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CHAPTER I

Basic concepts

In this chapter we introduce the Cox ring and, more generally, the Cox sheaf
and its geometric counterpart, the characteristic space. Moreover, algebraic and
geometric aspects are discussed. Section 1 is devoted to commutative algebras
graded by monoids. In Section 2, we recall the correspondence between actions
of quasitori (also called diagonalizable groups) on affine varieties and affine alge-
bras graded by abelian groups, and we provide the necessary background on good
quotients. Section 3 is a first step towards Cox rings. Given a normal variety X
and a finitely generated subgroup K ⊆WDiv(X) of the group of Weil divisors, we
consider the associated sheaf of divisorial algebras

S =
⊕

D∈K

OX(D).

We present criteria for local finite generation and consider the relative spectrum.
A first result says that Γ(X,S) is a unique factorization domain if K generates the
divisor class group Cl(X). Moreover, we characterize divisibility in the ring Γ(X,S)
in terms of divisors on X . In Section 4, the Cox sheaf of a normal variety X with
finitely generated divisor class group Cl(X) is introduced; roughly speaking it is
given as

R =
⊕

[D]∈Cl(X)

OX(D).

The Cox ring then is the corresponding ring of global sections. In the case of a free
divisor class group well-definiteness is straightforward. The case of torsion needs
some effort, the precise way to defineR then is to take the quotient of an appropriate
sheaf of divisorial algebras by a certain ideal sheaf. Basic algebraic properties and
divisibility theory of the Cox ring are investigated in Section 5. Finally, in Section 6,

we study the characteristic space, i.e., the relative spectrum X̂ = SpecXR of the Cox
sheaf. It comes with an action of the characteristic quasitorus H = Spec K[Cl(X)]

and a good quotient X̂ → X . We relate geometric properties of X to properties
of this action and give a characterization of the characteristic space in terms of
Geometric Invariant Theory.

1. Graded algebras

1.1. Monoid graded algebras. We recall basic notions on algebras graded
by abelian monoids. In this subsection, R denotes a commutative ring with unit
element.

Definition 1.1.1. Let K be an abelian monoid. A K-graded R-algebra is
an associative, commutative R-algebra A with unit that comes with a direct sum
decomposition

A =
⊕

w∈K

Aw

into R-submodules Aw ⊆ A such that Aw ·Aw′ ⊆ Aw+w′ holds for any two elements
w,w′ ∈ K.

5



6 I. BASIC CONCEPTS

We will also speak of a K-graded R-algebra as a monoid graded algebra or just
as a graded algebra. In order to compare R-algebras A and A′, which are graded
by different abelian monoids K and K ′, we work with the following notion of a
morphism.

Definition 1.1.2. A morphism from a K-graded algebra A to a K ′-graded

algebra A′ is a pair (ψ, ψ̃), where ψ : A → A′ is a homomorphism of R-algebras,

ψ̃ : K → K ′ is a homomorphism of abelian monoids and

ψ(Aw) ⊆ Aeψ(w)

holds for every w ∈ K. In the case K = K ′ and ψ̃ = idK , we denote a mor-
phism of graded algebras just by ψ : A → A′ and also refer to it as a (K-)graded
homomorphism.

Example 1.1.3. Given an abelian monoid K and w1, . . . , wr ∈ K, the polyno-
mial ring R[T1, . . . , Tr] can be made into a K-graded R-algebra by setting

R[T1, . . . , Tr]w :=




∑

ν∈Zr
≥0

aνT
ν; aν ∈ R, ν1w1 + . . .+ νrwr = w



 .

This K-grading is determined by deg(Ti) = wi for 1 ≤ i ≤ r. Moreover,
R[T1, . . . , Tr] comes with the natural Zr≥0-grading given by

R[T1, . . . , Tr]ν := R · T ν,

and we have a canonical morphism (ψ, ψ̃) from R[T1, . . . , Tr] to itself, where ψ = id

and ψ̃ : Zr≥0 → K sends ν to ν1w1 + . . .+ νrwr .

For any abelian monoid K, we denote by K± the associated group of differences
and by KQ := K± ⊗Z Q the associated rational vector space. Note that we have
canonical maps K → K± → KQ, where the first one is injective if K admits
cancellation and the second one is injective if K± is free. By an integral R-algebra,
we mean an R-algebra A without zero-divisors.

Definition 1.1.4. Let A be an integral K-graded R-algebra. The weight
monoid of A is the submonoid

S(A) := {w ∈ K; Aw 6= 0} ⊆ K.

The weight group of A is the subgroup K(A) ⊆ K± generated by S(A) ⊆ K. The
weight cone of A is the convex cone ω(A) ⊆ KQ generated by S(A) ⊆ K.

We recall the construction of the algebra associated to an abelian monoid; it
defines a covariant functor from the category of abelian monoids to the category of
monoid graded algebras.

Construction 1.1.5. Let K be an abelian monoid. As an R-module, the
associated monoid algebra over R is given by

R[K] :=
⊕

w∈K

R·χw

and its multiplication is defined by χw · χw
′

:= χw+w′

. If K ′ is a further abelian

monoid and ψ̃ : K → K ′ is a homomorphism, then we have a homomorphism

ψ := R[ψ̃] : R[K] → R[K ′], χw 7→ χ
eψ(w).

The pair (ψ, ψ̃) is a morphism from the K-graded algebra R[K] to the K ′-graded
algebra R[K ′], and this assignment is functorial.
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Note that the monoid algebra R[K] has K as its weight monoid, and R[K]
is finitely generated over R if and only if the monoid K is finitely generated. In
general, if a K-graded algebra A is finitely generated over R, then its weight monoid
is finitely generated and its weight cone is polyhedral.

Construction 1.1.6 (Trivial extension). Let K ⊆ K ′ be an inclusion of
abelian monoids and A a K-graded R-algebra. Then we obtain an K ′-graded R-
algebra A′ by setting

A′ :=
⊕

u∈K′

A′u, A′u :=

{
Au if u ∈ K,

{0} else.

Construction 1.1.7 (Lifting). Let G : K̃ → K be a homomorphism of abelian

monoids and A a K-graded R-algebra. Then we obtain a K̃-graded R-algebra

Ã :=
⊕

u∈ eK

Ãu, Ãu := AG(u).

Definition 1.1.8. Let A be a K-graded R-algebra. An ideal I ⊆ A is called
(K-)homogeneous if it is generated by (K-)homogeneous elements.

An ideal I ⊆ A of a K-graded R-algebra A is homogeneous if and only if it has
a direct sum decomposition

I =
⊕

w∈K

Iw, Iw := I ∩Aw.

Construction 1.1.9. Let A be a K-graded R-algebra and I ⊆ A a homoge-
neous ideal. Then the factor algebra A/I is K-graded by

A/I =
⊕

w∈K

(A/I)w (A/I)w := Aw + I.

Moreover, for each homogeneous component (A/I)w ⊆ A/I, one has a canonical
isomorphism of R-modules

Aw/Iw → (A/I)w, f + Iw 7→ f + I.

Construction 1.1.10. Let A be a K-graded R-algebra, and ψ̃ : K → K ′ be
a homomorphism of abelian monoids. Then one may consider A as a K ′-graded
algebra with respect to the coarsened grading

A =
⊕

u∈K′

Au, Au :=
⊕

eψ(w)=u

Aw.

Example 1.1.11. Let K = Z2 and consider the K-grading of R[T1, . . . , T5]
given by deg(Ti) = wi, where

w1 = (−1, 2), w2 = (1, 0), w3 = (0, 1), w4 = (2,−1), w5 = (−2, 3).

Then the polynomial T1T2 +T 2
3 +T4T5 is K-homogeneous of degree (0, 2), and thus

we have a K-graded factor algebra

A = R[T1, . . . , T5]/〈T1T2 + T 2
3 + T4T5〉.

The standard Z-grading of the algebra A with deg(T1) = . . . = deg(T5) = 1 may be

obtained by coarsening via the homomorphism ψ̃ : Z2 → Z, (a, b) 7→ a+ b.

Proposition 1.1.12. Let A be a Zr-graded R-algebra satisfying ff ′ 6= 0 for
any two non-zero homogeneous f, f ′ ∈ A. Then the following statements hold.

(i) The algebra A is integral.
(ii) If gg′ is homogeneous for 0 6= g, g′ ∈ A, then g and g′ are homogeneous.
(iii) Every unit f ∈ A∗ is homogeneous.
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Proof. Fix a lexicographic ordering on Zr. Given two non-zero g, g′ ∈ A,
write g =

∑
fu and g′ =

∑
f ′u with homogeneous fu and f ′u. Then the maximal

(minimal) component of gg′ is fwf
′
w′ 6= 0, where fw and f ′w′ are the maximal

(minimal) components of f and f ′ respectively. The first two assertions follow. For
the third one observe that 1 ∈ A is homogeneous (of degree zero). �

1.2. Veronese subalgebras. We introduce Veronese subalgebras of monoid
graded algebras and present statements relating finite generation of the algebra
to finite generation of a given Veronese subalgebra and vice versa. Again, R is a
commutative ring with unit element.

Definition 1.2.1. Given an abelian monoid K admitting cancellation, a K-
graded R-algebra A and a submonoid L ⊆ K, one defines the associated Veronese
subalgebra to be

A(L) :=
⊕

w∈L

Aw ⊆
⊕

w∈K

Aw = A.

Proposition 1.2.2. Let K be an abelian monoid admitting cancellation and A a
finitely generated K-graded R-algebra. Let L ⊆ K be a finitely generated submonoid.
Then the associated Veronese subalgebra A(L) is finitely generated over R.

Lemma 1.2.3. Let K be an abelian monoid admitting cancellation and let
L,M ⊆ K be finitely generated submonoids. Then L ∩M is finitely generated.

Proof. Consider the embedding K ⊆ K± into the group of differences and
define a homomorphism α : Zr → K± with L,M ⊆ α(Zr). Then α−1(L) and
α−1(M) are finitely generated monoids; indeed, if wi = α(vi), where 1 ≤ i ≤ k,
generate L and u1, . . . , us is a basis for ker(α), then α−1(L) is generated by v1, . . . , vk
and ±u1, . . . ,±us.

To prove the assertion, it suffices to show that the intersection α−1(L)∩α−1(M)
is finitely generated. In other words, we may assume that K = Zr holds. Then
L and M generate convex polyhedral cones τ and σ in Qr, respectively. Consider
ω := τ ∩ σ and the tower of algebras

Q ⊆ Q[L ∩M ] ⊆ Q[ω ∩ Zr].

Gordan’s Lemma [112, Theorem 7.6] shows that Q[ω ∩ Zr ] is finitely generated
over Q. Moreover, for every v ∈ τ ∩ σ, some positive integral multiple k ·v belongs
to L ∩M . Thus, Q[ω ∩ Zr] is integral and hence finite over Q[L ∩M ]. The Artin-
Tate Lemma [66, page 144] tells us that Q[L ∩ M ] is finitely generated over Q.
Consequently, the weight monoid L ∩M of Q[L ∩M ] is finitely generated. �

Proof of Proposition 1.2.2. According to Lemma 1.2.3, we may assume
that L is contained in the weight monoid S(A). Moreover, replacing K with its
group of differences, we may assume that K is a group. Fix homogeneous generators
f1, . . . , fr for A and set wi := deg(fi). Then we have an epimorphism

α : Zr → K, ei 7→ wi.

Moreover, set B := R[T1, . . . , Tr] and endow it with the natural Zr-grading. Then
we obtain a morphism (π, α) of graded R-algebras from B to A, where π is the
epimorphism defined by

π : B → A, Ti 7→ fi.

The inverse image α−1(L) ⊆ Zr is a finitely generated monoid. By Lemma 1.2.3,
the intersection M := α−1(L) ∩ Zr≥0 is finitely generated and hence generates a

polyhedral convex cone σ = cone(M) in Qr. Consider the tower of R-algebras

R ⊆ R[M ] ⊆ R[σ ∩ Zr].
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The R-algebra R[σ ∩ Zr] is finitely generated by Gordan’s Lemma [112, Theo-
rem 7.6], and it is integral and thus finite over R[M ]. The Artin-Tate Lemma [66,
page 144] then shows that R[M ] is finitely generated over R. By construction,
π : B → A maps R[M ] ⊆ B onto A(L) ⊆ A. This implies finite generation of
A(L). �

Proposition 1.2.4. Suppose that R is noetherian. Let K be a finitely generated
abelian group, A a K-graded integral R-algebra and L ⊆ K be a submonoid such that
for every w ∈ S(A) there exists an n ∈ Z≥1 with nw ∈ L. If the Veronese subalgebra
A(L) is finitely generated over R, then also A is finitely generated over R.

Proof. We may assume that K is generated by S(A). A first step is to show
that the quotient field of A is a finite extension of that of A(L). Fix generators
u1, . . . , ur for K. Then we may write ui = u+

i − u−i with u±i ∈ S(A). Choose
nontrivial elements g±i ∈ Au±

i
. With fi := g+

i /g
−
i we have

Quot(A) = Quot(A(L))(f1, . . . , fr).

By our assumption, A is contained in the integral closure of A(L) in Quot(A).
Applying [20, Proposition 5.17] we obtain that A is a submodule of some finitely
generated A(L)-module. Since R and hence A(L) is noetherian, A is finitely gener-
ated as a module over A(L) and thus as an algebra over R. �

Putting Propositions 1.2.2 and 1.2.4 together, we obtain the following well
known statement on gradings by abelian groups.

Corollary 1.2.5. Let R be noetherian, K a finitely generated abelian group,
A an integral K-graded R-algebra and L ⊆ K a subgroup of finite index. Then the
following statements are equivalent.

(i) The algebra A is finitely generated over R.
(ii) The Veronese subalgebra A(L) is finitely generated over R.

Proposition 1.2.6. Suppose that R is noetherian. Let L,K be abelian monoids
admitting cancellation and (ϕ, F ) be a morphism from an L-graded R-algebra B to
an integral K-graded R-algebra A. Assume that the weight monoid of B is finitely
generated and ϕ : Bu → AF (u) is an isomorphism for every u ∈ L. Then finite
generation of A implies finite generation of B.

Proof. We may assume that K is an abelian group. In a first step we treat the
case L = Zr without making use of finite generation of S(B). Since A is integral,
there are no Zr-homogeneous zero divisors in B and thus B is integral as well, see
Proposition 1.1.12. Set L0 := ker(F ). By the elementary divisors theorem there is
a basis u1, . . . , ur for Zr and a1, . . . , as ∈ Z≥1 such that a1u1, . . . , asus is a basis for
L0. Let L1 ⊆ Zr be the sublattice spanned by us+1, . . . , ur. This gives Veronese
subalgebras

B0 :=
⊕

u∈L0

Bu, B1 :=
⊕

u∈L1

Bu, C :=
⊕

u∈L0⊕L1

Bu.

Note that ϕ maps B1 isomorphically onto the Veronese subalgebra of A defined
by F (L1). In particular, B1 is finitely generated. Moreover, C is generated by B1

and the (unique, invertible) elements f±1
i ∈ B±aiui mapping to 1 ∈ A0. Thus, the

Veronese subalgebra C ⊆ B is finitely generated. Since L0⊕L1 is of finite index in
Zr, also B is finitely generated, see Corollary 1.2.5.

We turn to the general case. Let u1, . . . , ur ∈ L generate the weight monoid
of B. Consider the homomorphism G : Zr → L± to the group of differences sending
the i-th canonical basis vector ei ∈ Zr to ui ∈ L and the composition G′ := F± ◦G,
where F± : L± → K extends F : L → K. Regarding B as L±-graded, G and G′
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define us lifted algebras B̃ and Ã, see Construction 1.1.7, fitting into a commutative
diagram of canonical morphisms

B̃ //

��

Ã

��
B ϕ

// A

The canonical morphism from Ã to A is as required in the first step and thus Ã

is finitely generated. The weight monoid M of B̃ is generated by the kernel of G
and preimages of generators of the weight monoid of B; in particular, M is finitely

generated. Moreover, B̃ maps isomorphically onto the Veronese subalgebra of Ã
defined by M ⊆ Zr; here we use that ϕ : Bu → AF (u) is an isomorphism for every

u ∈ L. By Proposition 1.2.2, the algebra B̃ is finitely generated. Finally, B̃ maps
onto B which gives finite generation of B. �

2. Gradings and quasitorus actions

2.1. Quasitori. We recall the functorial correspondence between finitely gen-
erated abelian groups and quasitori (also called diagonalizable groups). Details
can be found in the standard textbooks on algebraic groups, see for example [39,
Section 8], [88, Section 16], [125, Section 3.2.3] or [142, Section 2.5].

We work in the category of algebraic varieties defined over an algebraically
closed field K of characteristic zero. Recall that an (affine) algebraic group is an
(affine) variety G together with a group structure such that the group laws

G×G→ G, (g1, g2) 7→ g1g2, G→ G, g 7→ g−1

are morphisms of varieties. A morphism of two algebraic groups G and G′ is a
morphism G → G′ of the underlying varieties which moreover is a homomorphism
of groups.

A character of an algebraic group G is a morphism χ : G → K∗ of algebraic
groups, where K∗ is the multiplicative group of the ground field K. The character
group of G is the set X(G) of all characters of G together with pointwise multipli-
cation. Note that X(G) is an abelian group, and, given any morphism ϕ : G → G′

of algebraic groups, one has a pullback homomorphism

ϕ∗ : X(G′) → X(G), χ′ 7→ χ′ ◦ ϕ.

Definition 2.1.1. A quasitorus is an affine algebraic group H whose algebra
of regular functions Γ(H,O) is generated as a K-vector space by the characters
χ ∈ X(H). A torus is a connected quasitorus.

Example 2.1.2. The standard n-torus Tn := (K∗)n is a torus in the sense
of 2.1.1. Its characters are precisely the Laurent monomials T ν = T ν11 · · ·T

νn
n , where

ν ∈ Zn, and its algebra of regular functions is the Laurent polynomial algebra

Γ(Tn,O) = K[T±1
1 , . . . , T±1

n ] =
⊕

ν∈Zn

K · T ν = K[Zn].

We now associate to any finitely generated abelian group K in a functorial way
a quasitorus, namely H := Spec K[K]; the construction will show that H is the
direct product of a standard torus and a finite abelian group.

Construction 2.1.3. Let K be any finitely generated abelian group. Fix
generators w1, . . . , wr of K such that the epimorphism π : Zr → K, ei 7→ wi has
the kernel

ker(π) = Za1e1 ⊕ . . .⊕ Zases
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with a1, . . . , as ∈ Z≥1. Then we have the following exact sequence of abelian groups

0 // Zs
ei 7→aiei // Zr

ei 7→wi // K // 0

Passing to the respective spectra of group algebras we obtain with H := Spec K[K]
the following sequence of morphisms

1 oo Ts oo
(t

a1
1 ,...,tas

s )←[t
Tr oo ı

H oo 1

The ideal of H ⊆ Tr is generated by T ai

i − 1, where 1 ≤ i ≤ s. Thus H is a closed
subgroup of Tr and the sequence is an exact sequence of quasitori; note that

H ∼= C(a1)× . . .× C(as)× Tr−s, C(ai) := {ζ ∈ K∗; ζai = 1}.

The group structure on H = Spec K[K] does not depend on the choices made: the
multiplication map is given by its comorphism

K[K] → K[K]⊗K K[K], χw 7→ χw ⊗ χw,

and the neutral element of H = Spec K[K] is the ideal 〈χw− 1; w ∈ K〉. Moreover,
every homomorphism ψ : K → K ′ defines a morphism

Spec K[ψ] : Spec K[K ′] → Spec K[K].

Theorem 2.1.4. We have contravariant exact functors being essentially inverse
to each other:

{finitely generated abelian groups} ←→ {quasitori}

K 7→ Spec K[K]

ψ 7→ Spec K[ψ],

X(H) ←[ H,

ϕ∗ ←[ ϕ.

Under these equivalences, the free finitely generated abelian groups correspond to
the tori.

This statement includes in particular the observation that closed subgroups as
well as homomorphic images of quasitori are again quasitori. Note that homomor-
phic images of tori are again tori, but every quasitorus occurs as a closed subgroup
of a torus.

Recall that a rational representation of an affine algebraic group G is a mor-
phism ̺ : G → GL(V ) to the group GL(V ) of linear automorphisms of a finite
dimensional K-vector space V . In terms of representations, one has the following
characterization of quasitori, see e.g. [142, Theorem 2.5.2].

Proposition 2.1.5. An affine algebraic group G is a quasitorus if and only if
any rational representation of G splits into one-dimensional subrepresentations.

2.2. Affine quasitorus actions. Again we work over an algebraically closed
field K of characteristic zero. Recall that one has contravariant equivalences between
affine algebras, i.e. finitely generated K-algebras without nilpotent elements, and
affine varieties:

A 7→ SpecA, X 7→ Γ(X,O).

We first specialize these correspondences to graded affine algebras and affine vari-
eties with quasitorus action; here “graded” means graded by a finitely generated
abelian group. Then we look at basic concepts such as orbits and isotropy groups
from both sides.

A G-variety is a variety X together with a morphical action G×X → X of an
affine algebraic group G. A morphism from a G-variety X to G′-variety X ′ is a pair
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(ϕ, ϕ̃), where ϕ : X → X ′ is a morphism of varieties and ϕ̃ : G→ G′ is a morphism
of algebraic groups such that we have

ϕ(g ·x) = ϕ̃(g)·ϕ(x) for all (g, x) ∈ G×X.

If G′ equals G and ϕ̃ is the identity, then we refer to this situation by calling
ϕ : X → X ′ a G-equivariant morphism.

Example 2.2.1. Let H be a quasitorus. Any choice of characters χ1, . . . , χr ∈
X(H) defines a diagonal H-action on Kr by

h·z := (χ1(h)z1, . . . , χr(h)zr).

We now associate in functorial manner to every affine algebra graded by a
finitely generated abelian group an affine variety with a quasitorus action.

Construction 2.2.2. Let K be a finitely generated abelian group and A a
K-graded affine algebra. Set X = SpecA. If fi ∈ Awi , i = 1, . . . , r, generate A,
then we have a closed embedding

X → Kr, x 7→ (f1(x), . . . , fr(x)),

and X ⊆ Kr is invariant under the diagonal action of H = Spec K[K] given by the
characters χw1 , . . . , χwr . Note that for any f ∈ A homogeneity is characterized by

f ∈ Aw ⇐⇒ f(h·x) = χw(h)f(x) for all h ∈ H, x ∈ X.

This shows that the induced H-action on X does not depend on the embedding
into Kr: its comorphism is given by

A → K[K]⊗K A, Aw ∋ fw 7→ χw ⊗ fw ∈ K[K]w ⊗K Aw.

This construction is functorial: given a morphism (ψ, ψ̃) from a K-graded affine
algebra A to K ′-graded affine algebra A′, we have a morphism (ϕ, ϕ̃) from the

associated H ′-variety X ′ to the H-variety X , where ϕ = Specψ and ϕ̃ = Spec K[ψ̃].

For the other way round, i.e., from affine varieties X with action of a qua-
sitorus H to graded affine algebras, the construction relies on the fact that the rep-
resentation of H on Γ(X,O) is rational , i.e., a union of finite dimensional rational
subrepresentations, see [142, Proposition 2.3.4] and [95, Lemma 2.5] for non-affine
X . Proposition 2.1.5 then shows that it splits into one-dimensional subrepresenta-
tions.

Construction 2.2.3. Let a quasitorus H act on a not necessarily affine vari-
ety X . Then Γ(X,O) becomes a rational H-module by

(h·f)(x) := f(h·x).

The decomposition of Γ(X,O) into one-dimensional subrepresentations makes it
into a X(H)-graded algebra:

Γ(X,O) =
⊕

χ∈X(H)

Γ(X,O)χ, Γ(X,O)χ := {f ∈ Γ(X,O); f(h·x) = χ(h)f(x)}.

Again this construction is functorial. If (ϕ, ϕ̃) is a morphism from an H-variety X
to an H ′-variety X ′, then (ϕ∗, ϕ̃∗) is a morphism of the associated graded algebras.
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Theorem 2.2.4. We have contravariant functors being essentially inverse to
each other:

{graded affine algebras} ←→ {affine varieties with quasitorus action}

A 7→ SpecA,

(ψ, ψ̃) 7→ (Specψ, Spec K[ψ̃])

Γ(X,O) ←[ X,

(ϕ∗, ϕ̃∗) ←[ (ϕ, ϕ̃).

Under these equivalences the graded homomorphisms correspond to the equivariant
morphisms.

We use this equivalence of categories to describe some geometry of a quasitorus
action in algebraic terms. The first basic observation is the following.

Proposition 2.2.5. Let A be a K-graded affine algebra and consider the action
of H = Spec K[K] on X = SpecA. Then for any closed subvariety Y ⊆ X and its
vanishing ideal I ⊆ A, the following statements are equivalent.

(i) The variety Y is H-invariant.
(ii) The ideal I is homogeneous.

Moreover, if one of these equivalences holds, then one has a commutative diagram
of K-graded homomorphisms

Γ(X,O) oo
∼= //

f 7→f|Y

��

A

f 7→f+I

��
Γ(Y,O) oo ∼=

// A/I

We turn to orbits and isotropy groups. First recall the following fact on general
algebraic group actions, see e.g. [88, Section II.8.3].

Proposition 2.2.6. Let G be an algebraic group, X a G-variety, and let x ∈ X.
Then the isotropy group Gx ⊆ G is closed, the orbit G·x ⊆ X is locally closed, and
one has a commutative diagram of equivariant morphisms of G-varieties

G

π

||yy
yy

yyy
y

g 7→g·x

!!C
CC

CCC
CC

G/Gx
∼=

gGx 7→g·x
// G · x

Moreover, the orbit closure G·x is the union of G ·x and orbits of strictly lower
dimension and it contains a closed orbit.

Definition 2.2.7. Let A be a K-graded affine algebra and consider the action
of H = Spec K[K] on X = SpecA.

(i) The orbit monoid of x ∈ X is the submonoid Sx ⊆ K generated by all
w ∈ K that admit a function f ∈ Aw with f(x) 6= 0.

(ii) The orbit group of x ∈ X is the subgroup Kx ⊆ K generated by the orbit
monoid Sx ⊆ K.
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Proposition 2.2.8. Let A be a K-graded affine algebra, consider the action
of H = Spec K[K] on X = SpecA and let x ∈ X. Then there is a commutative
diagram with exact rows

0 // Kx
//

∼=

��

K //

w 7→χw ∼=

��

K/Kx
//

∼=

��

0

0 // X(H/Hx)
π∗

// X(H)
ı∗

// X(Hx) // 0

where ı : Hx → H denotes the inclusion of the isotropy group and π : H → H/Hx

the projection. In particular, we obtain Hx
∼= Spec K[K/Kx].

Proof. Replacing X with H · x does not change Kx. Moreover, take a homo-
geneous f ∈ A vanishing along H · x\H ·x but not at x. Then replacing X with Xf

does not affect Kx. Thus, we may assume that X = H ·x holds. Then the weight
monoid of the H-variety H ·x is Kx and by the commutative diagram

H

π

||yyyy
yy

yy
h 7→h·x

""D
DD

DD
DDD

H/Hx ∼=
// H · x

we see that π∗(X(H/Hx)) consists precisely of the characters χw with w ∈ Kx,
which gives the desired diagram. �

Proposition 2.2.9. Let A be a K-graded affine algebra, consider the action
of H = Spec K[K] on X = SpecA and let x ∈ X. Then the orbit closure H ·x
comes with an action of H/Hx, and there is an isomorphism H ·x ∼= Spec K[Sx] of
H/Hx-varieties.

Proof. Write for short Y := H ·x and V := H ·x. Then V ⊆ Y is an affine
open subset, isomorphic to H/Hx, and we have a commutative diagram

Γ(V,O)
∼= // K[Kx]

Γ(Y,O) ∼=
//

f 7→f|V

OO

K[Sx]

OO

of graded homomorphisms, where the horizontal arrows send a homogeneous f of
degree w to f(x)χw . The assertion is part of this. �

Proposition 2.2.10. Let A be an integral K-graded affine algebra and consider
the action of H = Spec K[K] on X = SpecA. Then there is a nonempty invariant
open subset U ⊆ X with

Sx = S(A), Kx = K(A) for all x ∈ U.

Proof. Let f1, . . . , fr be homogeneous generators for A. Then the set U ⊆ X
obtained by removing the zero sets V (X, fi) fromX for i = 1, . . . , r is as wanted. �

Recall that an action of a group G on a set X is said to be effective if g · x = x
for all x ∈ X implies g = eG.

Corollary 2.2.11. Let A be an integral K-graded affine algebra and consider
the action of H = Spec K[K] on X = SpecA. Then the action of H on X is
effective if and only if K = K(A) holds.
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2.3. Good quotients. We summarize the basic facts on good quotients. Ev-
erything takes place over an algebraically closed field K of characteristic zero. Be-
sides varieties, we consider more generally possibly non-separated prevarieties. By
definition, a (K-)prevariety is a space X with a sheaf OX of K-valued functions
covered by open subspaces X1, . . . , Xr, each of which is an affine (K-)variety.

Let an algebraic group G act on a prevariety X , where, here and later, we
always assume that this action is given by a morphism G ×X → X . Recall that
a morphism ϕ : X → Y is said to be G-invariant if it is constant along the orbits.
Moreover, a morphism ϕ : X → Y is called affine if for any open affine V ⊆ Y
the preimage ϕ−1(V ) is an affine variety. When we speak of a reductive algebraic
group, we mean a not necessarily connected affine algebraic group G such that every
rational representation of G splits into irreducible ones.

Definition 2.3.1. Let G be a reductive algebraic group G act on a prevariety
X . A morphism p : X → Y of prevarieties is called a good quotient for this action
if it has the following properties:

(i) p : X → Y is affine and G-invariant,
(ii) the pullback p∗ : OY → (p∗OX)G is an isomorphism.

A morphism p : X → Y is called a geometric quotient if it is a good quotient and
its fibers are precisely the G-orbits.

Remark 2.3.2. Let X = SpecA be an affine G-variety with a reductive alge-
braic group G. The finiteness theorem of Classical Invariant Theory ensures that
the algebra of invariants AG ⊆ A is finitely generated [100, Section II.3.2]. This
guarantees existence of a good quotient p : X → Y , where Y := SpecAG. The
notion of a good quotient is locally modeled on this concept, because for any good
quotient p′ : X ′ → Y ′ and any affine open V ⊆ Y ′ the variety V is isomorphic to
Spec Γ(p′−1(V ),O)G, and the restricted morphism p′−1(V ) → V is the morphism
just described.

Example 2.3.3. Consider the K∗-action t · (z, w) = (taz, tbw) on K2. The
following three cases are typical.

(i) We have a = b = 1. Every K∗-invariant function is constant and the
constant map p : K2 → {pt} is a good quotient.

p

(ii) We have a = 0 and b = 1. The algebra of K∗-invariant functions is
generated by z and the map p : K2 → K, (z, w) 7→ z is a good quotient.

p

(iii) We have a = 1 and b = −1. The algebra of K∗-invariant functions is
generated by zw and p : K2 → K, (z, w) 7→ zw is a good quotient.
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p

Note that the general p-fiber is a single K∗-orbit, whereas p−1(0) consists
of three orbits and is reducible.

Example 2.3.4. Let A be a K-graded affine algebra. Consider a homomor-
phism ψ : K → L of abelian groups and the coarsified grading

A =
⊕

u∈L

Au, Au =
⊕

w∈ψ−1(u)

Aw.

Then the diagonalizable group H = Spec K[L] acts on X = SpecA, and for the
algebra of invariants we have

AH =
⊕

w∈ker(ψ)

Aw.

Note that in this special case, Proposition 1.2.2 ensures finite generation of the
algebra of invariants.

Example 2.3.5 (Veronese subalgebras). Let A be a K-graded affine algebra
and L ⊆ K a subgroup. Then we have the corresponding Veronese subalgebra

B =
⊕

w∈L

Aw ⊆
⊕

w∈K

Aw = A.

By the preceding example, the morphism SpecA → SpecB is a good quotient for
the action of Spec K[K/L] on SpecA.

We list basic properties of good quotients. The key to most of the statements
is the following central observation.

Theorem 2.3.6. Let a reductive algebraic group G act on a prevariety X. Then
any good quotient p : X → Y has the following properties.

(i) G-closedness: If Z ⊆ X is G-invariant and closed, then its image p(Z) ⊆
Y is closed.

(ii) G-separation: If Z,Z ′ ⊆ X are G-invariant, closed and disjoint, then
p(Z) and p(Z ′) are disjoint.

Proof. Since p : X → Y is affine and the statements are local with respect
to Y , it suffices to prove them for affine X . This is done in [100, Section II.3.2],
or [132, Theorems 4.6 and 4.7]. �

As an immediate consequence, one obtains basic information on the structure
of the fibers of a good quotient.

Corollary 2.3.7. Let a reductive algebraic group G act on a prevariety X,
and let p : X → Y be a good quotient. Then p is surjective and for any y ∈ Y one
has:

(i) There is exactly one closed G-orbit G·x in the fiber p−1(y).
(ii) Every orbit G·x′ ⊆ p−1(y) has G·x in its closure.

The first statement means that a good quotient p : X → Y parametrizes the
closed orbits of the G-prevariety X .
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Corollary 2.3.8. Let a reductive algebraic group G act on a prevariety X,
and let p : X → Y be a good quotient.

(i) The quotient space Y carries the quotient topology with respect to the map
p : X → Y .

(ii) For every G-invariant morphism of prevarieties ϕ : X → Z, there is a
unique morphism ψ : Y → Z with ϕ = ψ ◦ p.

Proof. The first assertion follows from Theorem 2.3.6 (i). The second one
follows from Corollary 2.3.7, Property 2.3.1 (ii) and the first assertion. �

A morphism p : X → Y with the last property is also called a categorical quo-
tient . The fact that a good quotient is categorical implies in particular, that
the good quotient space is unique up to isomorphy. This justifies the notation
X → X//G for good and X → X/G for geometric quotients.

Proposition 2.3.9. Let a reductive algebraic group G act on a prevariety X,
and let p : X → Y be a good quotient.

(i) Let V ⊆ Y be an open subset. Then the restriction p : p−1(V ) → V is a
good quotient for the restricted G-action.

(ii) Let Z ⊆ X be a closed G-invariant subset. Then the restriction p : Z →
p(Z) is a good quotient for the restricted G-action.

Proof. The first statement is clear and the second one follows immediately
from the corresponding statement on the affine case, see [100, Section II.3.2]. �

Example 2.3.10 (The Proj construction). Let A = ⊕Ad be a Z≥0-graded affine
algebra. The irrelevant ideal in A is defined as

A>0 := 〈f ; f ∈ Ad for some d > 0〉 ⊆ A.

For any homogeneous f ∈ A>0 the localization Af is a Z-graded affine algebra;
concretely, the grading is given by

Af =
⊕

d∈Z

(Af )d, (Af )d := {h/f l ∈ Af ; deg(h)− l deg(f) = d}.

In particular, we have the, again finitely generated, degree zero part of Af ; it is
given by

A(f) := (Af )0 = {h/f l ∈ Af ; deg(h) = l deg(f)}.

