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Introduction

An associative commutative ring R with a unit is called local, if it contains exactly one maximal
ideal (that coincides with the radical of R). Equivalently, the set of all non-invertible elements of R is
an ideal.

We describe automorphisms of Chevalley groups of type F4 over local rings with 1/2. Note that for
the root system F,4 there exists only one weight lattice, that is simultaneously universal and adjoint,
therefore for every ring R there exists a unique Chevalley group of type F4, that is G(R) = G,4(Fa, R).
Over local rings universal Chevalley groups coincide with their elementary subgroups, consequently
the Chevalley group G(R) is also an elementary Chevalley group.

Theorem 1 for the root systems A;, D;, and E; was obtained by the author in [5], in [7] all auto-
morphisms of Chevalley groups of given types over local rings with 1/2 were described. Theorem 1
for the root systems B, and G5 is proved in [6].
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Similar results for Chevalley groups over fields were proved by R. Steinberg [25] for the finite
case and by ]. Humphreys [18] for the infinite case. Many papers were devoted to description of
automorphisms of Chevalley groups over different commutative rings, we can mention here the papers
of Borel and Tits [4], Carter and Chen Yu [10], Chen Yu [11-15], A. Klyachko [21]. E. Abe [1] proved
that all automorphisms of Chevalley groups under Noetherian rings with 1/2 are standard.

The case A; was completely studied by the papers of W.C. Waterhouse [27], V.M. Petechuk [22],
Fuan Li and Zunxian Li [20], and also for rings without 1/2. The paper of I.Z. Golubchik and
A.V. Mikhalev [16] covers the case C;, that is not considered in the present paper. Automorphisms
and isomorphisms of general linear groups over arbitrary associative rings were described by E.I. Zel-
manov in [28] and by I.Z. Golubchik, A.V. Mikhalev in [17].

We generalize some methods of V.M. Petechuk [23] to prove Theorem 1.

1. Definitions and main theorems
We fix the root system @ of the type F4 (detailed texts about root systems and their properties

can be found in the books [19,8]). Let e1, e, e3, e4 be an orthonorm basis of the space R*. Then we
numerate the roots of F4 as follows:

o] =ey —es, Oy =e3 —e4, o3 = ey, 01425(61 —e) —e3 —ey)
are simple roots;
05 =01+ 0y =€) — ey,
g =0 + a3 =es,
Ol7=053—|-064=%(€1 —ey —e3+ey),
ag =01+ 0oy + 03 =ey,
g =2 + Q3 +Ol4=%(€1 —ey+e3—ey),
010 = 0l + 2003 = €3 + ey,
a1 =o1+oy 4+ a3 +a4:%(e1+ez—e3—e4),
012 =01 + o + 203 = ey + ey,
o013 = a2 + 203 +Ot4=%(€1 —ep+e3+ey),
014 =01 + 200 + 203 = e +-e3,
015 = Q1 + 0y + 203 +Ol4=%(€1+€2—€3+€4),
016 = Q2 + 203 + 2004 = €1 — €3,
o7 =0 + 200 + 203 +Ot4=%(€1+€2+€3—€4),
o018 = a1 + 0 + 203 + 204 = €1 — €3,
o9 = a1 + 20 + 303 —|-Ot4=%(€1 +e3+e3+ey),

020 = 01 + 202 + 203 + 2004 = €1 — ey,

021 = a1 + 200 + 303 + 204 = €1,
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02 = + 200 + 403 + 2004 = €1 + ey,
023 = a1 + 32 + 43 + 2004 = e1 +e3,

04 = 2001 + 30 + 403 + 2004 =€1 + €3

are other positive roots.

Suppose now that we have a semi-simple complex Lie algebra £ of type F4 with Cartan subalge-
bra ‘H (detailed information about semi-simple Lie algebras can be found in the book [19]).

Then in the algebra £ we can choose a Chevalley basis {h; |i=1,...,4; X, | @ € @} so that for
every two elements of this basis their commutator is an integral linear combination of the elements
of the same basis.

Namely,

(1) [hi,hjl1=0;

(2) [hi, Xa]l = (@i, A)Xa;

(3) if  =nyoy + - - - +ngay, then [xy, X_o] =n1hy + - +nghy;

(4) if x + B ¢ @, then [xy, xg] =0;

(5) if e +pB @, and «, B are roots of the same length, then [xy, Xg] = Cxy14;

(6) if a +pB €@, « is a long root, B is a short root, then [Xy, Xg] = aXytp + bXq126.

Take now an arbitrary local ring with 1/2 and construct an elementary adjoint Chevalley group of
type F4 over this ring (see, for example [24]). For our convenience we briefly put here the construc-
tion.

In the Chevalley basis of £ all operators (xy)*/k! for k € N are written as integral (nilpotent)
matrices. An integral matrix also can be considered as a matrix over an arbitrary commutative ring
with 1. Let R be such a ring. Consider matrices 52 x 52 over R, matrices (x,)*/k! for o € @, k € N are
included in Ms3(R).

Now consider automorphisms of the free module R" of the form

exp(txe) = Xo (£) = 1+ txq + 2(xa)? /2 + - - + tF(xe) k! + - - -

Since all matrices x,, are nilpotent, we have that this series is finite. Automorphisms x, (t) are called
elementary root elements. The subgroup in Aut(R"), generated by all x,(t), & € @, t € R, is called an
elementary adjoint Chevalley group (notation: E.q(®, R) = E 4(R)).

In an elementary Chevalley group there are the following important elements:

= Wo(t) = x4 (O)X_g (=t Dxy(t), @ € D, t € R*;
- ha(t) = we(Owe (1)

The action of x,(t) on the Chevalley basis is described in [9,26], we write it below (see Section 3).

Over local rings for the root system F4 all Chevalley groups coincide with elementary adjoint
Chevalley groups E.q(R), therefore we do not introduce Chevalley groups themselves in this paper. In
this paper we denote our Chevalley groups by G(R), since they depend only of a ring R.

We will work with two types of standard automorphisms of a Chevalley group G(R) and with one
unusual, “temporary” type of automorphisms.

Ring automorphisms. Let p : R — R be an automorphism of the ring R. The mapping (a; ;) —
(p(aij)) ((a;;) is a matrix) from G(R) onto itself is an automorphism of the group G(R), that is
denoted by the same letter p and is called a ring automorphism of the group G(R). Note that for all
o €@ and t € R an element X, (t) is mapped to x4 (0(t)).
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Inner automorphisms. Let g € G(R) be an element of a Chevalley group under consideration. Conju-
gation of the group G(R) with the element g is an automorphism of G(R), that is denoted by iz and
is called an inner automorphism of G(R).

These two types of automorphisms are called standard. There are central and graph automor-
phisms, which are also standard, but in our case (root system F4) they cannot appear. Therefore
we say that an automorphism of the group G(R) is standard, if it is a composition of ring and inner
automorphisms.

Besides that, we need also to introduce temporarily one more type of automorphisms:

Automorphisms-conjugations. Let V be a representation space of the Chevalley group G(R), C €
GL(V) be a matrix from the normalizer of G(R):

CG(R)C™' =G(R).

Then the mapping x — CxC~! from G(R) onto itself is an automorphism of the Chevalley group,
which is denoted by i and is called an automorphism-conjugation of G(R), induced by the element C of
the group GL(V).

In Section 5 we will prove that in our case all automorphisms-conjugations are inner, but the first
step is the proof of the following theorem:

Theorem 1. Let G(R) be a Chevalley group of type F4, where R is a commutative local ring with 1/2. Then
every automorphism of G(R) is a composition of a ring automorphism and an automorphism-conjugation.

Sections 2-4 are devoted to the proof of Theorem 1.
2. Changing the initial automorphism to a special isomorphism, images of wy;

Since in the papers [5] and [6] the root system in there second sections was arbitrary, we can
suppose all results of these sections to be proved also for our root system Fj.

