1, z38,18 = c10,1, z39,47 = −c10,1, z39,20 = b24,1,
z40,23 = c23,1, z41,12 = −b24,1, z42,15 = −c23,1, z43,4 = b24,1, z44,9 = c23,1, z45,49 = −b24,1).

When we make these elements equal to zero, we see that b12,1 = 0 (pos. (19,2)), c10,1 = 0
(pos. (44,36)), b24,1 = 0 (pos. (45,2)), c23,1 = 0 (pos. (48,2)), i.e., the condition now looks as
xα1 (1)Z = Z xα1 (1). By similar way finally all our conditions become of the form x±αp (1)Z = Z x±αp (1),
p = 1, . . . ,4. Since the centralizer of the given eight matrices consists of scalar matrices, and the ma-
trix Z has a zero element z52,52, we have that Z = 0, what we need.

Theorem 2 is proved. �
From Theorems 1 and 2 directly follows the main theorem of the paper:

Theorem 3. Let G(R) be a Chevalley group with root system F4 , where R is a local ring with 1/2. Then every
automorphism of G(R) is standard, i.e., it is a composition of ring and inner automorphisms. This composition
is unique.

Proof. We need only to prove the uniqueness.
Suppose that for some automorphism ϕ ∈ Aut(G(R)) we have i g1 ◦ ρ1 = i g2 ◦ ρ2, g1, g2 ∈ G(R),

ρ1,ρ2 are ring automorphisms. Then i g−1
2 g1

= ρ1 ◦ ρ2, i.e., some ring automorphism is inner, i g = ρ .

Since any ring automorphism is identical on all xα(1), α ∈ Φ , then g commutes with all xα(1), α ∈ Φ .
So by [3] g belongs to the center of G(R), i.e., i g is identical. Consequently, i g1 = i g2 , ρ1 = ρ2. �
Corollary 1. The group Aut G(R) is a semi-direct product of G(R) and Aut R.
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