Set X := Spec(A) and Y0 := Spec(A0), and, for a homogeneous f ∈ A>0, set
Xf := SpecAf and Uf := SpecA(f). Then, for any two homogeneous f, g ∈ A>0,
we have the commutative diagrams

Af // Afg Agoo

A(f) //

OO

A(fg)

OO

A(g)oo

OO

A0

OOccFFFFFFFF

;;xxxxxxxx

Xf

πf

��

Xfg

��

oo // Xg

πg

��
Uf

!!D
DD

DD
DD

D
Ufgoo //

��

Ug

}}{{
{{

{{
{{

Y0

where the second one arises from the first one by applying the Spec-functor. The
morphisms Ufg → Uf are open embeddings and gluing the Uf gives the variety
Y = Proj(A). With the zero set F := V (X,A>0) of the ideal A>0, we have
canonical morphisms, where the second one is projective:

X \ F
π // Y // Y0 .
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Geometrically the following happened. The subset F ⊆ X is precisely the fixed point
set of the K∗-action on X given by the grading. Thus, K∗ acts with closed orbits
on W := X \ F . The maps Xf → Uf are geometric quotients, and glue together to
a geometric quotient π : W → Y . Moreover, the K∗-equivariant inclusion W ⊆ X
induces the morphism of quotients Y → Y0.

3. Divisorial algebras

3.1. Sheaves of divisorial algebras. We work over an algebraically closed
field K of characteristic zero. We will not only deal with varieties over K but more
generally with prevarieties.

Let X be an irreducible prevariety. The group of Weil divisors of X is the free
abelian group WDiv(X) generated by all prime divisors, i.e., irreducible subvarieties
D ⊆ X of codimension one. To a non-zero rational function f ∈ K(X)∗ one
associates a Weil divisor using its order along prime divisors D; recall that, if f
belongs to the local ring OX,D, then ordD(f) is the length of the OX,D-module
OX,D/〈f〉, and otherwise one writes f = g/h with g, h ∈ OX,D and defines the
order of f to be the difference of the orders of g and h. The divisor of f ∈ K(X)∗

then is

div(f) :=
∑

D prime

ordD(f) ·D.

The assignment f 7→ div(f) is a homomorphism K(X)∗ →WDiv(X), and its image
PDiv(X) ⊆WDiv(X) is called the subgroup of principal divisors. The divisor class
group of X is the factor group

Cl(X) := WDiv(X) / PDiv(X).

A Weil divisor D = a1D1 + . . .+asDs with prime divisors Di is called effective,
denoted as D ≥ 0, if ai ≥ 0 holds for i = 1, . . . , s. To every divisor D ∈WDiv(X),
one associates a sheaf OX(D) of OX -modules by defining its sections over an open
U ⊆ X as

Γ(U,OX(D)) := {f ∈ K(X)∗; (div(f) +D)|U ≥ 0} ∪ {0},

where the restriction map WDiv(X) → WDiv(U) is defined for a prime divisor D
as D|U := D ∩ U if it intersects U and D|U := 0 otherwise. Note that for any two
functions f1 ∈ Γ(U,OX(D1)) and f2 ∈ Γ(U,OX(D2)) the product f1f2 belongs to
Γ(U,OX(D1 +D2)).

Definition 3.1.1. The sheaf of divisorial algebras associated to a subgroup
K ⊆WDiv(X) is the sheaf of K-graded OX -algebras

S :=
⊕

D∈K

SD, SD := OX(D),

where the multiplication in S is defined by multiplying homogeneous sections in the
field of functions K(X).

Example 3.1.2. On the projective line X = P1, consider D := {∞}, the
group K := ZD, and the associated K-graded sheaf of algebras S. Then we have
isomorphisms

ϕn : K[T0, T1]n → Γ(P1,SnD), f 7→ f(1, z),

where K[T0, T1]n ⊆ K[T0, T1] denotes the vector space of all polynomials homoge-
neous of degree n. Putting them together we obtain a graded isomorphism

K[T0, T1] ∼= Γ(P1,S).
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Fix a normal (irreducible) prevariety X , a subgroup K ⊆ WDiv(X) on the
normal prevariety X and let S be the associated divisorial algebra. We collect first
properties.

Remark 3.1.3. If V ⊆ U ⊆ X are open subsets such that U\V is of codimension
at least two in U , then we have an isomorphism

Γ(U,S) → Γ(V,S).

In particular, the algebra Γ(U,S) equals the algebra Γ(Ureg,S), where Ureg ⊆ U
denotes the set of smooth points.

Remark 3.1.4. Assume that D1, . . . , Ds is a basis for K ⊆WDiv(X) and sup-
pose that U ⊆ X is an open subset on which each Di is principal, say Di = div(fi).
Then, with deg(Ti) = Di and f−1

i ∈ Γ(X,SDi), we have a graded isomorphism

Γ(U,O)⊗K K[T±1
1 , . . . , T±1

s ] → Γ(U,S), g ⊗ T ν11 · · ·T
νs
s 7→ gf−ν11 · · · f−νs

s .

Remark 3.1.5. If K is of finite rank, say s, then the algebra Γ(X,S) of global
sections can be realized as a graded subalgebra of the Laurent polynomial algebra
K(X)[T±1

1 , . . . , T±1
s ]. Indeed, let D1, . . . , Ds be a basis for K. Then we obtain a

monomorphism

Γ(X,S) → K(X)[T±1
1 , . . . , T±1

s ], Γ(X,Sa1D1+...+asDs) ∋ f 7→ fT a1
1 · · ·T

as
s .

In particular, Γ(X,S) is an integral ring and we have an embedding of the associated
quotient fields

Quot(Γ(X,S)) → K(X)(T1, . . . , Ts).

For quasiaffine X , we have K(X) ⊆ Quot(Γ(X,S)) and for each variable Ti there is
a non-zero function fi ∈ Γ(X,SDi). Thus, for quasiaffine X , one obtains

Quot(Γ(X,S)) ∼= K(X)(T1, . . . , Ts).

The support Supp(D) of a Weil divisor D = a1D1 + . . . + asDs with prime
divisors Di is the union of those Di with ai 6= 0. Moreover, for a Weil divisor D
on a normal prevariety X and a non-zero section f ∈ Γ(X,OX(D)), we define the
D-divisor and the D-localization

divD(f) := div(f) +D ∈ WDiv(X), XD,f := X \ Supp(divD(f)) ⊆ X.

The D-divisor is always effective. Moreover, given sections f ∈ Γ(X,OX(D)) and
g ∈ Γ(X,OX(E)), we have

divD+E(fg) = divD(f) + divE(g), f−1 ∈ Γ(XD,f ,OX(−D)).

Remark 3.1.6. Let D ∈ K and consider a non-zero homogeneous section f ∈
Γ(X,SD). Then one has a canonical isomorphism of K-graded algebras

Γ(XD,f ,S) ∼= Γ(X,S)f .

Indeed, the canonical monomorphism Γ(X,S)f → Γ(XD,f ,S) is surjective, because
for any g ∈ Γ(XD,f ,SE), we have gfm ∈ Γ(X,SmD+E) with some m ∈ Z≥0.

3.2. The relative spectrum. Again we work over an algebraically closed field
K of characteristic zero. LetX be a normal prevariety. As any quasicoherent sheaf of
OX -algebras, the sheaf of divisorial algebras S associated to a groupK ⊆WDiv(X)
of Weil divisors defines in a natural way a geometric object, its relative spectrum

X̃ := SpecXS. We briefly recall how to obtain it.

Construction 3.2.1. Let S be any quasicoherent sheaf of reduced OX -
algebras on a prevariety X , and suppose that S is locally of finite type, i.e., X
is covered by open affine subsets X1, . . . , Xr ⊆ X with Γ(Xi,S) finitely gener-
ated. Cover each intersection Xij := Xi ∩ Xj by open subsets (Xi)fijk

, where
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fijk ∈ Γ(Xi,O). Set X̃i := Spec Γ(Xi,S) and let X̃ij ⊆ X̃i be the union of the open

subsets (X̃i)fijk
. Then we obtain commutative diagrams

X̃i

��

X̃ij
oo oo ∼= //

��

X̃ji
//

��

X̃j

��
Xi Xijoo Xji // Xj

This allows us to glue together the X̃i along the X̃ij , and we obtain a prevariety

X̃ = SpecX S coming with a canonical morphism p : X̃ → X . Note that p∗(O eX) = S

holds. In particular, Γ(X̃,O) equals Γ(X,S). Moreover, the morphism p is affine

and X̃ is separated if X is so. Finally, the whole construction does not depend on
the choice of the Xi.

Before specializing this construction to the case of our sheaf of divisorial algebras
S on X , we provide two criteria for S being locally of finite type. The first one is
an immediate consequence of Remark 3.1.6.

Proposition 3.2.2. Let X be a normal prevariety, K ⊆ WDiv(X) a finitely
generated subgroup, and S the associated sheaf of divisorial algebras. If Γ(X,S) is
finitely generated and X is covered by affine open subsets of the form XD,f , where
D ∈ K and f ∈ Γ(X,SD), then S is locally of finite type.

A Weil divisorD ∈WDiv(X) on a prevarietyX is called Cartier if it is locally a
principal divisor, i.e., locally of the formD = div(f) with a rational function f . The
prevariety X is locally factorial , i.e., all local rings OX,x are unique factorization
domains if and only if every Weil divisor of X is Cartier. Recall that smooth
prevarieties are locally factorial. More generally, a normal prevariety is called Q-
factorial if for any Weil divisor some positive multiple is Cartier.

Proposition 3.2.3. Let X be a normal prevariety and K ⊆WDiv(X) a finitely
generated subgroup. If X is Q-factorial, then the associated sheaf S of divisorial
algebras is locally of finite type.

Proof. By Q-factoriality, the subgroup K0 ⊆ K consisting of all Cartier di-
visors is of finite index in K. Choose a basis D1, . . . , Ds for K such that with
suitable ai > 0 the multiples aiDi, where 1 ≤ i ≤ s, form a basis for K0. Moreover,
cover X by open affine subsets X1, . . . , Xr ⊆ X such that for any D ∈ K0 all re-
strictions D|Xi

are principal. Let S0 be the sheaf of divisorial algebras associated

to K0. Then Γ(Xi,S
0) is the Veronese subalgebra of Γ(Xi,S) defined by K0 ⊆ K.

By Remark 3.1.4, the algebra Γ(Xi,S0) is finitely generated. Since K0 ⊆ K is
of finite index, we can apply Proposition 1.2.4 and obtain that Γ(Xi,S) is finitely
generated. �

Construction 3.2.4. Let X be a normal prevariety, K ⊆WDiv(X) a finitely
generated subgroup and S the associated sheaf of divisorial algebras. We assume
that S is locally of finite type. Then, in the notation of Construction 3.2.1, the

algebras Γ(Xi,S) are K-graded. This means that each affine variety X̃i comes with
an action of the torus H := Spec K[K], and, because of S0 = OX , the canonical

map X̃i → Xi is a good quotient for this action. Since the whole gluing process

is equivariant, we end up with an H-prevariety X̃ = SpecXS and p : X̃ → X is a
good quotient for the H-action.

Example 3.2.5. Consider once more the projective line X = P1, the group
K := ZD, where D := {∞}, and the associated sheaf S of divisorial algebras. For
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the affine charts X0 = K and X1 = K∗ ∪ {∞} we have the graded isomorphisms

K[T±1
0 , T1] → Γ(X0,S), K[T±1

0 , T1]n ∋ f 7→ f(1, z) ∈ Γ(X0,SnD),

K[T0, T
±1
1 ] → Γ(X1,S), K[T0, T

±1
1 ]n ∋ f 7→ f(z, 1) ∈ Γ(X1,SnD).

Thus, the corresponding spectra are K2
T0

and K2
T1

. The gluing takes place along

(K∗)2 and gives X̃ = K2 \ {0}. The action of K∗ = Spec K[K] on X̃ is the usual
scalar multiplication.

The above example fits into the more general context of sheaves of divisorial
algebras associated to groups generated by a very ample divisor, i.e., the pullback
of a hyperplane with respect to an embedding into a projective space.

Example 3.2.6. Suppose that X is projective and K = ZD holds with a very
ample divisor D on X . Then Γ(X,S) is finitely generated and thus we have the
affine cone X := Spec Γ(X,S) over X . It comes with a K∗-action and an attractive
fixed point x0 ∈ X, i.e., x0 lies in the closure of any K∗-orbit. The relative spectrum

X̃ = SpecX S equals X \ {x0}.

Remark 3.2.7. In the setting of 3.2.4, let U ⊆ X be an open subset such that
all divisors D ∈ K are principal over U . Then there is a commutative diagram of
H-equivariant morphisms

p−1(U)
∼= //

p
##F

FF
FF

FF
FF

H × U

prU
||yy

yy
yy

yy
y

U

where H acts on H × U by multiplication on the first factor. In particular, if K

consists of Cartier divisors, e.g. if X is locally factorial, then X̃ → X is a locally
trivial H-principal bundle.

Proposition 3.2.8. Situation as in Construction 3.2.4. The prevariety X̃ is

normal. Moreover, for any closed A ⊆ X of codimension at least two, p−1(A) ⊆ X̃
is as well of codimension at least two.

Proof. For normality, we have to show that for every affine open U ⊆ X the
algebra Γ(p−1(U),O) is a normal ring. According to Remark 3.1.3, we have

Γ(p−1(U),O) = Γ(p−1(Ureg),O).

Using Remark 3.1.4, we see that the latter ring is normal. The supplement is then
an immediate consequence of Remark 3.1.3. �

3.3. Unique factorization in the global ring. Here we investigate divis-
ibility properties of the ring of global sections of the sheaf of divisorial algebras
S associated to a subgroup K ⊆ WDiv(X) on a normal prevariety X . The key
statement is the following.

Theorem 3.3.1. Let X be a smooth prevariety, K ⊆WDiv(X) a finitely gener-

ated subgroup, S the associated sheaf of divisorial algebras and X̃ = SpecX S. Then
the following statements are equivalent.

(i) The canonical map K → Cl(X) is surjective.

(ii) The divisor class group Cl(X̃) is trivial.
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We need a preparing observation concerning the pullback of Cartier divisors.
Recall that for any dominant morphism ϕ : X → Y of normal prevarieties, there
is a pullback of Cartier divisors: if a Cartier divisor E on Y is locally given as
E = div(g), then the pullback divisor ϕ∗(E) is the Cartier divisor locally defined
by div(ϕ∗(g)).

Lemma 3.3.2. Situation as in Construction 3.2.4. Suppose that D ∈ K is
Cartier and consider a non-zero section f ∈ Γ(X,SD). Then one has

p∗(D) = div(f)− p∗(div(f)),

where on the right hand side f is firstly viewed as a homogeneous function on X̃,
and secondly as a rational function on X. In particular, p∗(D) is principal.

Proof. On suitable open sets Ui ⊆ X , we find defining equations f−1
i for D

and thus may write f = hifi, where hi ∈ Γ(Ui,S0) = Γ(Ui,O) and fi ∈ Γ(Ui,SD).
Then, on p−1(Ui), we have p∗(hi) = hi and the function fi is homogeneous of degree
D and invertible. Thus, we obtain

p∗(D) = p∗(div(f) +D)− p∗(div(f))

= p∗(div(hi))− p
∗(div(f))

= div(hi)− p
∗(div(f))

= div(hifi)− p
∗(div(f))

= div(f)− p∗(div(f)).

�

We are almost ready for proving the Theorem. Recall that, given an action of
an algebraic group G on a normal prevariety X , we obtain an induced action of G
on the group of Weil divisors by sending a prime divisor D ⊆ X to g ·D ⊆ X . In
particular, we can speak about invariant Weil divisors.

Proof of Theorem 3.3.1. Suppose that (i) holds. It suffices to show that

every effective divisor D̃ on X̃ is principal. We work with the action of the torus

H = Spec K[K] on X̃ . Choosing an H-linearization of D̃, see [95, Section 2.4],

we obtain a representation of H on Γ(X̃,O eX(D̃)) such that for any section f̃ ∈

Γ(X̃,O eX(D̃)) one has

div eD(h · f̃) = h · div eD(f̃).

Taking a non-zero f̃ , which is homogeneous with respect to this representation,

we obtain that D̃ is linearly equivalent to the H-invariant divisor div eD(f̃). This

reduces the problem to the case of an invariant divisor D̃; compare also [9, Theo-

rem 4.2]. Now, consider any invariant prime divisor D̃ on X̃. Let D := p(D̃) be

the image under the good quotient p : X̃ → X . Remark 3.2.7 gives D̃ = p∗(D).

By assumption, D is linearly equivalent to a divisor D′ ∈ K. Thus, D̃ is linearly
equivalent to p∗(D′), which in turn is principal by Lemma 3.3.2.

Now suppose that (ii) holds. It suffices to show that any effectiveD ∈WDiv(X)
is linearly equivalent to some D′ ∈ K. The pullback p∗(D) is the divisor of some

function f ∈ Γ(X̃,O). We claim that f is K-homogeneous. Indeed

F : H × X̃ → K, (h, x) 7→ f(h·x)/f(x)

is an invertible function. By Rosenlicht’s Lemma [96, Section 1.1], we have

F (h, x) = χ(h)g(x) with χ ∈ X(H) and g ∈ Γ(X̃,O∗). Plugging (1, x) into F yields
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g = 1 and, consequently, f(h ·x) = χ(h)f(x) holds. Thus, we have f ∈ Γ(X,SD′)
for some D′ ∈ K. Lemma 3.3.2 gives

p∗(D) = div(f) = p∗(D′) + p∗(div(f)),

where in the last term, f is regarded as a rational function on X . We conclude
D = D′ + div(f) on X . In other words, D is linearly equivalent to D′ ∈ K. �

As an immediate consequence, we obtain factoriality of the ring of global sec-
tions provided K → Cl(X) is surjective, see also [28], [68] and [15].

Theorem 3.3.3. Let X be a normal prevariety, K ⊆WDiv(X) a finitely gen-
erated subgroup and S the associated sheaf of divisorial algebras. If the canonical
map K → Cl(X) is surjective, then the algebra Γ(X,S) is a unique factorization
domain.

Proof. According to Remark 3.1.3, the algebra Γ(X,S) equals Γ(Xreg,S) and
thus we may apply Theorem 3.3.1. �

Divisibility and primality in the ring of global sections Γ(X,S) can be charac-
terized purely in terms of X .

Proposition 3.3.4. Let X be a normal prevariety, K ⊆ WDiv(X) a finitely
generated subgroup projecting onto Cl(X) and let S be the associated sheaf of divi-
sorial algebras.

(i) An element 0 6= f ∈ Γ(X,SD) divides an element 0 6= g ∈ Γ(X,SE) if
and only if divD(f) ≤ divE(g) holds.

(ii) An element 0 6= f ∈ Γ(X,SD) is prime if and only if the divisor divD(f) ∈
WDiv(X) is prime.

Proof. We may assume that X is smooth. Then X̃ = SpecX S exists, and
Lemma 3.3.2 reduces (i) and (ii) to the corresponding statements on regular func-

tions on X̃, which in turn are well known. �

3.4. Geometry of the relative spectrum. We collect basic geometric prop-
erties of the relative spectrum of a sheaf of divisorial algebras. We will use the
following pullback construction for Weil divisors.

Remark 3.4.1. Consider any morphism ϕ : X̃ → X of normal prevarieties such

that the closure of X \ ϕ(X̃) is of codimension at least two in X . Then we may
define a pullback homomorphism for Weil divisors

ϕ∗ : WDiv(X) → WDiv(X̃)

as follows: Given D ∈ WDiv(X), consider its restriction D′ to Xreg, the usual
pullback ϕ∗(D′) of Cartier divisors on ϕ−1(Xreg) and define ϕ∗(D) to be the Weil
divisor obtained by closing the support of ϕ∗(D′). Note that we always have

Supp(ϕ∗(D)) ⊆ ϕ−1(Supp(D)).

If for any closed A ⊆ X of codimension at least two, ϕ−1(A) ⊆ X̃ is as well of
codimension at least two, then ϕ∗ maps principal divisors to principal divisors, and
we obtain a pullback homomorphism

ϕ∗ : Cl(X) → Cl(X̃).

Example 3.4.2. Consider X = V (K4; T1T2 − T3T4) and X̃ = K4. Then we
have a morphism

p : X̃ → X, z 7→ (z1z2, z3z4, z1z3, z2z4).
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For the prime divisor D = K× 0×K× 0 on X , we have

Supp(p∗(D)) = V (X̃ ;Z4) ( V (X̃;Z4) ∪ V (X̃ ;Z2, Z3) = p−1(Supp(D)).

In fact, p : X̃ → X is the morphism determined by the sheaf of divisorial algebras
associated to K = ZD.

We say that a prevariety X is of affine intersection if for any two affine open
subsets U,U ′ ⊆ X the intersection U ∩U ′ is again affine. For example, every variety
is of affine intersection. Note that a prevariety X is of affine intersection if it can be
covered by open affine subsets X1, . . . , Xs ⊆ X such that all intersections Xi ∩Xj

are affine. Moreover, if X is of affine intersection, then the complement of any affine
open subset U ( X is of pure codimension one.

Proposition 3.4.3. In the situation of 3.2.4, consider the pullback homomor-

phism p∗ : WDiv(X) → WDiv(X̃) defined in 3.4.1. Then, for every D ∈ K and
every non-zero f ∈ Γ(X,SD), we have

div(f) = p∗(divD(f)),

where on the left hand side f is a function on X̃, and on the right hand side a
function on X. If X is of affine intersection and XD,f is affine, then we have
moreover

Supp(div(f)) = p−1(Supp(divD(f))).

Proof. By Lemma 3.3.2, the first equation holds on p−1(Xreg). By Proposi-

tion 3.2.8, the complement X̃ \ p−1(Xreg) is of codimension at least two and thus

the first equation holds on the whole X̃. For the proof of the second one, consider

XD,f = X \ Supp(divD(f)), X̃f = X̃ \ V (X̃, f).

Then we have to show that p−1(XD,f ) equals X̃f . Since f is invertible on p−1(XD,f ),

we obtain p−1(XD,f ) ⊆ X̃f . Moreover, Lemma 3.3.2 yields

p−1(XD,f ) ∩ p−1(Xreg) = X̃f ∩ p
−1(Xreg).

Thus the complement X̃f \ p−1(XD,f ) of the affine subset p−1(XD,f ) ⊆ X̃f is of

codimension at least two. Since p : X̃ → X is affine, the prevariety X̃ inherits the

property to be of affine intersection from X and hence X̃f \ p−1(XD,f ) must be
empty. �

Corollary 3.4.4. Situation as in Construction 3.2.4. Let x̃ ∈ X̃ be a point

such that H ·x̃ ⊆ X̃ is closed, and let 0 6= f ∈ Γ(X,SD). Then we have

f(x̃) = 0 ⇐⇒ p(x̃) ∈ Supp(divD(f)).

Proof. Remark 3.4.1 and Proposition 3.4.3 show that p(Supp(div(f))) is con-
tained in Supp(divD(f)). Moreover, they coincide along the smooth locus of X and
Theorem 2.3.6 ensures that p(Supp(div(f))) is closed. This gives

p(Supp(div(f))) = Supp(divD(f)).

Thus, f(x̃) = 0 implies p(x̃) ∈ Supp(divD(f)). If p(x̃) ∈ Supp(divD(f)) holds, then
some x̃′ ∈ Supp(div(f)) lies in the p-fiber of x̃. Since H ·x̃ is closed, it is contained
in the closure of H ·x̃′, see Corollary 2.3.7. This implies x̃ ∈ Supp(div(f)). �

Corollary 3.4.5. Situation as in Construction 3.2.4. If X is of affine in-
tersection and covered by affine open subsets of the form XD,f , where D ∈ K and

f ∈ Γ(X,SD), then X̃ is a quasiaffine variety.
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Proof. According to Proposition 3.4.3, the prevariety X̃ is covered by open

affine subsets of the form X̃f and thus is quasiaffine. �

Corollary 3.4.6. Situation as in Construction 3.2.4. If X is of affine inter-

section and K → Cl(X) is surjective, then X̃ is a quasiaffine variety.

Proof. Cover X by affine open sets X1, . . . , Xr. Since X is of affine intersec-
tion, every complement X \Xi is of pure codimension one. Since K → Cl(X) is sur-
jective, we obtain that X \Xi is the support of the D-divisor of some f ∈ Γ(X,SD).
The assertion thus follows from Corollary 3.4.5. �

Proposition 3.4.7. Situation as in Construction 3.2.4. For x ∈ X, let K0
x ⊆

K be the subgroup of divisors that are principal near x and let x̃ ∈ p−1(x) be a
point with closed H-orbit. Then the isotropy group Hex ⊆ H is given by Hex =
Spec K[K/K0

x].

Proof. Replacing X with a suitable affine neighbourhood of x, we may assume

that X̃ is affine. By Proposition 2.2.8, the isotropy group Hex is Spec K[K/Kex] with
the orbit group

Kex = 〈D ∈ K; f(x̃) 6= 0 for some f ∈ Γ(X,SD)〉 ⊆ K.

Using Corollary 3.4.4, we obtain that there exists an f ∈ Γ(X,SD) with f(x̃) 6= 0
if and only if D ∈ K0

x holds. The assertion follows. �

Corollary 3.4.8. Situation as in Construction 3.2.4.

(i) If X is locally factorial, then H acts freely on X̃.

(ii) If X is Q-factorial, then H acts with at most finite isotropy groups on X̃.

4. Cox sheaves and Cox rings

4.1. Free divisor class group. As before, we work over an algebraically
closed field K of characteristic zero. We introduce Cox sheaves and Cox rings for
a prevariety with a free finitely generated divisor class group. As an example, we
compute in 4.1.6 the Cox ring of a non-separated curve, the projective line with
multipled points.

Construction 4.1.1. LetX be a normal prevariety with free finitely generated
divisor class group Cl(X). Fix a subgroup K ⊆WDiv(X) such that the canonical
map c : K → Cl(X) sending D ∈ K to its class [D] ∈ Cl(X) is an isomorphism. We
define the Cox sheaf associated to K to be

R :=
⊕

[D]∈Cl(X)

R[D], R[D] := OX(D),

where D ∈ K represents [D] ∈ Cl(X) and the multiplication in R is defined by
multiplying homogeneous sections in the field of rational functions K(X). The sheaf
R is a quasicoherent sheaf of normal integral OX -algebras and, up to isomorphy, it
does not depend on the choice of the subgroup K ⊆WDiv(X). The Cox ring of X
is the algebra of global sections

R(X) :=
⊕

[D]∈Cl(X)

R[D](X), R[D](X) := Γ(X,OX(D)).

Proof of Construction 4.1.1. Given two subgroups K,K ′ ⊆ WDiv(X)
projecting isomorphically onto Cl(X), we have to show that the corresponding
sheaves of divisorial algebras R and R′ are isomorphic. Choose a basis D1, . . . , Ds

for K and define a homomorphism

η : K → K(X)∗, a1D1 + . . .+ asDs 7→ fa1
1 · · · f

as
s ,
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where f1, . . . , fs ∈ K(X)∗ are such that the divisors Di−div(fi) form a basis of K ′.

Then we obtain an isomorphism (ψ, ψ̃) of the sheaves of divisorial algebras R and
R′ by setting

ψ̃ : K → K ′, D 7→ −div(η(D)) +D,

ψ : R → R′, Γ(U,R[D]) ∋ f 7→ η(D)f ∈ Γ(U,R[ eψ(D)]).

�

Example 4.1.2. LetX be the projective space Pn andD ⊆ Pn be a hyperplane.
The class of D generates Cl(Pn) freely. We take K as the subgroup of WDiv(Pn)
generated by D, and the Cox ring R (Pn) is the polynomial ring K[z0, z1, . . . , zn]
with the standard grading.

Remark 4.1.3. If X ⊆ Pn is a closed normal subvariety whose divisor class
group is generated by a hyperplane section, then R(X) coincides with Γ(X,O),
where X ⊆ Kn+1 is the cone over X if and only if X is projectively normal.

Remark 4.1.4. Let s denote the rank of Cl(X). Then Remark 3.1.5 realizes
the Cox ring R(X) as a graded subring of the Laurent polynomial ring:

R(X) ⊆ K(X)[T±1
1 , . . . , T±1

s ].

Using the fact that there are f ∈ R[D](X) with XD,f affine and Remark 3.1.6, we
see that this inclusion gives rises to an isomorphism of the quotient fields

Quot(R(X)) ∼= K(X)(T1, . . . , Ts).

Proposition 4.1.5. Let X be a normal prevariety with free finitely generated
divisor class group.

(i) The Cox ring R(X) is a unique factorization domain.
(ii) The units of the Cox ring are given by R(X)∗ = Γ(X,O∗).

Proof. The first assertion is a direct consequence of Theorem 3.3.3. To verify
the second one, consider a unit f ∈ R(X)∗. Then fg = 1 ∈ R0(X) holds with some
unit g ∈ R(X)∗. This can only happen, when f and g are homogeneous, say of
degree [D] and −[D], and thus we obtain

0 = div0(1) = divD(f) + div−D(g) = (div(f) +D) + (div(g)−D).

Since the divisors (div(f) + D) and (div(g) − D) are effective, we conclude that
D = −div(f). This means [D] = 0 and we obtain f ∈ Γ(X,O∗). �

Example 4.1.6. Compare [85, Section 2]. Take the projective line P1, a tuple
A = (a0, . . . , ar) of pairwise different points ai ∈ P1 and a tuple n = (n0, . . . , nr) of
integers ni ∈ Z≥1. We construct a non-separated smooth curve P1(A, n) mapping
birationally onto P1 such that over each ai lie precisely ni points. Set

Xij := P1 \
⋃

k 6=i

ak, 0 ≤ i ≤ r, 1 ≤ j ≤ ni.

Gluing the Xij along the common open subset P1 \ {a0, . . . , ar} gives an irreducible
smooth prevariety P1(A, n) of dimension one. The inclusion maps Xij → P1 define
a morphism π : P1(A, n)→ P1, which is locally an isomorphism. Writing aij for the
point in P1(A, n) stemming from ai ∈ Xij , we obtain the fibre over any a ∈ P1 as

π−1(a) =

{
{ai1, . . . , aini} a = ai for some 0 ≤ i ≤ r,

{a} a 6= ai for all 0 ≤ i ≤ r.
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We compute the divisor class group of P1(A, n). Let K ′ denote the group of
Weil divisors on P1(A, n) generated by the prime divisors aij . Clearly K ′ maps onto
the divisor class group. Moreover, the group of principal divisors inside K ′ is

K ′0 := K ′ ∩ PDiv(P1(A, n)) =






∑

0≤i≤r,
1≤j≤ni

ciaij ; c0 + . . .+ cr = 0





.

One directly checks that K ′ is the direct sum of K ′0 and the subgroup K ⊆ K ′

generated by a01, . . . , a0n0 and the ai1, . . . , aini−1. Consequently, the divisor class
group of P1(A, n) is given by

Cl(P1(A, n)) =

n0⊕

j=1

Z·[a0j ] ⊕
r⊕

i=1



ni−1⊕

j=1

Z·[aij ]


 .

We are ready to determine the Cox ring of the prevariety P1(A, n). For every
0 ≤ i ≤ r, define a monomial

Ti := Ti1 · · ·Tini ∈ K[Tij ; 0 ≤ i ≤ r, 1 ≤ j ≤ ni].

Moreover, for every ai ∈ P1 fix a presentation ai = [bi, ci] with bi, ci ∈ K and for
every 0 ≤ i ≤ r − 2 set k = j + 1 = i+ 2 and define a trinomial

gi := (bjck − bkcj)Ti + (bkci − bick)Tj + (bicj − bjci)Tk.

We claim that for r ≤ 1 the Cox ring R (P1(A, n)) is isomorphic to the polynomial
ring K[Tij ], and for r ≥ 2 it has a presentation

R(P1(A, n)) ∼= K[Tij; 0 ≤ i ≤ r, 1 ≤ j ≤ ni] / 〈gi; 0 ≤ i ≤ r − 2〉,

where, in both cases, the grading is given by deg(Tij) = [aij ]. Note that all relations
are homogeneous of degree

deg(gi) = [ai1 + . . .+ aini ] = [a01 + . . .+ a0n0 ].

Let us verify this claim. Set for short X := P1(A, n) and Y := P1. Let K ⊆
WDiv(X) be the subgroup generated by all aij ∈ X different from a1n1 , . . . , arnr ,
and let L ⊆WDiv(Y ) be the subgroup generated by a0 ∈ Y . Then we may view the
Cox rings R(X) and R(Y ) as the rings of global sections of the sheaves of divisorial
algebras SX and SY associated to K and L. The canonical morphism π : X → Y
gives rise to injective pullback homomorphisms

π∗ : L → K, π∗ : Γ(Y,SY ) → Γ(X,SX).

For any divisor aij ∈ K, let Tij ∈ Γ(X,SX) denote its canonical section, i.e.,
the rational function 1 ∈ Γ(X,SX,aij ). Moreover, let [z, w] be the homogeneous
coordinates on P1 and consider the sections

Si :=
biw − ciz

b0w − c0z
∈ Γ(Y,SY,a0), 0 ≤ i ≤ r.

Finally, set dini := a01 + . . .+a0n0 −ai1− . . .−aini−1 ∈ K and define homogeneous
sections

Tini := π∗Si(Ti1 · · ·Tini−1)
−1 ∈ Γ(X,SX,dini

), 1 ≤ i ≤ r.

We show that the sections Tij , where 0 ≤ i ≤ r and 1 ≤ j ≤ ni, generate the Cox
ring R(X). Note that we have

divaij (Tij) = aij , divdini
(Tini) = aini .

Consider D ∈ K and h ∈ Γ(X,SD). If there occurs an aij in divD(h), then we may
divide h in Γ(X,S) by the corresponding Tij , use Proposition 3.3.4 (i). Doing this
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as long as possible, we arrive at some h′ ∈ Γ(X,SD′) such that divD′(h′) has no
components aij . But then D′ is a pullback divisor and hence h′ is contained in

π∗(Γ(Y,SY )) = K[π∗S0, π
∗S1] = K[T01 · · ·T0n0 , T11 · · ·T1n1 ].

Finally, we have to determine the relations among the sections Tij ∈ Γ(X,SX). For
this, we first note that among the Si ∈ Γ(Y,SY ) we have the relations

(bjck− bkcj)Si + (bkci− bick)Sj + (bicj− bjci)Sk = 0, j = i+1, k = i+2.

Given any nontrivial homogeneous relation F = α1F1 + . . .+ αlFl = 0 with αi ∈ K

and pairwise different monomials Fi in the Tij , we achieve by subtracting suitable
multiples of pullbacks of the above relations a homogeneous relation

F ′ = α′1F
′′
1 π
∗Sk10 π∗Sl11 + . . .+ α′mF

′′
mπ
∗Skm

0 π∗Slm1 = 0

with pairwise different monomials F ′′j , none of which has any factor π∗Si. We show

that F ′ must be trivial. Consider the multiplicative group M of Laurent monomials
in the Tij and the degree map

M → K, Tij 7→ deg(Tij) =

{
aij , i = 0 or j ≤ ni − 1,

dini i ≥ 1 and j = ni.

The kernel of this degree map is generated by the Laurent monomials π∗S0/π
∗Si,

where 1 ≤ i ≤ r. The monomials of F ′ are all of the same K-degree and thus any
two of them differ by a product of (integral) powers of the π∗Si. It follows that all
the F ′′j coincide. Thus, we obtain the relation

α′1π
∗Sk10 π∗Sl11 + . . . + α′mπ

∗Skm
0 π∗Slm1 = 0.

This relation descends to a relation in Γ(Y,SY ), which is the polynomial ring
K[S0, S1]. Consequently, we obtain α′1 = . . . = α′m = 0.