Namely, by the fixed automorphism ¢ we can construct a mapping ¢’ =i g-1¢, which is an isomor-
phism of the group G(R) C GL,(R) onto some subgroup of GL,;(R) with the property that its image
under factorization R by J (the radical of R) coincides with a ring automorphism p.

Besides, from Section 2 of the same papers we know that the image of any involution (a matrix of
order 2) under such an isomorphism is conjugate to this involution in the group GL,(R).

These are the main facts that we need to know.

The order of roots we have fixed in the previous section.

The basis of the space V (52-dimensional) we numerate as v; = Xq,, V_i = X_¢;, V1 =h1, ...,
V4 = ha.
Consider the matrices hqy, (—1), ..., hg,(—1) in our basis. They have the form

hg, (1) =diag[1,1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,-1,-1,-1, -1, -1, -1, -1, -1,
-1,-1,-1,-1,1,1,-1,-1,-1,-1,1,1,-1,-1,1,1,1,1,1,1,1,1, -1, -1, —1,
-1,1,1,1,1],

hg,(—1) =diag[-1,-1,1,1,-1,-1,1,1,-1,-1,-1,-1,-1,-1,1,1,-1,-1,1,1,1, 1,
-1,-1,1,1,-1,-1,-1,-1,1,1,-1,-1,-1,-1,1,1,-1,-1,1,1, -1, -1,
-1,-1,1,1,1,1,1, 1],
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hg;(—1) =diag[1,1,1,1,1,1,-1,-1,1,1,1,1,-1,-1,1,1,-1,-1,1,1, -1, -1,1,1, -1,
-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,1,1,1,1,1,1,1,1,1, 1, 1, 1],

hg,(—1) =diag[1,1,1,1,-1,-1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,1, -1, -1, 1,
1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,1,1,-1,-1,1,1,1,1,1,1,1, 1, 1, 1].

As we see, for all i we have hy, (—1)? =1.

We know that every matrix h; = ¢’(hy,;(—1)) in some basis is diagonal with £1 on its diagonal,
and the number of 1 and —1 coincides with their number for the matrix hy, (—1). Since all matrices
h; commute, then there exists a basis, where all h; has the same form as hg,(—1) in the initial
basis from weight vectors. Suppose that we came to this basis with the help of the matrix gi. Clear
that g1 € GLy(R, J) = {X € GLy(R) | X — E € Mp(]J)}. Consider the mapping ¢ = i;llgo/. It is also an
isomorphism of the group G(R) onto some subgroup of GL,(R) such that its image under factorization
R by J is p, and ¢1(hg;(=1)) =hg,(—1) foralli=1,...,4.

Instead of ¢’ we now consider the isomorphism ¢;.

Every element w; = wq, (1) moves by conjugation h; to each other, therefore its image has a block-
monomial form. In particular, this image can be rewritten as a block-diagonal matrix, where the first
block is 48 x 48, and the second is 4 x 4.

Consider the first basis vector after the last basis change. Denote it by e. The Weil group W acts
transitively on the set of roots of the same length, therefore for every root «; of the same length as
the first one, there exists such w®) e W, that w @) = o;. Similarly, all roots of the second length
are also conjugate under the action of W. Let o be the first root of the length that is not equal to the
length of aq, and let f be the k-th basis vector after the last basis change. If «¢; is a root conjugate
to ay, then let us denote by W(qj) an element of W such that w DOk = oj. Consider now the basis
e1,...,e4s, €0, ..., €5, Where eq =e, ey = f, for 1 <i < 48 either e; = g1 (W®))e, or e; = p1(W(qy;)) f
(it depends of the length of oy ); for 48 <i < 52 we do not move e;. Clear that the matrix of this basis
change is equivalent to the unit modulo radical. Therefore the obtained set of vectors also is a basis.

Clear that a matrix for ¢1(w;) (i=1,...,4) in the basis part {e1,..., e} coincides with the
matrix for w; in the initial basis of weight vectors. Since h;(—1) are squares of wj;, then there images
are not changed in the new basis.

Besides, we know that every matrix ¢1(w;) is block-diagonal up to decomposition of basis in the
first 48 and last 4 elements. Therefore the last part of basis consisting of 4 elements, can be changed
independently.

Initially (in the basis of weight vectors) w; in this basis part are

1100 1 0 00
w0 100 woe [1 -1 10
‘o o010/ ‘lo o 1 0]
0 00 1 0 0 01
10 0 0y 100 0
we [0 00 we [0 10 0
‘o2 -1 1| ‘loo1 o
00 0 1/ 001 —1

We have the following conditions for these elements (on the given basis part):

(1) for all i w? =E;
(2) w; and w; commute for |i — j| > 1;
(3) wiwy and wiwy have order 3, wyws has order 2.

Therefore the images ¢q(w;) satisfy the same conditions. Besides, we know, that these images are
equivalent to the initial w; modulo radical J.
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Let us make the basis change with the matrix, which is a product of (commuting with each other)
matrices

1 1/2 0 0 1 000
0 1 00 and 01 0O
0 0 10 0111
0 0 01 0 00 2

In this basis wi = diag[—1,1,1, 1], w3 =diag[1, 1, —1, 1],

1/2 1/4 =1/2 =12 1 0 0 0
| 1 12 1 1 w 0 1 0 0
271 -1 12 o0 —1 |’ = lo —12 12 3,2

0 0 0 1 0 1/2 1/2 -1/2

Consider now the images of ¢q(w;) in the changed basis. All these images are involutions, and
every of them has exactly one —1 in its diagonal form, also ¢1(w1) and ¢;(w3) commute. Hence we
can choose such a basis (equivalent to the previous one modulo J), where ¢1(w1) and ¢1(w3) have
a diagonal form with one —1 on the corresponding places.

Consider now where w4 can move under this basis change.

Since ¢1(wy4) commutes with ¢q(w1), has order two and is equivalent to w4 modulo radical, we
have

1 00O
0 a b c
(5] (W4) = 0 d e f
0 g h i

Use the facts that ¢, (W4)2 =E, ©1(w3wy) has order 3. Then we obtain

ad+de+ fg =0,
ad —de + fg=—d,

therefore 2de =d, and since d =1/2 mod J, we have e = 1/2. Moreover,

ag +dh+ gi =0,
ag—dh+gi=g

consequently 2g(a+1i) =g, i.e.,, a+i=1/2. Make now a basis change with the matrix

1 00 O
a—1
010 e
0 01 O
0 0 0 1

This change does not move the elements ¢;(w) and ¢1(w3), and ¢1(w4) now has the form

1 0 O 0
01 b c
0d 12 f
0 g h -—1/2
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Using the above conditions, we obtain the equation bg + eh + hi = 0, consequently bg =0, i.e., b =0.
In this case from a® + bd + cg =1 it follows ¢ = 0. All other conditions gives the system

fg=-3/2d,
dh=—g/2,
fh=-1/4.

Clear that with a diagonal basis change (which does not move ¢1(w1) and ¢;(w3)) we can come to
a basis, where ¢1(wy4) has the same form as w4 after the first our basis change. Making now the
inverse basis change, we obtain that ¢(w1), ¢1(w3) and ¢(w4) have the same form as wq, ws, wy,
respectively. Look at ¢1(w>).

Since ¢1(w3) commutes with ¢1(w4), we have

0
0
0

a b
d e

p1(wy) = g ;

g/2 i/2 k h-—2k

S 0

Since (h — 2k)2 =1, we have h — 2k = 1. Now similarly to the consideration of ¢1(w4), we take the
conditions for ¢q(w;). After suitable diagonal change we get ¢;(w;) = w; in the new last basis.
Therefore we can now come from the isomorphism ¢; under consideration to an isomorphism ¢;
with all properties of ¢1 and such that gp(w;) =w; foralli=1,...,4.
We suppose now that an isomorphism ¢, with all these properties is given.

3. Images of x,, (1) and diagonal matrices

Let us write the matrices w;, i=1,...,4:

W1 = —€q;,—a; — €—aq,07 T €Cay,a5 T €—ay,—a5s — Cas.ap — €—as,00 T €a3.03
+ €_a3,—as + Coy,004 + € _ay,—ay + Cug,0g + €_ag,—ag — Cag,as — €—ag,—ag
+ Caz,07 + €—a7,—ay + Cag, 011 + €—ag,—a11 — Coqy.a9 — €—ayq,—ag + Cag,a12
+ €—a10,—o12 ~ Cap.n0 — C—ar2.—aq0 + Cay3,a15 + €—aq3,—a15 — Cags,0q3 T -5, —ag3
+ Caiq,0014 + €—a4,—14 + Cay6,018 + €16, —o1g — Cag.aie — C—arg.—age
+ Cay7,a17 + €—ay7,—0q7 + Cag,a19 + €—ag,—019 + Caryo, 020 + €—ay9,—0a20
T Cayp,a01 T €—any.—any T oz T €—agy,—azy T T€0p3.004 T €—ra3,—ar4

— €ayy,a03 — €—arpg,—a3 — €y hy T €hy hy T+ €hy hy T+ €hyhy T iy hys

W2 = —€q,,—ay — €—ay,a5 T €aq,a5 T €—aq,—a5 — €Cas,a7 — €—as,07 — Cas,a5 — €—a3,—ag
t a3 T €—ag,—as T Cagoy T €—ay—as +Ca7.00 T €—a7,—ag — €ag.az
—€—qg,—ay + Cog,ag + €—ag,—ag + Caqp,a10 + €—aq9,—a10 + Corq1,011 + €—ay1,—oq3
+ Cayy,0014 + €—a1y,—a1s ~ Cong.ann T C—aig,—aq2 + Cay3,013 + €—o3, -3
+ Cays,017 + €—a5,—a17 ~ Cayz.015 — C—ay7,—ags + Cai6,016 + €—a16,—16

+ Cor13,0000 + €—ag,—az0 — Cong,ong — €—orpg,—a1g + €a19,0019 + €—a19,—19
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+ Cor1,a21 + €—ay1,—an + Cayy. a3 + €—ay,—ar3 ~ Cans.any T €—ans3—a

T €ong 004 T €—ang,—a2s T €hyhy T €hyhy — €y hy + €hy hy + €hyhy T Chyhy;

W3 = €qq,—a; T €—aq,01 T Caz,a10 T €~z —a19 T Cavp,02 + €—axyp,002 — €ar3,—ar3
—€—a3,03 T Caya7 T €—ay,—a7; — Coz,04 — €—a7,—atg + Cas,012 T €—at5,—aryy
t €ayp,a5 T €—ayp,—as — Cog,a — €—ag,—as — Cagag — €—ag,—ag T Cag,ar3
+ €—ag,—a13 — Cay3,0 — €—ary3,—g + Cayq,a15 + €—aqy,—a15 — Cas.aq T C—aqs,—aqg
+ 60114,(114 + 3—014,—(114 + ealﬁﬂ]ﬁ + e—Ohe,—Olls + e'0517,0“9 + e—0117,—0119
— €uyg,017 — €—ar9,—at17 T Cag,oqs T €—ayg,—a1g T Cazg,a0n + €—0r0,—at2:
+ €apz,020 + €y, —ap0 ~ Cazy.ap T €—aay,—ang + €ay3, 23 + €—a3,—0r3

T €04 T €—ara,—0ng T €hy by T €hy hy T 23/13,/12 — €h3,hy T+ €hy,hy T €hyhys

Wyq = eOt],—O[] + e—O[],O[] + eOéz,—Olz + e—az,dz - eO[3,0{7 - e—O[3,—Ol7 + e0{7,0{3 + e—0{7,0{3
—Cay,—ay — C—ay.a4 + Cas,as + €—as,—as + Cag,ag + €—ag,—ag — Cag,5 — €—ag,—0t6
+ Cag, a1 + €—ag,—ayq — Cayp,a — €—aryy,—ag + Cayg,016 + €—a0,—16 + Cay6,010
+ €—ag,—ar0 T Carz,ans T €—ayp,—a1g t Coyg,ary T €—aqg,—a1n — €33 — a3, a3
— Coys,005 — €—ary5,—ay5s — Cayz,007 — C—ai7,—ay7 + Cor4,a20 + €—a14,—0r0
t €azg.a14 T €—0r0,—0t14 T Cavg,001 T €—0r19. 031 — Carzy,19 — E—atay,—a19 T Cor.0
+ €—ay,—a + Cor3,0p3 + €—ay3,—0p3 + Cag, 024 + €4, —0124

+ €ny,hy t €hy,hy + €h3hy T+ €hyhy — iy hy-

Besides that, Xo, (t) = E + tX1 + t2X2/2, where

X1= zeal,hl —€ay,hy — €hy,—a; T Cas,ay — €—ap,—as T €ag,a6 — €—ap,—ag
+ Cor11,0090 — €—ag,—aq3 + €or12,0010 — €—at10,—012 + €ais,013 — €—13,—a15

+ Cag,a16 — €—ar16,—18 + Cong,ap3 — €—0r23,—0r24 >

Xas () = E +tX3 +t2X3/2, where

X3= _26063,’12 + 260!37113 — €a3,hy — €hs,—a3 T Cay,as — €—ag,—at
+ €a13,00 — €—ag, 013 + Coris,0011 — €—ar11,—a15 + €a19,017 — €—17,—0t19
- 260!6,052 + €—ay,—ag — Cao.6 + 26—016,—0!10 - zeag,a5 + €—us,—ag

— €03 + 26—“&“12 - 260[21,0!20 + €—ay0,—a21 ~ Can,a + 2e—a21,—0t22'

We are interested in images of Xy, (t). Let ¢2(Xqy, (1)) = X1 = (¥;,j). Since x; commutes with all
hg,(=1),i=1,3,4, and also with w3, wy, and w14, then by direct calculus we obtain:
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1. The matrix x; can be decomposed into following eight diagonal blocks:

2. On the block B the matrix x; has the form

Y1 Y2 —Yy3 Y3
Y5 Y6 —y7 y7
Y9 Y10 Y11 Y12
—Y9 —Y1i0o Y12 Y11
Yo Yio —Yy13 Y13
—Y9 —Y1i0o Y13 —VY13
Yo Yio —Y13 Y3
—Y9 —Y1i0o Y13 —Y13
Yie Y17 —Y18 Y18
0 0 0 0
0 0 0 0
0 0 0 0
3. On the block B it is
Y21 Y22 —Y23 —Y24
Y29 Y30  —Y¥Y31 —Y32
y32 Y31 Y30 Y29
Y24 Y23 Y22 y21
—Y25 —Y26 Y27 Y28
—Y25 —Y¥Y33 Y34 Y35
—Y¥35 —Y34 —Yy33 —Y25
—Y28 —Y27 —Y26 —VY25
—Y25 —Y26 Y27 Y28
—Y25 —Y¥Y33 Y34 Y35
—Y¥35 —Y34 —Yy33 —Y25
—Y28 —Y27 —Y26 —Y25
—Y28 —Y27 —Y26 —Y25
—Y¥35 —Y34 —Yy33 —Y25
Y25 Y33  —Y34 —VY35
Y25 Y26 —Y27 —Y28
4. On the blocks B3, By,

B1={v1,v_1, V14, V_14, V20, V_20, V22, V_22, V1, V2, V3, V4};

By ={va,v_3,Vs5,V_5,V10, V_10, V16, V—16, V18, V—18, V23, V_23, V24, V_24};

B3z ={v3,v_3,v21,V_21};

By ={v4,v_4,v17,v_17};

Bs ={ve,v_g, Vg, V_g};

Be ={v7,v_7,Vv19,V_19};

B7 ={vg,v_9, V11, V_11};

Bg ={v13,Vv_13, V15, V_15}.