4.2. Torsion in the class group. Again we work over an algebraically closed
field K of characteristic zero. We extend the definition of Cox sheaf and Cox ring
to normal prevarieties X having a finitely generated divisor class group Cl(X) with
torsion. The idea is to take a subgroup K ⊆ WDiv(X) projecting onto Cl(X), to
consider its associated sheaf of divisorial algebras S and to identify in a systematic
manner homogeneous components SD and SD′ , whenever D and D′ are linearly
equivalent.

Construction 4.2.1. Let X be a normal prevariety with Γ(X,O∗) = K∗ and
finitely generated divisor class group Cl(X). Fix a subgroup K ⊆ WDiv(X) such
that the map c : K → Cl(X) sending D ∈ K to its class [D] ∈ Cl(X) is surjective.
Let K0 ⊆ K be the kernel of c, and let χ : K0 → K(X)∗ be a character, i.e. a group
homomorphism, with

div(χ(E)) = E, for all E ∈ K0.

Let S be the sheaf of divisorial algebras associated to K and denote by I the sheaf
of ideals of S locally generated by the sections 1 − χ(E), where 1 is homogeneous
of degree zero, E runs through K0 and χ(E) is homogeneous of degree −E. The
Cox sheaf associated to K and χ is the quotient sheaf R := S/I together with the
Cl(X)-grading

R =
⊕

[D]∈Cl(X)

R[D], R[D] := π




⊕

D′∈c−1([D])

SD′


 .

where π : S → R denotes the projection. The Cox sheaf R is a quasicoherent sheaf
of Cl(X)-graded OX -algebras. The Cox ring is the ring of global sections

R(X) :=
⊕

[D]∈Cl(X)

R[D](X), R[D](X) := Γ(X,R[D]).
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For any open set U ⊆ X , the canonical homomorphism Γ(U,S)/Γ(U, I)→ Γ(U,R)
is an isomorphism. In particular, we have

R(X) ∼= Γ(X,S)/Γ(X, I).

All the claims made in this construction will be verified as separate Lemmas
in the next subsection. The assumption Γ(X,O∗) = K∗ is crucial for the following
uniqueness statement on Cox sheaves and rings.

Proposition 4.2.2. Let X be a normal prevariety with Γ(X,O∗) = K∗ and
finitely generated divisor class group Cl(X). If K,χ and K ′, χ′ are data as in Con-
struction 4.2.1, then there is a graded isomorphism of the associated Cox sheaves.

Also this will be proven in the next subsection. The construction of Cox sheaves
(and thus also Cox rings) of a prevariety X can be made canonical by fixing a
suitable point x ∈ X .

Construction 4.2.3. Let X be a normal prevariety with Γ(X,O∗) = K∗ and
finitely generated divisor class group Cl(X). Fix a point x ∈ X with factorial local
ring OX,x. For the subgroup

Kx := {D ∈WDiv(X); x 6∈ Supp(D)}

let Sx be the associated sheaf of divisorial algebras and let Kx,0 ⊆ Kx denote the
subgroup consisting of principal divisors. Then, for each E ∈ Kx,0, there is a unique
section fE ∈ Γ(X,S−E), which is defined near x and satisfies

div(fE) = E, fE(x) = 1.

The map χx : Kx → K(X)∗ sending E to fE is a character as in Construction 4.2.1.
We call the Cox sheaf Rx associated to Kx and χx the canonical Cox sheaf of the
pointed space (X,x).

Example 4.2.4 (An affine surface with torsion in the divisor class group).
Consider the two-dimensional affine quadric

X := V (K3; T1T2 − T
2
3 ) ⊆ K3.

We have the functions fi := Ti|X on X and with the prime divisors D1 := V (X ; f1)
and D2 := V (X ; f2) on X , we have

div(f1) = 2D1, div(f2) = 2D2, div(f3) = D1 +D2.

The divisor class group Cl(X) is of order two; it is generated by [D1]. ForK := ZD1,
let S denote the associated sheaf of divisorial algebras. Consider the sections

g1 := 1 ∈ Γ(X,SD1), g2 := f3f
−1
1 ∈ Γ(X,SD1),

g3 := f−1
1 ∈ Γ(X,S2D1), g4 := f1 ∈ Γ(X,S−2D1).

Then g1, g2 generate Γ(X,SD1) as a Γ(X,S0)-module, and g3, g4 are inverse to each
other. Moreover, we have

f1 = g2
1g4, f2 = g2

2g4, f3 = g1g2g4.

Thus, g1, g2, g3 and g4 generate the K-algebra Γ(X,S). Setting deg(Zi) := deg(gi),
we obtain a K-graded epimorphism

K[Z1, Z2, Z
±1
3 ] → Γ(X,S), Z1 7→ g1, Z2 7→ g2, Z3 7→ g3,

which, by dimension reasons, is even an isomorphism. The kernel of the projection
K → Cl(X) is K0 = 2ZD1 and a character as in Construction 4.2.1 is

χ : K0 → K(X)∗, 2nD1 7→ fn1 .

The ideal I is generated by 1−f1, where f1 ∈ Γ(X,S−2D1), see Remark 4.3.2 below.
Consequently, the Cox ring of X is given as

R(X) ∼= Γ(X,S)/Γ(X, I) ∼= K[Z1, Z2, Z
±1
3 ]/〈1− Z−1

3 〉
∼= K[Z1, Z2],
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where the Cl(X)-grading on the polynomial ring K[Z1, Z2] is given by deg(Z1) =
deg(Z2) = [D1].

4.3. Well-definedness. Here we prove the claims made in Construction 4.2.1
and Proposition 4.2.2. In particular, we show that, up to isomorphy, Cox sheaf and
Cox ring do not depend on the choices made in their construction.

Lemma 4.3.1. Situation as in Construction 4.2.1. Consider the Cl(X)-grading
of the sheaf S defined by

S =
⊕

[D]∈Cl(X)

S[D], S[D] :=
⊕

D′∈c−1([D])

SD′ .

Given f ∈ Γ(U, I) and D ∈ K, the Cl(X)-homogeneous component f[D] ∈ Γ(U,S[D])
of f has a unique representation

f[D] =
∑

E∈K0

(1 − χ(E))fE , where fE ∈ Γ(U,SD) and χ(E) ∈ Γ(U,S−E).

In particular, the sheaf I of ideals is Cl(X)-homogeneous. Moreover, if f ∈ Γ(U, I)
is K-homogeneous, then it is the zero section.

Proof. To obtain uniqueness of the representation of f[D], observe that for

every 0 6= E ∈ K0, the product −χ(E)fE is the K-homogeneous component of
degree D − E of f[D]. We show existence. By definition of the sheaf of ideals I,
every germ fx ∈ Ix can on a suitable neighbourhood Ux be represented by a section

g =
∑

E∈K0

(1− χ(E))gE , where gE ∈ Γ(Ux,S).

Collecting the Cl(X)-homogeneous parts on the right hand side represents the
Cl(X)-homogeneous part h ∈ Γ(Ux,S[D]) of degree [D] of g ∈ Γ(Ux,S) as follows:

h =
∑

E∈K0

(1− χ(E))hE , where hE ∈ Γ(Ux,S[D]).

Note that we have h ∈ Γ(Ux, I) and h represents f[D],x. Now, developping each
hE ∈ Γ(Ux,S[D]) according to the K-grading gives representations

hE =
∑

D′∈D+K0

hE,D′ , where hE,D′ ∈ Γ(Ux,SD′).

The section h′E,D′ := χ(D′ −D)hE,D′ is K-homogeneous of degree D, and we have
the identity

(1− χ(E))hE,D′ = (1− χ(E +D −D′))h′E,D′ − (1− χ(D −D′))h′E,D′ .

Plugging this into the representation of h establishes the desired representation of
f[D] locally. By uniqueness, we may glue the local representations. �

Remark 4.3.2. Situation as in Construction 4.2.1. Then, for any two divisors
E,E′ ∈ K0, one has the identities

1 − χ(E + E′) = (1 − χ(E)) + (1 − χ(E′))χ(E),

1 − χ(−E) = (1 − χ(E))(−χ(−E)).

Together with Lemma 4.3.1, this implies that for any basis E1, . . . , Es of K0 and
any open U ⊆ X , the ideal Γ(U, I) is generated by 1− χ(Ei), where 1 ≤ i ≤ s.

Lemma 4.3.3. Situation as in Construction 4.2.1. If f ∈ Γ(U,S) is Cl(X)-
homogeneous of degree [D] for some D ∈ K, then there is a K-homogeneous f ′ ∈
Γ(U,S) of degree D with f − f ′ ∈ Γ(U, I).
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Proof. Writing the Cl(X)-homogeneous f as a sum of K-homogeneous func-
tions fD′ , we obtain the assertion by means of the following trick:

f =
∑

D′∈D+K0

fD′ =
∑

D′∈D+K0

χ(D′ −D)fD′ +
∑

D′∈D+K0

(1− χ(D′ −D))fD′ .

�

Lemma 4.3.4. Situation as in Construction 4.2.1. Then, for every D ∈ K, we
have an isomorphism of sheaves π|SD

: SD →R[D].

Proof. Lemma 4.3.1 shows that the homomorphism π|SD
is stalkwise injective

and from Lemma 4.3.3 we infer that it is stalkwise surjective. �

Lemma 4.3.5. Situation as in Construction 4.2.1. Then, for every open subset
U ⊆ X, we have a canonical isomorphism

Γ(U,S)/Γ(U, I) ∼= Γ(U,S/I).

Proof. The canonical map ψ : Γ(U,S)/Γ(U, I) → Γ(U,S/I) is injective. In
order to see that it is as well surjective, let h ∈ Γ(U,S/I) be given. Then there are
a covering of U by open subsets Ui and sections gi ∈ Γ(Ui,S) such that h|Ui

= ψ(gi)
holds and gj − gi belongs to Γ(Ui ∩Uj, I). Consider the Cl(X)-homogeneous parts
gi,[D] ∈ Γ(Ui,S[D]) of gi. By Lemma 4.3.1, the ideal sheaf I is homogeneous and
thus also gj,[D] − gi,[D] belongs to Γ(Ui ∩ Uj , I). Moreover, Lemma 4.3.3 provides
K-homogeneous fi,D with fi,D − gi,[D] in Γ(Ui, I). The differences fj,D − fi,D lie
in Γ(Ui ∩ Uj, I) and hence, by Lemma 4.3.1, vanish. Thus, the fi,D fit together
to K-homogeneous sections fD ∈ Γ(U,S). By construction, f =

∑
fD satisfies

ψ(f) = h. �

Proof of Proposition 4.2.2. In a first step, we reduce to Cox sheaves aris-
ing from finitely generated subgroups of WDiv(X). So, let K ⊆ WDiv(X) and
χ : K0 → K(X)∗ be any data as in 4.2.1. Choose a finitely generated subgroup
K1 ⊆ K projecting onto Cl(X). Restricting χ gives a character χ1 : K0

1 → K(X)∗.
The inclusion K1 → K defines an injection S1 → S sending the ideal I1 defined by
χ1 to the ideal I defined by χ. This gives a Cl(X)-graded injection R1 →R of the
Cox sheaves associated to K1, χ1 and K,χ respectively. Lemma 4.3.3 shows that
every Cl(X)-homogeneous section of R can be represented by a K1-homogeneous
section of S. Thus, R1 →R is also surjective.

Next we show that for a fixed finitely generated K ⊆WDiv(X), any two char-
acters χ, χ′ : K0 → K(X)∗ as in 4.2.1 give rise to isomorphic Cox sheaves R′ and R.
For this note that the product χ−1χ′ sends K0 to Γ(X,O∗). Using Γ(X,O∗) = K∗,
we may extend χ−1χ′ to a homomorphism ϑ : K → Γ(X,O∗) and obtain a graded
automorphism (α, id) of S by

αD : SD → SD, f 7→ ϑ(D)f.

By construction, this automorphism sends the ideal I ′ to the ideal I and induces a
graded isomorphism from S/I ′ onto S/I.

Now consider two finitely generated subgroupsK,K ′ ⊆WDiv(X) both project-
ing onto Cl(X). Then we find a homomorphism α̃ : K → K ′ such that the following
diagram is commutative

K
eα //

""E
EE

EE
EEE

K ′

||xxx
xxx

xx

Cl(X)
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This homomorphism α̃ : K → K ′ must be of the form α̃(D) = D−div(η(D)) with a
homomorphism η : K → K(X)∗. Choose a character χ′ : K ′0 → K(X)∗ as in 4.2.1.
Then, for D ∈ K0, we have

D − div(η(D)) = α̃(D) = div(χ′(α̃(D))).

Thus, D equals the divisor of the function χ(D) := χ′(α̃(D))η(D). This defines a
character χ : K0 → K(X)∗. Altogether, we obtain a morphism (α, α̃) of the sheaves
of divisorial algebras S and S′ associated to K and K ′ by

αD : SD → S′
eα(D), f 7→ η(D)f.

By construction, it sends the ideal I defined by χ to the ideal I ′ defined by χ′. Using
Lemma 4.3.4, we see that the induced homomorphism R → R′ is an isomorphism
on the homogeneous components and thus it is an isomorphism. �

4.4. Examples. For a normal prevariety X with a free finitely generated di-
visor class group, we obtained in Proposition 4.1.5 that the Cox ring is a unique
factorization domain having Γ(X,O∗) as its units. Here we provide two examples
showing that these statements need not hold any more if there is torsion in the
divisor class group. As usual, K is an algebraically closed field of characteristic
zero.

Example 4.4.1 (An affine surface with non-factorial Cox ring). Consider the
smooth affine surface

Z := V (K3;T 2
1 − T2T3 − 1).

We claim that Γ(Z,O∗) = K∗ and Cl(Z) ∼= Z hold. To see this, consider fi := Ti|Z
and the prime divisors

D+ := V (Z; f1 − 1, f2) = {1} × {0} ×K,

D− := V (Z; f1 + 1, f2) = {−1} × {0} ×K.

Then we have div(f2) = D+ +D−. In particular, D+ is linearly equivalent to −D−.
Moreover, we have

Z \ Supp(div(f2)) = Zf2
∼= K∗ ×K.

This gives Γ(Z,O)∗ = K∗, and shows that Cl(Z) is generated by the class [D+]. Now
suppose that n[D+] = 0 holds for some n > 0. Then we have nD+ = div(f) with
f ∈ Γ(Z,O) and fn2 = fh holds with some h ∈ Γ(Z,O) satisfying div(h) = nD−.
Look at the Z-grading of Γ(Z,O) given by

deg(f1) = 0, deg(f2) = 1, deg(f3) = −1.

Any element of positive degree is a multiple of f2. It follows that in the decompo-
sition fn2 = fh one of the factors f or h must be a multiple of f2, a contradiction.
This shows that Cl(Z) is freely generated by [D+].

Now consider the involution Z → Z sending z to −z and let π : Z → X de-
note the quotient of the corresponding free Z/2Z-action. We claim that Cl(X) is
isomorphic to Z/2Z and is generated by the class of D := π(D+). Indeed, the subset

X \ Supp(D) = π(Zf2)
∼= K∗ ×K

is factorial and 2D equals div(f2
2 ). Moreover, the divisor D is not principal, because

π∗(D) = D++D− is not the divisor of a Z/2Z-invariant function on Z. This verifies
our claim. Moreover, we have Γ(X,O∗) = K∗.

In order to determine the Cox ring of X , take K = ZD ⊆ WDiv(X), and
let S denote the associated sheaf of divisorial algebras. Then, as Γ(X,S0)-modules,
Γ(X,SD) and Γ(X,S−D) are generated by the sections

a1 := 1, a2 := f1f
−1
2 , a3 := f−1

2 f3 ∈ Γ(X,SD),



4. COX SHEAVES AND COX RINGS 33

b1 := f1f2, b2 := f2
2 , b3 := f2f3 ∈ Γ(X,S−D).

Thus, using the fact that f±2
2 define invertible elements of degree ∓2D, we see that

a1, a2, a3, b1, b2, b3 generate the algebra Γ(X,S). Now, take the character χ : K0 →
K(X)∗ sending 2nD to f2n

2 . Then, by Remark 4.3.2, the associated ideal Γ(X, I)
is generated by 1− f2

2 . The generators of the factor algebra Γ(X,S) /Γ(X, I) are

Z1 = a2 + I = b1 + I, Z2 = a1 + I = b2 + I, Z3 = a3 + I = b3 + I.

The defining relation is Z2
1 − Z2Z3 = 1. Thus the Cox ring R(X) is isomorphic to

Γ(Z,O). In particular, it is not a factorial ring.

Example 4.4.2 (A surface with only constant invertible functions but non-con-
stant invertible elements in the Cox ring). Consider the affine surface

X := V (K3; T1T2T3 − T
2
1 − T

2
2 − T

2
3 + 4).

This is the quotient space of the torus T2 := (K∗)2 with respect to the Z/2Z-action
defined by the involution t 7→ t−1; the quotient map is explicitly given as

π : T2 → X, t 7→ (t1 + t−1
1 , t2 + t−1

2 , t1t2 + t−1
1 t−1

2 ).

Since every Z/2Z-invariant invertible function on T2 is constant, we have
Γ(X,O∗) = K∗. Moreover, using [96, Proposition 5.1], one verifies

Cl(X) ∼= Z/2Z⊕ Z/2Z⊕ Z/2Z, Pic(X) = 0.

Let us see that the Cox ring R(X) has non-constant invertible elements. Set
fi := Ti|X and consider the divisors

D± := V (X ; f1 ± 2, f2 ± f3), D := D+ +D−.

Then, using the relations (f1±2)(f2f3−f1±2) = (f2±f3)
2, one verifies div(f1±2) =

2D±. Consequently, we obtain

2D = div(f2
1 − 4).

Moreover, D is not principal, because otherwise f2
1 − 4 must be a square and hence

also π∗(f2
1 − 4) is a square, which is impossible due to

π∗(f2
1 − 4) = t21 + t−2

1 − 4 = (t1 + t−1
1 + 2)(t1 + t−1

1 − 2).

Now choose Weil divisors Di on X such that D,D2, D3 form a basis for a group
K ⊆WDiv(X) projecting onto Cl(X), and let S be the associated sheaf of divisorial
algebras. As usual, let K0 ⊆ K be the subgroup consisting of principal divisors and
fix a character χ : K0 → K(X)∗ with χ(2D) = f2

1 − 4. By Remark 4.3.2, the
associated ideal Γ(X, I) in Γ(X,S) is generated by

1− χ(2D), 1− χ(2D2), 1− χ(2D3),

where χ(2D) = f2
1 − 4 lives in Γ(X,S−2D). Now consider f1 ∈ Γ(X,S0) and the

canonical section 1D ∈ Γ(X,SD). Then we have

(f1 + 1D)(f1 − 1D) = f2
1 − 12

D = 4− 12
D · (1− χ(2D)) ∈ K∗ + Γ(X, I).

Consequently, the section f1 + 1D ∈ Γ(X,S) defines a unit in Γ(X,R). Note that
f1 + 1D is not Cl(X)-homogeneous.
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5. Algebraic properties of the Cox ring

5.1. Integrity and Normality. As before, we work over an algebraically
closed field K of characteristic zero. The following statement ensures in particular
that the Cox ring is always a normal integral ring.

Theorem 5.1.1. Let X be a normal prevariety with only constant invertible
functions, finitely generated divisor class group, and Cox sheaf R. Then, for every
open U ⊆ X, the ring Γ(U,R) is integral and normal.

The proof is based on the geometric construction 5.1.4 which is also used later
and therefore occurs separately. We begin with two preparing observations.

Lemma 5.1.2. Situation as in Construction 4.2.1. For any two open subsets
V ⊆ U ⊆ X such that U \ V is of codimension at least two in U , one has the
restriction isomorphism

Γ(U,R) → Γ(V,R).

In particular, the algebra Γ(U,R) equals the algebra Γ(Ureg,R), where Ureg ⊆ U
denotes the set of smooth points.

Proof. According to Remark 3.1.3, the restriction Γ(U,S)→ Γ(V,S) is an iso-
morphism. Lemma 4.3.1 ensures that Γ(U, I) is mapped isomorphically onto Γ(V, I)
under this isomorphism. By Lemma 4.3.5, we have Γ(U,R) = Γ(U,S)/Γ(U, I) and
Γ(V,R) = Γ(V,S)/Γ(V, I), which gives the assertion. �

Lemma 5.1.3. Situation as in Construction 4.2.1. Then for every open U ⊆ X,
the ideal Γ(U, I) ⊆ Γ(U,S) is radical.

Proof. By Lemma 4.3.5, the ideal Γ(U, I) is radical if and only if the algebra
Γ(U,R) has no nilpotent elements. Proposition 4.2.2 thus allows us to assume that
S arises from a finitely generated group K. Moreover, by Remark 3.1.3, we may
assume that X is smooth and it suffices to verify the assertion for affine U ⊆ X .

We consider Ũ = Spec Γ(U,S) and the zero set Û ⊆ Ũ of Γ(U, I). Note that Û is

invariant under the action of the quasitorus HX = Spec K[Cl(X)] on Ũ given by
the Cl(X)-grading.

Now, let f ∈ Γ(U,S) with fn ∈ Γ(U, I) for some n > 0. Then f and thus also

every Cl(X)-homogeneous component f[D] of f vanishes along Û . Consequently,
fm[D] ∈ Γ(U, I) holds for some m > 0. By Lemma 4.3.3, we may write f[D] = fD + g

with fD ∈ Γ(U,SD) and g ∈ Γ(U, I). We obtain fmD ∈ Γ(U, I). By Lemma 4.3.1,
this implies fmD = 0 and thus fD = 0, which in turn gives f[D] ∈ Γ(U, I) and hence
f ∈ Γ(U, I). �

Construction 5.1.4. Situation as in Construction 4.2.1. Assume that K ⊆
WDiv(X) is finitely generated and X is smooth. Consider X̃ := SpecX S with the

action of the torus H := Spec K[K] and the geometric quotient p : X̃ → X as in

Construction 3.2.4. Then, with X̂ := V (I) and HX := Spec K[Cl(X)], we have a
commutative diagram

X̂ //

/HXqX

��

X̃

/Hp

��
X X

The prevariety X̂ is smooth, and, if X is of affine intersection, then it is quasiaffine.

The quasitorus HX ⊆ H acts freely on X̂ and qX : X̂ → X is a geometric quotient
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for this action; in particular, it is an étale HX -principal bundle. Moreover, we have
a canonical isomorphism of sheaves

R ∼= (qX)∗(O bX).

Proof. With the restriction qX : X̂ → X of p : X̃ → X we obviously obtain
a commutative diagram as above. Moreover, Lemma 5.1.3 gives us R ∼= q∗(O bX).

Since the ideal I is Cl(X)-homogeneous, the quasitorusHX ⊆ H leaves X̂ invariant.

Moreover, we see that qX : X̂ → X is a good quotient for this action, because we
have the canonical isomorphisms

(qX)∗(O bX)0 ∼= R0
∼= OX ∼= S0

∼= p∗(O eX)0.

Freeness of the HX -action on X̂ is due to the fact that HX acts as a subgroup of

the freely acting H , see Remark 3.2.7. As a consequence, we see that qX : X̂ → X
is a geometric quotient. Luna’s Slice Theorem [105] gives commutative diagrams

HX × S //

prS

��

q−1
X (U) ⊆

qX

��

X̂

qX

��
S // U ⊆ X

where U ⊆ X are open sets covering X and the horizontal arrows are étale mor-
phisms. By [111, Proposition I.3.17], étale morphisms preserve smoothness and

thus X̂ inherits smoothness from X . If X is of affine intersection, then X̃ is quasi-

affine, see Corollary 3.4.6, and thus X̂ is quasiaffine. �

Lemma 5.1.5. Let L be a field of characteristic zero containing all roots of
unity, and assume that a ∈ L is not a proper power. Then, for any n ∈ Z≥1, the
polynomial 1− atn is irreducible in L[t, t−1].

Proof. Over the algebraic closure of L we have 1−atn = (1−a1t) · · · (1−ant),
where ani = a and any two ai differ by a n-th root of unity. If 1 − atn would split
over L non-trivially into h1(t)h2(t), then ak1 must be contained in L for some k < n.
But then also ad1 lies in L for the greatest common divisor d of n and k. Thus a is
a proper power, a contradiction. �

Proof of Theorem 5.1.1. According to Proposition 4.2.2 and Lemma 5.1.2,
we may assume that we are in the setting of Construction 5.1.4, where it suffices

to prove that X̂ is irreducible. Since qX : X̂ → X is surjective, some irreducible

component X̂1 ⊆ X̂ dominates X . We verify that X̂1 equals X̂ by checking that
q−1
X (U) is irreducible for suitable open neighbourhoods U ⊆ X covering X .

Let D1, . . . , Ds be a basis of K such that n1D1, . . . , nkDk, where 1 ≤ k ≤ s, is
a basis of K0. Enlarging K, if necessary, we may assume that the Di are primitive,
i.e., no proper multiples. We take subsets U ⊆ X such that on U every Di is
principal, say Di = div(fi). Then, with deg(Ti) := Di, Remark 3.1.4 provides a
K-graded isomorphism

Γ(U,O)⊗K K[T±1
1 , . . . , T±1

s ] → Γ(U,S), g ⊗ T ν11 · · ·T
νs
s 7→ gf−ν11 · · · f−νs

s .

In particular, this identifies p−1(U) with U × Ts, where Ts := (K∗)s. According to
Remark 4.3.2, the ideal Γ(U, I) is generated by 1−χ(niDi), where 1 ≤ i ≤ k. Thus
q−1
X (U) is given in U × Ts by the equations

1− χ(niDi)f
ni

i T ni

i = 0, 1 ≤ i ≤ k.



36 I. BASIC CONCEPTS

To obtain irreducibility of q−1
X (U), it suffices to show that each 1− χ(niDi)f

ni

i T ni

i

is irreducible in K(X)[T±1
i ]. With respect to the variable Si := fiTi, this means to

verify irreducibility of

1 − χ(niDi)S
ni

i ∈ K(X)[S±1
i ].

In view of Lemma 5.1.5, we have to show that χ(niDi) is not a proper power
in K(X). Assume the contrary. Then we obtain niDi = kidiv(hi) with some
hi ∈ K(X). Since Di is primitive, ki divides ni and thus, ni/kiDi is principal. A
contradiction to the choice of ni.

The fact that each ring Γ(U,R) is normal follows directly from the fact that it

is the ring of functions of an open subset of the smooth prevariety X̂. �

5.2. Localization and units. We treat localization by homogeneous elements
and consider the units of the Cox ring R(X) of a normal prevariety X defined over
an algebraically closed field K of characteristic zero. The main tool is the divisor
of a homogeneous element of R(X), which we first define precisely.

In the setting of Construction 4.2.1, consider a divisor D ∈ K and a non-zero
element f ∈ R[D](X). According to Lemma 4.3.3, there is a (unique) element

f̃ ∈ Γ(X,SD) with π(f̃) = f , where π : S → R denotes the projection. We define
the [D]-divisor of f to be the effective Weil divisor

div[D](f) := divD(f̃) = div(f̃) +D ∈ WDiv(X).

Lemma 5.2.1. The [D]-divisor depends neither on representative D ∈ K nor
on the choices made in 4.2.1. Moreover, the following holds.

(i) For every effective E ∈WDiv(X) there are [D] ∈ Cl(X) and f ∈ R[D](X)
with E = div[D](f).

(ii) Let [D] ∈ Cl(X) and 0 6= f ∈ R[D](X). Then div[D](f) = 0 implies
[D] = 0 in Cl(X).

(iii) For any two non-zero homogeneous elements f ∈ R[D1](X) and g ∈
R[D2](X), we have

div[D1]+[D2](fg) = div[D1](f) + div[D2](g).

Proof. Let f ∈ R[D](X), consider any two isomorphisms ϕi : OX(Di)→R[D]

and let f̃i be the sections with ϕi(f̃i) = f . Then ϕ−1
2 ◦ ϕ1 is multiplication with

some h ∈ K(X)∗ satisfying div(h) = D1 −D2. Well-definedness of the [D]-divisor
thus follows from

divD1(f̃1) = div(hf̃1) +D2 = divD2(f̃2).

If div[D](f) = 0 holds as in (ii), then, for a representative f̃ ∈ Γ(X,OX(D)) of

f ∈ R[D](X), we have divD(f̃) = 0 and hence D is principal. Observations (i)
and (iii) are obvious. �

For every non-zero homogeneous element f ∈ R[D](X), we define the [D]-
localization of X by f to be the open subset

X[D],f := X \ Supp(div[D](f)) ⊆ X.

Proposition 5.2.2. Let X be a normal prevariety with only constant invertible
functions, finitely generated divisor class group and Cox ring R(X). Then, for every
non-zero homogeneous f ∈ R[D](X), we have a canonical isomorphism

Γ(X[D],f ,R) ∼= Γ(X,R)f .
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Proof. Let the divisor D ∈ K represent [D] ∈ Cl(X) and consider the section

f̃ ∈ Γ(X,SD) with π(f̃ ) = f . According to Remark 3.1.6, we have

Γ(XD, ef ,S) ∼= Γ(X,S) ef .

The assertion thus follows from Lemma 4.3.5 and the fact that localization is com-
patible with passing to the factor ring. �

We turn to the units of the Cox ring R(X); the following result says in partic-
ular, that for a complete normal variety X they are all constant.

Proposition 5.2.3. Let X be a normal prevariety with only constant invertible
functions, finitely generated divisor class group and Cox ring R(X).

(i) Every homogeneous invertible element of R(X) is constant.
(ii) If Γ(X,O) = K holds, then every invertible element of R(X) is constant.

Proof. For (i), let f ∈ R(X)∗ be homogeneous of degree [D]. Then its inverse
g ∈ R(X)∗ is homogeneous of degree −[D], and fg = 1 lies in R(X)∗0 = K∗. By
Lemma 5.2.1 (iii), we have

0 = div0(fg) = div[D](f) + div[−D](g).

Since the divisors div[D](f) and div[−D](g) are effective, they both vanish. Thus,
Lemma 5.2.1 (ii) yields [D] = 0. This implies f ∈ R(X)∗0 = K∗ as wanted.

For (ii), we have to show that any invertible f ∈ R(X) is of degree zero. Choose
a decomposition Cl(X) = K0⊕Kt into a free part and the torsion part, and consider
the coarsified grading

R(X) =
⊕

w∈K0

Rw, Rw :=
⊕

u∈Kt

R(X)w+u.

Then, as any invertible element of the K0-graded integral ring R(X), also f is
necessarily K0-homogeneous of some degree w ∈ K0. Decomposing f and f−1 into
Cl(X)-homogeneous parts we get representations

f =
∑

u∈Kt

fw+u, f−1 =
∑

u∈Kt

f−1
−w+u.

Because of ff−1 = 1, we have fw+vf
−1
−w−v 6= 0 for at least one v ∈ Kt. Since

Γ(X,O) = K holds, fw+vf
−1
−w−v must be a non-zero constant. Using Lemma 5.2.1

we conclude w + v = 0 as before. In particular, w = 0 holds and thus each fw+u

has a torsion degree. For a suitable power fnw+u we have ndivw+u(fw+u) = 0, which
implies fw+u = 0 for any u 6= 0. �

Remark 5.2.4. The affine surface X treated in Example 4.4.2 shows that re-
quiring Γ(X,O∗) = K∗ is in general not enough in order to ensure that all units of
the Cox ring are constant.

5.3. Divisibility properties. For normal prevarieties X with a free finitely
generated divisor class group, we saw that the Cox ring admits unique factorization.
If we have torsion in the divisor class group this does not need to hold any more.
However, restricting to homogeneous elements leads to a framework for a reasonable
divisibility theory; the precise notions are the following.

Definition 5.3.1. Consider an abelian group K and a K-graded integral K-
algebra R =

⊕
w∈K Rw.

(i) A non-zero non-unit f ∈ R is K-prime if it is homogeneous and f |gh
with homogeneous g, h ∈ R implies f |g or f |h.

(ii) We say that R is factorially graded if every homogeneous non-zero non-
unit f ∈ R is a product of K-primes.
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(iii) An ideal a ⊳R is K-prime if it is homogeneous and for any two homoge-
neous f, g ∈ R with fg ∈ a one has either f ∈ a or g ∈ a.

(iv) A K-prime ideal a ⊳R has K-height d if d is maximal admitting a chain
a0 ⊂ a1 ⊂ . . . ⊂ ad = a of K-prime ideals.

Let us look at these concepts also from the geometric point of view. Consider
a prevariety Y with an action of an algebraic group H . Then H acts also on the
group WDiv(Y ) of Weil divisors via

h ·
∑

aDD :=
∑

aD(h·D).

By an H-prime divisor we mean a non-zero sum
∑
aDD with prime divisors D such

that aD ∈ {0, 1} always holds and the D with aD = 1 are transitively permuted
by H . Note that every H-invariant divisor is a unique sum of H-prime divisors.
We say that Y is H-factorial if every H-invariant Weil divisor on Y is principal.

Proposition 5.3.2. Let H = Spec K[K] be a quasitorus and W an irreducible
normal quasiaffine H-variety. Consider the K-graded algebra R := Γ(W,O) and
assume R∗ = K∗. Then the following statements are equivalent.

(i) Every K-prime ideal of K-height one in R is principal.
(ii) The variety W is H-factorial.
(iii) The ring R is factorially graded.

Moreover, if one of these statements holds, then a homogeneous non-zero non-unit
f ∈ R is K-prime if and only if the divisor div(f) is H-prime, and every H-prime
divisor is of the form div(f) with a K-prime f ∈ R.

Proof. Assume that (i) holds and let D be an H-invariant Weil divisor on W .
Write D = D1 + . . .+Dr with H-prime divisors Di. Then the vanishing ideal ai of
Di is of K-height one, and (i) guarantees that it is principal, say ai = 〈fi〉. Thus
Di = div(fi) and D = div(f1 · · · fr) hold, which proves (ii).

Assume that (ii) holds. Given a homogeneous element 0 6= f ∈ R \ R∗, write
div(f) = D1 + . . .+Dr with H-prime divisors Di. Then Di = div(fi) holds, where,
because of R∗ = K∗, the elements fi are homogeneous. One verifies directly that
the fi are K-prime. Thus we have f = αf1 · · · fr with α ∈ K∗ as required in (iii).

If (iii) holds and a is a K-prime ideal of K-height one, then we take any ho-
mogeneous 0 6= f ∈ a and find a K-prime factor f1 of f with f1 ∈ a. This gives
inclusions 0 ( 〈f1〉 ⊆ a of K-prime ideals, which implies a = 〈f1〉. �

Corollary 5.3.3. Under the assumptions of Proposition 5.3.2, factoriality of
the algebra R implies that it is factorially graded.

We are ready to study the divisibility theory of the Cox ring. Here comes the
main result; it applies in particular to complete varieties, see Corollary 5.3.8.

Theorem 5.3.4. Let X be an irreducible normal prevariety of affine intersection
with only constant invertible functions and finitely generated divisor class group. If
the Cox ring R(X) satisfies R(X)∗ = K∗, then it is factorially graded.

Lemma 5.3.5. In the situation of Construction 5.1.4, every non-zero element
f ∈ Γ(X,R[D]) satisfies

div(f) = q∗X(div[D](f)),

where on the left hand side f is a regular function on X̂ and on the right hand
side f is an element on R(X).
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Proof. In the notation of 5.1.4, let D ∈ K represent [D] ∈ Cl(X), and let

f̃ ∈ Γ(X,SD) project to f ∈ Γ(X,R[D]). The commutative diagram of 5.1.4 yields

div(f) = ı∗(div(f̃)) = ı∗(p∗(divD(f̃))) = q∗X(div[D](f)),

where ı : X̂ → X̃ denotes the inclusion and the equality div(f̃) = p∗(divD(f̃)) was
established in Lemma 3.3.2. �

Lemma 5.3.6. In the situation of Construction 5.1.4, the prevariety X̂ is irre-
ducible, smooth and H-factorial.

Proof. As remarked in Construction 5.1.4, the prevariety X̂ is smooth and

due to Proposition 5.1.1, it is irreducible. Let D̂ be an invariant Weil divisor on X̂.

Using, for example, the fact that qX : X̂ → X is an étale principal bundle, we see

that D̂ = q∗X(D) holds with a Weil divisor D on X . Thus, we have to show that
all pullback divisors q∗X(D) are principal. For this, it suffices to consider effective
divisors D on X , and these are treated by Lemmas 5.2.1 and 5.3.5. �

Proof of Theorem 5.3.4. According to Lemma 5.1.2, we may assume that
X is smooth. Then R(X) is the algebra of regular functions of the quasiaffine

variety X̂ constructed in 5.1.4. Lemma 5.3.6 tells us that X̂ is irreducible, smooth
and H-factorial. Thus, Proposition 5.3.2 gives the assertion. �

Corollary 5.3.7. Let X be a normal prevariety of affine intersection with
Γ(X,O) = K and finitely generated divisor class group. Then the Cox ring R(X)
is factorially graded.

Proof. According to Proposition 5.2.3, the assumption Γ(X,O) = K ensures
R(X)∗ = K∗. Thus Theorem 5.3.4 applies. �

Corollary 5.3.8. Let X be a complete normal variety with finitely generated
divisor class group. Then the Cox ring R(X) is factorially graded.

As in the torsion free case, see Proposition 3.3.4, divisibility and primality of
homogeneous elements in the Cox ring R(X) can be characterized in terms of X .

Proposition 5.3.9. Let X be a normal prevariety of affine intersection with
only constant invertible functions and finitely generated divisor class group. Suppose
that the Cox ring R(X) satisfies R(X)∗ = K∗.

(i) An element 0 6= f ∈ Γ(X,R[D]) divides 0 6= g ∈ Γ(X,R[E]) if and only if
div[D](f) ≤ div[E](g) holds.

(ii) An element 0 6= f ∈ Γ(X,R[D]) is Cl(X)-prime if and only if the divisor
div[D](f) ∈WDiv(X) is prime.

Proof. According to Lemma 5.1.2, we may assume that X is smooth. Then
Construction 5.1.4 presents X as the geometric quotient of the smooth quasiaffine

HX -variety X̂, which has R(X) as its algebra of regular functions. The first state-
ment follows immediately from Lemma 5.3.5 and, for the second one, we additionally
use Proposition 5.3.2. �

Remark 5.3.10. Let X be a prevariety of affine intersection with only constant
invertible functions, finitely generated divisor class group and a Cox ringR(X) with
only constant invertible elements. Then the assignement f 7→ div[D](f) induces an
isomorphism from the multiplicative semigroup of homogeneous elements of R(X)
modulo units onto the semigroup WDiv+(X) of effective Weil divisors on X . The
fact that R(X) is factorially graded reflects the fact that every effective Weil divisor
is a unique non-negative linear combination of prime divisors.
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Remark 5.3.11. For the affine surface X considered in Example 4.4.1, the Cox
ring R(X) is factorially Z/2Z-graded but it is not a factorial ring.

6. Geometric realization of the Cox sheaf

6.1. Characteristic spaces. We study the geometric realization of a Cox
sheaf, its relative spectrum, which we call a characteristic space. For locally fac-
torial varieties, e.g. smooth ones, this concept coincides with the universal torsor
introduced by Colliot-Thélène and Sansuc in [53], see also [56] and [144]. As soon
as we have non-factorial singularities, the characteristic space is not any more a
torsor, i.e. a principal bundle, as we will see later. As before, we work with normal
prevarieties defined over an algebraically closed field of characteristic zero. First we
provide two statements on local finite generation of Cox sheaves.

Proposition 6.1.1. Let X be a normal prevariety of affine intersection with
only constant invertible functions and finitely generated divisor class group. If the
Cox ring R(X) is finitely generated, then the Cox sheaf R is locally of finite type.

Proof. The assumption that X is of affine intersection guarantees that it is
covered by open affine subsets X[D],f , where [D] ∈ Cl(X) and f ∈ R[D](X). By
Proposition 5.2.2, we have Γ(X[D],f ,R) = R(X)f , which gives the assertion. �

Proposition 6.1.2. Let X be a normal prevariety with only constant invertible
functions and finitely generated divisor class group. If X is Q-factorial, then any
Cox sheaf R is locally of finite type.

Proof. By definition, the Cox sheaf R is the quotient of a sheaf of divisorial
algebras S by some ideal sheaf I. According to Proposition 4.2.2, we may assume
that S arises from a finitely generated subgroup K ⊆WDiv(X). Proposition 3.2.3
then tells us that S is locally of finite type, and Lemma 4.3.5 ensures that the
quotient R = S/I can be taken at the level of sections. �

We turn to the relative spectrum of a Cox sheaf. The following generalizes
Construction 5.1.4, where the smooth case is considered.

Construction 6.1.3. Let X be a normal prevariety with Γ(X,O∗) = K∗ and
finitely generated divisor class group, and let R be a Cox sheaf. Suppose that R
is locally of finite type, e.g., X is Q-factorial or R(X) is finitely generated. Taking
the relative spectrum gives an irreducible normal prevariety

X̂ := SpecX(R).

The Cl(X)-grading of the sheaf R defines an action of the diagonalizable group

HX := Spec K[Cl(X)] on X̂, the canonical morphism qX : X̂ → X is a good quotient
for this action, and we have an isomorphism of sheaves

R ∼= (qX)∗(O bX).

We call qX : X̂ → X the characteristic space associated to R, and HX the charac-
teristic quasitorus of X .

Proof. Everything is standard except irreducibility and normality, which fol-
low from Theorem 5.1.1. �

The Cox sheaf R was defined as the quotient of a sheaf S of divisorial algebras
by a sheaf I of ideals. Geometrically this means that the characteristic space comes
embedded into the relative spectrum of a sheaf of divisorial algebras; compare 5.1.4
for the case of a smooth X . Before making this precise in the general case, we have
to relate local finite generation of the sheaves R and S to each other.
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Proposition 6.1.4. Let X be a normal prevariety with only constant invertible
functions, finitely generated divisor class group and Cox sheaf R. Moreover, let S
be the sheaf of divisorial algebras associated to a finitely generated subgroup K ⊆
WDiv(X) projecting onto Cl(X) and U ⊆ X an open affine subset. Then the algebra
Γ(U,R) is finitely generated if and only if the algebra Γ(U,S) is finitely generated.

Proof. Lemma 4.3.5 tells us that Γ(U,R) is a factor algebra of Γ(U,S).
Thus, if Γ(U,S) is finitely generated then the same holds for Γ(U,R). Moreover,
Lemma 4.3.4 says that the projection Γ(U,S)→ Γ(U,R) defines isomorphisms along
the homogeneous components. Thus, Proposition 1.2.6 shows that finite generation
of Γ(U,R) implies finite generation of Γ(U,S). �

Construction 6.1.5. Let X be a normal prevariety with Γ(X,O∗) = K∗

and finitely generated divisor class group, and let K ⊆ WDiv(X) be a finitely
generated subgroup projecting onto Cl(X). Consider the sheaf of divisorial algebras
S associated to K and the Cox sheaf R = S/I as constructed in 4.2.1, and suppose
that one of these sheaves is locally of finite type. Then the projection S → R of
OX -algebras defines a commutative diagram

X̂
ı //

qX
��@

@@
@@

@@
X̃

p
��~~

~~
~~

~

X

for the relative spectra X̂ = SpecXR and X̃ = SpecXS. We have the actions of

HX = Spec K[Cl(X)] on X̂ and H = Spec K[K] on X̃. The map ı : X̂ → X̃ is a

closed embedding and it is HX -invariant, where HX acts on X̃ via the inclusion

HX ⊆ H defined by the projection K → Cl(X). The image ı(X̂) ⊆ X̃ is precisely
the zero set of the ideal sheaf I.

Proposition 6.1.6. Situation as in Construction 6.1.3.

(i) The inverse image q−1
X (Xreg) ⊆ X̂ of the set of smooth points Xreg ⊆ X

is smooth, the group HX acts freely on q−1
X (Xreg) and the restriction

qX : q−1
X (Xreg)→ Xreg is an étale HX-principal bundle.

(ii) For any closed A ⊆ X of codimension at least two, q−1
X (A) ⊆ X̂ is as well

of codimension at least two.

(iii) The prevariety X̂ is HX-factorial.

(iv) If X is of affine intersection, then X̂ is a quasiaffine variety.

Proof. For (i), we refer to the proof of Construction 5.1.4. To obtain (ii)

consider an affine open set U ⊆ X and Û := q−1
X (U). By Lemma 5.1.2, the open set

Û \ q−1
X (A) has the same regular functions as Û . Since X̂ is normal, we conclude

that Û ∩q−1
X (A) is of codimension at least two in Û . Now, cover X by affine U ⊆ X

and Assertion (ii) follows. We turn to (iii). According to (ii) we may assume that
X is smooth. In this case, the statement was proven in Lemma 5.3.6. We show (iv).
We may assume that we are in the setting of Construction 6.1.5. Corollary 3.4.6

then ensures that X̃ is quasiaffine and Construction 6.1.5 gives that X̂ is a closed

subvariety of X̃. �

The following statement relates the divisor of a [D]-homogeneous function on X̂
to its [D]-divisor on X ; the smooth case was settled in Lemma 5.3.5.
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Proposition 6.1.7. In the situation of 6.1.3, consider the pullback homomor-

phism q∗X : WDiv(X) → WDiv(X̂) defined in 3.4.1. Then, for every [D] ∈ Cl(X)
and every f ∈ Γ(X,R[D]), we have

div(f) = q∗X(div[D](f)),

where on the left hand side f is a function on X̂, and on the right hand side a
function on X. If X is of affine intersection and X \Supp(div[D](f)) is affine, then
we have moreover

Supp(div(f)) = q−1
X (Supp(div[D](f))).

Proof. We may assume that we are in the setting of Construction 6.1.5. Let

the divisor D ∈ K represent the class [D] ∈ Cl(X), and let f̃ ∈ Γ(X,SD) project
to f ∈ Γ(X,R[D]). The commutative diagram of 6.1.5 yields

div(f) = ı∗(div(f̃)) = ı∗(p∗(divD(f̃))) = q∗X(div[D](f)),

where ı : X̂ → X̃ denotes the inclusion and the equality div(f̃) = p∗(divD(f̃)) was
established in Proposition 3.4.3. Similarly, we have

Supp(div(f)) = ı−1(Supp(div(f̃)))

= ı−1(p−1(Supp(divD(f̃))))

= q−1
X (Supp(div[D](f)))

provided that X is of affine intersection and X \ Supp(div[D](f)) is affine, because

Proposition 3.4.3 then ensures Supp(div(f̃)) = p−1(Supp(divD(f̃))). �

Corollary 6.1.8. Situation as in Construction 6.1.3. Let x̂ ∈ X̂ be a point

such that HX ·x̂ ⊆ X̂ is closed, and let f ∈ Γ(X,R[D]). Then we have

f(x̂) = 0 ⇐⇒ qX(x̂) ∈ Supp(div[D](f)).

Proof. The image qX(Supp(div(f)) is contained in Supp(div[D](f)). By the
definition of the pullback and Proposition 6.1.7, the two sets coincide in Xreg.
Thus, qX(Supp(div(f)) is dense in Supp(div[D](f)). By Theorem 2.3.6, the image
qX(Supp(div(f)) is closed and thus we have

qX(Supp(div(f))) = Supp(div[D](f)).

In particular, if f(x̂) = 0 holds, then qX(x̂) lies in Supp(div[D](f)). Conversely, if
qX(x̂) belongs to Supp(div[D](f)), then some x̂′ ∈ Supp(div(f)) belongs to the fiber
of x̂. Since Hx ·x̂ is closed, Corollary 2.3.7 tells us that x̂ is contained in the orbit
closure of x̂′ and hence belongs to Supp(div(f)). �

Corollary 6.1.9. Situation as in Construction 6.1.5 and suppose that X is

of affine intersection. For x ∈ X, let x̂ ∈ q−1
X (x) such that HX ·x̂ is closed in X̂.

Then H ·x̂ is closed in X̃.

Proof. Assume that the orbit H ·x̂ is not closed in X̃. Then there is a point

x̃ ∈ p−1(x) having a closed H-orbit in X̃, and x̃ lies in the closure of H ·x̂. Since

X̃ is quasiaffine, we find a function f̃ ∈ Γ(X,SD) with f̃(x̃) = 0 but f̃(x̂) 6= 0.

Corollary 3.4.4 gives p(x̃) ∈ Supp(divD(f̃)). Since we have qX(x̂) = p(x̃), this
contradicts Corollary 6.1.8. �
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6.2. Divisor classes and isotropy groups. The aim of this subsection is
to relate local properties of a prevariety to properties of the characteristic qua-
sitorus action on its characteristic space. Again, everything takes places over an
algebraically closed field K of characteristic zero.

For a normal prevariety X and a point x ∈ X , let PDiv(X,x) ⊆ WDiv(X)
denote the subgroup of all Weil divisors, which are principal on some neighbourhood
of x. We define the local class group of X in x to be the factor group

Cl(X,x) := WDiv(X)/PDiv(X,x).

Obviously the group PDiv(X) of principal divisors is contained in PDiv(X,x).
Thus, there is a canonical epimorphism πx : Cl(X) → Cl(X,x). The Picard group
of X is the factor group of the group CDiv(X) of Cartier divisors by the subgroup
of principal divisors:

Pic(X) = CDiv(X)/PDiv(X) =
⋂

x∈X

ker(πx).

Proposition 6.2.1. Situation as in Construction 6.1.3. For x ∈ X, let x̂ ∈
q−1
X (x) be a point with closed HX-orbit. Define a submonoid

Sx := {[D] ∈ Cl(X); f(x̂) 6= 0 for some f ∈ Γ(X,R[D])} ⊆ Cl(X),

and let Clx(X) ⊆ Cl(X) denote the subgroup generated by Sx. Then the local class
groups of X and the Picard group are given by

Cl(X,x) = Cl(X)/Clx(X), Pic(X) =
⋂

x∈X

Clx(X).

Proof. First observe that Corollary 6.1.8 gives us the following description of
the monoid Sx in terms of the [D]-divisors:

Sx = {[D] ∈ Cl(X); x 6∈ div[D](f) for some f ∈ Γ(X,R[D])}

= {[D] ∈ Cl(X); D ≥ 0, x 6∈ Supp(D)},

where the latter equation is due to the fact that the [D]-divisors are precisely the
effective divisors with class [D]. The assertions thus follow from

Clx(X) = {[D] ∈ Cl(X); x 6∈ Supp(D)}

= {[D] ∈ Cl(X); D principal near x}.

�

Proposition 6.2.2. Situation as in Construction 6.1.3. Given x ∈ X, let
x̂ ∈ q−1

X (x) be a point with closed HX-orbit. Then the inclusion HX,bx ⊆ HX of the

isotropy group of x̂ ∈ X̂ is given by the epimorphism Cl(X)→ Cl(X,x) of character
groups. In particular, we have

HX,bx = Spec K[Cl(X,x)], Cl(X,x) = X(HX,bx).

Proof. Let U ⊆ X be any affine open neighbourhood of x ∈ X . Then U is of

the form X[D],f with some f ∈ Γ(X,R[D]) and Ũ := q−1
X (U) is affine. According to

Proposition 5.2.2, we have

Γ(Ũ ,O) = Γ(U,R) = Γ(X,R)f = Γ(X̂,O)f .

Corollary 6.1.8 shows that the group Clx(X) is generated by the classes [E] ∈ Cl(X)
admitting a section g ∈ Γ(U,R[E]) with g(x̂) 6= 0. In other words, Clx(X) is the

orbit group of the point x̂ ∈ Ũ . Now Proposition 2.2.8 gives the assertion. �
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A point x of a normal prevariety X is called factorial if near x every divisor is
principal. Thus, x ∈ X is factorial if and only if its local ring OX,x admits unique
factorization. Moreover, a point x ∈ X is called Q-factorial if near x for every
divisor some multiple is principal.

Corollary 6.2.3. Situation as in Construction 6.1.3.

(i) A point x ∈ X is factorial if and only if the fiber q−1
X (x) is a single

HX-orbit with trivial isotropy.
(ii) A point x ∈ X is Q-factorial if and only if the fiber q−1

X (x) is a single
HX-orbit.

Proof. The point x ∈ X is factorial if and only if Cl(X,x) is trivial, and it
is Q-factorial if and only if Cl(X,x) is finite. Thus, the statement follows from
Proposition 6.2.2 and Corollary 2.3.7. �

Corollary 6.2.4. Situation as in Construction 6.1.3.

(i) The action of HX on X̂ is free if and only if X is locally factorial.

(ii) The good quotient qX : X̂ → X is geometric if and only if X is Q-factorial.

Corollary 6.2.5. Situation as in Construction 6.1.3. Let ĤX ⊆ HX be the
subgroup generated by all isotropy groups HX,bx, where x̂ ∈ X̂. Then we have

ker
(
X(HX)→ X(ĤX)

)
=

⋂

bx∈ bX

ker
(
X(HX)→ X(HX,bx)

)

and the projection HX → HX/ĤX corresponds to the inclusion Pic(X) ⊆ Cl(X) of
character groups.

Corollary 6.2.6. Situation as in Construction 6.1.3. If the variety X̂ contains
an HX-fixed point, then the Picard group Pic(X) is trivial.

6.3. Total coordinate space and irrelevant ideal. Here we consider the
situation that the Cox ring is finitely generated. This allows us to introduce the
total coordinate space as the spectrum of the Cox ring. As always, we work over
an algebraically closed field K of characteristic zero.

Construction 6.3.1. Let X be a normal prevariety of affine intersection with
only constant invertible functions and finitely generated divisor class group. Let R
be a Cox sheaf and assume that the Cox ring R(X) is finitely generated. Then we
have a diagram

SpecXR X̂

qX

��

ı // X Spec(R(X))

X

where the canonical morphism X̂ → X is an HX -equivariant open embedding, the

complement X \ X̂ is of codimension at least two and X is an HX -factorial affine
variety. We call the HX -variety X the total coordinate space associated to R.

Proof. Cover X by affine open sets X[D],f = X \ Supp(div[D](f)), where
[D] ∈ Cl(X) and f ∈ Γ(X,R[D]). Then, according to Proposition 6.1.7, the variety

X̂ is covered by the affine sets X̂f = q−1
X (X[D],f). Note that we have

Γ(X̂f ,O) = Γ(X̂,O)f = Γ(X,O)f = Γ(Xf ,O).

Consequently, the canonical morphisms X̂f → Xf are isomorphisms. Gluing them

together gives the desired open embedding X̂ → X. �
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Definition 6.3.2. Situation as in Construction 6.3.1. The irrelevant ideal of
the prevariety X is the vanishing ideal of the complement X \ X̂ in the Cox ring:

Jirr(X) := {f ∈ R(X); f|X\ bX = 0} ⊆ R(X).

Proposition 6.3.3. Situation as in Construction 6.3.1.

(i) For any section f ∈ Γ(X,R[D]), membership in the irrelevant ideal is
characterized as follows:

f ∈ Jirr(X) ⇐⇒ Xf = X̂f ⇐⇒ X̂f is affine.

(ii) Let 0 6= f ∈ Γ(X,R[D]). If the [D]-localization X[D],f is affine, then we
have f ∈ Jirr(X).

(iii) Let 0 6= fi ∈ Γ(X,R[Di]), where 1 ≤ i ≤ r be such that the sets X[Di],fi

are affine and cover X. Then we have

Jirr(X) =
√
〈f1, . . . , fr〉.

Proof. The first equivalence in (i) is obvious and the second one follows from

the fact thatX\X̂ is of codimension at least two inX. Proposition 6.1.7 tells us that

for affineX[D],f also X̂f is affine, which gives (ii). We turn to (iii). Proposition 6.1.7

and (ii) ensure that the functions f1, . . . , fr have X \ X̂ as their common zero locus.
Thus Hilbert’s Nullstellensatz gives the assertion. �

Corollary 6.3.4. Situation as in Construction 6.3.1. Then X is affine if and

only if X̂ = X holds.

Proof. Take f = 1 in the characterization 6.3.3 (i). �

Corollary 6.3.5. Situation as in Construction 6.3.1 and assume that X is
Q-factorial. Then 0 6= f ∈ Γ(X,R[D]) belongs to Jirr(X) if and only if X[D],f is
affine. In particular, we have

Jirr(X) = linK(f ∈ Γ(X,R[D]); [D] ∈ Cl(X), X[D],f is affine).

Proof. We have to show that for any [D]-homogeneous f ∈ Jirr(X), the [D]-

localization X[D],f is affine. Note that X̂f is affine by Proposition 6.3.3 (i). The

assumption of Q-factoriality ensures that qX : X̂ → X is a geometric quotient, see

Corollary 6.2.4. In particular, all HX -orbits in X̂ are closed and thus Corollary 6.1.8

gives us X̂f = q−1
X (X[D],f ). Thus, as the good quotient space of the affine variety

X̂f , the set X[D],f is affine. �

Recall that a divisor D on a prevariety X is called ample if it admits sections
f1, . . . , fr ∈ Γ(X,OX(D)) such that the sets XD,fi are affine and cover X .

Corollary 6.3.6. Situation as in Construction 6.3.1. If [D] ∈ Cl(X) is the
class of an ample divisor, then we have

Jirr(X) =
√
〈Γ(X,R[D])〉.

6.4. Characteristic spaces via GIT. As we saw, the characteristic space

of a prevariety X of affine intersection is a quasiaffine variety X̂ with an action
of the characteristic quasitorus HX having X as a good quotient. Our aim is to
characterize this situation in terms of Geometric Invariant Theory. The crucial
notion is the following.

Definition 6.4.1. Let G be an affine algebraic group and W a G-prevariety.
We say that the G-action on W is strongly stable if there is an open invariant subset
W ′ ⊆W with the following properties:
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(i) the complement W \W ′ is of codimension at least two in W ,
(ii) the group G acts freely, i.e. with trivial isotropy groups, on W ′,
(iii) for every x ∈ W ′ the orbit G·x is closed in W .

Remark 6.4.2. Let X be a normal prevariety as in Construction 6.1.3 and con-

sider the characteristic space qX : X̂ → X introduced there. Then Proposition 6.1.6

shows that the subset q−1
X (Xreg) ⊆ X̂ satisfies the properties of 6.4.1.

Let X and qX : X̂ → X be as in Construction 6.1.3. In the sequel, we mean by a
characteristic space for X more generally a good quotient q : X → X for an action
of a diagonalizable group H on a prevariety X such that there is an equivariant
isomorphism (µ, µ̃) making the following diagram commutative

X

q
��?

??
??

??
?

µ // X̂

qX
��~~

~~
~~

~

X

Recall that here µ : X → X̂ is an isomorphism of varieties and µ̃ : H → HX is an
isomorphism of algebraic groups such that we always have µ(h·x) = µ̃(h)·µ(x). Note
that a good quotient q : X → X of a quasiaffine H-variety is a characteristic space
if and only if we have an isomorphism of graded sheaves R → q∗(OX ), where R is
a Cox sheaf on X .

Theorem 6.4.3. Let a quasitorus H act on a normal quasiaffine variety X
with a good quotient q : X → X. Assume that Γ(X ,O∗) = K∗ holds, X is H-
factorial and the H-action is strongly stable. Then X is a normal prevariety of
affine intersection, Γ(X,O∗) = K∗ holds, Cl(X) is finitely generated, the Cox sheaf
of X is locally of finite type, and q : X → X is a characteristic space for X.

The proof will be given later in this section. First we also generalize the concept
of the total coordinate space of a prevariety X of affine intersection with finitely
generated Cox ring R(X): this is from now on any affine H-variety isomorphic to
the affine HX -variety X of Construction 6.3.1.

Corollary 6.4.4. Let Z be a normal affine variety with an action of a qua-
sitorus H. Assume that every invertible function on Z is constant, Z is H-factorial,
and there exists an open H-invariant subset W ⊆ Z with codimZ(Z \W ) ≥ 2 such
that the H-action on W is strongly stable and admits a good quotient q : W → X.
Then Z is a total coordinate space for X.

A first step in the proof of Theorem 6.4.3 is to describe the divisor class group
of the quotient space. Let us prepare the corresponding statement. Consider an
irreducible prevariety X with an action of a quasitorus H = Spec K[M ]. For any
H-invariant morphism q : X → X to an irreducible prevariety X , we have the push
forward homomorphism

q∗ : WDiv(X )H → WDiv(X)

from the invariant Weil divisors of X to the Weil divisors of X sending an H-prime
divisor D ⊆ X to the closure of its image q(D) if the latter is of codimension one
and to zero else. By a homogeneous rational function we mean an element f ∈ K(X )
that is defined on an invariant open subset of X and is homogeneous there. We
denote the multiplicative group of non-zero homogeneous rational functions on X
by E(X ) and the subset of non-zero rational functions of weight w ∈M by E(X )w .



6. GEOMETRIC REALIZATION OF THE COX SHEAF 47

Proposition 6.4.5. Let a quasitorus H = Spec K[M ] act on a normal quasi-
affine variety X with a good quotient q : X → X. Assume that Γ(X ,O∗) = K∗

holds, X is H-factorial and the H-action is strongly stable. Then X is a normal
prevariety of affine intersection and there is an epimorphism

δ : E(X ) → WDiv(X), f 7→ q∗(div(f)).

We have div(f) = q∗(q∗(div(f))) for every f ∈ E(X ). Moreover, the epimorphism
δ induces a well-defined isomorphism

M → Cl(X), w 7→ [δ(f)], with any f ∈ E(X )w .

Finally, for every f ∈ E(X )w, and every open set U ⊆ X, we have an isomorphism
of Γ(U,O)-modules

Γ(U,OX(δ(f))) → Γ(q−1(U),OX )w, g 7→ fq∗(g).

Proof. First of all note that the good quotient space X inherits normality and
the property to be of affine intersection from the normal quasiaffine variety X .

Let X ′ ⊆ X be as in Definition 6.4.1. Then, with X ′ := q(X ′), we have
q−1(X ′) = X ′. Consequently, X ′ ⊆ X is open. Moreover, X \X ′ is of codimension
at least two in X , because X \X ′ is of codimension at least two in X . Thus, we may
assume that X = X ′ holds, which means in particular that H acts freely. Then we
have homomorphisms of groups:

E(X )
f 7→div(f) // WDiv(X )H

q∗ --
mm

q∗

WDiv(X).

The homomorphism from E(X ) to the group of H-invariant Weil divisors
WDiv(X )H is surjective, because X is H-factorial. Moreover, q∗ and q∗ are in-
verse to each other, which follows from the observation that q : X → X is an étale
H-principal bundle. This establishes the first part of the assertion.

We show that δ induces an isomorphism M → Cl(X). First we have to check
that [δ(f)] does not depend on the choice of f . So, let f, g ∈ E(X )w. Then f/g is
H-invariant, and hence defines a rational function on X . We infer well-definedness
of w 7→ [δ(f)] from

q∗(div(f))− q∗(div(g)) = q∗(div(f)− div(g)) = q∗(div(f/g)) = div(f/g).

To verify injectivity, let δ(f) = div(h) for some h ∈ K(X)∗. Then we obtain
div(f) = div(q∗(h)). Thus, f/q∗(h) is an invertible homogeneous function on X
and hence is constant. This implies w = deg(f/q∗(h)) = 0. Surjectivity is clear,
because E(X )→WDiv(X) is surjective.

We turn to the last statement. First we note that for every g ∈ Γ(U,OX(δ(f)))
the function fq∗(g) is regular on q−1(U), because we have

div(fq∗(g)) = div(f)+div(q∗(g)) = q∗(δ(f))+div(q∗(g)) = q∗(δ(f)+div(g)) ≥ 0.

Thus, the homomorphism Γ(U,OX(δ(f))) → Γ(q−1(U),OX )w sending g to fq∗(g)
is well defined. Note that h 7→ h/f defines an inverse. �

Corollary 6.4.6. Consider the characteristic space q : X̂ → X obtained from
a Cox sheaf R. Then, for any non-zero f ∈ Γ(X,R[D]) the push forward q∗(div(f)),
equals the [D]-divisor div[D](f).

Proof. Proposition 6.4.5 shows that q∗(q∗(div(f)) equals div(f) and Proposi-
tion 6.1.7 tells us that q∗(div[D](f)) equals div(f) as well. �
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Proof of Theorem 6.4.3. Writing H = Spec K[M ] with the character
groupM ofH , we are in the setting of Proposition 6.4.5. Choose a finitely generated
subgroup K ⊆WDiv(X) mapping onto Cl(X), and let D1, . . . , Ds ∈WDiv(X) be a
basis of K. By Proposition 6.4.5, we have Di = δ(hi) with hi ∈ E(X )wi . Moreover,
the isomorphism M → Cl(X) given there identifies wi ∈M with [Di] ∈ Cl(X). For
D = a1D1 + . . .+ asDs, we have D = δ(hD) with hD = ha1

1 · · ·h
as
s .

Let S be the sheaf of divisorial algebras associated to K and for D ∈ K, let
w ∈M correspond to [D] ∈ Cl(X). Then, for any open set U ⊆ X and any D ∈ K,
Proposition 6.4.5 provides an isomorphism of K-vector spaces

ΦU,D : Γ(U,SD) → Γ(q−1(U),O)w , g 7→ q∗(g)hD.

The ΦU,D fit together to an epimorphism of graded sheaves Φ: S → q∗(OX ). Once
we know that Φ has the ideal I of Construction 4.2.1 as its kernel, we obtain an
induced isomorphism R→ q∗OX , where R = S/I is the associated Cox sheaf; this

shows that R is locally of finite type and gives an isomorphism µ : X → X̂ .

Thus we are left with showing that the kernel of Φ equals I. Consider a Cl(X)-
homogeneous element f ∈ Γ(U,S) of degree [D], where D ∈ K. Let K0 be the
kernel of the surjection K → Cl(X). Then we have

f =
∑

E∈K0

fD+E , Φ(f) =
∑

E∈K0

q∗(fD+E)hD+E .

With the character χ : K0 → K(X)∗ defined by q∗χ(E) = hE , we may rewrite the
image Φ(f) as

Φ(f) =
∑

E∈K0

q∗(χ(E)fD+E)hD = q∗

(
∑

E∈K0

χ(E)fD+E

)
hD.

So, f lies in the kernel of Φ if and only if
∑
χ(E)fD+E vanishes. Now observe that

we have

f =
∑

E∈K0

(1 − χ(E)) fD+E +
∑

E∈K0

χ(E) fD+E .

The second summand is K-homogeneous, and thus we infer from Lemma 4.3.1 that
f ∈ I holds if and only if

∑
χ(E) fD+E = 0 holds. �

Remark 6.4.7. Consider the isomorphism (µ, µ̃) identifying the characteristic

spaces q : X → X and qX : X̂ → X in the above proof. Then the isomorphism µ̃
identifying the quasitori H and HX is given by the isomorphism M → Cl(X) of
their character groups provided by Proposition 6.4.5.



CHAPTER II

Toric varieties and Gale duality

Toric varieties form an important class of examples in Algebraic Geometry, as
they admit a complete description in terms of combinatorial data, so-called lattice
fans. In Section 1, we briefly recall this description and also some of the basic facts
in toric geometry. Then we present Cox’s construction of the characteristic space
of a toric variety in terms of a defining fan and discuss the basic geometry around
this. Section 2 is pure combinatorics. We introduce the notion of a “bunch of
cones” and show that, in an appropriate setting, this is the Gale dual version of a
fan. Under this duality, the normal fans of polytopes correspond to bunches of cones
arising canonically from the chambers of the so-called Gelfand-Kapranov-Zelevinsky
decomposition. In Section 3, we discuss the geometric meaning of bunches of cones:
they encode the maximal separated good quotients for subgroups of the acting torus
on an affine toric variety. In Section 4, we specialize these considerations to toric
characteristic spaces, i.e., to the good quotients arising from Cox’s construction.
This leads to an alternative combinatorial description of toric varieties in terms of
“lattice bunches” which turns out to be particularly suitable for phenomena around
divisors.

1. Toric varieties

1.1. Toric varieties and fans. We introduce toric varieties and their mor-
phisms and recall that this category admits a complete description in terms of lattice
fans. The details can be found in any text book on toric varieties, for example [51],
[70] or [122]. We work over an algebraically closed field K of characteristic zero.

Definition 1.1.1. A toric variety is a normal variety X together with an
algebraic torus action T × X → X and a base point x0 ∈ X such that the orbit
map T → X , t 7→ t·x0 is an open embedding.

In the above setting, we refer to T as to the acting torus of the toric variety X .
If we want to specify notation, we sometimes denote a toric variety X with acting
torus T and base point x0 as a triple (X,T, x0).

Definition 1.1.2. Let X and X ′ be toric varieties. A toric morphism from
X to X ′ is a pair (ϕ, ϕ̃), where ϕ : X → X ′ is a morphism with ϕ(x0) = x′0 and
ϕ̃ : T → T ′ is a morphism of the respective acting tori such that ϕ(t·x) = ϕ̃(t)·ϕ(x)
holds for all t ∈ T and x ∈ X .

Note that for a toric morphism (ϕ, ϕ̃), the homomorphism ϕ̃ : T → T ′ of the
acting tori is uniquely determined by the morphism ϕ : X → X ′ of varieties; we will
therefore often denote a toric morphism just by ϕ : X → X ′.

A first step in the combinatorial description of the category of toric varieties is
to relate affine toric varieties to lattice cones. Recall that a lattice cone is a pair
(σ,N), where N is a lattice and σ ⊆ NQ a pointed, i.e. not conaining any lines,
convex polyhedral cone in the rational vector space NQ = N ⊗Z Q associated to N ;
we also refer to this setting less formally as to a cone σ in a latticeN . By a morphism

49



50 II. TORIC VARIETIES AND GALE DUALITY

of lattice cones (σ,N) and (σ′, N ′) we mean a homomorphism F : N → N ′ with
F (σ) ⊆ σ′. To any lattice cone we associate in a functorial way a toric variety.

Construction 1.1.3. Let N be a lattice and σ ⊆ NQ a pointed cone. Set
M := Hom(N,Z) and let σ∨ ⊆MQ be the dual cone. Then we have the M -graded
affine K-algebra

Aσ := K[σ∨ ∩M ] =
⊕

u∈σ∨∩M

Kχu.

The corresponding affine variety Xσ = SpecAσ comes with an action of the torus
TN := Spec K[M ] and is a toric variety with the base point x0 ∈ X defined by the
maximal ideal

mx0 = 〈χu − 1; u ∈ σ∨ ∩M〉 ⊆ Aσ.

Every morphism F : N → N ′ of lattice cones (σ,N) and (σ′, N ′) induces a morphism
M ′ →M of the dual lattice cones, hence a morphism of graded algebras from Aσ′

to Aσ, see Construction I. 1.1.5, and thus, finally, a toric morphism (ϕF , ϕ̃F ) from
Xσ to Xσ′ , see Theorem I. 2.2.4.