—Y3 y3 —Y¥3
—Yy7 y7 —Yy7
—Y13 Y13 —Yi3
Y13 —y13 Y13
Y11 Y12 —Y13
Y12 Y11 yi3

—Y13 Y13 Y11
Y13 —y13 Y12

—Yi18 Y18 —Yis8
0 0 0
0 0 0
0 0 0

—Y25 —Y26 Y27 Y28
—Y25 —Y33 V34 Y35
—Y35 —Y34 —y33 —Y25
—Y28 —Y27 —Y26 —Y25
Y21 Y22 —Y23 —Yo24
Y29 Y30 —Y31 —Y32
¥32 V31 Y30 Y29
Y24 Y23 Y22 Y21
—Y25 —Y26 Y27 Y28
—Y25 —Y33 Y34 Y35
—Y35 —Y34 —Yy33 —Y25
—Y28 —Y27 —Y26 —Y25
—Y28 —Y27 —Y26 —Y25
—Y35 —Y34 —Yy33 —Y25
Y25 Y33  —Y34 —Y35
Y25 Y26 —Y27 —Y28

Bg it has the form

Y36 y37
Y37 Y36

Y3
y7
Y13
—Y1i3
Y13
—Y13
Y12
yu

Y18
0

0
0

—Y25
—Y25
—Y35
—y2s8
—Y25
—Y25
—Y35
—y28
Y21
Y29
V32
Y24
—y2s8
—Y35
Y25
Y25

Y38
Y38

—Y¥Y38 —Y38 V36
—Y38 —Y38 Y37

—2y4
—2ys
—2y14+2y15
2y14 — 2y15
2(—=Y14+ Y15)
2(y14 — Y15)
2(—=Y14+ Y15)
2(¥14 — ¥Y15)
Y19 —2Y¥20
0
0
0
—Y26 Y27 Y28
—Y¥Y33 V34 Y35
—Y34 —Yy33 —Y25
—Y27 —Y26 —Y25
—Y26 Y27 Y28
—Y¥33 V34 Y35
—Y34 —Y33 —Ya2s5
—Y27 —Y26 —Y25
Y22 —Y23 —Y2a
Y30  —Y¥Y31 —Y32
Y31 Y30 Y29
y23 Y22 Y21
—Y27 —Y26 —Y25
—Y34 —Y33 —Ya25
Y33 —Y3a —Y3s5
Y26 —Y27 —Y28
y3s
Y38
y37
Y36

Ya
ys
Y14

—Y14+2Y1s

Y14

—Y14+2y1s
—Y1a+2y15
—Y14

Y20

Y20
0

0

Y28
Y35
—Y25
—Y25
Y28
Y35
—Y25
—JY25
Y28
Y35
—Y25
—Y25
y21
Y29
¥32
Y24

Y27
Y34
—y33
—Y26
Y27
Y34
—y33
—Y26
Y27
Y34
—y33
—Y26
Y22
Y30
Y31
Y23

o O O

o

—Yi15
—Y15
Y15

Y15
0

0
Y20

Y26
Y33
Y34
Y27
Y26
Y33
Y34
Y27
Y26
Y33
Y34
Y27
—y23
—Y31
Y30
Y22

—Yi5
Y15
Y15
Y15

o O ©O O O

Y20

Y25
Y28
Y35
Y28
Y25
Y25
Y35
Y28
Y25
Y25
Y35
Y28
—Y24
—Y32
Y29
y21
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5. Finally, on the blocks Bs, B7, Bg it is

Y39
Ya3
—Y46
—Ya2

Ya0
Va4
—Yas
— Y41

Va1
Yas
Yaq
Y39

Y42
Ya6
Ya3
Y40

2279

Let now ¢ (Xw, (1)) = x4 = (2;,j). Since x4 commutes with all hy,(—1),i=1,2,4, and wq, wy, and

also for wq3 we have W13X4W1_31 =X

4

1. The matrix x4 can be decomposed into following eight diagonal blocks:

L =1{va,v_4, Vi, Vo, V3, Va;

/

> =1{V1,V_1, V14, V_14, V17, V_17, V20, V_20, V22, V_22};

/ .
B3 ={v3,v_3, V10, V_10, V13, V_13, V16, V_16, V24, V_24};

/

/

By ={v3,v_3,v7,v_7};

B, ={vs,v_g, Vi1, V_11};

Bg = {v19, V_19, V21, V_21}.

2. On the first block the matrix x4 has the form

21
Z4

0

Z3

Vi) 0 0
zs O 0
0 zz O
0 0 zy
0 0 O
Z9g O 0

3. On the second, third and fourth blocks it is

/ Z11 Z12  —Z13
Z12 Z11 213
—Z17 217 218
224  —224 225
—Z31 231 232
—Z31 231 —Z37
—Z24 224 230
217  —Z17 223
—Z16 216 213
\ Z16  —Z16 —Z13

—Z14
Z14
219
226
233

—Z36
229
222
214

—Z14

4, On all other blocks x4 has the form

238
242
—Z45
—Z41

215
—Z15
220
227
234
235
—Z28
—2Z21
—Z15
215

239
243
—Z44
—2Z40

Z3
Z6

Z7

—223
—27g

Z10 Z7 — 2210

215
—Z15
221
228
235
234
—Z27
—Z20
—Z15
215

240
244
243
239

214 213
—Z14 —Z13
222 273
229 230
236 237
—Z33 —Z32
226 225
219 218
—214 —Z13
214 213
4
Z45
242
238

4 =1V5,V_5,V12,V_12, V15, V_15, V18, V_18, V23, V_23};

—Z16 216
Z16  —Z16
217 —Z17

—Z24 224
231  —Z31
231 —Z31
224  —224

—Z17 217
211 212
212 Z11 )

- ha; (—1)x4he; (—1), then by direct calculation we obtain:
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Therefore, we have 85 variables y1, ..., y40, 21, ..., Z45, Where y1, Vs, Y11, ¥20, Y21, V30, ¥32, V36,
Y39, Y44, 21, 25, Z7, Z11, 218, 226, 228, 230, 238, 234, 243, Z45 are 1 modulo radical, y2, ya, y17, Y46, 22,
z3, Zg are —1 modulo radical, z3y is —2 modulo radical, all other variables are from radical.

We apply step by step four basis changes, commuting with each other and with all matrices w;.
These changes are represented by matrices C1, Cy, C3, C4. Matrices C; and C, are block-diagonal,
where first 24 blocks have the size 2 x 2, the last block is 4 x 4. On all 2 x 2 blocks, corresponding
to short roots, the matrix C; is unit, on all 2 x 2 blocks, corresponding to long roots, it is

1 —Y16/Y17
—Y16/Y17 1 ’
On the last block it is unit.

Similarly, C is unit on the blocks corresponding to long roots, and on the last block. On the blocks
corresponding to the short roots, it is
1 —28/29
—28/29 1 ’

Matrices C3 and C4 are diagonal, identical on the last 4 x 4 block, the matrix C3 is identical on all
places, corresponding to short root, and scalar with multiplier a on all places corresponding to long
roots. In the contrary, the matrix Cg4, is identical on all places, corresponding to long roots, and is
scalar with multiplier b on all places, corresponding to short roots.

Since all these four matrices commutes with all w;, i =1, 2, 3, 4, then after basis change with any
of these matrices all conditions for elements x; and x4 still hold.

At the beginning we apply basis changes with the matrices C; and C,. After that new yig in the
matrix x; and zg in the matrix x4 are equal to zero (for the convenience of notations we do not

change names of variables). Then we choose a = —1/y17 (it is new y17) and apply the third basis
change. After it y17 in the matrix x; becomes to be —1. Clear that yi¢ is still zero.
Finally, apply the last basis change with b = —1/z9 (where zg is the last one, obtained after all

previous changes). We have that yqg, ¥17, zg are not changed, and zg is now —1.

Now we can suppose that y15 =0, y17 =—1, zg =0, zg = —1, we have now just 81 variables.