In order to go the other way round, i.e., from affine toric varieties to lattice
cones one works with the one-parameter subgroups of the acting torus. Recall that
a one-parameter subgroup of a torus T is a homomorphism λ : K∗ → T . The one-
parameter subgroups of a torus T form a lattice Λ(T ) with respect to pointwise
multiplication. Note that we have bilinear pairing

X(T )× Λ(T ) → Z, (χ, λ) 7→ 〈χ, λ〉,

where 〈χ, λ〉 ∈ Z is the unique integer satisfying χ ◦ λ(t) = t〈χ,λ〉 for all t ∈ K∗.
For every morphism ϕ : T → T ′ of tori, we have a functorial push forward of one-
parameter subgroups:

ϕ∗ : Λ(T ) → Λ(T ′), λ 7→ ϕ ◦ λ.

Construction 1.1.4. Let X be an affine toric variety with acting torus T and
base point x0 ∈ X . We call a one-parameter subgroup λ ∈ Λ(T ) convergent in X if
the orbit morphism K∗ → X , t 7→ λ(t)·x0 can be extended to a morphism K→ X .
In this case the image of 0 ∈ K is denoted as

lim
t→0

λ(t)·x0 ∈ X.

The convergent one-parameter subgroups λ ∈ Λ(T ) in X generate a pointed convex
cone σX ⊆ ΛQ(T ). Moreover, for every toric morphism (ϕ, ϕ̃) from X to X ′, the
push forward of one-parameter subgroups ϕ̃∗ : Λ(T )→ Λ(T ′) is a morphism of the
lattice cones (σX ,Λ(T )) and (σX′ ,Λ(T ′)).

Proposition 1.1.5. We have covariant functors being essentially inverse to
each other:

{lattice cones} ←→ {affine toric varieties}

(σ,N) 7→ (Xσ, TN , x0),

F 7→ (ϕF , ϕ̃F ),

(σX ,Λ(T )) ←[ (X,T, x0),

ϕ̃∗ ←[ (ϕ, ϕ̃).

We are ready to describe general toric varieties. The idea is to glue the affine
descriptions. On the combinatorial side this means to consider lattice fans. We first
recall this concept. A quasifan in a rational vector space NQ is a finite collection Σ
of convex, polyhedral cones in NQ such that for any σ ∈ Σ all faces τ � σ belong to
Σ, and for any two σ, σ′ ∈ Σ the intersection σ ∩ σ′ is a face of both, σ and σ′. A
quasifan is called a fan if it consists of pointed cones. A lattice fan is a pair (Σ, N),



1. TORIC VARIETIES 51

where N is a lattice and Σ is a fan in NQ. A morphism of lattice fans (Σ, N) and
(Σ′, N ′) is a homomorphism F : N → N ′ such that for every σ ∈ Σ, there is a
σ′ ∈ Σ′ with F (σ) ⊆ σ′.

Construction 1.1.6. Let (Σ, N) be a lattice fan. Then, for any two σ1, σ2 ∈ Σ,
the intersection σ12 := σ1 ∩ σ2 belongs to Σ, and there is a separating linear form,
i.e., an element u ∈M with

u|σ1
≥ 0, u|σ2

≤ 0, u⊥ ∩ σ1 = σ12 = u⊥ ∩ σ2.

The subset Xσ12 ⊆ Xσ1 is the localization of Xσ1 by χu and Xσ12 ⊆ Xσ2 is the
localization of Xσ2 by χ−u. This allows to glue the affine toric varieties Xσ, where
σ ∈ Σ, together to a variety XΣ. Since this gluing is equivariant and respects base
points, XΣ is a toric variety with acting torus TN and well-defined base point x0.

Moreover, given a morphism F : N → N ′ from a lattice fan (Σ, N) to a lattice
fan (Σ′, N ′), fix for every σ ∈ Σ a σ′ ∈ Σ′ with F (σ) ⊆ σ′. Then the associated
toric morphisms from Xσ to Xσ′ glue together to a toric morphism (ϕF , ϕ̃F ) from
XΣ to XΣ′ .

The key for the way from toric varieties to lattice fans is Sumihiro’s Theo-
rem [150], see also [95, Theorem 1], which tells us that every normal variety with
torus action can be covered by invariant open affine subvarieties. Using finiteness
of orbits for affine toric varieties, one concludes that any toric variety admits only
finitely many invariant open affine subvarieties and is covered by them.

Construction 1.1.7. Let X be a toric variety with acting torus T . Consider
the T -invariant affine open subsets X1, . . . , Xr ⊆ X and let ΣX := {σX1 , . . . , σXr}
be the collection of the corresponding cones of convergent one-parameter subgroups.
Then (ΣX ,Λ(T )) is a lattice fan. Moreover, every toric morphism (ϕ, ϕ̃) to a toric
variety X ′ with acting torus T ′ defines a morphism ϕ̃∗ : Λ(T )→ Λ(T ′) of the lattice
fans (ΣX ,Λ(T )) and (ΣX′ ,Λ(T ′)).

Theorem 1.1.8. We have covariant functors being essentially inverse to each
other:

{lattice fans} ←→ {toric varieties},

(Σ, N) 7→ (XΣ, TN , x0),

F 7→ (ϕF , ϕ̃F ),

(ΣX ,Λ(T )), ←[ (X,T, x0)

ϕ̃∗ ←[ (ϕ, ϕ̃).

1.2. Some toric geometry. The task of toric geometry is to describe geo-
metric properties of a toric variety in terms of its defining fan. We recall here some
of the very basic observations. Again we refer to the textbooks [51], [70] or [122]
for details and more. The ground field is algebraically closed and of characteristic
zero.

As any space with group action, also each toric variety is the disjoint union of
its orbits. For an explicit description of this orbit decomposition, one introduces
distinguished points as follows; for a cone σ in a rational vector space, we denote
by σ◦ its relative interior.

Construction 1.2.1. Let X be the toric variety arising from a fan Σ in a
lattice N . To every cone σ ∈ Σ, one associates a (well-defined) distinguished point:

xσ := lim
t→0

λv(t) · x0 ∈ X, where v ∈ σ◦.
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On every affine chart Xσ ⊆ X , where σ ∈ Σ, the distinguished point is the unique
point with the property

χu(xσ) =

{
1, where u ∈ σ⊥ ∩M,

0, where u ∈ σ∨ ∩M \ σ⊥.

Note that the distinguished points are precisely the possible limits of the one-
parameter subgroups of the acting torus passing through the base point. The fol-
lowing statement shows in particular that the distinguished points represent exactly
the orbits of a toric variety.

Proposition 1.2.2 (Orbit decomposition). Let X be the toric variety arising
from a fan Σ and let T denote the acting torus of X. Then there is a bijection

Σ → {T -orbits of X}, σ 7→ T · xσ .

Moreover, for any two σ1, σ2 ∈ Σ, we have σ1 � σ2 if and only if T ·σ1 ⊇ T ·σ2

holds. For the affine chart Xσ ⊆ X defined by σ ∈ Σ, we have

Xσ =
⋃

τ�σ

T · xτ .

Here comes the description of the structure of the toric orbit correponding to
a cone of the defining fan.

Proposition 1.2.3 (Orbit structure). Let X be the toric variety arising from
a fan Σ in an n-dimensional lattice N , and denote by T its acting torus. Then, for
every σ ∈ Σ, the inclusion Txσ ⊆ T of the isotropy group is given by the projection
M →M/(σ⊥ ∩M) of character lattices. In particular, Txσ is a torus and we have

dim(Txσ ) = dim(σ), dim(T ·xσ) = n− dim(σ).

In order to describe the fibers of a toric morphism, it suffices to describe the
fibers over the distinguished points. This works as follows.

Proposition 1.2.4 (Fiber formula). Let (ϕ, ϕ̃) be the toric morphism from
(X,T, x0) to (X ′, T ′, x′0) defined by a map F : N → N ′ of fans Σ and Σ′ in lattices
N and N ′ respectively. Then the fiber over a distinguished point xτ , where τ ∈ Σ′,
is given by

ϕ−1(xτ ) =
⋃

σ∈Σ
F (σ)◦⊆τ◦

ϕ̃−1(T ′xτ
) · xσ.

We turn to singularities of toric varieties. Recall that a cone σ in a lattice N is
said to be simplicial, if it is generated by linearly independent family v1, . . . , vr ∈ N .
Moreover a cone σ in a lattice N is called regular if it is generated by a family
v1, . . . , vr ∈ N that can be completed to a lattice basis of N .

Proposition 1.2.5. Let X be the toric variety arising from a fan Σ in a lat-
tice N , and let σ ∈ Σ.

(i) The point xσ ∈ X is Q-factorial if and only if σ is simplicial.
(ii) The point xσ ∈ X is smooth if and only if σ is regular.

The next subject is completeness and projectivity. The support of a quasifan Σ
in a vector space NQ is the union Supp(Σ) ⊆ NQ of its cones. A quasifan is complete
if its support coincides with the space NQ. We say that a quasifan in a vector space
NQ is normal if it is the normal quasifan N (∆) of a polyhedron ∆ ⊆ MQ in the
dual vector space, i.e., its cones arise from the faces of ∆ via the bijection

faces(∆) → N (∆), ∆0 7→ {v ∈ NQ; 〈u − u0, v〉 ≥ 0 for all u ∈ ∆, u0 ∈ ∆0}.
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Moreover, the support of N (∆) is the dual of the recession cone of ∆, i.e., the
unique cone σ ⊆MQ such that ∆ = B + σ holds with a polytope B ⊆MQ. We say
that a quasifan is polytopal if it is normal and complete. In other words, a polytopal
quasifan in NQ is the normal quasifan of a polytope ∆ ⊆MQ.

Proposition 1.2.6. Let X be the toric variety arising from a fan Σ in a lat-
tice N .

(i) X is complete if and only if Σ is complete.
(ii) X is projective if and only if Σ is polytopal.

Now we take a look at the divisor class group Cl(X) of the toric variety X
defined by a fan Σ in the lattice N . We assume that Σ is non-degenerate, i.e., the
primitive lattice vectors v1, . . . , vr ∈ N of the rays of Σ generate NQ as a vector
space; this just means that on X every globally invertible function is constant. Set
F := Zr, consider the linear map P : F → N sending the i-th canonical base vector
fi ∈ F to vi ∈ N and the dual map P ∗ : M → E. Then, with L := ker(P ) and
K := E/P ∗(M), we have the following two exact sequences of abelian groups:

0 // L
Q∗

// F
P // N

0 Koo E
Q

oo M
P∗

oo 0oo

The latticeM represents the characters χu of the acting torus T of X , and each such
character χu is a rational function on X ; in fact, χu is regular on any affine chart
Xσ with u ∈ σ∨. Moreover, the lattice E is isomorphic to the subgroup WDivT (X)
of T -invariant Weil divisors via

E → WDivT (X), e 7→ D(e) := 〈e, f1〉D1 + . . .+ 〈e, fr〉Dr,

where the Di := T ·x̺i with ̺i = cone(vi) are the T -invariant prime divisors. Along
the open toric orbit, all Weil divisors are principal and hence every Weil divisor is
linearly equivalent to a T -invariant one. Thus, denoting by PDivT (X) ⊆WDivT (X)
the subgroup of invariant principal divisors, we arrive at the following description
of the divisor class group.

Proposition 1.2.7. Let X be the toric variety arising from a non-degenerate
fan Σ in a lattice N . Then, in the above notation, there is a commutative diagram
with exact rows

0 Koo

∼=

��

E
Qoo

∼=e7→D(e)

��

M
P∗

oo

∼=u7→div(χu)

��

0oo

0 Cl(X)oo WDivT (X)oo PDivT (X)oo 0oo

To compute intersection numbers, we first recall the basic notions from [71].
Let X be any n-dimensional variety. The group Zk(X) of k-cycles on X is the free
abelian group over the set of prime k-cycles of X , i.e., the irreducible k-dimensional
subvarieties of X . The subgroup Bk(X) ⊆ Zk(X) of k-boundaries is generated by
the divisors div(f) of rational functions f ∈ K(Y )∗ living on k + 1-dimensional
subvarieties Y ⊆ X . The k-th Chow group of X is the factor group Ak(X) :=
Zk(X)/Bk(X). There is a well-defined bilinear intersection map

Pic(X)×Ak+1(X) → Ak(X), ([D], [Y ]) 7→ [D] · [Y ] := [ı∗D],

where ı : Y → X denotes the inclusion of a (k+1)-dimensional irreducible subvariety
and D is a representative of [D] such that Y is not contained in its support. Now
suppose that X is complete and consider Cartier divisors D1, . . . , Dn on X . Then
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the recursively obtained intersection [D1] · · · [Dn] is represented by a divisor on
a projective curve and has well defined degree D1 · · ·Dn, called the intersection
number of D1, . . . , Dn. Note that (D1, . . . , Dn) 7→ D1 · · ·Dn is linear in every
argument. If X is Q-factorial, then one defines the intersection number of any
n Weil divisors D1, . . . , Dn to be the rational number (a1D1) · · · (anDn)/a1 · · · an,
where ai ∈ Z≥0 is such that aiDi is Cartier.

For computing intersection numbers on a Q-factorial toric variety, one has to
know the possible intersection numbers of toric prime divisors. In order to express
these numbers in terms of the defining fan, we need the following notion for a cone
σ in a lattice N : let v1, . . . , vr be the primitive vectors on the rays of σ and set

µ(σ) := [N ∩ linQ(σ) : linZ(v1, . . . , vr)].

Proposition 1.2.8. Let X be an n-dimensional complete toric variety arising
from a simplicial fan Σ in a lattice N . Let D1, . . . , Dn be pairwise different invariant
prime divisors on X corresponding to rays ̺1, . . . , ̺n ∈ Σ and set σ := ̺1 + . . .+̺n.
Then the intersection number of D1, . . . , Dn is given as

D1 · · ·Dn =

{
µ(σ)−1, σ ∈ Σ,

0, σ 6∈ Σ.

1.3. The Cox ring of a toric variety. Roughly speaking, Cox’s Theorem
says that, for a toric variety X with only constant globally invertible functions, the
Cox ring is given in terms of its invariant prime divisors D1, . . . , Dr ⊆ X as

R(X) ∼= K[T1, . . . , Tr], deg(Ti) = [Di] ∈ Cl(X).

In fact, approaching this from the combinatorial side makes the statement more
concrete and allows to determine the Cl(X)-grading of the Cox ring and the char-
acteristic space explicitly, see [49, Theorem 2.1] as well as [21, Chapter VI, 2.2] for
the simplicial case, [24, Section 2] for the regular case and [117, Theorem 1] for a
similar result. As before, K is algebraically closed of characteristic zero.

Assume that the toric variety X arises from a fan Σ in a lattice N . The
condition Γ(X,O∗) = K∗ means that Σ is non-degenerate, i.e., the primitive vectors
v1, . . . , vr ∈ N on the rays of Σ generate NQ as a vector space. Set F := Zr and
consider the linear map P : F → N sending the i-th canonical base vector fi ∈ F
to vi ∈ N . There is a fan Σ̂ in F consisting of certain faces of the positive orthant
δ ⊆ FQ, namely

Σ̂ := {σ̂ � δ; P (σ̂) ⊆ σ for some σ ∈ Σ}.

The fan Σ̂ defines an open toric subvariety X̂ of X = Spec(K[δ∨ ∩ E]), where
E := Hom(F,Z). Note that all rays cone(f1), . . . , cone(fr) of the positive orthant

δ ⊆ FQ belong to Σ̂ and thus we have

Γ(X̂,O) = Γ(X,O) = K[δ∨ ∩E].

As P : F → N is a map of the fans Σ̂ and Σ, i.e., sends cones of Σ̂ into cones

of Σ, it defines a morphism p : X̂ → X of toric varieties. Now, consider the dual
map P ∗ : M → E, where M := Hom(N,Z), set K := E/P ∗(M) and denote by
Q : E → K the projection. Then, by Proposition 1.2.7, we have the following
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commutative diagram

0 X(H)oo X(T)oo X(T )
p∗oo 0oo

0 Koo

∼=

OO

∼=

��

E
Q

oo

∼=e7→χe

OO

∼=e7→D(e)

��

M
P∗

oo

∼=u7→χu

OO

∼=u7→div(χu)

��

0oo

0 Cl(X)oo WDivT (X)oo PDivT (X)oo 0oo

with the acting tori T = Spec(K[M ]) of X and T = Spec(K[E]) of X̂ and the
characteristic quasitorus H = Spec(K[K]) of X . The map Q : E → K turns the
polynomial ring K[E ∩ δ∨] into a K-graded algebra:

K[E ∩ δ∨] =
⊕

w∈K

K[E ∩ δ∨]w, K[E ∩ δ∨]w =
⊕

e∈Q−1(w)∩δ∨

K · χe.

Theorem 1.3.1. In the above situation, the Cox ring of X is isomorphic to the

K-graded polynomial ring K[E ∩ δ∨]. Moreover, the toric morphism p : X̂ → X is
a characteristic space for X and X is a total coordinate space.

Proof. We follow the construction of the Cox ring performed in I. 4.2.1. The
group E = WDivT (X) of invariant Weil divisors projects onto K = Cl(X) and the
kernel of this projection is

E0 = P ∗(M) = PDivT (X).

Let S be the divisorial sheaf associated to E. Consider e ∈ E, a cone σ ∈ Σ and let

σ̂ ∈ Σ̂ be the cone with P (σ̂) = σ. Then we have

Γ(Xσ,Se) = linK (χu; u ∈M, div(χu) +D(e) ≥ 0 on Xσ)

= linK (χu; u ∈M, P ∗(u) + e ∈ σ̂∨) .

Using this identity, we define an epimorphism π : Γ(Xσ,S)→ Γ(X̂bσ,O) of K-graded
algebras by

Γ(Xσ,Se) ∋ χu 7→ χP
∗(u)+e ∈ Γ(X̂bσ,O)Q(e).

For u ∈M , look at χu ∈ Γ(Xσ,S−P∗(u)). Then π(1−χu) = 0 holds. Moreover, for

χu
′

∈ Γ(Xσ,Se′) and e ∈ E with e′ − e = P ∗(u) we have

χu
′

= χu
′

χu + χu
′

(1− χu), χu
′

χu ∈ Γ(Xσ,Se).

It follows that ker(π) equals the ideal associated to the character E0 → K(X)∗,
P ∗(u) 7→ χu, see I. 4.2.1, and we obtain a K-graded isomorphism

Γ(Xσ,R) → Γ(X̂bσ,O).

This shows that the K-graded sheaves R and p∗O bX are isomorphic. Consequently

p : X̂ → X is a characteristic space for X and the Cox ring of X is

R(X) = Γ(X̂,O) = K[E ∩ δ∨].

�

Example 1.3.2. Consider the projective plane X = P2. Its total coordinate

space is X = K3, we have X̂ = K3 \ {0}, the characteristic torus H = K∗ acts by
scalar multiplication, and the quotient map is

p : X̂ → X, (z0, z1, z2) 7→ [z0, z1, z2].
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In terms of fans, the situation is the following. The fan Σ of X lives in N = Z2.
With v0 = (−1,−1) and v1 = (1, 0) and v2 = (0, 1) its maximal cones are

cone(v1, v2), cone(v2, v0), cone(v0, v1).

Thus, we have F = Z3 and the map P : F → N sends the canonical basis vector fi
to vi, where i = 0, 1, 2. The fan Σ̂ of X̂ has the facets of the orthant cone(f0, f1, f2)
as its maximal cones.

In general, the total coordinate space X = Spec K[E ∩ δ∨] is isomorphic to Kr.
More precisely, if e1, . . . , er denote the primitive generators of δ∨, then a concrete
isomorphism X → Kr is given by the comorphism

K[T1, . . . , Tr] → K[E ∩ δ∨], Ti 7→ χei .

We want to describe the irrelevant ideal of X in the Cox ring R(X) = K[T1, . . . , Tr]
in terms of the defining fan Σ; recall from Definition I. 6.3.2 that the irrelevant ideal

Jirr(X) is the vanishing ideal of X \ X̂ in Γ(X,O) = R(X) = K[T1, . . . , Tr]. For
any quasifan Σ, we denote by Σmax the set of its maximal cones.

Proposition 1.3.3. Let X be the toric variety arising from a non-degenerate
fan Σ in a lattice N and let v1, . . . , vr be the primitive generators of Σ. For every
σ ∈ Σ define a vector

ν(σ) := (ε1, . . . , εr) ∈ Zr≥0 εi :=

{
1 vi 6∈ σ,

0 vi ∈ σ.

Then the irrelevant ideal Jirr(X) in the Cox ring R(X) = K[T1, . . . , Tr] is generated
by the monomials T ν(σ) = T ε11 · · ·T

εr
r , where σ ∈ Σmax.

Proof. The toric variety X̂ is the union of the affine charts X̂bσ, where σ ∈
Σmax. The complement of X̂bσ in X is the zero set of T ν(σ). Observing that the
monomials T ν(σ), where σ ∈ Σmax, generate a radical ideal gives the assertion. �

Now we give an explicit description of the complement X \X̂ as an arrangement
of coordinate subspaces.

Proposition 1.3.4. Let X be the toric variety arising from a non-degenerate
fan Σ in a lattice N , let v1, . . . , vr be the primitive generators of Σ and let G(Σ) be
the collection of subsets I ⊆ {1, . . . , r} which are minimal with the property that the
vectors vi, i ∈ I, are not contained in a common cone of Σ. Then one has

X \ X̂ =
⋃

I∈G(Σ)

V (Kr ; Ti, i ∈ I).

Proof. Take a point z ∈ Kr and set Iz := {i ; zi = 0}. By Proposition 1.3.3,

the point z is not contained in X̂ if and only if the vectors vi, i ∈ Iz , are not
contained in a cone of Σ. This means that I ⊆ Iz for some element I of G(Σ), or
that the point z is in V (Kr ; Ti, i ∈ I). �



1. TORIC VARIETIES 57

Example 1.3.5. The first Hirzebruch surface is the toric variety X arising from
the fan Σ in N = Z2 given as follows

v1

v2

v3

v4

v1 = (1, 0), v2 = (0, 1),

v3 = (−1, 1), v4 = (0,−1).

Thus, we have F = Z4 and, with respect to the canonical bases, the maps P : F → N
and Q : E → K are given by the matrices

P =

(
1 0 −1 0
0 1 1 −1

)
, Q =

(
0 1 0 1
1 0 1 1

)
.

The total coordinate space of X is X = K4 and, according to Proposition 1.3.4, the

open subset X̂ ⊆ X is obtained from X by removing

V (K4;T1, T3) ∪ V (K4;T2, T4).

This describes the characteristic space p : X̂ → X over X ; the action of the charac-

teristic torus H = K∗ ×K∗ on X̂ is given by

h · z = (h2z1, h1z2, h2z3, h1h2z4).

1.4. Geometry of Cox’s construction. We give a self-contained discussion
of basic geometric properties of Cox’s quotient presentation of toric varieties, i.e.,
without using general results on characteristic spaces. We begin with an observation
on lattices needed also later.

Let F and E be mutually dual lattices, consider an epimorphism Q : E → K
onto an abelian group K and a pair of exact sequences

0 // L // F
P // N

0 Koo E
Q

oo M
P∗

oo 0oo

Lemma 1.4.1. Let F 0
Q ⊆ FQ be a vector subspace and let E0

Q ⊆ EQ be the

annihilating space of F 0
Q. Then one has an isomorphism of abelian groups

K/Q(E0
Q ∩ E) ∼= (L ∩ F 0

Q) ⊕ (P (F 0
Q) ∩N)/P (F 0

Q ∩ F ).

Proof. Set F 0 := F 0
Q ∩ F and E0 := E0

Q ∩ E. Then E/E0 is the dual lattice

of F0. Moreover, M/M0 is the dual lattice of N0 := P (F 0
Q)∩N , where M0 ⊆M is

the inverse image of E0 ⊆ E under P ∗. These lattices fit into the exact sequences

0 // L0 // F 0 P // N0

0 K/Q(E0)oo E/E0
Q

oo M/M0

P∗
oo 0oo

where we set L0 := L∩F 0. In other words, K/Q(E0) is isomorphic to the cokernel
of M/M0 → E/E0. The latter is the direct sum of the cokernel and the kernel of
the dual map F 0 → N0. �
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We now discuss actions of subgroups of the acting torus of an affine toric variety.
Let δ ⊆ FQ be any pointed cone, and consider the associated affine toric variety Xδ.
Then Q : E → K defines a K-grading of the algebra of regular functions

Γ(Xδ,O) = K[E∩δ∨] =
⊕

w∈K

K[E∩δ∨]w, K[E∩δ∨]w :=
⊕

e∈Q−1(w)∩δ∨

K ·χe.

Thus, the quasitorus H = Spec K[K] acts on Xδ. Note that H acts on Xδ as a
subgroup of the acting torus T of Xδ, where the embedding H → T is given by the
map Q : E → K of the character groups.

Proposition 1.4.2. The inclusion Hxδ
⊆ H of the isotropy group of xδ ∈ Xδ

is given by the projection K → Kδ of character lattices, where

Kδ := K/Q(δ⊥ ∩E) ∼= (L ∩ linQ(δ)) ⊕ (P (linQ(δ)) ∩N)/P (linQ(δ) ∩ F ).

Proof. Use the characterization of the distinguished point xδ ∈ Xδ given in
Construction 1.2.1 to see that Q(δ⊥ ∩ E) is the orbit group of xδ. Thus, Propo-
sition I. 2.2.8 tells us that K → Kδ gives the inclusion Hxδ

⊆ H . The alternative
description of Kδ is obtained by applying Lemma 1.4.1 to F 0

Q := linQ(δ). �

In order to determine a good quotient for the action of H on Xδ, consider the
image P (δ) in NQ. This cone need not be pointed; we denote by τ � P (δ) its
minimal face. Then, with N1 := N/(τ ∩ N), we have the projection P1 : F → N1

and δ1 := P1(δ) is pointed.

Proposition 1.4.3. In the above notation, the toric morphism p1 : Xδ → Xδ1

given by P1 : F → N1 is a good quotient for the action of H on Xδ.

Proof. The algebra of H-invariant regular functions on Xδ is embedded into
the algebra of functions as

Γ(Xδ,O)H = K[δ∨ ∩M ] ⊆ K[δ∨ ∩ E] = Γ(Xδ,O).

The sublattice M1 generated by δ∨ ∩M is the dual lattice of N1 and δ1 = P1(δ) in
N1 is the dual cone of δ∨ ∩ (M1)Q in M1. �

We turn to Cox’s construction. So, in the above setting, we have F = Zr and
the map P : F → N sends the canonical basis vectors f1, . . . , fr to the primitve
generators v1, . . . , vr ∈ N of the rays of a non-degenerate fan Σ in N . Moreover,

we have the othant δ = cone(f1, . . . , fr) and the fan Σ̂ in F defined by

Σ̂ := {σ̂ � δ; P (σ̂) ⊆ σ for some σ ∈ Σ}.

As before, we denote by X̂ the open toric subvariety of X = Spec(K[δ∨∩E]) defined

by the fan Σ̂. Moreover, p : X̂ → X is the toric morphism defined by P : F → N ,

and we set H := Spec K[K]. Then H acts on X and leaves X̂ invariant. Finally, let

̺̂i := cone(fi), where 1 ≤ i ≤ r, denote the rays of Σ̂ and set

Ŵ := X b̺1
∪ . . . ∪X b̺r

⊆ X̂.

Proposition 1.4.4. The toric morphism p : X̂ → X is the good quotient for

the action of H on X̂. Moreover, H acts freely on the open subset Ŵ ⊆ X̂ and

every H-orbit on Ŵ is closed in X̂.

Proof. We first show that p : X̂ → X is affine. For σ ∈ Σ, let σ̂ ∈ Σ̂ be the

(unique) cone with P (σ̂) = σ. Then we have p−1(Xσ) = X̂bσ and Proposition 1.4.3

tells us that p : X̂ → X is a good quotient for the H-action. Using Proposition 1.4.2

we see that H acts with trivial isotropy groups on Ŵ . To see the last assertion, note

that the subset Ŵ coincides with p−1(X ′), where X ′ = X̺1 ∪ . . . ∪X̺r ⊆ X . �



2. LINEAR GALE DUALITY 59

Note that combining Proposition 1.4.4 with Theorem I. 6.4.3 shows that p : X̂ →
X is a characteristic space for X and hence provides another proof of Theorem 1.3.1.
We conclude with two observations on the geometry of theH-action and the quotient

p : X̂ → X ; these two statements may as well be obtained as a consequence of
Corollary 6.2.4.

Proposition 1.4.5. For the action of H on X and the quotient p : X̂ → X,
the following statements are equivalent.

(i) The fan Σ is simplicial.

(ii) One has dim(σ̂) = dim(P (σ̂)) for every σ̂ ∈ Σ̂.

(iii) Any H-orbit in X̂ has at most finite isotropy group.

(iv) The quotient p : X̂ → X is geometric.
(v) The variety X is Q-factorial.

Proof. Statements (i) and (ii) are obviously equivalent. The equivalence of
(ii) and (iii) is clear by Proposition 1.4.2. The equivalence of (ii) and (iv) follows
from the Fiber Formula 1.2.4. Finally, (i) and (v) are equivalent by standard toric
geometry, see Proposition 1.2.5. �

Proposition 1.4.6. For the action of H on X and the quotient p : X̂ → X,
the following statements are equivalent.

(i) The fan Σ is regular.

(ii) P : F ∩ linQ(σ̂)→ N ∩ linQ(P (σ̂)) is an isomorphism for every σ̂ ∈ Σ̂.

(iii) The action of H on X̂ is free.
(iv) The variety X is smooth.

Proof. Statements (i) and (ii) are obviously equivalent. The equivalence of
(ii) and (iii) is clear by Proposition 1.4.2. Finally, (i) and (iv) are equivalent by
standard toric geometry, see Proposition 1.2.5. �

2. Linear Gale duality

2.1. Fans and bunches of cones. We introduce the concept of a bunch of
cones and state in Theorem 2.1.14 that, in an appropriate setting, this is the Gale
dual version of the concept of a fan; the proof is given in Subsection 2.3. Our
presentation is in the spirit of [124]; in particular, we make no use of the language
of oriented matroids. A general reference is [58, Chapter 4]. In [65, Section 1] some
historical aspects are discussed.

Definition 2.1.1. We say that a vector configuration V = (v1, . . . , vr) in a
rational vector space NQ and a vector configurationW = (w1, . . . , wr) in a rational
vector space KQ are Gale dual to each other if the following holds:

(i) we have v1 ⊗ w1 + . . .+ vr ⊗ wr = 0 in NQ ⊗KQ,
(ii) for any rational vector space U and any vectors u1, . . . , ur ∈ U with

v1 ⊗ u1 + . . . + vr ⊗ ur = 0 in NQ ⊗ U , there is a unique linear map
ψ : KQ → U with ψ(wi) = ui for i = 1, . . . , r,

(iii) for any rational vector space U and any vectors u1, . . . , ur ∈ U with
u1 ⊗ w1 + . . . + ur ⊗ wr = 0 in U ⊗ KQ, there is a unique linear map
ϕ : NQ → U with ϕ(vi) = ui for i = 1, . . . , r.

If we fix the first configuration in a Gale dual pair, then the second one is, by the
properties of Gale duality, uniquely determined up to isomorphism, and therefore
is also called the Gale transform of the first one. The following characterization of
Gale dual pairs is also used as a definition.
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Remark 2.1.2. Consider vector configurations V = (v1, . . . , vr) and W =
(w1, . . . , wr) in rational vector spaces NQ and KQ respectively, and let MQ be the
dual vector space of NQ. Then Gale duality of V and W is characterized by the
following property: for any tuple (a1, . . . , ar) ∈ Qr one has

a1w1 + . . .+ arwr = 0 ⇐⇒ u(vi) = ai for i = 1, . . . , r with some u ∈MQ.

The following construction shows existence of Gale dual pairs, and, up to iso-
morphy, produces any pair of Gale dual vector configurations.

Construction 2.1.3. Consider a pair of mutually dual exact sequences of
finite dimensional rational vector spaces

0 // LQ
// FQ

P // NQ
// 0

0 oo KQ
oo

Q
EQ

oo MQ
oo 0

Let (f1, . . . , fr) be a basis for FQ, let (e1, . . . , er) be the dual basis for EQ and denote
the image vectors by

vi := P (fi) ∈ NQ, wi := Q(ei) ∈ KQ, 1 ≤ i ≤ r.

Then the vector configurations V = (v1, . . . , vr) in NQ and W = (w1, . . . , wr) in KQ

are Gale dual to each other.

Remark 2.1.4. Let r = n + k with integers n, k ∈ Z>0. Consider matrices
P ∈ Mat(n, r; Q) and Q ∈ Mat(k, r; Q) such that the rows of Q form a basis for
the nullspace of P . Then the columns (v1, . . . , vr) of P in Qn and the columns
(w1, . . . , wr) of Q in Qk are Gale dual vector configurations. Note that after fixing
one of the matrices, Gale duality determines the other up to multiplicitation by an
invertible matrix from the left.

Example 2.1.5. The columns of the following matrices P and Q are Gale dual
vector configurations

P =

(
1 0 −1 0
0 1 1 −1

)
, Q =

(
0 1 0 1
1 0 1 1

)
.

Now we turn to fans and bunches of cones. We work with convex polyhedral
cones generated by elements of a fixed vector configuration. The precise notion is
the following.

Definition 2.1.6. Let NQ be a rational vector space, and V = (v1, . . . , vr)
a family of vectors in NQ generating NQ. A V-cone is a convex polyhedral cone
generated by some of the v1, . . . , vr. The set of all V-cones is denoted by Ω(V).

Definition 2.1.7. Let NQ be a rational vector space, and V = (v1, . . . , vr) a
family of vectors in NQ generating NQ. A V-quasifan is a quasifan in NQ consisting
of V-cones, i.e., a non-empty set Σ ⊆ Ω(V) such that

(i) for all σ1, σ2 ∈ Σ, the intersection σ1 ∩ σ2 is a face of both, σ1 and σ2,
(ii) for every σ ∈ Σ, also all faces σ0 � σ belong to Σ.

A V-fan is a V-quasifan consisting of pointed cones. We say that a V-(quasi)fan
is maximal if it cannot be enlarged by adding V-cones. Moreover, we call a V-
(quasi)fan true if it contains all rays cone(vi), where 1 ≤ i ≤ r.
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Example 2.1.8. Consider NQ = Q2 and let V = (v1, . . . , v4) be the family
consisting of the columns of the matrix P given in Example 2.1.5.

v1

v2

v3

v4

v1

v2

v3

v4

A true maximal V-fan Σ1 A maximal V-fan Σ2

Definition 2.1.9. Let NQ be a rational vector space, and V = (v1, . . . , vr) a
family of vectors in NQ generating NQ. We say that a V-quasifan Σ1 ⊆ Ω(V) refines
a V-quasifan Σ2 ⊆ Ω(V), written Σ1 ≤ Σ2, if for every σ1 ∈ Σ1 there is a σ2 ∈ Σ2

with σ1 ⊆ σ2.

Definition 2.1.10. Let KQ be a rational vector space, and let W =
(w1, . . . , wr) a family of vectors in KQ generating KQ. A W-bunch is a non-empty
set Θ ⊆ Ω(W) such that

(i) for all τ1, τ2 ∈ Θ, one has τ◦1 ∩ τ
◦
2 6= ∅,

(ii) for every τ ∈ Θ, all W-cones τ0 with τ◦ ⊆ τ◦0 belong to Θ.