From the fact that x; and x4 commute (cond. 1), it directly follows y37 = y3g3 =0, y35 = ¥20.
From the condition hg,(—1)x1he,(—1)x1 = E (cond. 2, its position (52,52)) follows that y%o =1,
consequently y,g =1.

From the condition wlewz_lm = x1wz(1)x1w2(1)~! (cond. 3, the position (50, 10)) it follows
y21 =1, from its position (49, 10) it follows y19 = 0.

The condition W2W3W2X1W2_1W3(1)W2_]X1 = x1WZW3wzx1w2_]w3_
(51,52)) implies y15 =0.

Again from cond. 3 (the position (18, 13)) we have y45(V45 + y42) =0, whence y45 = —y4». From
cond. 2 (the positions (11,12) and (12,11)) we obtain y49(y39 + V44) =0 and y43(y39 + Y44) = 0,
therefore y40 = y43 = 0. After that in the same condition the position (12, 16) gives y44 = y39. The
position (12, 16) of cond. 3 now gives us y45(y39 —1) =0= y39 =1.

In the condition hg; (—1)x4he, (—1)x4 = E (cond. 5) the position (8,7) gives z4 =0, the position
(7,7) gives z1 =1; (51,51) gives z7; =1;

In the condition W3X4X3_1X4 = X4W3X4X3_1 (cond. 6) the position (51, 5) gives z41 = 0, the position
(51, 6) gives z49 =0, the position (52, 7) gives z3g = 0, the position (51, 8) gives z1¢9 = 0, the position
(52, 8) gives z33 = 1.

Again from cond. 5 (positions (52, 52), (52, 8), (7, 8)) we obtain zg =0, z5 =1, z; = z3.

Returning to cond. 6, from (13,51) we have z43 =1, from (5,51) we have z44 =0, from (5, 14)
we have z45 =0, from (12,17) we have z35 =0, from (12,18) we have z34 =1, from (12,19) —
237 = —231, from (12,20) — z36 = 231, from (9,15) — zp0 = —215, and from (10,15) — 27 = z15.

The position (11, 22) of cond. 1 now gives us y4p =0, and the position (11,11) of cond. 2 gives
Y41 =0.

'w, 1 (cond. 4, the position
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Considering X142 = @2 (Xg;+ay (1)) = Waxg Wz_l, X2 = @(Xg, (1)) = wix142w1 and cond. 7: x1xp =
X142X2X1 (the position (6, 16)), we obtain ys6 = —1.

Similarly, considering X344 = @2 (Xg3+a4(1) = W3X4W3_1, X3 = P(Xa3 (1)) = W4X3+4W21, and
cond. 8: X3X4 = X344Xx4x3 (applying positions (51, 14), (13,52), (12,11), (29,9), (15, 35), (15, 36),
(16,36), (12,19), (12,20), (11, 25), (12,26), (10,30), (47,11), (1,2), (1,1), (4,4), (3,4), (3,18),
(3,17), (4,17), 4,3), (3,3), (18,3)), we obtain z45 =1, z3=—1, 231 =0, 23 = -2, 214 =0, 213 =0,
z30=1,25=0, 226 =1, 215 =0, 228 =1, 224 =0, 216 =0, 212 =0, 211 =1, 217 =0, 219 =0, 221 =0,
222 =0, 229 =0, 223 =0, z13 =1, z33 =0, respectively.

Therefore we obtain that x4 = xy, (1).

Directly from the first condition we now have y3 = y7 = y27 = Y25 = VY34 = V26 = V33 = Y28 =
Y3s=Yn=Yu=Y29=y31=Y12=Y13=Y9=Y10=Y23=Y18=Y14=0, y30=y2=yn =1.

Finally, from cond. 3 we get y5=0, y6 =1, y1 =1, y§ =0, y4 = —1, from cond. 2 we get y, = —1.

Now x1 = X, (1), it is what we needed.

Since all long (and all short) roots are conjugate under the action of Weil group, it means that
©2(xq (1)) = x4 (1) for all @ € @.

Consider now the matrix dr = @2 (hg, (t)).

Lemma 1. The matrix d; is hy, () for some s € R*.

Proof. Since the matrix d; commutes with hy(—1) for all @ € @, then d; is decomposed to the fol-
lowing diagonal blocks:

D1 ={v1,v_1, V14, V_14, V20, V_20, V22, V_22},
D3y ={v2,v_2, V10, V_10, V16, V—16, V24, V_24},
D3 ={v3,v_3}, Dy ={vy4,v_4},

Ds ={vs,Vv_s5,V12,V_12, V18, V_18, V23, V_23},

De = {ve, v_s}, D7 ={v7,v_7},

Dg ={vs,v_s}, Dg ={vg, v_o},
Dio={v11,v-11}, D11 ={vi3, v_13},
D1z ={vis,v_15}, Dy3 ={v17,v-17},
D14 ={v19,v_19}, D15 ={va1,v_21},

D16 ={V1, V2, V3, V4}.

Using the fact that d; commutes with w1, wj, w13 and x;, we obtain that on the blocks D1, D3, D5
the matrix d; has the form

(ﬁ 0 O 0 0 0 0 0\
0 t71 O 0 0 0 0 0
0O 0 tg 0O t9g O 0 0
0 0 0 tip O ft1q 0 01].
0 0 t11 0 ti9 O 0 o\
0O 0 0 tg O tg 0 0
0 0 O 0 0 0 t1+2t13 0
0 0 O 0 0 0 0 t1)
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on the blocks D3, Dg, Dg, D14 it is diag[ty, t3]; on the blocks D7, Dg, D1g, D15 it is diag[ts, t2], on
the block Dy it is

tg 5.

tg¢ t7)°

on the blocks D11, D12, D13 it has the form diag[tq2, t12]; and on the last block it is

ty 0 O 0
0 t1 O 0
0 0 t4 0
0 0 t13 t1—2t13

Using the condition w4dtwg1dt = E, we obtain: from the position (1, 1) it follows t2 =1, con-
sequently t; = 1, from (52, 52) it follows (1 — 2t13)2 = 1, therefore t;3 = 0; (5,5) implies t3 = 1/ty;
(7,8) implies t7(t5 + tg) = 0, whence tg = —t5; from (24,36) we have tg(tg + t11) = 0, therefore
t11 = —to; from (26,26) we have t3, =1, and then t1 = 1.

Now consider the condition W3dtW3_l = dtW4W3dtW3_1W21. Its position (13, 14) gives t5 =0, the
position (5, 5) gives t4 = 1/t3, (6,6) gives t7 =t3; (3, 19) gives tg =0; (19, 19) gives t1o = 1/ts.

Finally, introduce @3 (ha; (1) = wawsdiwy w3, @a(heg() = Waga(has (0)W5 ", @2(hay (1)) =
@2 (heg (1)@2 (hesy (1)), Since @y (hg,,(t)) commutes with xq, (1), we obtain (the position (9,6)) that
tg = t2.

Therefore, @3 (hg, (t)) = hg,(1/t2), and the lemma is proved. O

Clear, that this lemma holds also for images of all hy(t), @ € @.
4. Images of x4, (t), proof of Theorem 1

We have shown that ¢y (hy(t)) = he(S), o € @. Denote the mapping ¢t +— s by p : R* — R*. Note
that for t € R* ¢ (x1(t)) = ¢2(hq, t~Dx; (Dhg, (t)) = hq, (s7Hx (Dheg, (s) =x1(s). If t ¢ R*, then t € ],
i.e,, t = 14t1, where t1 € R*. Then @ (x1(t)) = @a(x1(1)x1(t1)) = x1(1)x1(0 (1)) = x1 (14 p(t1)). There-
fore if we extend the mapping p to the whole R (by the formula p(t) ;=14 p(t—1), t € R), we obtain
©2(x1(t)) = x1(p(t)) for all t € R. Clear that p is injective, additive, and also multiplicative on all in-
vertible elements. Since every element of R is a sum of two invertible elements, we have that p is an
isomorphism from the ring R onto some its subring R’. Note that in this situation CG(R)C~! = G(R’)
for some matrix C € GL(V). Let us show that R’ = R.