We say that a W-bunch is maximal if it cannot be enlarged by adding W-cones.
Moreover, we call a W-bunch Θ true if every cone ϑi = cone(wj ; j 6= i), where
1 ≤ i ≤ r, belongs to Θ.

Example 2.1.11. Consider KQ = Q2 and let W = (w1, . . . , w4) be the family
consisting of the columns of the matrix Q given in Example 2.1.5.

w2

w4w1 = w3

w2

w4w1 = w3

A true maximal W-bunch Θ1 A maximal W-bunch Θ2

Definition 2.1.12. Let KQ be a rational vector space, andW = (w1, . . . , wr) a
family of vectors in KQ generating KQ. We say that aW-bunch Θ1 ⊆ Ω(W) refines
a W-bunch Θ2 ⊆ Ω(W), written Θ1 ≤ Θ2, if for every τ2 ∈ Θ2 there is a τ1 ∈ Θ1

with τ1 ⊆ τ2.

Definition 2.1.13. Let V = (v1, . . . , vr) in NQ and W = (w1, . . . , wr) in KQ

be Gale dual vector configurations. Set R := {1, . . . , r}. Then for any collection Σ
of V-cones and any collection Θ of W-cones we set

Σ♯ := {cone(wj ; j ∈ R \ I); I ⊆ R, cone(vi; i ∈ I) ∈ Σ},

Θ♯ := {cone(vi; i ∈ R \ J); J ⊆ R, cone(wj ; j ∈ J) ∈ Θ}.

Theorem 2.1.14. Let V = (v1, . . . , vr) in NQ and W = (w1, . . . , wr) in KQ be
Gale dual vector configurations. Then we have an order reversing map

{W-bunches} → {V-quasifans} , Θ 7→ Θ♯.

Now assume that v1, . . . , vr generate pairwise different one-dimensional cones. Then
there are mutually inverse order reversing bijections

{true maximal W-bunches} ←→ {true maximal V-fans} ,

Θ 7→ Θ♯,

Σ♯ ←[ Σ.

Under these bijections, the simplicial true maximal V-fans correspond to the true
maximal W-bunches consisting of full dimensional cones.
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Example 2.1.15. For the true maximal W-bunch Θ1 and the true maximal
V-fan Σ1 presented in Examples 2.1.11 and 2.1.8 one has

Σ1 = Θ♯
1, Θ1 = Σ♯1.

Moreover, for the maximalW-bunch Θ2 and the maximal V-fan Σ2 presented there,

we have Σ2 = Θ♯
2 but Σ♯2 is not even a W-bunch as it contains cone(w4) and

cone(w2, w4) contradicting 2.1.10 (i).

2.2. The GKZ-decomposition. Given a vector configuration V , the normal
ones among the possible V-fans are obtained from the chambers of the so-called
Gelfand-Kapranov-Zelevinsky decomposition of the dual vector configuration W .
We make this precise and study it in detail; the proofs are given in Subsection 2.4.
A different treatment is given in [58, Chapter 5].

Construction 2.2.1. Let KQ be a rational vector space andW = (w1, . . . , wr)
a family of vectors in KQ generating KQ. For every w ∈ cone(W), we define its
chamber to be

λ(w) :=
⋂

τ∈Ω(W)
w∈τ

τ =
⋂

τ∈Ω(W)

w∈τ◦

τ.

The Gelfand-Kapranov-Zelevinsky decomposition (GKZ-decomposition) associated
to W is the collection of all these chambers:

Λ(W) := {λ(w); w ∈ cone(W)}.

Note that for every w ∈ cone(W) one has w ∈ λ(w)◦. Moreover, for any λ ∈ Λ(W)
and w ∈ λ◦ one has λ = λ(w). To every chamber λ = λ(w), we associate aW-bunch

Θ(λ) := {τ ∈ Ω(W); w ∈ τ◦}.

Theorem 2.2.2. Let V = (v1, . . . , vr) in NQ and W = (w1, . . . , wr) in KQ be
Gale dual vector configurations. Then Λ(W) is a fan in KQ with support cone(W).
Moreover, the following statements hold.

(i) For every chamber λ ∈ Λ(W), the associated W-bunch Θ(λ) is maximal
and Σ(λ) := Θ(λ)♯ is a normal maximal V-quasifan.

(ii) Situation as in Construction 2.1.3 and set γ := cone(e1, . . . , er). Then
the V-quasifan Σ(λ) associated to λ ∈ Λ(W) is the normal quasifan of
any polyhedron Bw ⊆MQ obtained as follows:

Bw := (Q−1(w) ∩ γ)− e, w ∈ λ◦, e ∈ Q−1(w).

(iii) Let λ1, λ2 ∈ Λ(W). Then λ1 � λ2 is equivalent to Θ(λ1) ≤ Θ(λ2). In
particular, if λ1 is a face of λ2 then Σ(λ2) refines Σ(λ1).

(iv) If Σ is a normal maximal V-quasifan, then Σ = Σ(λ) holds with some
chamber λ ∈ Λ(W).

Recall that, given quasifans Σ1, . . . ,Σn in a rational vector space NQ such that
all Σi have the same support, the coarsest common refinement of Σ1, . . . ,Σn is the
quasifan

Σ := {σ1 ∩ . . . ∩ σn; σ1 ∈ Σ1, . . . , σn ∈ Σn}.

If each Σi is the normal quasifan of a polyhedron Bi ⊆ MQ in the dual vector
space, then the coarsest common refinement of Σ1, . . . ,Σn is the normal fan of the
Minkowski sum B1 + . . .+Bn.

Theorem 2.2.3. Let V = (v1, . . . , vr) in NQ and W = (w1, . . . , wr) in KQ be
Gale dual vector configurations.

(i) The GKZ-decomposition Λ(V) is the coarsest common refinement of all
quasifans Σ(λ), where λ ∈ Λ(W).
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(ii) The GKZ-decomposition Λ(V) is the coarsest common refinement of all
V-quasifans having cone(V) as their support.

(iii) In the setting of Theorem 2.2.2 (iii), fix for each chamber λ ∈ Λ(W) an
element w(λ) ∈ λ◦. Then the Minkowski sum over the Bw(λ) has Λ(V)
as its normal fan.

Corollary 2.2.4. Every complete quasifan in a rational vector space admits
a refinement by a polytopal fan.

Definition 2.2.5. Let KQ be a rational vector space and W = (w1, . . . , wr) a
family of vectors in KQ generating KQ. The moving cone of W is

Mov(W) :=

r⋂

i=1

cone(wj ; j 6= i) ⊆ KQ.

Theorem 2.2.6. Let V = (v1, . . . , vr) in NQ and W = (w1, . . . , wr) in KQ be
Gale dual vector configurations.

(i) The cone Mov(W) is of full dimension in KQ if and only if v1, . . . , vr
generate pairwise different one-dimensional cones in NQ.

(ii) Assume that Mov(W) is of full dimension in KQ. Then the quasifan Σ(λ)
associated to λ ∈ Λ(W) is a fan if and only if λ◦ ⊆ cone(W)◦ holds.

(iii) Assume that Mov(W) is of full dimension in KQ. Then we have mutually
inverse order preserving bijections

{λ ∈ Λ(W); λ◦ ⊆ Mov(W)◦} ←→ {true normal V-fans},

λ 7→ Σ(λ),
⋂

τ∈Σ♯

τ ←[ Σ.

Under these bijections, the simplicial true normal fans correspond to the
full dimensional chambers.

As an immediate consequence, one obtains the following, see [124, Corol-
lary 3.8], [127, Theorem 4.1] and also [147, Theorem 8.3].

Corollary 2.2.7. Assume that v1, . . . , vr ∈ NQ generate pairwise different
one-dimensional cones. There exist normal true V-fans and every such fan admits
a refinement by a simplicial normal true V-fan.

Example 2.2.8. Consider the Gale dual vector configurations V = (v1, . . . , v6)
in NQ = Q3 and W = (w1, . . . , w6) in KQ = Q3 given by

v1 = (−1, 0, 0), v2 = (0,−1, 0), v3 = (0, 0,−1),

v4 = (0, 1, 1), v5 = (1, 0, 1), v6 = (1, 1, 0)

and
w1 = (1, 0, 0), w2 = (0, 1, 0), w3 = (0, 0, 1),

w4 = (1, 1, 0), w5 = (1, 0, 1), w6 = (0, 1, 1).

Then there are 13 chambers λ ∈ Λ(W) with λ◦ ⊆ Mov(W)◦. These give rise to 13
polytopal true maximal V-fans.

Moreover, one finds 14 true maximal W-bunches not arising from a chamber. Thus
we have in total 27 maximal V-fans 14 of them being non-polytopal.
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2.3. Proof of Theorem 2.1.14. We work in the setting of Construction 2.1.3.
That means that we have a pair of mutually dual exact sequences of finite dimen-
sional rational vector spaces

0 // LQ
// FQ

P // NQ
// 0

0 oo KQ
oo

Q
EQ

oo MQ
oo 0

The idea is to decompose the ♯-operation between collections in KQ and collections
inNQ according to the following scheme of further operations on collections of cones:

{collections in EQ} oo
∗ //

OO

Q↑ Q↓

��

{collections in FQ}OO

P↑P↓

��
{collections in KQ} oo

♯
// {collections in NQ}

We enter the detailed discussion. Let (f1, . . . , fr) be a basis for FQ, and let
(e1, . . . , er) be the dual basis for EQ. Then we have the image vectors

vi := P (fi) ∈ NQ, wi := Q(ei) ∈ KQ, 1 ≤ i ≤ r.

The vector configurations V = (v1, . . . , vr) in NQ and W = (w1, . . . , wr) in KQ are
Gale dual to each other. Moreover, we set

δ := cone(f1, . . . , fr), γ := cone(e1, . . . , er).

Then these cones are dual to each other, and we have the face correspondence, i.e.,
mutually inverse bijections

faces(δ) ←→ faces(γ),

δ0 7→ δ∗0 := δ⊥0 ∩ γ,

γ⊥0 ∩ δ =: γ∗0 ←[ γ0.

Definition 2.3.1. By an LQ-invariant separating linear form for two faces
δ1, δ2 � δ, we mean an element e ∈ EQ such that

e|LQ
= 0, e|δ1 ≥ 0, e|δ2 ≤ 0, δ1 ∩ e

⊥ = δ1 ∩ δ2 = e⊥ ∩ δ2.

Lemma 2.3.2 (Invariant Separation Lemma). Consider two faces δ1, δ2 � δ and
the correponding faces γi := δ∗i � γ. Then the following statements are equivalent.

(i) There is an LQ-invariant separating linear form for δ1 and δ2.
(ii) The relative interiors Q(γi)

◦ satisfy Q(γ1)
◦ ∩Q(γ2)

◦ 6= ∅.

Proof. Let δ1 = cone(fi; i ∈ I) and δ2 = cone(fj ; j ∈ J) with subsets I
and J of R := {1, . . . , r}. Condition (i) is equivalent to existence of a linear form
u ∈MQ with

u(vi) > 0 for i ∈ I \ J, u(vk) = 0 for k ∈ I ∩ J, u(vj) < 0 for j ∈ J \ I.

According to Remark 2.1.2 such a linear form u ∈MQ exists if and only if there are
a1, . . . , ar ∈ Q with a1w1 + . . .+ arwr = 0 and

ai > 0 for i ∈ I \ J, ak = 0 for k ∈ I ∩ J, aj < 0 for j ∈ J \ I.

This in turn is possible if and only if we find coefficients bm > 0 for m ∈ R \ I and
cn > 0 for n ∈ R \ J such that

∑
m∈R\I bmwm equals

∑
n∈R\J cnwn. The latter is

Condition (ii). �
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Definition 2.3.3. By a δ-collection we mean a collection of faces of δ. We say
that a δ-collection A is

(i) separated if any two δ1, δ2 ∈ A admit an LQ-invariant separating linear
form,

(ii) saturated if for any δ1 ∈ A and any δ2 � δ1, which is LQ-invariantly
separable from δ1, one has δ2 ∈ A,

(iii) true if all rays of δ belong to A,
(iv) maximal if it is maximal among the separated δ-collections.

Definition 2.3.4. By a γ-collection we mean a collection of faces of γ. We say
that a γ-collection B is

(i) connected if for any two γ1, γ2 ∈ B the intersection Q(γ1)
◦ ∩ Q(γ2)

◦ is
not empty,

(ii) saturated if for any γ1 ∈ B and any γ � γ2 � γ1 with Q(γ1)
◦ ⊆ Q(γ2)

◦,
one has γ2 ∈ B,

(iii) true if all facets of γ belong to B,
(iv) maximal if it is maximal among the connected γ-collections.

Proposition 2.3.5. We have mutually inverse bijections sending separated
(saturated, true, maximal) collections to connected (saturated, true, maximal) col-
lections:

{separated δ-collections} ←→ {connected γ-collections},

A 7→ A∗ := {δ∗0 ; δ0 ∈ A},

B∗ := {γ∗0 ; γ0 ∈ B} ←[ B.

Proof. The assertion is an immediate consequence of the Invariant Separation
Lemma. �

Definition 2.3.6. By a W-collection we mean a set of W-cones. We say that
a W-collection Θ is

(i) connected if for any two τ1, τ2 ∈ Θ we have τ◦1 ∩ τ
◦
2 6= ∅,

(ii) saturated if for any τ ∈ Θ also all W-cones σ with τ◦ ⊆ σ◦ belong to Θ,
(iii) true if every ϑi = cone(wj ; j 6= i), where 1 ≤ i ≤ r, belongs to Θ,
(iv) maximal if it is maximal among all connected W-collections.

Definition 2.3.7. Consider the set of all W-collections and the set of all γ-
collections. We define the Q-lift and the Q-drop to be the maps

Q↑ : {W-collections} → {γ-collections},

Θ 7→ Q↑Θ := {γ0 � γ; Q(γ0) ∈ Θ},

Q↓ : {γ-collections} → {W-collections},

B 7→ Q↓B := {Q(γ0); γ0 ∈ B}.

Proposition 2.3.8. The Q-lift is injective and sends connected (saturated, true,
maximal) W-collections to Q-connected (saturated, true, maximal) γ-collections.
Moreover, we have mutually inverse bijections sending true collections to true col-
lections:

{maximal W-collections} ←→ {maximal γ-collections} ,

Θ 7→ Q↑Θ,

Q↓B ←[ B.

Proof. By definition of the Q-lift and the Q-drop, we have Q↓Q
↑Θ = Θ for ev-

eryW-collection Θ. In particular, Q↑ is injective. Moreover,Q↑ clearly preserves the
properties connected, saturated, true and maximal. If B is a maximal γ-collection,
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then Q↓B is a maximal W-collection and we have Q↑Q↓B = B. Thus, restricted
to maximal collections, Q↑ and Q↓ are mutually inverse bijections. Obviously, Q↓

sends true collections to true collections. �

Definition 2.3.9. By a V-collection we mean a set of V-cones. We say that a
V-collection Σ is

(i) separated if any two σ1, σ2 ∈ Σ intersect in a common face,
(ii) saturated if for any σ ∈ Σ also all faces σ0 � σ belong to Σ,
(iii) true if every ray ̺i = cone(vi), where 1 ≤ i ≤ r, belongs to Σ,
(iv) maximal if it is maximal among all separated V-collections.

Definition 2.3.10. Consider the set of all V-collections and the set of all δ-
collections. We define the P -lift and the P -drop to be the maps

P ↑ : {V-collections} → {δ-collections},

Σ 7→ P ↑Σ := {δ0 � δ; P (δ0) ∈ Σ},

P↓ : {δ-collections} → {V-collections},

A 7→ P↓A := {P (δ0); δ0 ∈ A}.

Proposition 2.3.11. The P -drop is surjective and sends separated (saturated,
true, maximal) collections to separated (saturated, true, maximal) collections. If
v1, . . . , vr generate pairwise different rays, then we have mutually inverse bijections
sending saturated (maximal) collections to saturated (maximal) collections:

{true separated δ-collections} ←→ {true separated V-collections} ,

A 7→ P↓A,

P ↑Σ ←[ Σ.

Proof. For every V-collection Σ we have Σ = P↓P
↑Σ. In particular, P↓ is

surjective. The fact that P↓ preserves separatedness and saturatedness follows from
the observation that an LQ-invariant separating linear form for two faces δ1, δ2 � δ
induces a separating linear form for the images P (δ1) and P (δ2). The fact that P↓

preserves the properties true and maximal is obvious.

Now assume that v1, . . . , vr generate pairwise different rays. Consider a true
separated V-collection Σ. Then, for every σ ∈ Σ and every 1 ≤ i ≤ r, we have vi ∈ σ
if and only if Q≥0·vi is an extremal ray of σ. Consequently, for every σ ∈ Σ there is
a unique δ0 � δ with P (δ0) = σ. It follows that P ↑(Σ) is true and separated, and,
if Σ is saturated (maximal), then also P ↑(Σ) saturated (maximal). Moreover, we
conclude that P↓ restricted to the true separated collections is injective. �

Proof of Theorem 2.1.14. First observe that the (true, maximal) W-bun-
ches are precisely the (true, maximal) connected saturated W-collections and the
(true, maximal) V-quasifans are precisely the (true, maximal) separated saturated
V-collections. Next observe that we have

Θ♯ = P↓((Q
↑Θ)∗), Σ♯ = Q↓((P

↑Σ)∗).

Then Propositions 2.3.8, 2.3.5 and 2.3.11 provide the statements made on Θ 7→ Θ♯

and Σ 7→ Σ♯; the fact that these assigments are order-reversing is obvious.

We still have to show that simplicial fans correspond to bunches of full-dimensio-
nal cones. A V-fan Σ is simplicial exactly when for every cone(vi ; i ∈ I) in Σ and
every subset I1 ⊆ I the cone(vi ; i ∈ I1) is in Σ. For true Σ this means that for every
τ = cone(wj ; j ∈ J) in the corresponding bunch Θ and every J1, J ⊆ J1 ⊆ R, one
has τ◦ ⊆ cone(wj ; j ∈ J1)

◦. Since the vectors wj generate KQ, this is exactly the
case when all cones of Θ are of full dimension. �
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2.4. Proof of Theorems 2.2.2, 2.2.3 and 2.2.6. The setup is as in the
preceding subsection, that means that we have the pair of mutually dual exact
sequences

0 // LQ
// FQ

P // NQ
// 0

0 oo KQ
oo

Q
EQ

oo MQ
oo 0

fix a basis (f1, . . . , fr) for FQ and denote by (e1, . . . , er) the dual basis for EQ. Then
the image vectors

vi := P (fi) ∈ NQ, wi := Q(ei) ∈ KQ, 1 ≤ i ≤ r,

give Gale dual vector configurations V = (v1, . . . , vr) in NQ and W = (w1, . . . , wr)
in KQ. Again, the positive orthants in FQ and EQ are denoted by

δ := cone(f1, . . . , fr), γ := cone(e1, . . . , er).

We split the proofs of the Theorems into several Propositions. The first two settle
Theorem 2.2.2 (i) and (ii).

Proposition 2.4.1. The collection Σ(λ(w)) equals the normal quasifan N (Bw).
In particular, Σ(λ(w)) is a normal maximal V-quasifan with support cone(V).

Proof. The cones of the normal quasifanN (Bw) correspond to the faces of the
polyhedron of Bw = (Q−1(w) ∩ γ)− e, where e ∈ EQ is any element with Q(e) = w
as follows: given Bw,0 � Bw, the corresponding cone of N (Bw) is

σ0 := {v ∈ NQ; 〈u− u0, v〉 ≥ 0, u ∈ Bw, u0 ∈ Bw,0} ⊆ NQ.

Now, let γ0 � γ denote the minimal face with Bw,0 + e ⊆ γ0. Then we have
γ◦0 ∩Q

−1(w) 6= ∅. Thus, γ0 belongs to the Q-lift of Θ(λ(w)). For the corresponding
face δ0 = γ⊥0 ∩ δ of δ = γ∨, one directly verifies

P (δ0) = σ0.

Thus, the first assertion follows from the observation that the assignmentBw,0 7→ γ0

defines a bijection from the faces of Bw to the Q-lift of Θ(λ(w)), and the fact that
Σ(λ) equals P↓((Q

↑Θ(λ(w)))∗). The rest follows from

Supp(N (Bw)) = (P ∗(MQ) ∩ γ)∨ = cone(V).

�

Proposition 2.4.2. For every chamber λ ∈ Λ(W), the associated W-bunch
Θ(λ) is maximal.

Proof. Suppose that Θ(λ) is a proper subset of a maximal W-bunch Θ. For
the associated saturated separated δ-collections this means that (Q↑Θ(λ))∗ is a
proper subset of (Q↑Θ)∗. Since P induces a bijection (Q↑Θ)∗ → P↓((Q

↑Θ)∗) we
obtain that Θ(λ)♯ is a proper subset of Θ♯. This contradicts the fact that, due to
Proposition 2.4.1, the quasifan Θ(λ)♯ has cone(V) as its support. �

Now we will see that the GKZ-decomposition Λ(W) is in fact a fan. We prove
this for the GKZ-decomposition Λ(V) of the Gale dual vector configuration and
moreover verify the assertions made in Theorem 2.2.3.

Proposition 2.4.3. The GKZ-decomposition Λ(V) is a fan. Moreover, the
following statements hold.

(i) The GKZ-decomposition Λ(V) is the coarsest common refinement of all
quasifans Σ(λ), where λ ∈ Λ(W).
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(ii) The GKZ-decomposition Λ(V) is the coarsest common refinement of all
V-quasifans having cone(V) as its support.

(iii) Fix for each chamber λ ∈ Λ(W) an element w(λ) ∈ λ◦. Then the
Minkowski sum over the Bw(λ) has Λ(V) as its normal fan.

Lemma 2.4.4. For every V-cone σ ⊆ NQ, there exists a chamber λ ∈ Λ(W)
with σ ∈ Σ(λ).

Proof. Write σ = cone(vi ; i ∈ I), and choose w ∈ cone(wj ; j /∈ I)◦. Then
the associated quasifan Σ(λ(w)) = Θ(λ(w))♯ contains σ. �

Proof of Proposition 2.4.3. Lemma 2.4.4 tells us that every V-cone is con-
tained in a normal V-quasifan Σ(λ) = N (Bw(λ)), where λ ∈ Λ(W) and w ∈ λ◦ is
fixed. It follows that Λ(V) is the coarsest common refinement of the Σ(λ). Since
every ray cone(vj) ⊆ NQ belongs to some Σ(λ), we obtain that Λ(V) is even a
fan. Moreover, also the second assertion follows from the fact that every V-cone is
contained in some Σ(λ). Finally, we obtained that Σ(λ) is the normal fan of the
Minkowski sum over the Bw(λ). �

Proposition 2.4.5. For any two λ1, λ2 ∈ Λ(W) we have λ1 � λ2 if and only
if Θ(λ1) ≤ Θ(λ2) holds. In particular, λ1 � λ2 implies Σ(λ2) ≤ Σ(λ1).

Proof. Suppose that λ1 � λ2 holds. Then, given any τ2 ∈ Θ(λ2), we have
λ1 ⊆ τ2 and thus find a face τ1 � τ2 with λ◦1 ⊆ τ◦1 . Consequently τ1 ∈ Θ(λ1) and
τ1 ⊆ τ2 holds. Next suppose that Θ(λ1) ≤ Θ(λ2) holds. For every τ2 ∈ Θ(λ2), fix
a τ1 ∈ Θ(λ1) with τ1 ⊆ τ2. This yields λ1 ⊆ τ2 for all τ2 ∈ Θ(λ2). We conclude
λ1 ⊆ λ2 and, since Λ(W) is a fan, λ1 � λ2. The supplement is then clear because
we have Σ(λi) = Θ(λi)

♯ and Θ→ Θ♯ is order reversing. �

Proposition 2.4.6. Every normal V-quasifan is of the form Σ(λ) with a cham-
ber λ ∈ Λ(W).

Proof. Suppose that a V-quasifan Σ is the normal quasifan of a polyhedron
B ⊆MQ. Then the polyhedron B is given by inequalities 〈u, vi〉 ≥ ci, where vi ∈ V
and ci ∈ Q. Note that each vi is the restriction of a coordinate function on EQ to
the subspace MQ. This shows that B may be obtained as the intersection of γ with
the parallel translate e+MQ of the subspaceMQ, where e = −c1e1−. . .−crer ∈ EQ.
Thus B = Bw, where w = Q(e), and Proposition 2.4.1 completes the proof. �

We obtained all the assertions of Theorems 2.2.2 and 2.2.3 and now turn to the
proof of Theorem 2.2.6. Recall that we set ϑi = cone(wj ; j 6= i) for 1 ≤ i ≤ r.

Proposition 2.4.7. Assume that v1, . . . , vr generate pairwise different one-
dimensional cones. Then, for λ ∈ Λ(W), the quasifan Σ(λ) is a fan if and only if
λ◦ ⊆ cone(W)◦ holds.

Proof. Take w ∈ λ◦. Then the normal quasifan N (Bw) is a fan if and only if
the polyhedron Bw ⊆MQ is of full dimension. The latter holds if and only if Q−1(w)
intersects γ◦0 for a face γ0 � γ with MQ ⊆ lin(γ0). Since all vi are nonzero, the latter
is equivalent to Q−1(w) ∩ γ◦ 6= ∅. This in turn means precisely w ∈ cone(W)◦. �

Proposition 2.4.8. Assume that v1, . . . , vr generate pairwise different one-
dimensional cones. Then there exists a true normal V-fan Σ.

Proof. Rescale each vi to v′i = civi, where ci ∈ Q>0, such that every v′i is a
vertex of the convex hull over 0, v′1, . . . , v

′
r. Then Σ := N (B) is as wanted for

B := {u ∈MQ; 〈u, vi〉 ≥ −1} ⊆ MQ.

�
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Proposition 2.4.9. The cone Mov(W) is of full dimension in KQ if and only if
v1, . . . , vr generate pairwise different one-dimensional cones. If one of these state-
ments holds, then we have

Mov(W)◦ = ϑ◦1 ∩ . . . ∩ ϑ
◦
r .

Proof. First suppose that v1, . . . , vr generate pairwise different one-
dimensional cones. Then Proposition 2.4.8 provides us with a true normal V-fan Σ
and Proposition 2.4.6 guarantees Σ = Σ(λ) with a chamber λ ∈ Λ(W). Take any
w ∈ λ◦. Since each cone(vi) belongs to Σ = Θ(λ)♯, we obtain that each ϑ◦i contains
w. Since every vi is non-zero, the ϑi are of full dimension in KQ and thus Mov(W)
is so.

Conversely, if Mov(W) is of full dimension in KQ, then ϑ1, . . . , ϑr together
with Q(γ)◦ form a true W-bunch. Consequently, cone(f1), . . . , cone(fr) together
with the zero cone form a true separated δ-collection A. The P -drop P↓A is the
V-fan Σ consisting of the zero cone and cone(v1), . . . , cone(vr). Since P induces
an injection A → Σ, we conclude that the cone(vi) are pairwise different and one-
dimensional. �

Proposition 2.4.10. Assume that the moving cone Mov(W) is of full dimen-
sion in KQ. Then we have mutually inverse bijections

{λ ∈ Λ; λ◦ ⊆ Mov(W)◦} ←→ {true normal V-fans}

λ 7→ Σ(λ),
⋂

τ∈Σ♯

τ ←[ Σ.

Proof. First we remark that, by Proposition 2.4.9, the vectors v1, . . . , vr gen-
erate pairwise different one-dimensional cones. Thus, given λ ∈ Λ(W), the asso-
ciated V-fan Σ(λ) = Θ(λ)♯ is true if and only if Θ(λ) comprises ϑ1, . . . , ϑr, where
the latter is equivalent to λ◦ ⊆ Mov(W)◦. Now the assertion follows directly from
Propositions 2.4.1, 2.4.2, 2.4.6 and Theorem 2.1.14. �

3. Good toric quotients

3.1. Characterization of good toric quotients. Consider a toric variety
X with acting torus T and a closed subgroup H ⊆ T . We present the combinatorial
criterion [152, Theorem 4.1] for existence of a good quotient for the action of H
on X in the following sense.

Definition 3.1.1. Let a reductive group G act on a variety X . We say that a
good quotient p : X → Y for the G-action is separated if Y is separated.

A first general observation enables us to treat the problem of existence of a
separated good quotient entirely in terms of toric geometry.

Proposition 3.1.2. Let X be a toric variety with acting torus T and p : X → Y
a separated good quotient for the action of a closed subgroup H ⊆ T . Then Y admits
a unique structure of a toric variety turning p into a toric morphism.

Proof. First observe that Y inherits normality from X . Next consider the
product T ×X . Then H acts on the second factor as a subgroup of T and we have
a commutative diagram

T ×X
µX //

id×p

��

X

p

��
T × Y µY

// Y
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where µX describes the T -action and the downwards arrows are good quotients for
the respective H-actions. One verifies directly that the induced morphism µY is a
T -action with an open dense orbit. The assertion follows. �

We fix the setup for the rest of this section. Let ∆ be a fan in a lattice F and
denote by X := X∆ the associated toric variety. Moreover, let Q : E → K be an
epimorphism from the dual lattice E = Hom(F,Z) onto an abelian group K; this
specifies an embedding of H := Spec K[K] into the acting torus T = Spec K[E] and
thus an action of H on X . Denoting by M ⊆ E the kernel of Q : E → K, we obtain
mutually dual exact sequences

0 // L
Q∗

// F
P // N

0 Koo E
Q

oo M
P∗

oo 0oo

Definition 3.1.3. We say that ∆ is LQ-projectable if any two δ1, δ2 ∈ ∆max

admit an LQ-invariant separating linear form, i.e., an element e ∈ EQ with

e|LQ
= 0, e|δ1 ≥ 0, e|δ2 ≤ 0, δ1 ∩ e

⊥ = δ1 ∩ δ2 = e⊥ ∩ δ2.

Remark 3.1.4. In the above setting, the fan ∆ is LQ-projectable if and only if
every cone δ ∈ ∆max satisfies

P−1(P (δ)) ∩ Supp(∆) = δ.

Construction 3.1.5. Suppose that the fan ∆ is LQ-projectable. Then we
have the collection of those cones of ∆ which can be separated by an LQ-invariant
linear form from a maximal cone:

A(∆) := {δ ∈ ∆; δ = e⊥ ∩ δ0 for some δ0 ∈ ∆max and e ∈ δ∨0 ∩ L
⊥
Q}.

The images P (δ), where δ ∈ A(∆), form a quasifan Σ in NQ and all share the same
minimal face τ ⊆ NQ. The map P : F → N is a map of the quasifans ∆ and Σ, and
we have a bijection

A(∆) → Σ, δ 7→ P (δ).

Moreover, with N1 := N/(τ ∩ N) and the canonical map P1 : F → N1, the cones
P1(δ), where δ ∈ A(∆), form a fan Σ1 in N1. The map P1 : F → N1 is a map of the
fans ∆ and Σ1, and we have a bijection

A(∆) → Σ1, δ 7→ P1(δ).

Proof. We claim that any two cones δi ∈ A(∆) admit an LQ-invariant sepa-
rating linear form. Indeed, consider maximal cones δ′i ∈ ∆ with δi � δ′i. Then δ′1
and δ′2 admit an LQ-invariant separating linear form e, the faces δi are separated
from δ′i by LQ-invariant linear forms ei and any linear combination e2−e1 +ae with
a big enough provides the wanted LQ-invariant separating linear form for δ1 and δ2.
This claim directly implies that the cones P (δ), where δ ∈ A(∆), form a quasifan
Σ and the canonical map A(∆)→ Σ is bijective. By construction, Σ1 is a fan and
the canonical map Σ→ Σ1 is a bijection. �

Proposition 3.1.6. As above, let X be the toric variety arising from a fan ∆ in
a lattice F , and consider the action of a subgroup H ⊆ T given by an epimorphism
Q : E → K. Then the following statements are equivalent.

(i) The action of H on X admits a separated good quotient.
(ii) The fan ∆ is LQ-projectable.
(iii) Every δ ∈ ∆max satisfies P−1(P (δ)) ∩ Supp(∆) = δ.
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Moreover, if one of these statements holds, then the toric morphism p1 : X → Y1

arising from the map P1 : F → N1 of the fans ∆ and Σ1 as in 3.1.5 is a separated
good quotient for the action of H on X.

Specializing this characterization to the case of geometric quotients with sepa-
rated quotient space gives the following characterization.

Corollary 3.1.7. As above, let X be the toric variety arising from a fan ∆ in
a lattice F , and consider the action of a subgroup H ⊆ T given by an epimorphism
Q : E → K. Then the following statements are equivalent.

(i) The action of H on X admits a separated geometric quotient.
(ii) The restriction P : Supp(∆)→ NQ is injective.

If one of these statements holds, then Σ := {P (δ); δ ∈ ∆} is a fan in NQ and the
toric morphism p : X → Y associated to the map P : F → N of the fans ∆ and Σ
is a separated geometric quotient for the action of H on X.

We come to the proof of Proposition 3.1.6. The following elementary observa-
tion will also be used later.

Lemma 3.1.8. Situation as in Construction 3.1.5. Then for every δ ∈ A(∆),
we have P−1

1 (P1(δ)) ∩ Supp(∆) = δ.

Proof. Consider δ0 ∈ ∆ with P1(δ0) ⊆ P1(δ). Then P (δ0) ⊆ P (δ) holds
and thus any LQ-invariant linear form on F that is nonnegative on δ is necessarily
nonnegative on δ0. It follows that δ0 is a face of δ. �

Proof of Proposition 3.1.6. The equivalence of (ii) and (iii) is elementary.
We only show that (i) and (ii) are equivalent. First suppose that the action of H has
a good quotient π : X → Y . By Proposition 3.1.2, the quotient variety Y is toric
and π is a toric morphism. So we may assume that π arises from a map Π: F → N ′

from ∆ to a fan Σ′ in a lattice N ′. Note that the sublattice L ⊆ F is contained in
the kernel of Π. We claim that there are bijections of the sets ∆max and (Σ′)max of
maximal cones:

∆max → (Σ′)max, δ 7→ Π(δ),(3.1)

(Σ′)max → ∆max, σ′ 7→ Π−1(σ′) ∩ Supp(∆)(3.2)

To check that the first map is well-defined, let δ ∈ ∆max. Then the image Π(δ) is
contained in some maximal cone σ′ ∈ Σ′. In particular, π(Xδ) ⊆ X ′σ′ holds. Since
π is affine, the inverse image π−1(X ′σ′ ) is an invariant affine chart of X , and hence
equals Xδ. Since π is surjective, we have π(Xδ) = X ′σ′ . This means Π(δ) = σ′. To
see that the second map is well defined, let σ′ ∈ (Σ′)max. The inverse image of the
associated affine chart X ′σ′ ⊆ X ′ is given by

π−1(X ′σ′) =
⋃

τ∈∆
Π(τ)⊆σ′

Xτ .

Since π is affine, this inverse image is an affine invariant chart Xδ given by some
cone δ ∈ ∆. In follows that

δ = cone(τ ∈ ∆; Π(τ) ⊆ σ′) = Π−1(σ′) ∩ Supp(∆).