Denote matrix units by Ej;.

Lemma 2. The Chevalley group G(R) generates the matrix ring M (R).

Proof. The matrix (xq, (1) — 1)? has a unique nonzero element —2 - E1. Multiplying it to suitable
diagonal matrices, we can obtain an arbitrary matrix of the form A - E1» (since —2 € R* and R*
generates R). Since the Weil group acts transitively on all roots of the same length, i.e., for every long
root oy there exists such w € W, that w(o1) =k, and then the matrix AEq2 - w has the form AEq y,
and the matrix w=! - AE1, has the form AEyk_1.2. Besides, with the help of the Weil group element,
moving the first root to the opposite one, we can get the matrix unit E; ;. Taking now different
combinations of the obtained elements, we can get an arbitrary element AE;;, 1 <i, j <48, indices
i, j correspond to the numbers of long roots.

The matrix (xq, (1) — 1)? is —2E7.8 + 2E20,32 + 2E24.36 + 2E28 40 + 2E31,19 + 2E35.23 + 2E39 27. All
matrix units in this sum, except the first one, are already obtained, therefore we can subtract them
and get E7 g. Similarly to the longs roots, using the fact that all short roots are also conjugate under
the action of the Weil groups, we obtain all AEj;, 1 <1, j <48, indices i, j correspond to the short
roots.
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Now subtract from the matrix Xy, (1) — 1 suitable matrix units and obtain the matrix E492 —
2Eq 49 + E1 50. Multiplying it (from the right side) to E;;, 1 <i <48, where i corresponds to a long
root, we obtain all E49;, 1 < i< 48 for i corresponding to the long roots. Multiplying these last
elements from the left side to wy, we obtain Esg;, 1 <i <48 for i, corresponding to the long roots;
then by multiplying them from the left side to w3 we obtain all Es; ;, 1 <i <48 for i, corresponding
to the long roots, and, similarly, Es; ;. Therefore, now we have all E; j, 49 <i <52, 1< j <52, where
j correspond to the long roots.

Then A = 1/8(hg,(—1) + E)...(hq,(=1) + E) = E49.49 + Eso,50 + Es1,51 + Es2,52, B = A(wq +
-+ Wa4)A+2A = Ea9 50 + E50,49 + Es0.51 +2E51.50 + E51,52 + Es2.51, C = B2 — A = E49.51 + 2E50.50 +
Esg 52 +2Es51,49+2E51,51 +2Es2 50, C?-B*= 2Es3 50. So we have Es3 50 and then all Ei’j, 48 <i,j <
52, therefore all E; j, 1 <i <48, 48 < j <52, where i corresponds to the long roots.

Then, taking the matrix X4, (t) and multiplying it from the left and right side to some suitable
matrix units E; j, we can obtain E; j, where i corresponds to the long root, j corresponds to the short
one. After that it becomes clear, how to get all matrix units E; j, 1 <1i, j <48 with the help of the
Weil group. Finally, as above, we can obtain all E; j, 1<i <48, 48 < j <52, where i correspond to
the short roots, and so all matrix units. O

Lemma 3. If for some C € GL,(R) we have CG(R)C~! = G(R’), where R’ is a subring of R, then R’ = R.
Proof. Suppose that R’ is a proper subring of R.

Then CM,(R)C~! = M,(R’), since the group G(R) generates the whole ring M,(R) (the previous
lemma), and the group G(R’) = CG(R)C~! generated the ring M,(R’). It is impossible, since C €
GL,(R). O
Proof of Theorem 1. We have just proved that p is an automorphism of the ring R. Consequently,
the composition of the initial automorphism ¢ and some basis change with a matrix C € GL,(R),

(mapping G(R) into itself) is a ring automorphism p. It proves Theorem 1. O

5. Theorem about normalizers and main theorem

To prove the main theorem of this paper (see Theorem 3 in the end of this section), we need to
obtain the following important fact (that has proper interest):

Theorem 2. Every automorphism-conjugation of a Chevalley group G(R) of type F4 over a local ring R
with 1/2 is an inner automorphism.

Proof. Suppose that we have some matrix C = (¢; j) € GLs2(R) such that
C-G-C'=¢.
If J is the radical of R, then My(]J) is the radical in the matrix ring M, (R), therefore
C-Mn())- €71 = Ma()),
consequently,
C-(E4+Ma())) - C"=E+Ma()),
ie.,
C-GR,))-C'=GR, ),

since G(R, J) =GN (E + My(]))).
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Thus, the image C of the matrix C under factorization R by | gives us an automorphism-
conjugation of the Chevalley group G(k), where k= R/ ] is a residue field of R.

But over a field every automorphism-conjugation of a Chevalley group of type F4 is inner
(see [24]), therefore a conjugation by C (denote it by iz) is

Ig =1lg,

where g € G(k).

Since over a field our Chevalley group (of type F4) coincides with its elementary subgroup, every
its element is a product of some set of unipotents x4 (t)) and the matrix g can be decomposed into a
product Xa, (Y1) ... Xiy(YN), Y1,..., YN €k,

Since every element Yq,..., Yy is a residue class in R, we can choose (arbitrarily) elements y; €
Y1, ..., yn € YN, and the element

g =Xa;, (Y1) .- Xiy (YN)

satisfies g’ € G(R) and g’ = g.

Consider the matrix ¢’ = g~! o d~! o C. This matrix also normalizes the group G(R), and also
C’ = E. Therefore, from the description of the normalizer of G(R) we come to the description of all
matrices from this normalizer equivalent to the unit matrix modulo J.

Therefore we can suppose that our initial matrix C is equivalent to the unit modulo J.

Our aim is to show that C € AG(R).

Firstly we prove one technical lemma that we will need later.

Lemma 4. Let X = Atg,(S1)...ta,(Sa)Xa; (£1) .. Xapy (E24)X—q; (U1) ... X—qrp, (U24) € AG(R, J). Then the
matrix X has such 53 coefficients (precisely described in the proof of lemma), that uniquely define all
sl?~~~7s4atl9--~7t24aula"'5u24’)\“

Proof. Consider the sequence of roots:

Y1 =01,

Y2 =05=01+ 03,

Y3 =08 =01+ Q)+ a3,

Y4 =012 =01 + o2 + 203,

Y5 =015 = (1 + 00 + 2003 + 0y,

Ve =017 = a1 + 202 4+ 203 + a4,
Y7 =19 =1 + 203 + 303 + a4,
Y8 =01 = a1 + 202 + 303 4 204,
Vo = g2 = 1 + 202 + 403 + 204,
Y10 = 023 = a1 + 302 + 4oz + 204,

Y11 = 024 = 2001 + 302 + 43 + 204.

All roots of F4, except 14 and «qg, are differences between two distinct roots of this sequence (or its
member).

Besides, y; is a simple root, y11 is a maximal root of the system, every root of the sequence is
obtained from the previous one by adding some simple root.



E.L Bunina / Journal of Algebra 323 (2010) 2270-2289 2285

Consider in the matrix X some place (&, V), u,v € @.

To find an element on this position we need to define all sequences of roots f1, ..., Bp, satisfying
the following properties:

Lu+pred, u+p1+pec®, ..., u+p1+--+pc®, ..., u+p1+---+pBp=v.

2. In the initial numerated sequence o1, ..., 24, —1, ..., —024 the roots Bq,..., B are replaced
strictly from right to left.

Finally in the matrix X on the position (i, v) there is the sum of all products £8; -8, ...8, by all

sequences with these two properties, multiplying to d,, = )Lsf”’“) ...sf“’m. If o =v, we must add 1

to the sum.