By surjectivity of π, we have Π(δ) = σ′. Assume that δ ⊆ ϑ for some ϑ ∈ ∆max. As
seen above, Π(ϑ) is a maximal cone of Σ′. Since Π(ϑ) contains the maximal cone
σ′, we get Π(ϑ) = σ′. This implies δ = ϑ, thus δ ∈ ∆max, and the map (3.2) is well
defined. Let δ1, δ2 ∈ ∆max be two different cones. The maximal cones σ′i := Π(δi)
can be separated by a linear form u′ on N ′. Then u := u′ ◦ Π is an LQ-invariant
separating linear form for the cones δ1 and δ2.
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Now suppose that the fan ∆ is LQ-projectable. We show that the toric mor-
phism p1 : X → Y1 is affine. Consider an affine chart Y ′1 ⊆ Y1 corresponding to a
maximal cone σ1 ⊆ Σ1. Then there are unique maximal cones σ ∈ Σ and δ ∈ ∆
projecting onto σ1. Lemma 3.1.8 and the Fiber Formula tell us that p−1

1 (Y ′1) equals
the affine toric chart of X corresponding to δ and thus p1 : X → Y1 is affine. Propo-
sition 1.4.3 then implies that it is a good quotient. �

Example 3.1.9. Let Σ be a fan in a lattice F and consider a cone σ ∈ Σ.
Denote by star(σ) the set of all cones τ ∈ Σ that contain σ as a face. Then the
closure of the toric orbit corresponding to σ is given by

T · xσ =
⋃

τ∈star(σ)

T · xτ .

The union U(σ) of the affine charts Xτ , where τ ∈ star(σ), is an open T -invariant
neighbourhood of the orbit closure T · xσ. The set of maximal cones of the fan Σ(σ)
corresponding to U(σ) coincides with Σmax ∩ star(σ).

Let L be the intersection of the linear span lin(σ) of σ in FQ with the lattice F ,
and let P : F → N := F/L denote the projection. Then the cones P (τ), where τ

runs through Σ(σ)max, are the maximal cones of the quotient fan Σ̃(σ) of Σ(σ) by

L. Moreover, Σ̃(σ) is the fan of T · xσ viewed as a toric variety with acting torus
T/Txσ . In other words, the projection defines a good quotient p : U(σ)→ T · xσ by
the isotropy group Txσ .

3.2. Combinatorics of good toric quotients. We consider a Q-factorial
affine toric variety X with acting torus T and the action of a closed subgroup
H ⊆ T on X . Our aim is a combinatorial description of the “maximal” open
subsets U ⊆ X admitting a separated good quotient by the action of H ; the main
result reformulates [35] in terms of bunches of cones. First we fix the notion of
maximality.

Definition 3.2.1. Let a reductive affine algebraic group G act on a variety X .

(i) By a good G-set in X , we mean an open subset U ⊆ X with a separated
good quotient U → U//G.

(ii) We say that a subset U ′ ⊆ U of a good G-set U ⊆ X is G-saturated if it
satisfies U ′ = p−1(p(U ′)), where p : U → U//G is the quotient.

(iii) We say that a subset U ⊆ X is G-maximal if it is a good G-set and
maximal w.r.t. G-saturated inclusion.

The key to a combinatorial description of H-maximal subsets for subgroup
actions on toric varieties is the following, see [152, Corollary 2.5].

Theorem 3.2.2. Let X be a toric variety with the acting torus T and H be a
closed subgroup of T . Then every H-maximal subset of X is T -invariant.

We fix the setup for the rest of the section. Let F be a lattice, δ ⊆ FQ a
simplicial cone of full dimension with primitive generators f1, . . . , fr ∈ F and let
Q : E → K be an epimorphism from the dual lattice E = Hom(F,Z) onto an abelian
group K. Denoting by M ⊆ E the kernel of Q : E → K, we obtain mutually dual
exact sequences of rational vector spaces

0 // LQ
// FQ

P // NQ
// 0

0 oo KQ
oo

Q
EQ

oo MQ
oo 0
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Let (e1, . . . , er) be the basis for EQ dual to the basis (f1, . . . , fr) for FQ. With vi :=
P (fi) and wi := Q(ei), we obtain Gale dual vector configurations V := (v1, . . . , vr)
and W := (w1, . . . , wr). Moreover, let γ ⊆ EQ be the dual cone of δ ⊆ FQ. We
denote by X := Xδ the affine toric variety associated to the cone δ in the lattice
F and consider the action of the subgroup H := Spec K[K] of the acting torus
T = Spec K[E] on X .

Construction 3.2.3. To every saturated connected γ-collection B and also
to everyW-bunch Θ, we associate an LQ-projectable subfan of the fan of faces of δ
and the corresponding open toric subsets of X :

∆(B) := {δ0 � δ; δ0 � γ
∗
0 for some γ0 ∈ B}, U(B) := X∆(B),

∆(Θ) := {δ0 � δ; δ0 � γ
∗
0 for some γ0 ∈ Q

↑Θ}, U(Θ) := X∆(Θ).

Conversely, any toric goodH-set U ⊆ X arises from an LQ-projectable subfan ∆(U)
of the fan of faces of δ and we define an associated saturated connected γ-collection
and an associated W-bunch

B(U) := A(∆(U))∗, Θ(∆) := Q↓(A(∆(U))∗).

Theorem 3.2.4. As above, let X be the affine toric variety arising from a
simplicial cone δ of full dimension in a lattice F , and consider the action of a
subgroup H ⊆ T given by an epimorphism Q : E → K. Then one has order reversing
mutually inverse bijections

{maximal W-bunches} ←→ {H-maximal subsets of X},

Θ 7→ U(Θ),

Θ(U) ←[ U.

Under these bijections, the bunches arising from GKZ-chambers correspond to the
subsets with a quasiprojective quotient space.

Lemma 3.2.5. Situation as in Construction 3.1.5. Let ∆′ � ∆ be an LQ-
projectable subfan and let X ′, X denote the toric varieties associated to ∆′,∆ re-
spectively. Then X ′ is H-saturated in X if and only if A(∆′) ⊆ A(∆) holds.

Proof. We work with the good quotient p1 : X → Y1 arising from the map
P1 : F → N1 of the fans ∆ and Σ1 provided by Construction 3.1.5. First assume
that X ′ is H-saturated in X . Given δ′ ∈ A(∆′), consider the associate affine toric
chart U ′ ⊆ X ′. Since Y1 carries the quotient topology, p1(U) ⊆ Y1 is open and we
obtain P1(δ

′) ∈ Σ1. Lemma 3.1.8 yields δ′ ∈ A(∆). Conversely, if A(∆′) ⊆ A(∆)
holds, combine Lemma 3.1.8 and the Fiber Formula to see that p−1(p(U ′)) equals U ′

for every toric affine chart U ′ ⊆ X ′. �

Lemma 3.2.6. Situation as before Construction 3.2.3. Then we have mutually
inverse order reversing bijections

{saturated connected γ-collections} ←→ {LQ-projectable fans},

B 7→ ∆(B),

A(∆)∗ ←[ ∆.

{maximal W-bunches} ←→ {maximal LQ-projectable fans},

Θ 7→ ∆(Q↑Θ),

Q↓(A(∆)∗) ←[ ∆.

Proof. Obviously, the assignment ∆ 7→ A(∆) defines a bijection from LQ-
projectable fans to saturated separated δ-collections; its inverse is given by

A 7→ {δ0 � δ; δ0 � δ1 for some δ1 ∈ A}.
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Thus, Proposition 2.3.5 establishes the first pair of bijections. Involving also Propo-
sition 2.3.8 gives the second one. �

Proof of Construction 3.2.3 and Theorem 3.2.4. Construction 3.2.3 is
clear by Lemma 3.2.6. Theorem 3.2.2 ensures that the H-maximal subsets U ⊆ X
are toric. According to Proposition 3.1.6 and Lemma 3.2.5, they correspond to
maximal LQ-projectable subfans ∆ of the fan of faces of δ ⊆ FQ. Thus, Lemma 3.2.6
provides the desired bijections. The supplement follows from the characterization
of normal fans given in Theorem 2.2.2. �

Proposition 3.2.7. Situation as in Theorem 3.2.4. Let Θ be a maximal W-
bunch and p : U(Θ) → Y the associated good quotient. Then the following state-
ments are equivalent.

(i) The W-bunch Θ consists of full-dimensional cones.
(ii) We have (Q↑Θ)∗ = ∆(Θ).
(iii) The good quotient p : U(Θ)→ Y is geometric.

Proof. The equivalence of (i) and (ii) is elementary and the equivalence of (ii)
and (iii) is a direct consequence of the Fiber Formula and the fact that P induces
a bijection (Q↑Θ)∗ → P↓((Q

↑Θ)∗). �

4. Toric varieties and bunches of cones

4.1. Toric varieties and lattice bunches. We use the concept of a bunch of
cones to describe toric varieties. As with fans, this means to enhance bunches with
a lattice structure. We obtain a functor from maximal lattice bunches to “maximal”
toric varieties which induces a bijection on isomorphy classes. In fact, for later use,
we formulate the assignment first in a more general context.

As earlier, given an abelian group K, we write KQ := K⊗Z Q for the associated
rational vector space and for any w ∈ K, we denote the associated element w⊗ 1 ∈
KQ again by w. Moreover, for a homomorphism Q : E → K of abelian groups we
denote the associated linear map EQ → KQ again by Q.

Definition 4.1.1. A (true) lattice collection is a triple (E
Q
−→ K, γ,B), where

Q : E → K is an epimorphism from a lattice E with basis e1, . . . , er onto an abelian
group K generated by any r − 1 of the wi := Q(ei), the cone γ ⊆ EQ is generated
by e1, . . . , er and B is a (true) saturated connected γ-collection.

Construction 4.1.2. Let (E
Q
−→ K, γ,B) be a true lattice collection. In

particular, E is a lattice with basis e1, . . . , er, we have γ := cone(e1, . . . , er) and
Q : E → K an epimorphism onto an abelian group such that any r − 1 of the
wi := Q(ei) generate K as an abelian group. With M := ker(Q), we have the
mutually dual exact sequences

0 // L // F
P // N

0 Koo E
Q

oo Moo 0oo

Let f1, . . . , fr be the dual basis of e1, . . . , er. Then each vi := P (fi) is a primitive
lattice vector in N . Let δ = cone(f1, . . . , fr) denote the dual cone of γ ⊆ EQ and
for γ0 � γ let γ∗0 = γ⊥0 ∩ δ be the corresponding face. Then one has fans in the
lattices F and N :

Σ̂ := {δ0 � δ; δ0 � γ
∗
0 for some γ0 ∈ B}, Σ := {P (γ∗0); γ0 ∈ B}.
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The canonical map B → Σ, γ0 7→ P (γ∗0 ) is an order reversing bijection. In par-
ticular, the fan Σ has exactly r rays, namely cone(v1), . . . , cone(vr). The toric
variety associated to B is the toric variety X defined by the fan Σ. The projec-

tion P : F → N is a map of the fans Σ̂ and Σ and hence defines a toric morphism

X̂ → X .

Proof. Since any r − 1 of the weights wi generate K as an abelian group,
Lemma 1.4.1 shows that each vi = P (fi) is a primitive lattice vector. Moreover,
Propositions 2.3.5 and 2.3.11 show that Σ is a fan and the canonical map B → Σ
is an order reversing bijection. �

Note that every non-degenerate lattice fan can be obtained via this construction.
Specializing to bunches of cones, we loose a bit of this generality, but obtain a more
concise presentation.

Definition 4.1.3. A (true, maximal) lattice bunch a triple (K,W ,Θ), where
K is a finitely generated abelian group, W = (w1, . . . , wr) is a family in K such
that any r− 1 of the wi generate K as an abelian group and Θ is a (true, maximal)
W-bunch.

Construction 4.1.4. Let (K,W ,Θ) be a true lattice bunch. The associated

projected cone is (E
Q
−→ K, γ), where E = Zr, the homomorphism Q : E → K sends

the i-th canonical basis vector ei ∈ E to wi ∈ K and γ ⊆ EQ is the cone generated
by e1, . . . , er. We have the following collections of cones:

Q↑Θ = {γ0 � γ; Q(γ0) ∈ Θ},

cov(Θ) := {γ0 ∈ Q
↑Θ; γ0 minimal}.

The first one is the Q-lift of Θ and we call the second one the covering collection
of Θ. In the notation of Theorem 2.1.14 and Construction 4.1.2, it defines fans in
F and N :

Σ̂ := {δ0 � δ; δ0 � γ
∗
0 for some γ0 ∈ Q

↑Θ}, Σ = Θ♯ = {P (γ∗0 ); γ0 ∈ Q
↑Θ}.

The toric variety associated to (K,W ,Θ) is the toric variety X = XΘ defined by
the maximal V-fan Σ = Θ♯ corresponding to Θ. The projection P : F → N defines

a map of the fans Σ̂ and Σ and thus a toric morphism X̂ → X .

Definition 4.1.5. A morphism of lattice bunches (Ki,Wi,Θi) with associated

projected cones (Ei
Qi−→ Ki, γi) is a homomorphism ϕ : E1 → E2 such that there is

a commutative diagram

E1

Q1

��

ϕ // E2

Q2

��
K1

ϕ
// K2,

where ϕ(γ1) ⊆ γ2 holds and for every α2 ∈ cov(Θ2) there is α1 ∈ cov(Θ1) with
ϕ(α1) ⊆ α2.

Remark 4.1.6. Let (Ki,Wi,Θi) be two true lattice bunches and ϕ a morphism
between them. Then ϕ induces a morphism of the corresponding lattice fans Σ2 =

Θ♯
2 and Σ1 = Θ♯

1, and thus a morphism ψ(ϕ) : XΘ2 → XΘ1 of the associated toric
varieties.

We say that a toric variety X is maximal if admits no open toric embedding
X ( X ′ with X ′ \ X of codimension at least two in X ′. Note that in terms of a
defining fan Σ of X , maximality means that Σ does not occur as a proper subfan
of some fan Σ′ having the same rays as Σ. For example, complete as well as affine
toric varieties are maximal.
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Theorem 4.1.7. We have a contravariant faithful essentially surjective functor
inducing a bijection on the sets of isomorphism classes:

{true maximal lattice bunches} −→ {maximal toric varieties},

(K,W ,Θ) 7→ XΘ,

ϕ 7→ ψ(ϕ).

Proof. The assertion follows directly from Construction 4.1.4, Remark 4.1.6
and Theorem 2.1.14. �

Example 4.1.8. Consider the true maximal lattice bunch (K,W ,Θ), where
K := Z3, the family W = (w1, . . . , w6) is given by

w1 = (1, 0, 0), w2 = (0, 1, 0), w3 = (0, 0, 1),

w4 = (1, 1, 0), w5 = (1, 0, 1), w6 = (0, 1, 1),

and, finally, the maximalW-bunch Θ inKQ has the following four three-dimensional
cones as its minimal cones:

cone(w3, w4, w5), cone(w1, w4, w6), cone(w2, w5, w6), cone(w4, w5, w6).

The fan Σ = Θ♯ is one of the simplest non-polytopal complete simplicial fans in
N = Z3. It looks as follows. Consider the polytope B ⊂ KQ with the vertices

(−1, 0, 0), (0,−1, 0), (0, 0,−1), (0, 1, 1), (1, 0, 1), (1, 1, 0)

and subdivide the facets of B according to the picture below. Then Σ is the fan
generated by the cones over the simplices of this subdivision.

1
2
w6

w3
w2

1
2
w4

w1

1
2
w5

Defining polytope subdivision of Σ Corresponding bunch Θ

4.2. Toric geometry via bunches. We describe basic geometric properties
of a toric variety in terms of a defining lattice collection or lattice bunch. We con-
sider orbit decomposition, divisor class group, Cox ring, local class groups, Picard
group, smoothness, Q-factoriality, cones of movable, semiample and ample divisors
and intersection numbers.

Proposition 4.2.1 (Orbit decomposition II). Situation as in Construc-
tion 4.1.2. Then we have a bijection

B → {T -orbits of X}, γ0 7→ T · xγ0 , where xγ0 := xP (γ∗
0 ).

Moreover, for any two γ0, γ1 ∈ B, one has γ0 � γ1 if and only if T ·xγ0 ⊆ T ·xγ1
holds.

Proof. The collection B is in order reversing bijection with the defining fan Σ
of X via γ0 7→ P (γ∗0 ). Thus, the usual description 1.2.2 of the orbit decomposition
in terms of Σ gives the assertion. �
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Proposition 4.2.2 (Divisor class group and Cox ring). Situation as in Con-
struction 4.1.2. Then there is a commutative diagram of abelian groups

X(HX)

||yy
yy

yy
yy

y
X(T)oo X(T )

p∗X

oo

0 Koo

∼=

OO

∼=

��

E
Q

oo

∼=e7→χe

OO

∼=ei 7→Ei

��

M
P∗

oo

∼=u7→χu

OO

∼=u7→div(χu)

��

0oo

ddIIIIIIIIII

zzvv
vv

vv
vv

vv

Cl(X)

bbEEEEEEEEE

WDivT (X)oo PDivT (X)oo

Moreover, X̂ → X is a characteristic space and for the Cox ring R(X), we have
the following isomorphism of graded algebras

K[E ∩ γ] =
⊕

w∈K

K[E ∩ γ]w ∼=
⊕

[D]∈Cl(X)

R(X)[D] = R(X).

Proof. The assertion follows directly from Theorem 1.3.1 and the discussion
given before this Theorem. �

Proposition 4.2.3. Situation as in Construction 4.1.2. For x ∈ X, let γ0 ∈ B

be the face with x ∈ T ·xγ0 . Then the local divisor class group of X at x is given by

Cl(X) //
OO

∼=

��

Cl(X,x)
OO
∼=

��
K // K/Q(lin(γ0) ∩ E)

Proof. We may assume that x = xσ with σ = P (γ∗0 ) holds. Set σ̂ := γ∗0 . Using

the Fiber Formula 1.2.4, we see that the distinguished point xbσ ∈ Σ̂ has a closed

H-orbit in the fiber p−1(xσ), where p : X̂ → X denotes the characteristic space. By
Proposition 1.4.2, the isotropy group Hxbσ

⊆ H is given by K → K/Q(lin(γ0) ∩E).
Thus, we may apply Proposition I. 6.2.2 to obtain the assertion. �

Corollary 4.2.4. Situation as in Construction 4.1.2. Inside the divisor class
group Cl(X) = K, the Picard group of X is given by

Pic(X) =
⋂

γ0∈B

Q(lin(γ0) ∩ E).

Corollary 4.2.5. Situation as in Construction 4.1.2. For a point x ∈ X, let
γ0 ∈ B be the face with x ∈ T ·xγ0 .

(i) The point x is Q-factorial if and only if dim Q(γ0) equals dim KQ.
(ii) The point x is smooth if and only if Q(lin(γ0) ∩ E) equals K.

We describe cones of divisors in the rational divisor class group. Recall that a
divisor on a variety is called movable if it has a positive multiple with base locus
of codimension at least two and it is called semiample if it has a base point free
multiple.

Proposition 4.2.6. Situation as in Construction 4.1.2. The cones of effective,
movable, semiample and ample divisor classes of X in ClQ(X) = KQ are given as

Eff(X) = Q(γ), Mov(X) =
⋂

γ0 facet of γ

Q(γ0),

SAmple(X) =
⋂

γ0∈B

Q(γ0), Ample(X) =
⋂

γ0∈B

Q(γ0)
◦.
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Moreover, if X arises from a lattice bunch (K,W ,Θ) as in Construction 4.1.4, then
we have

SAmple(X) =
⋂

τ∈Θ

τ, Ample(X) =
⋂

τ∈Θ

τ◦.

Proof. For the descriptions of SAmple(X) and Ample(X), let D be an invari-
ant Q-Cartier divisor on X and let ŵ ∈ EQ be the corresponding element. Recall
that D is semiample (ample) if and only if it is described by a support function
(uσ), which is convex (strictly convex) in the sense that uσ − uσ′ is nonnegative

(positive) on σ \ σ′ for any two σ, σ′ ∈ Σ. For σ ∈ Σ, we denote by σ̂ ∈ Σ̂ the cone
with P (σ̂) = σ̂.

Suppose that D is semiample (ample) with convex (strictly convex) support
function (uσ). In terms of ℓσ := ŵ − P ∗(uσ) this means that each ℓσ′ − ℓσ is non-
negative (positive) on σ̂\σ̂′. Since ℓσ ∈ σ̂⊥ holds, this is equivalent to nonnegativity
(positivity) of ℓσ′ on every σ̂ \ σ̂′.

Since all rays of the cone δ occur in the fan Σ̂, the latter is valid if and only if
ℓσ ∈ σ̂∗ (resp. ℓσ ∈ (σ̂∗)◦) holds for all σ. This in turn implies that for every σ ∈ Σ
we have

(4.1) w = Q(ŵ) = Q(ℓσ) ∈ Q(σ̂∗) (resp. w ∈ Q((σ̂∗)◦)).

Now, the σ̂∗, where σ ∈ Σ, are precisely the cones of B. Since any interior
Q(σ̂∗)◦ contains the interior of a cone of Θ, we can conclude that w lies in the
respective intersections of the assertion.

Conversely, if w belongs to one of the right hand side intersections, then we
surely arrive at (4.1). Thus, for every σ ∈ Σ, we find an ℓσ ∈ σ̂∗ (an ℓσ ∈ (σ̂∗)◦)
mapping to w. Reversing the above arguments, we see that uσ := ŵ−ℓσ is a convex
(strictly convex) support function describing D. �

Corollary 4.2.7. Situation as in Construction 4.1.4. Assume that Θ arises
from a chamber λ ⊆ KQ of the GKZ-decomposition. Then the toric variety X
associated to the true maximal bunch Θ has λ as its semiample cone.

Proposition 4.2.8. Situation as in Construction 4.1.2. Let e1, . . . , er be the
primitive generators of γ. Then the canonical divisor class of X is given as

KX = −Q(e1 + . . .+ er) ∈ K.

Proof. The assertion follows from [70, Sec. 4.3] and Proposition 4.2.2. �

Example 4.2.9. The toric variety X := XΘ given in Example 4.1.8 is Q-
factorial and nonprojective. Moreover, the cone SAmple(X) of semiample divisors
is spanned by the class of the anticanonical divisor.

Example 4.2.10 (Kleinschmidt’s classification [93]). The smooth maximal
toric varieties X with Cl(X) ∼= Z2 correspond to bunches (Z2,W ,Θ), where

• W = (wij ; 1 ≤ i ≤ n, 1 ≤ j ≤ µi) satisfies
– w1j := (1, 0), and wij := (bi, 1) with 0 = bn < bn−1 < · · · < b2,
– µ1 > 1, µn > 0 and µ2 + · · ·+ µn > 1,

• Θ is the W-bunch arising from the chamber λ = cone(w11, w21).

(µ1)

(µn)
(µ2)

Moreover, the toric variety X defined by such a bunch Θ is always projective, and
it is Fano if and only if we have

b2(µ2 + · · ·+ µn) < µ1 + b2µ2 + · · ·+ bn−1µn−1.



4. TORIC VARIETIES AND BUNCHES OF CONES 79

Finally, we investigate intersection numbers of a complete Q-factorial toric
variety X arising from a lattice bunch (K,W ,Θ) with W = (w1, . . . , wr). For
wi1 , . . . , win , where 1 < i1 < . . . < in < r, denote by wj1 , . . . , wjr−n , where
1 < j1 < . . . < jr−n < r, the complementary weights and set

τ(wi1 , . . . , win) := cone(wj1 , . . . , wjr−n),

µ(wi1 , . . . , win) = [K : 〈wj1 , . . . , wjr−n〉].

Proposition 4.2.11. Situation as in Construction 4.1.4 and assume that X is
Q-factorial and complete. The intersection number of classes wi1 , . . . , win , where
n = dim(X) and 1 < i1 < . . . < in < r, is given by

wi1 · · ·win =

{
µ(wi1 , . . . , win)−1, τ(wi1 , . . . , win) ∈ Θ,

0, τ(wi1 , . . . , win) 6∈ Θ.

Proof. Combining Proposition 1.2.8 with Lemma 1.4.1 gives the assertion. �





CHAPTER III

Cox rings and Combinatorics

We present a combinatorial approach to the geometry of varieties with a finitely
generated Cox ring. It relies on the observation that basically all varietiesX sharing
a given K-graded algebra R as their Cox ring arise as good quotients of open sets
of SpecR by the action of the quasitorus Spec K[K]. The door to combinatorics is
opened by Geometric Invariant Theory (GIT), which provides a description of the
possible quotients in terms of combinatorial data, certain collections of polyhedral
cones living in the rational vector space KQ. In Section 1, we develope the Geo-
metric Invariant Theory of quasitorus actions on affine varieties. To every point we
associate a convex polyhedral “orbit cone” and based on these data we build up
the combinatorial structures describing the variation of quotients. The variation
of (semi-)projective quotients is described in terms of the “GIT-fan” and for the
more general case of torically embeddable quotients the description is in terms of
“bunches of orbit cones”. In the case of a subtorus action on an affine toric variety,
these descriptions coincide with the ones obtained via Gale duality in the preceding
Chapter. In Section 2, the concept of a bunched ring is presented; this is basically
a factorially graded algebra R together with a bunch of cones living in the grading
group K. To any such data we associate a normal variety X : we consider the action
of SpecK on SpecR and take the quotient determined by the bunch of cones. The
basic feature of this construction is that the resulting variety X has K as its divisor
class group and R as its Cox ring. Moreover, it turns out that X comes with a
canonical closed embedding into a toric variety. As first examples we discuss flag
varieties and quotients of quadrics. The main task then is to descibe the geometry
of the variety X in terms of its defining data, the bunched ring. Section 3 provides
basic results on local divisor class groups, the Picard group and singularities. More-
over, we determine base loci of divisors as well as the cones of movable, semiample
and ample divisor classes. In the case of a complete intersection, there is a simple
formula for the canonical divisor and intersection numbers can easily be computed.
Finally, we give a proof of Hu and Keel’s characterization of finite generation of the
Cox ring.

1. GIT for affine quasitorus actions

1.1. Orbit cones. Here we discuss local properties of quasitorus actions and
also touch computational aspects. We work over an algebraically closed field K

of characteristic zero. By K we denote a finitely generated abelian group and we
consider an affine K-graded K-algebra

A =
⊕

w∈K

Aw.

Then the quasitorus H = Spec K[K] acts on the affine variety X := SpecA. For a
point x ∈ X , we introduced in Definition I.2.2.7 the orbit monoid Sx and the orbit
group Kx as

Sx = {w ∈ K; f(x) 6= 0 for some f ∈ Aw} ⊆ K, Kx = Sx − Sx ⊆ K.

81
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Let KQ := K⊗Z Q denote the rational vector space associated to K. Given w ∈ K,
we write again w for the element w ⊗ 1 ∈ KQ. The weight cone of X is the convex
polyhedral cone

ωX := ω(A) = cone(w ∈ K; Aw 6= {0}) ⊆ KQ.

Definition 1.1.1. The orbit cone of a point x ∈ X is the convex cone ωx ⊆ KQ

generated by the weight monoid Sx ⊆ K. For the set of all orbit cones we write

ΩX := {ωx; x ∈ X}.

If we want to specify the acting group H or even the variety X in the orbit
data, then we write KH,x or KH,X,x etc..

Remark 1.1.2. Let Y ⊆ X be an H-invariant closed subvariety and let x ∈ Y .
According to Proposition I. 2.2.5, one has

SH,Y,x = SH,X,x, KH,Y,x = KH,X,x, ωH,Y,x = ωH,X,x.

Considering for x ∈ X its orbit closure Y := H ·x, we infer that ωH,X,x = ωH,Y,x
equals the weight cone ωY and thus is polyhedral.

The following observation reduces the study of orbit cones of a quasitorus action
to the case of a torus action.

Remark 1.1.3. Let Kt ⊆ K denote the torsion part, set K0 := K/Kt and let
α : K → K0 be the projection. Then we have the coarsened grading

A =
⊕

u∈K0

Au, Au =
⊕

w∈α−1(u)

Aw.

This coarsened grading describes the action of the unit component H0 ⊆ H on X ,
and we have a commutative diagram

K
α //

��

K0

��
KQ

∼=

α
// K0

Q

For every x ∈ X , the isomorphism α : KQ → K0
Q maps the H-orbit cone ωH,x onto

the H0-orbit cone ωH0,x.

Proposition 1.1.4. Let ν : X ′ → X be the H-equivariant normalization. Then,
for every x′ ∈ X ′, we have ωx′ = ων(x′).

Proof. The inclusion ων(x′) ⊆ ωx′ is clear by equivariance. The reverse inclu-
sion follows from considering equations of integral dependence for the homogeneous
elements f ∈ Γ(X ′,O) with f(x′) 6= 0. �

We shall use the orbit cones to describe properties of orbit closures. The basic
statement in this regard is the following one.

Proposition 1.1.5. Assume that H is a torus and let x ∈ X. The factor group
H/Hx acts with a dense free orbit on the orbit closure H ·x ⊆ X. Moreover, the orbit
closure H ·x has the affine toric variety Spec(K[ωx∩Kx]) as its (H/Hx)-equivariant
normalization.

Proof. The first assertion is obvious, and the second one follows immediately
from Proposition 1.1.4 and the fact that the algebra of global functions of H ·x is
the semigroup algebra K[Sx] of the orbit monoid, see Proposition I. 2.2.9. �
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The collection of orbits in a given orbit closure H ·x comes with a partial or-
dering: we write H ·x1 ≤ H ·x2 if H ·x1 ⊆ H ·x2 holds.

Proposition 1.1.6. Let x ∈ X. Then we have a commutative diagram of order
preserving bijections

H-orbits(H · x)
H·y 7→ ωH,y //

OO
∼=

��

faces(ωH,x)OO
∼=

��
H0-orbits(H0 · x)

H0·y 7→ ωH0,y

// faces(ωH0,x)

Moreover, for any homogeneous function f ∈ Aw with f(x) 6= 0 and any point
y ∈ H ·x, we have f(y) 6= 0⇔ w ∈ ωH,x.

Proof. The torus T := H0/H0
x acts on Z := H0 · x, and the T -orbits of

Z coincide with its H0-orbits. According to Proposition 1.1.5, the T -equivariant
normalization of Z is the affine toric variety Z ′ = Spec(K[ωx ∩Kx]). The T -orbits
of Z ′ are in order reversing bijection with the faces of ωx via T · z 7→ ωz, see
Proposition II.1.2.2. The assertion follows from Proposition 1.1.4 and the fact that
the normalization map ν : Z ′ → Z induces an order preserving bijection between
the sets of T -orbits of Z ′ and Z. �

We collect some basic observations on the explicit computation of orbit data,
when the algebra A is given in terms of homogeneous generators and relations. The
following notions will be crucial.

Definition 1.1.7. Let K be a finitely generated abelian group, A a K-graded
affine K-algebra and F = (f1, . . . , fr) a system of homogeneous generators for A.

(i) The projected cone associated to F is (E
Q
−→ K, γ), where E := Zr, the

homomorphismQ : E → K sends the i-th canonical basis vector ei ∈ E to
wi := deg(fi) ∈ K and γ ⊆ EQ is the convex cone generated by e1, . . . , er.

(ii) A face γ0 � γ is called an F-face if the product over all fi with ei ∈ γ0

does not belong to the ideal
√
〈fj ; ej 6∈ γ0〉 ⊆ A.

Construction 1.1.8. Fix a system of homogeneous generators F = (f1, . . . , fr)
for our K-graded affine K-algebra A. Setting deg(Ti) := wi := deg(fi) defines a
K-grading on K[T1, . . . , Tr] and we have graded epimorphism

K[T1, . . . , Tr] → A, Ti 7→ fi.

On the geometric side, this gives a diagonal H-action on Kr via the characters
χw1 , . . . , χwr and an H-equivariant closed embedding

X → Kr, x 7→ (f1(x), . . . , fr(x)).

With E = Zr and γ = cone(e1, . . . , er), we have K[T1, . . . , Tr] = K[E ∩ γ], where Ti
is identified with χei . Thus, we may also regard Kr as the toric variety associated
to the cone δ := γ∨ ⊆ FQ, where F := Hom(E,Z).

Proposition 1.1.9. Situation as in Construction 1.1.8. Consider a face γ0 � γ
and its corresponding face δ0 � δ, i.e., we have δ0 = γ⊥0 ∩ δ. Then the following
statements are equivalent.

(i) The face γ0 � γ is an F-face.
(ii) There is a point z ∈ X with zi 6= 0⇔ ei ∈ γ0 for all 1 ≤ i ≤ r.
(iii) The toric orbit Tr ·zδ0 ⊆ Kr corresponding to δ0 � δ meets X.
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Proof. The equivalence of (i) and (ii) is an immediate consequence of the
following equivalence

∏

ei∈γ0

fi 6∈
√
〈fj ; ej 6∈ γ0〉 ⇐⇒

⋃

ei∈γ0

V (X, fi) 6⊇
⋂

ej 6∈γ0

V (X ; fj).

The equivalence of (ii) and (iii) is clear by the fact that Tr ·zδ0 consists exactly of
the points z ∈ Kr with zi 6= 0⇔ ei ∈ γ0 for all 1 ≤ i ≤ r. �

Proposition 1.1.10. Situation as in Construction 1.1.8. Let γ0 � γ be an
F-face and let δ0 � δ denote the corresponding face, i.e., we have δ0 = γ⊥0 ∩ δ.
Then, for every x ∈ X ∩ Tr ·zδ0 , the orbit data are given by

SH,x = Q(γ0 ∩ E), KH,x = Q(lin(γ0) ∩E), ωH,x = Q(γ0).

In particular, the orbit cones of the H-action on X are precisely the projected F-
faces, i.e., we have

{ωH,x; x ∈ X} = {Q(γ0); γ0 � γ is an F-face}.

Proof. To obtain the first assertion, observe that the orbit monoid of x ∈ X
is the monoid in K generated by all wi with fi(x) 6= 0. The other two assertions
follow directly. �

Remark 1.1.11. Situation as in Construction 1.1.8. Let g1, . . . , gs generate
the kernel of K[T1, . . . , Tr] → A as an ideal. By an F-set , we mean a subset I ⊆
{1, . . . , r} with the property

∏

i∈I

Ti 6∈
√
〈gI1 , . . . , g

I
s〉, with gIj := gj(S1, . . . , Sr), Sl :=

{
Tl l ∈ I,

0 l 6∈ I.

Then the F-faces are precisely the cone(ei; i ∈ I), where I is an F-set, and the orbit
cones are precisely the cone(wi; i ∈ I), where wi = deg(fi) and I is an F-set.

For the case that X ⊆ Kr is defined by a single equation, we can easily figure
out the F-faces in a purely combinatorial manner. Recall that the Newton polytope
of a polynomial g ∈ K[T1, . . . , Tr] is defined as

N(g) := conv(ν; aν 6= 0) ⊆ Qr, where g =
∑

ν∈Zr
≥0

aνT
ν.

Proposition 1.1.12. Situation as in Construction 1.1.8. Suppose that X ⊆ Kr

is the zero set of g ∈ K[T1, . . . , Tr]. Then, for every face γ0 � γ, the following
statements are equivalent.

(i) The face γ0 � γ is an F-face.
(ii) N(g) ∩ γ0 is empty or contains at least two points.
(iii) The number of vertices of N(g) contained in γ0 differs from one.

Proof. The equivalence of (ii) and (iii) is clear. For that of (i) and (ii) write
first g =

∑
ν∈Zr

≥0
aνgν with gν := T ν11 · · ·T

νr
r . Then, for any point z ∈ Kr, we have

gν(z) 6= 0 ⇐⇒ νi 6= 0⇒ zi 6= 0 holds for 1 ≤ i ≤ r.