We will find the obtained elements s, ..., S4, t1, ..., tm, U1, ..., Uy Step by step.
Firstly we consider in the matrix X the position (—y11, —y11). We cannot add to the root —yy1
any negative root to obtain a root in the result. If in a sequence B, ..., Bp the first root is positive,

then all other roots must be positive. Thus, this position contains an element 1 -d,. So we know
d_,,,. By the previous arguments if we consider the position (—y11, —)10), the suitable sequence is
only o1 = y11 — Y10. Since there is d_,,t1 on this position and we already know d_,,,, we can find
t1 on the position (—o4, —23). Considering the positions (—y19, —y10) and (—y10, —Y11), We see
that by similar reasons there are d_,,,(1 & u1t1) and +d_,, u; there. So we find d_,,, and u;.

Now we come to the second step. As we have written above, in the matrix X on the position
(—¥10, —Y9) there is d_,, (£t £ u1ts); on the position (—y9, —y10) there is d_,, (Fuz £ ustq); on
the position (—y11, —y9) there is &d_,,, ts (the second summand is absent, since ¢/ is staying earlier
than «); on the position (—y9, —)11) there is d_, (Fus &= uuq); finally, on the position (—y9, —y9)
there is d_,, (1 + fusts & ustz). From the position (—y11, —9) we find ts, then from the position
(—¥10, —Y9) we find t;, and from other three positions together we can know u>, us, d_,,. Therefore,
now we know ty, ta,ts, U1, Uz, us,d_yy,d_y, ., d_y,,.

On the third step we consider the positions (—y9, —yg) with d_,, (&t3 £ uste & usts), (—ys, —Yo)
with d—yg (f£us + thug * tsug), (—y10, —ys) with d—)/lo (£te £ uqtg), (—ys, —y10) with d_yg (Fug £+
upus xtyug), (—y11, —ys) with d_y,, (£tg & tst3), (—ys, —y11) with d_, (Fug £ usupus +ueuq), and
(—ys, —¥8) with d_y, (1 £ ust3 & usts & ugtg £ ugtst3). From these seven equations with seven un-
known variables (all of them from radical) we can find all variables t3, us, ts, ue, tg, ug and d_,.

Similarly on the next step we consider the positions (—yg, —y7), (—V¥7,—¥38), (—Vo, —¥7),
(=¥7,=¥9), (=¥10, —V7), (=7, =Y10), (=V11,—¥7), (=¥7.—¥11), and (=y7,—y7), and find t4, ug,
t7, uy, tg, ug, t11, U11, Cl_y7.

Now we know d_,,,d_y,,d_y,,d_y,, and d_y,,, i.e., AS4/S3, A/S4, AS2/S3, AS1/s2 and A/s1. So we
know all s;, i=1,...,4, A, and, consequently, all d_,,.

Suppose now that we know all elements t;, u; for all indices corresponding to the roots of the form
Yp — Vg 11 2 p,q > s. Consider the positions (—y11, —¥s), (—=¥s, —=V11), (=V10, —¥s)» (—¥s, —V10), -+,
(—=Vs+1, —¥s)» (—Vs, —Vs+1) in the matrix X. Clear that on every place (—y;, —ys), 1 > i > s, there is
sum of tp, where p is a number of the root y; — ys (if it is a root), and products of different elements
tqs, Up, where only one member of the product is not known yet, all other elements are known and
lie in radical; and all this sum is multiplying to the known element d_,,. The same situation is on
the positions (—ys, —¥i), 1 > i > s, but there is not tp, but u, without multipliers here. Therefore, we
have exactly the same number of (not uniform) linear equations as the number of roots of the form
+(y; — vs), with the same number of variables, in every equation exactly on variable has invertible
coefficient, other coefficients are from radical, for distinct equations such variables are different. Clear
that such a system has the solution, and it is unique. Consequently, we have made the induction step
and now we know elements t;, u; for all indices, corresponding to the roots y, — 4, 11> p,q > s.

On the last step we know elements t;, u; for all indices, corresponding to the roots yp — g, 11 >
p.q < 1. Consider now in X the positions (—y11,hy,,), (hy, —v11), (=10, hyo)s (hye, —Y10)s -0,
(=1, hy,), (hy,, —y1). Similarly to the previous arguments we can find all t and u, corresponding to
the roots £y, ..., .

We have not found yet the obtained coefficients for two pairs of roots: w14 and 5. Note that
014 + 018 = 024.

Consider in X the positions (—a24, —014), (—014, —024), (—024, —t18), (—a18, —24). On these
positions there are sums of t1g (respectively, u1g, t14, u14), and products of elements t;, u;, corre-
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sponding to roots of smaller heights. Since for all heights smaller than the height of o4, we know
t, u, then we can directly find the obtained coefficients.
Therefore, lemma is completely proved. O

Now return to our main proof. Recall that we work with a matrix C, equivalent to the unit matrix
modulo radical, and normalizing Chevalley group G(R).
For every root o € @ we have

Cxe(C ' =%4(1)- 8w, ga €G(R, J). (1)

Every g, € G(R, J) can be decomposed into a product

tC\(] (1 + al) e tO{4 (1 + a4)x(¥1 (bl) e XO(24 (b24)XC\(_1 (Cl) e XC\!_24 (C24)7 (2)
where aq,...,a4,b1,...,b24,c1,...,C24 € | (see, for example, [2]).
Let C=E 4+ X = E + (x;j). Then for every root o € @ we can write a matrix equation (1) with
variables x; j,a1,...,a4,b1,...,b24,C1, ..., C24, every of them is from radical.

Let us change these equations. We consider the matrix C and “imagine”, that it is some matrix
from Lemma 4 (i.e., it is from AG(R)). Then by some its concrete 53 positions we can “define” all
coefficients A,s1,...,54,t1,...,t24,U1,...,Un in the decomposition of this matrix from Lemma 4. In
the result we obtain a matrix D € AG(R), every matrix coefficient in it is some (known) function of
coefficients of C. Change now Eq. (1) to the equations

D' Cxa(1)CT D =x4(1) - g, g €GR. ). (3)

We again have matrix equations, but with variables y; j,a),...,a,,b},...,b},,c},...,c,,, every of
them still is from radical, and also every y, q is some known function of (all) x; ;. The matrix D~Ic
will be denoted by C’.

We want to show that a solution exists only for all variables with primes equal to zero. Some
x;,j also will equal to zero, and other are reduced in the equations. Since the equations are very
complicated we will consider the linearized system. It is sufficient to show that all variables from
the linearized system (let it be the system of g variables) are members of some system from ¢ linear
equations with invertible in R determinant.

In other words, from the matrix equalities we will show that all variables from them are equal to
Zeros.

Clear that linearizing the product Y ~!(E 4+ X) we obtain some matrix E + (zi,j), with all positions
described in Lemma 4 equal to zero.

To find the final form of the linearized system, we write it as follows:

(E+ D)%) =xg(D(E+a1T1 +a3...)...(E+asT +a5...)
(E+b1Xay +b3XZ /2) ... (E + C2aX—gyy + 34 X%, /2)(E + 2),

—024

where X, is a corresponding Lie algebra element in the adjoint representation, the matrix T; is diag-
onal, has on its diagonal (¢, o on the place corresponding to v; on the places corresponding to the
vectors Vj, this matrix has zeros.

Then the linearized system has the form

Zxg (1) = xg(M(Z +a1T1 + - +a4T4 + b1 Xo, + -+ + 24 Xep,) =0.
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This equation can be written for every a € @ (naturally, with another aj, b;, c;), and can be written
only for generating roots: for o1, ..., 4, —Q1, ..., —04:

ZXo; (1) =Xy (D(Z +a11T1 + - +a41T4
+b1,1Xey +b21Xey + -+ b241 Xy +C11X gy + -+ C241X0p,) =0;

ZXq, (1) — X, (1)(Z +a1,4T1 +--- +a4,4T4
+b1.aXe, + -+ Xapab2a1Xapy +C1,4X 0y + -+ + 244X —p,) =0;

ZX (1) = Xx_q,(N)(Z+a15T1 +---+ag5T4
+b15Xe; + -+ b2as5Xey, +C15X g+ +C245X_g5) =0;

IX_qu(1) —x_q,(1)(Z+a1,8T1 +---+a48T4
+b1,8Xe, + - +b2agXayy +C1,8X_; + - +C248X_,,) =0.

The matrix T is

diag(2, -2, -1,1,0,0,0,0,1,-1,-1,1,0,0,1,—-1,-1,1,-1,1,1, -1,
19_11_17170’0919_11_17170’0919_11Oa 07 07 090905 Ov Oa_171’17_1a0a 07 07 O];

Ty is W1W2T1w2’1w1’1; T3 is

diag[o0,0,-2,2,2,-2,-1,1,-2,2,0,0,1,-1,0,0,-1,1,2, -2, —-1,1,
2,-2,1,-1,0,0,1,-1,0,0,-1,1,0,0,1,-1,-2,2,0,0,2,—-2,0,0,0,0,0,0,0, 0];
the matrix T4 is W3W4T3WZIW§1.

The matrices Xy,, Xo; Were written above. Besides them, X_, = w1 Xq, wl_], X_ o3 = W3Xg;, w;].
Other matrices X, are obtained as follows: Xiq, = WaX4iq, wz’l, Xt = wlxiaswl’l, Xty =
W3Xia2W3_1, Xiap, = Wlxiaww]_]. Xiayy = W2X:|:a12W2_]. Xtag = W4XiamW21, Xigg =
W1X:|:O{15W]_1v X:I:O(zo = WZX:I:ozlng_lr X:I:O[zz = W3X:I:O{20W3_1r X:I:O{23 = WZX:I:OQZWZ_lr X:I:O{24 =
W1Xi0y, Wl_ly Xiq, = WaXiqg, Wf, Xiqy, = W3Xiq, ng. Xiqg = W2 X4, Wz_l. Xiqg = W1 X W1_1.
X:l:()[g = W4X:|:O[5W21v X:l:O{]l = Wlle:agw;lv X:I:Ol13 = W3X:|:(¥9W;1v X:I:Ot15 = Wlxia]3W;1v X:l:()[]7 =
WZX:I:(){15W2_1v X:I:O[]g = W3X:|:0517W;1v X:I:Ol21 = W4X:|:(X19W21-

From Lemma 4 we obtain that the following positions of Z are zeros: (48, 48), (48, 46), (46, 46),
(46, 48), (46,44), (44,44), (44, 46), (44,42), (42,42), (42,44), (42,38), (38,38), (38,42), (48,44),
(44, 48), (46,42), (42,46), (44,38), (38,44), (48,42), (42,48), (46, 38), (38,46), (24,2), (2,24),
(48, 38), (38,48), (24,49), (49, 24), (46,34), (34, 46), (48,36), (36,48), (48,34), (34,48), (44, 24),
(24, 44), (48,30), (30,48), (48,28), (28,48), (38,51), (51,38), (48,24), (24,48), (48,16), (16,48),
(48, 10), (10, 48), (48, 2), (2,48), (48,49), (49, 48).

Suppose that we fixed the obtained uniform linear system of equation. Recall that our aim is to
show that all values z; j, as¢, bs ¢, Cs¢ are equal to zero.

Consider the first condition. It implies as 1 = 0 (pos. (42,42)); a;,1 =0 (pos. (48,48)); a3.1 =0
(pos. (38,38)); a1 =0 (pos. (39,39)). Therefore, Ty, T, T3, T4 do not entry to this condition.
Later, ¢1,1 =0 (pos. (3,9)); ba.1 =0 (pos. (3,51)); c2.1 =0 (pos. (46,44)); bs.1 =0 (pos. (5,51));
3.1 =0 (pos. (6,51)); bs1 =0 (pos. (7,51)); ca.1 =0 (pos. (8,51)); bs .1 =0 (pos. (44,48)); c5.1 =0
(pos. (10,51)); bg1 =0 (pos. (3,6)); ce1 =0 (pos. (46,42)); b71 =0 (pos. (13,51)); ¢71 =0
(pos. (14,51)); bg1 =0 (pos. (42,48)); cs.1 = 0 (pos. (16,52)); bg1 =0 (pos. (17,51)); c9.1 =0
(pos. (46,38)); b1p,1 =0 (pos. (19,51)); b11.1 =0 (pos. (38,48)); c11.1 =0 (pos. (22,51)); c12.1 =0
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(pos. (24,51)); b13,1 =0 (pos. (25,51)); c13,1 =0 (pos. (46,34)); bis1 =0 (pos. (27,52)); c141 =0
(pos. (28,51)); bis.1 =0 (pos. (34,48)); c15,1 =0 (pos. (30,51)); bis,1 =0 (pos. (31,52)); c16.1 =0
(pos. (46,28)); bi17.1 =0 (pos. (33,51)); c17,1 =0 (pos. (34,51)); big,1 =0 (pos. (20,44)); c131 =0
(pos. (36,52)); big.1 =0 (pos. (37,51)); c19,1 =0 (pos. (38,51)); bao,1 =0 (pos. (39,51)); c20,1 =0
(pos. (40,51)); b21,1 =0 (pos. (41,52)); c21,1 =0 (pos. (42,52)); baz1 =0 (pos. (43,51)); c221=0
(pos. (44, 51)); baz.1 =0 (pos. (3,44)); c24.1 =0 (pos. (10,43)).

Consequently the right side of the condition contains only Xu,,, Xays, X—a19» X—ay3. the condition
itself is simplified, many elements of Z are equal to zero. Firstly, these are elements on the positions
{j,i=2,3,506,7,8,10,11,13,14,16,17,19, 22, 24, 25,27, 28, 30, 31, 33, 36, 37, 38, 39, 40, 41, 42,
43,44, 45,48,50,51,52, j = 1,4,9,12,15,18, 20, 21, 23, 26, 29, 32, 35,46,47,49 (except zs15 =

€10,1, 25,12 = b12,1, 27,20 = 10,1, 28,26 = b12,1, 224,49 = —C10,1, 228,35 = €23,1, 227,32 = D24 1, 23326 =
—b241, 734290 = —C23.1, 737,18 = b24,1, 73821 = €231, 238,18 = C10,1,» 239,47 = —C10,1,» 239,20 = b2a 1,
240,23 = €231, 241,12 = —b24.1, 242,15 = —€23,1, Z43,.4 = b24.1, Z44,9 = C23,1, 245,49 = —b24.1).

When we make these elements equal to zero, we see that biz1 =0 (pos. (19,2)), c101 =0
(pos. (44,36)), bya1 =0 (pos. (45,2)), c23.1 =0 (pos. (48,2)), i.e., the condition now looks as
Xoy (1)Z = Zxq, (1). By similar way finally all our conditions become of the form X1, (1)Z = ZX1¢, (1),
p=1,...,4. Since the centralizer of the given eight matrices consists of scalar matrices, and the ma-
trix Z has a zero element zs; 52, we have that Z =0, what we need.

Theorem 2 is proved. O

From Theorems 1 and 2 directly follows the main theorem of the paper:

Theorem 3. Let G(R) be a Chevalley group with root system F4, where R is a local ring with 1/2. Then every
automorphism of G(R) is standard, i.e., it is a composition of ring and inner automorphisms. This composition
is unique.

Proof. We need only to prove the uniqueness.
Suppose that for some automorphism ¢ € Aut(G(R)) we have ig, o p1 =ig, 0 02, &1,82 € G(R),

p1, 2 are ring automorphisms. Then lgqg = p1 0 p2, i.e., some ring automorphism is inner, iz = p.

Since any ring automorphism is identlcal on all x,(1), o € @, then g commutes with all x4 (1), @ € &.
So by [3] g belongs to the center of G(R), i.e., ig is identical. Consequently, ig, =ig,, p1=p2. O

Corollary 1. The group Aut G(R) is a semi-direct product of G(R) and Aut R.
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