Moreover, if we have g(z) = 0, then the number of ν with aνgν(z) 6= 0 is different
from one.

Now suppose that (i) holds and let z ∈ X be as in Proposition 1.1.9 (ii). Then
we have g(z) = 0. If all monomials gν with aν 6= 0 vanish on z, then N(g) ∩ γ0 is
empty. If not all monomials gν with aν 6= 0 vanish on z, then there are at least two
multi-indices ν, µ with aν 6= 0 6= aµ and gν(z) 6= 0 6= gµ(z). This implies

ν1e1 + . . .+ νrer ∈ N(g) ∩ γ0, µ1e1 + . . .+ µrer ∈ N(g) ∩ γ0.
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Conversely, suppose that (ii) holds. Define z ∈ Kr by zi = 1 if ei ∈ γ0 and zi = 0
otherwise. If N(g) ∩ γ0 is empty, then we have z ∈ X which gives (i). If N(g) ∩ γ0

contains at least two points, then γ0 contains at least two vertices ν, µ of N(g), and
we find a point z′ ∈ Tr ·z with g(z′) = 0. �

1.2. Semistable quotients. Again, we work over an algebraically closed field
K of characteristic zero. Let K be a finitely generated abelian group and consider
an affine K-graded K-algebra

A =
⊕

w∈K

Aw.

Then the quasitorus H := Spec K[K] acts on the affine variety X := SpecA. The
following is Mumford’s definition [116] of semistability specialized to the case of a
“linearization of the trivial line bundle”.

Definition 1.2.1. The set of semistable points associated to an element w ∈
KQ is the H-invariant open subset

Xss(w) := {x ∈ X ; f(x) 6= 0 for some f ∈ Anw, n > 0} ⊆ X.

Note that the set of semistable points Xss(w) is non-empty if and only if w
belongs to the weight cone ωX . The following two statements subsume the basic
features of semistable sets.

Proposition 1.2.2. For every w ∈ ωX , the H-action on Xss(w) admits a good
quotient π : Xss(w)→ Y (w) with Y (w) projective over Y (0) = SpecA0 = X//H.

Proposition 1.2.3. For any two w1, w2 ∈ ωX with Xss(w1) ⊆ Xss(w2) we
have a commutative diagram

Xss(w1) ⊆

//H

��

Xss(w2)

//H

��
Y (w1)

ϕw1
w2

// Y (w2)

with a projective surjection ϕw1
w2

. Moreover, we have ϕw1
w3

= ϕw2
w3
◦ ϕw1

w2
whenever

composition is possible.

Both propositions are direct consequences of the following two constructions
which we list separately for later use. The first one ensures existence of the quotient.

Construction 1.2.4. For a homogeneous f ∈ A, let A(f) ⊆ Af denote the
degree zero part. Given any two f ∈ Anw and g ∈ Amw with m,n > 0, we have a
commutative diagram of K-graded affine algebras and the associated commutative
diagram of affine H-varieties

Af // Afg Agoo

A(f) //

OO

A(fg)

OO

A(g)oo

OO
Xf

πf

��

Xfg

��

oo // Xg

πg

��
Vf Vfgoo // Vg

The morphism Vfg → Vf is an open embedding, and we have Xfg = π−1
f (Vfg).

Gluing the Vf gives a variety Y (w) and the maps πf glue together to a good quotient
π : Xss(w)→ Y (w) for the action of H on Xss(w).

The second construction relates the first one to the Proj-construction, see Ex-
ample 2.3.10. This yields projectivity of the quotient space.
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Construction 1.2.5. In the situation of Construction 1.2.4, the weight w ∈ K
defines a Veronese subalgebra

A(w) :=
⊕

n∈Z≥0

Anw ⊆
⊕

w′∈K

Aw′ = A.

Proposition I. 1.2.2 ensures that A(w) is finitely generated and thus defines a K∗-
variety X(w) := SpecA(w). For every homogeneous f ∈ A(w), we have commuta-
tive diagrams, where the second one is obtained by applying the Spec functor:

A(w)f // Af

A(w)(f) ∼=
//

OO

A(f)

OO
X(w)f oo Xf

U(w)f oo
∼=

��
Vf
��

Gluing the U(w)f gives Proj(A(w)) and the isomorphisms Vf → U(w)f glue to-
gether to an isomorphism Y (w) → Proj(A(w)). In particular, Y (w) is projective
over Y (0) = SpecA0.

Recall that we defined the orbit cone of a point x ∈ X to be the convex cone
ωx ⊆ KQ generated by all w ∈ K that admit an f ∈ Aw with f(x) 6= 0.

Definition 1.2.6. The GIT-cone of an element w ∈ ωX is the (nonempty)
intersection of all orbit cones containing it:

λ(w) :=
⋂

x∈X,
w∈ωx

ωx.

From finiteness of the number of orbit cones, see Proposition 1.1.10, we infer
that the GIT-cones are polyhedral and moreover, that there are only finitely many
of them.

Lemma 1.2.7. For every w ∈ ωX , the associated set Xss(w) ⊆ X of semistable
points is given by

Xss(w) = {x ∈ X ; w ∈ ωx} = {x ∈ X ; λ(w) ⊆ ωx}.

This description shows in particular, that there are only finitely many sets
Xss(w) of semistable points. The following statement describes the collection of all
sets Xss(w) of semistable points.

Theorem 1.2.8. The collection Λ(X) = {λ(w); w ∈ ωX} of all GIT-cones is
a quasifan in KQ having the weight cone ωX as its support. Moreover, for any two
w1, w2 ∈ ωX , we have

λ(w1) ⊆ λ(w2) ⇐⇒ Xss(w1) ⊇ Xss(w2),

λ(w1) = λ(w2) ⇐⇒ Xss(w1) = Xss(w2).

The collection Λ(X), also denoted as Λ(X,H) if we want to specify the qua-
sitorus H , is called the GIT-(quasi-)fan of the H-variety X . In the proof of the
Theorem we need the following.

Lemma 1.2.9. Let w ∈ ωX ∩ K. Then the associated GIT-cone λ := λ(w) ∈
Λ(X) satisfies

λ =
⋂

w∈ω◦
x

ωx =
⋂

λ◦⊆ω◦
x

ωx,

w ∈ λ◦ =
⋂

w∈ω◦
x

ω◦x =
⋂

λ◦⊆ω◦
x

ω◦x.
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Proof. For any orbit cone ωx with w ∈ ωx, there is a unique minimal face
ω � ωx with w ∈ ω. This face satisifies w ∈ ω◦. According to Proposition 1.1.6,
the face ω � ωx is again an orbit cone. This gives the first formula. The second one
follows from an elementary observation: if the intersection of the relative interiors of
a finite number of convex polyhedral cones is nonempty, then it equals the relative
interior of the intersection of the cones. �

Proof of Theorem 1.2.8. As mentioned, finiteness of the number of orbit
cones ensures that Λ(X) is a finite collection of convex polyhedral cones. The
displayed equivalences are clear by Lemma 1.2.7. They allow us in particular to
write

Xss(λ) := Xss(w), where λ = λ(w) for w ∈ ωX .

The only thing we have to show is that Λ(X) is a quasifan. This is done below
by verifying several claims. For the sake of short notation, we set for the moment
ω := ωx and Λ := Λ(X).

Claim 1. Let λ1, λ2 ∈ Λ with λ1 ⊆ λ2. Then, for every x1 ∈ Xss(λ1) with
λ◦1 ⊆ ω

◦
x1

, there exists an x2 ∈ Xss(λ2) with ωx1 � ωx2 .

Let us verify the claim. We have Xss(λ2) ⊆ Xss(λ1) and Proposition 1.2.3
provides us with a dominant, proper, hence surjective morphism ϕ : Y (λ2)→ Y (λ1)
of the quotient spaces fitting into the commutative diagram

Xss(λ2) ⊆

p2//H

��

Xss(λ1)

//Hp1

��
Y (λ2) ϕ

// Y (λ1)

If a point x1 ∈ Xss(λ1) satisfies λ◦1 ⊆ ω◦x1
, then, by Lemma 1.2.7 and Propo-

sition 1.1.6, its H-orbit is closed in Xss(λ1). Corollary I. 2.3.7 thus tells us
that x1 ∈ H ·x2 holds for any point x2 belonging to the (nonempty) intersection
Xss(λ2) ∩ p

−1
1 (p1(x1)). Using once more Proposition 1.1.6 gives Claim 1.

Claim 2. Let λ1, λ2 ∈ Λ. Then λ1 ⊆ λ2 implies λ1 � λ2.

For the verification, let τ2 � λ2 be the (unique) face with λ◦1 ⊆ τ◦2 , and let
ω1,1, . . . , ω1,r be the orbit cones with λ◦1 ⊆ ω

◦
1,i. Then we obtain, using Lemma 1.2.9

for the second observation,

τ◦2 ∩ ω
◦
1,i 6= ∅, λ1 = ω1,1 ∩ . . . ∩ ω1,r.

By Claim 1, we have ω1,i � ω2,i with orbit cones ω2,i satisfying λ2 ⊆ ω2,i, and hence
τ2 ⊆ ω2,i. The first of the displayed formulas implies τ2 ⊆ ω1,i, and the second one
thus gives τ2 = λ1. So, Claim 2 is verified.

Claim 3. Let λ ∈ Λ. Then every face λ0 � λ belongs to Λ.

To see this, consider any w ∈ λ◦0. Lemma 1.2.9 yields w ∈ λ(w)◦. By the
definition of GIT-cones, we have λ(w) ⊆ λ. Claim 2 gives even λ(w) � λ. Thus,
we have two faces, λ0 and λ(w) of λ having a common point w in their relative
interiors. This means λ0 = λ(w), and Claim 3 is verified.

Claim 4. Let λ1, λ2 ∈ Λ. Then λ1 ∩ λ2 is a face of both, λ1 and λ2.

Let τi � λi be the minimal face containing λ1 ∩ λ2. Choose w in the relative
interior of λ1 ∩ λ2, and consider the GIT-cone λ(w). By Lemma 1.2.9 and the
definition of GIT-cones, we see

w ∈ λ(w)◦ ∩ τ◦i , λ(w) ⊆ λ1 ∩ λ2 ⊆ τi.
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By Claim 2, the second relation implies in particular λ(w) � λi. Hence, we can
conclude λ(w) = τi, and hence λ1∩λ2 is a face of both λi. Thus, Claim 4 is verified,
and the properties of a quasifan are established for Λ. �

Remark 1.2.10. Theorem 1.2.8 provides another proof for the fact that the
GKZ-decomposition of a vector configurationW = (w1, . . . , wr) in a rational vector
spaceKQ is a fan, see Theorem II. 2.2.2. Indeed, letK ⊆ KQ be the lattice generated
by w1, . . . , wr and consider the action of the torus T = Spec K[K] on Kr given by
t·z = (χw1(t)z1, . . . , χ

wr (t)zr). Then the orbit cones of this action are precisely the
W-cones and thus Theorem 1.2.8 gives the result.

Example 1.2.11 (A GIT-quasifan, which is not a fan). Consider the affine
variety

X := V (K4; Z1Z2 + Z3Z4 − 1).

Then X is isomorphic to SL(2) and thus it is smooth, factorial, and Γ(X,O)∗ = K∗

holds. Moreover K∗ acts on X via

t·(z1, z2, z3, z4) := (tz1, t
−1z2, tz3, t

−1z4).

This action has only one orbit cone, which is the whole line Q. In particular, the
resulting GIT-quasifan does not consist of pointed cones.

Example 1.2.12. Consider the affine space X := K4 with the action of the
torus H := K∗ given by

t · (z1, z2, z3z4) := (tz1, tz2, t
−1z3, t

−1z4).

This setting stems from the Z-grading of K[Z1, . . . , Z4] given by deg(Z1) =
deg(Z2) = 1 and deg(Z3) = deg(Z4) = −1. The GIT-quasifan lives in Q and
consists of the three cones

λ(−1) = Q≤0, λ(0) = {0}, λ(1) = Q≥0.

As always, we have Xss(0) = X . The two further sets of semistable points are
Xss(−1) = {z ∈ K4; z3 6= 0 6= z4} and Xss(1) = {z ∈ K4; z1 6= 0 6= z2}. The
whole GIT-system looks as follows

Xss(−1) ⊆

��

Xss(0)

��

Xss(1)⊇

��
Y (−1) // Y (0) Y (1)oo

Note that Y (0) is the affine cone V (K4;T1T2 − T3T4) with the apex y0 = 0, the
projections ϕi0 : Y (i)→ Y (0) are isomorphisms over Y (0)\{y0}, and the fibers over
the apex y0 are isomorphic to P1.

1.3. A2-quotients. In the preceeding section, we constructed semiprojective
quotients via semistable points. Here we construct more generally quotient spaces
with the following property.

Definition 1.3.1. We say that a prevariety X has the A2-property , if any two
points x, x′ ∈ X admit a common affine open neighborhood in X .

A prevariety with the A2-property is necessarily separated, see [115, Proposi-
tion I.5.6], and thus we will just speak of A2-varieties. Examples of A2-varieties
are the quasiprojective varieties. By [160, Theorem A], a normal variety X has
the A2-property if and only if it admits a closed embedding into a toric variety. In
particular, toric varieties are A2-varieties.



1. GIT FOR AFFINE QUASITORUS ACTIONS 89

We fix the setup for the rest of this section. By K we denote a finitely generated
abelian group and we consider an affine K-graded K-algebra

A =
⊕

w∈K

Aw.

Then the quasitorus H := Spec K[K] acts on the affine variety X := SpecA. The
necessary data for our quotient construction are again given in terms of orbit cones.

Definition 1.3.2. Let ΩX denote the collection of all orbit cones ωx, where
x ∈ X . A bunch of orbit cones is a nonempty collection Φ ⊆ ΩX such that

(i) given ω1, ω2 ∈ Φ, one has ω◦1 ∩ ω
◦
2 6= ∅,

(ii) given ω ∈ Φ, every orbit cone ω0 ∈ ΩX with ω◦ ⊆ ω◦0 belongs to Φ.

A maximal bunch of orbit cones is a bunch of orbit cones Φ ⊆ ΩX which cannot be
enlarged by adding further orbit cones.

Definition 1.3.3. Let Φ,Φ′ ⊆ ΩX be bunches of orbit cones. We say that Φ
refines Φ′ (written Φ ≤ Φ′), if for any ω′ ∈ Φ′ there is an ω ∈ Φ with ω ⊆ ω′.

The following example shows that the above notions generalize the combinato-
rial concepts treated in Section II. 2.

Example 1.3.4. Let F be a lattice and δ ⊆ FQ a pointed simplicial cone of full
dimension. Let E := Hom(F,Z) be the dual lattice, and γ := δ∨ the dual cone.
Given a homomorphism Q : E → K to a finitely generated abelian group K, we
obtain a K-grading of A := K[E] via deg(χe) = Q(e). Consider

H = Spec K[K], Xδ = Spec K[γ ∩E].

The orbit cones of the H-action on Xδ are just the cones Q(γ0), where γ0 � γ.
Moreover, for the primitive generators e1, . . . , er of γ, set wi := Q(ei) ∈ KQ. Then
the (maximal) bunches of orbit cones are precisely the (maximal)W-bunches of the
vector configuration W = (w1, . . . , wr) in KQ.

Definition 1.3.5. To any collection of orbit cones Φ ⊆ ΩX , we associate the
following subset

U(Φ) := {x ∈ X ; ω0 � ωx for some ω0 ∈ Φ} ⊆ X.

Example 1.3.6. Consider the GIT-fan Λ(X) = {λ(w); w ∈ ωX}. Every GIT-
cone λ = λ(w) defines a bunch of orbit cones

Φ(w) := {ωx ∈ ΩX ; w ∈ ω◦x} = {ωx ∈ ΩX ; λ◦ ⊆ ω◦x} =: Φ(λ).

For any two λ, λ′ ∈ ωX , we have Φ(λ) ≤ Φ(λ′) if and only if λ � λ′ holds. Moreover,
for the set associated to Φ(w) we have

U(Φ(w)) = Xss(w).

Construction 1.3.7. Let Φ ⊆ ΩX be a bunch of orbit cones and consider
x ∈ U(Φ). Fix homogeneous h1, . . . , hr ∈ A such that hi(x) 6= 0 holds and the
orbit cone ωx is generated by deg(hi), where 1 ≤ i ≤ r. For u ∈ Zr>0, consider the
H-invariant open set

U(x) := Xfu ⊆ X, fu := hu1
1 · · ·h

ur
r .

Then the sets U(x) do not depend on the particular choice of u ∈ Zr>0. Moreover
we have U(x) ⊆ U(Φ) and for any w ∈ ω◦x, we find some u with

deg(fu) = u1 deg(h1) + . . .+ ur deg(hr) ∈ Q>0w.
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Proof. We have to verify that every x′ ∈ Xfu belongs to U(Φ). By construc-
tion, we have ωx ⊆ ωx′ . Consider ω0 ∈ Φ with ω0 � ωx. Then ω◦0 is contained in
the relative interior of some face ω′0 � ωx′ . By saturatedness of Φ, we have ω′0 ∈ Φ,
and hence x′ ∈ U(Φ). �

We are ready to list the basic properties of the assignment Φ 7→ U(Φ); The
statements are analogous to Propositions 1.2.2 and 1.2.3. We say that a subset
U ⊆ X is saturated w.r.t. a map p : X → Y if U = p−1(p(U)) holds.

Proposition 1.3.8. Let Φ ⊆ ΩX be a bunch of orbit cones. Then U(Φ) ⊆ X
is H-invariant, open and admits a good quotient U(Φ)→ Y (Φ), where the quotient
space Y (Φ) is an A2-variety. Moreover, the sets U(x) ⊆ U(Φ) with H ·x closed in
U(Φ) are saturated w.r.t. U(Φ)→ Y (Φ).

Proposition 1.3.9. For any two bunches of orbit cones Φ1,Φ2 ⊆ ΩX with
Φ1 ≥ Φ2, we have U(Φ1) ⊆ U(Φ2), and there is a commutative diagram

U(Φ1) ⊆

//H

��

U(Φ2)

//H

��
Y (Φ1)

ϕ
Φ1
Φ2

// Y (Φ2)

with a dominant morphism ϕΦ1

Φ2
. Moreover, we have ϕΦ1

Φ3
= ϕΦ2

Φ3
◦ ϕΦ1

Φ2
whenever

composition is possible.

Lemma 1.3.10. Let Φ ⊆ ΩX satisfy 1.3.2 (i) and let x ∈ U(Φ). Then the orbit
H ·x is closed in U(Φ) if and only if ωx ∈ Φ holds.

Proof. First let H ·x be closed in U(Φ). By the definition of U(Φ), we have
ω0 � ωx for some ω0 ∈ Φ. Consider the closure CX(H ·x) of H ·x taken in X , and
choose x0 ∈ CX(H ·x) with ωx0 = ω0. Again by the definition of U(Φ), we have
x0 ∈ U(Φ). Since H·x is closed in U(Φ), we obtain x0 ∈ H·x, and hence ω = ω0 ∈ Φ.

Now, let ωx ∈ Φ. We have to show that any x0 ∈ CX(H ·x) ∩ U(Φ) lies in
H ·x. Clearly, x0 ∈ CX(H ·x) implies ωx0 � ωx. By the definition of U(Φ), we have
ω0 � ωx0 for some ω0 ∈ Φ. Since Φ satisfies 1.3.2 (i), we have ω◦0∩ω

◦
x 6= ∅. Together

with ω0 � ωx this implies ω0 = ωx0 = ωx, and hence x0 ∈ H ·x. �

Proof of Proposition 1.3.8. We regard U(Φ) as a union of sets U(x) as
provided in Construction 1.3.7, where x ∈ U(Φ) runs through those points that
have a closed H-orbit in U(Φ); according to Lemma 1.3.10 these are precisely the
points x ∈ U(Φ) with ωx ∈ Φ.

First consider two such x1, x2 ∈ U(Φ). Then we have ωxi ∈ Φ, and we can
choose homogeneous f1, f2 ∈ A such that deg(f1) = deg(f2) lies in ω◦x1

∩ ω◦x2
and

U(xi) = Xfi holds. Thus, we obtain a commutative diagram

Xf1

//H

��

Xf1f2
oo //

//H

��

Xf2

//H

��
Yf1 Yf1f2oo // Yf2

where the upper horizontal maps are open embeddings, the downwards maps are
good quotients for the respective affine H-varieties, and the lower horizontal arrows
indicate the induced morphisms of the affine quotient spaces.

By the choice of f1 and f2, the quotient f2/f1 is an invariant function on Xf1 ,
and the inclusion Xf1f2 ⊆ Xf1 is just the localization by f2/f1. Since f2/f1 is
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invariant, the latter holds as well for the quotient spaces; that means that the map
Yf1f2 → Yf1 is localization by f2/f1.

Now, cover U(Φ) by sets U(xi) with H ·xi closed in U(Φ). The preceding
consideration allows gluing of the maps U(xi) → U(xi)//H along Uij → Uij//H ,
where Uij := U(xi) ∩ U(xj). This gives a good quotient U(Φ) → U(Φ)//H . By
construction, the open sets U(xi) ⊆ U(Φ) are saturated with respect to the quotient
map.

In order to see that Y = U(Φ)//H is an A2-variety (and thus in particular
separated), consider y1, y2 ∈ Y . Then there are fi as above with yi ∈ Yfi . The
union Yf1 ∪Yf2 is quasiprojective, because, for example, the set Yf1 \ Yf2 defines an
ample divisor. It follows that there is a common affine neighbourhood of y1, y2 in
Yf1 ∪ Yf2 and hence in Y . �

Proof of Proposition 1.3.9. We only have to show that Φ1 ≥ Φ2 implies
U(Φ1) ⊆ U(Φ2). Consider x ∈ U(Φ1). Then we have ω1 � ωx for some ω1 ∈ Φ1.
Since Φ1 ≥ Φ2 holds, there is an ω2 ∈ Φ2 with ω2 ⊆ ω1. Let ω0 � ω1 be the
face with ω◦2 ⊆ ω◦0 . By Property 1.3.2 (ii), the face ω0 belongs to Φ2. Because of
ω0 � ωx, we have x ∈ U(Φ2). �

1.4. Quotients of H-factorial affine varieties. We consider a quasitorus
action on a normal affine variety, where we assume that for every invariant divisor
some multiple is principal. The aim is to show that the constructions presented in
the preceding two sections provide basically all open subsets admitting quasipro-
jective or torically embeddable quotients. The results generalize Theorem II. 3.2.4
which settled linear representations of quasitori.

Definition 1.4.1. Let a reductive affine algebraic group G act on a variety X .

(i) By a good G-set in X we mean an open subset U ⊆ X with a good
quotient U → U//G.

(ii) We say that a subset U ′ ⊆ U of a good G-set U ⊆ X is G-saturated in U
if it satisfies U ′ = π−1(π(U ′)), where π : U → U//G is the good quotient.

Note that an open subset U ′ ⊆ U of a good G-set U is G-saturated in U if and
only if any orbit G·x ⊆ U ′ which is closed in U ′ is as well closed in U . Moreover,
for every G-saturated open subset U ′ ⊆ U of a good G-set U ⊆ X with quotient
π : U → U//G, the image π(U ′) ⊆ U is open and π : U ′ → π(U ′) is a good quotient.
The latter reduces the problem of describing all good G-sets to the description of
the “maximal” ones. Here are the precise concepts.

Definition 1.4.2. Let a reductive affine algebraic group G act on a variety X .

(i) By a qp-maximal subset of X we mean a good G-set U ⊆ X with U//G
quasiprojective such that U is maximal w.r.t. G-saturated inclusion
among all good G-sets W ⊆ X with W//G quasiprojective.

(ii) By a (G, 2)-maximal subset of X we mean a good G-set U ⊆ X with
U//G an A2-variety such that U is maximal w.r.t. G-saturated inclusion
among all good G-sets W ⊆ X with W//G an A2-variety.

We are ready to formulate the first result. Let K be a finitely generated abelian
group and A a normalK-graded affine algebra. Then the quasitorusH = Spec K[K]
acts on the normal affine variety X = SpecA. For every GIT-cone λ ⊆ KQ, we
define its set of semistable points to be

Xss(λ) := Xss(w), where w ∈ λ◦.
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This does not depend on the particular choice of w ∈ λ◦. Moreover, to any H-
invariant open subset U ⊆ X , we associate the cone

λ(U) :=
⋂

x∈U

ωx ⊆ KQ.

Theorem 1.4.3. Assume that X is normal and for every H-invariant divisor
on X some positive multiple is principal. Then, with the GIT-fan Λ(X,H) of the
H-action on X, we have mutually inverse bijections

Λ(X,H) ←→ {qp-maximal subsets of X}

λ 7→ Xss(λ)

λ(U) ←[ U.

These bijections are order-reversing maps of partially ordered sets in the sense that
we always have

λ � λ′ ⇐⇒ Xss(λ) ⊇ Xss(λ′).

Proof. First recall from Proposition 1.2.2 that all sets Xss(w) are good H-
sets with a quasiprojective quotient space Xss(w)//H . The assertion thus is a direct
consequence of the following two claims.

Claim 1. If U ⊆ X is a good H-set such that U//H is quasiprojective, then U is
H-saturated in some set Xss(w) of semistable points.

Set Y := U//H , and let p : U → Y be the quotient map. For a global section f
of a divisor D, set for short

Z(f) := Supp(divD(f)) = Supp(D + div(f)).

Choose an (effective) ample divisor E on Y allowing global sections h1, . . . , hr such
that the sets Y \ Z(hi) form an affine cover of Y . Consider the pullback data
D′ := p∗E and f ′i := p∗(hi). Let D1, . . . , Ds be the prime divisors contained in
X \ U . Since the complement U \ Z(f ′i) in X is of pure codimension one, we have

U \ Z(f ′i) = X \ (D1 ∪ . . . ∪Ds ∪ Z(f ′i)).

Consequently, by closing the components of D′ in X and adding a suitably big
multiple of D1 + . . .+Ds, we obtain an H-invariant Weil divisor D on X allowing
global sections f1, . . . , fr such that

D|U = D′, fi|U = f ′i , X \ Z(fi) = U \ Z(f ′i) = p−1(Y \ Z(hi)).

Replacing D with a suitable positive multiple, we may assume that it is principal,
say D = div(f). Since D is H0-invariant, f must be H0-homogeneous. Fix a
splitting H = H0 × H1 with the unit component H0 ⊆ H and a finite group
H1 ⊆ H and consider

f ′ :=
∏

h∈H1

h·f, where (h·f)(x) := f(h·x).

Then f ′ is even H-homogeneous and its divisor is a multiple of D. So, we may even
assume that f is H-homogeneous say of weight w ∈ K. Since the functions fi are
rational H-invariants, also all the ffi are homogeneous of weight w ∈ K. We infer
saturatedness of U in Xss(w) from

U =

r⋃

i=1

(U \ Z(f ′i)) =

r⋃

i=1

Xffi .

Claim 2. For every w ∈ ωX , the associated set of semistable points Xss(w) is
qp-maximal.
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By Claim 1, it suffices to prove that Xss(w) is not contained as a proper
H-saturated subset in some set Xss(w′). Any H-saturated inclusion Xss(w) ⊆
Xss(w′) gives a commutative diagram

Y (w)
ϕ //

π
##F

FFFFFFF
Y (w′)

π′
{{ww

ww
ww

ww
w

Y (0)

where ϕ is an open embedding from the quotient space Y (w) into Y (w′). Moreover,
we know that ϕ : Y (w) → Y (w′) is projective and thus ϕ is an isomorphism. This
implies Xss(w) = Xss(w′). �

We prepare the second result. Still K is a finitely generated abelian group,
A a normal K-graded affine algebra and we consider the action of the quasitorus
H = Spec K[K] on the affine variety X = SpecA. To any collection of orbit cones
Φ ⊆ ΩX , we associated in Definition 1.3.5 the subset

U(Φ) = {x ∈ X ; ω0 � ωx for some ω0 ∈ Φ} ⊆ X.

Conversely, to any H-invariant subset U ⊆ X , we associate the following collection
of orbit cones

Φ(U) := {ωx; x ∈ U with H ·x closed in U} ⊆ ΩX .

Theorem 1.4.4. Assume that X is normal and for every H-invariant divisor
on X some positive multiple is principal. Then we have mutually inverse bijections

{maximal bunches of orbit cones in ΩX} ←→ {(H, 2)-maximal subsets of X}

Φ 7→ U(Φ)

Φ(U) ←[ U.

These bijections are order-reversing maps of partially ordered sets in the sense that
we always have

Φ ≤ Φ′ ⇐⇒ U(Φ) ⊇ U(Φ′).

The collections Φ(λ), where λ ∈ Λ(X,H), are maximal bunches of orbit cones and
they correspond to the qp-maximal subsets of X; in particular, the latter ones are
(H, 2)-maximal.

Proof. According to Proposition 1.3.8, for every maximal bunch of orbit
cones Φ, the subset U(Φ) admits a good quotient with an A2-variety as quotient
space. The following claim gives the converse.

Claim 1. If the H-invariant open set U ⊆ X admits a good quotient U → U//H
with U//H an A2-variety, then the collection Φ(U) of orbit cones satisfies 1.3.2 (i).

By definition, the elements of Φ(U) are precisely the orbit cones ωx, where H·x
is a closed subset of U . We have to show that for any two cones ωxi ∈ Φ(U), their
relative interiors intersect nontrivially. Consider the quotient π : U → U//H , and
let V ⊆ U//H be a common affine neighbourhood of π(x1) and π(x2). Then π−1(V )
is again affine. Thus X \π−1(V ) is of pure codimension one and, by the assumption
on X , it is the zero set of a homogeneous function f ∈ A. It follows that the degree
of f lies in the relative interior of both cones, ωx1 and ωx2 .

Claim 2. For every collection Φ ⊆ ΩX satisfying 1.3.2 (i), we have Φ(U(Φ)) = Φ.

Consider any ω ∈ Φ(U(Φ)). By the definition of Φ(U(Φ)), we have ω = ωx for
some x ∈ U(Φ) such that H ·x is closed in U(Φ). According to Lemma 1.3.10, the
latter implies ω ∈ Φ. Conversely, let ω ∈ Φ. Then we have x ∈ U(Φ), for any x ∈ X
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with ωx = ω. Moreover, Lemma 1.3.10 tells us that H ·x is closed in U(Φ). This
implies ω ∈ Φ(U(Φ)).

Claim 3. Let U ⊆ X admit a good quotient U → U//H with an A2-variety U//H ,
and let Φ ⊆ ΩX be any bunch of orbit cones with Φ(U) ⊆ Φ. Then we have an
H-saturated inclusion U ⊆ U(Φ).

First let us check that U is in fact a subset of U(Φ). Given x ∈ U , we may
choose x0 ∈ CX(H ·x) such that H ·x0 is closed in U . By definition of Φ(U), we
have ωx0 ∈ Φ(U), and hence ωx0 ∈ Φ. Thus, ωx0 � ωx implies x ∈ U(Φ).

In order to see that the inclusion U ⊆ U(Φ) is H-saturated, let x ∈ U with H·x
closed in U . We have to show that any x0 ∈ CX(H ·x) with H ·x0 closed in U(Φ)
belongs to H ·x. On the one hand, given such x0, Claim 2 gives us

ωx0 ∈ Φ(U(Φ)) = Φ.

On the other hand, the definition of Φ(U) yields ωx ∈ Φ, and x0 ∈ CX(H·x) implies
ωx0 � ωx. Since Φ is a bunch of orbit cones, ω◦x0

and ω◦x intersect nontrivially, and
we obtain ωx0 = ωx. This gives x0 ∈ H ·x and Claim 3 is proved.

Now we turn to the assertions of the theorem. First we show that the assignment
Φ 7→ U(Φ) is well defined, i.e., that U(Φ) is (H, 2)-maximal. Consider any H-
saturated inclusion U(Φ) ⊆ U with an (H, 2)-set U ⊆ X . Using Claim 2, we obtain

Φ = Φ(U(Φ)) ⊆ Φ(U).

By maximality of Φ, this implies Φ = Φ(U). Thus, we obtain U(Φ) = U(Φ(U)). By
Claim 3, the latter set contains U as an H-saturated subset. This gives U(Φ) = U
and, consequently, U(Φ) is (H, 2)-maximal.

Thus, we have a well-defined map Φ → U(Φ) from the maximal connected
collections in ΩX to the (H, 2)-maximal subsets of X . According to Claim 2, this
map is injective. To see surjectivity, consider any (H, 2)-maximal U ⊆ X . Choose
a maximal conneceted collection Φ with Φ(U) ⊆ Φ. Claim 3 then shows U = U(Φ).
The fact that Φ 7→ U(Φ) and U 7→ Φ(U) are inverse to each other is then obvious.

Let us turn to the second statement of the assertion. The subset U(Φ′) is
contained in U(Φ) if and only if any closed H-orbit in U(Φ′) is contained in U(Φ).
By Lemma 1.3.10, the points with closed H-orbit in U(Φ′) are precisely the points
x ∈ X with ωx ∈ Φ′. By the definition of U(Φ), such a point x belongs to U(Φ) if
and only if ωx has a face contained in Φ.

Finally, for the third statement, we have to show that every set Xss(w) of
semistable points is (H, 2)-maximal. By what we proved so far, Xss(w) is an H-
saturated subset of a set U(Φ) for some maximal connected collection Φ ⊆ ΩX .
Thus, we have a diagram of the associated quotient spaces

Y (w)
ϕ //

π
##F

FFFFFFF
Y (Φ)

π′
{{xxxxxxxx

Y (0)

with an open embedding ϕ : Y (w) → Y (Φ). Since Y (w) → Y (0) is projective, the
morphism ϕ : Y (w) → Y (Φ) is projective as well. Consequently it is an isomor-
phism. The claim follows. �

Corollary 1.4.5. Let Φ ⊆ ΩX be a saturated connected collection. Then the
quotient space U(Φ)//H is quasiprojective if and only if we have

⋂

ω∈Φ

ω◦ 6= ∅.
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As a further application of Theorem 1.4.4, we obtain a statement in the spirit
of [153, Cor. 2.3].

Corollary 1.4.6. Let a quasitorus H act on a normal affine variety X such
that for every H-invariant divisor on X some positive multiple is principal. More-
over, let G be any algebraic group acting on X such that the actions of G and H
commute. Then every (H, 2)-maximal open subset of X is G-invariant.

Proof. If U ⊆ X is an (H, 2)-maximal open subset, then Theorem 1.4.4 says
that we have U = U(Φ) for some maximal connected collection Φ of H-orbit cones.
Since the actions of H and G commute, the H-orbit cone is constant along G-orbits.
Thus, G·U = U holds. �

2. Bunched rings

2.1. Bunched rings and their varieties. We present an explicit construc-
tion of varieties with prescribed Cox ring. The input is a factorially graded affine
algebra R and a collection Φ of pairwise overlapping cones in the grading group K
of R. The output variety X has R as its Cox ring and Φ fixes the isomorphy type
of X among all varieties sharing R as their Cox ring. We formulate the construction
in an elementary manner which turns out to be suitable for explicit applications
and requires only minimal background knowledge; the proofs of the basic properties
relie on the interpretation in terms of Geometric Invariant Theory and are given in
Section 2.2.

Let K be a finitely generated abelian group and R a normal affine K-graded K-
algebra withR∗ = K∗. Recall from Definition I. 5.3.1 that aK-prime element inR is
a homogeneous nonzero nonunit f ∈ R such that f |gh with homogeneous g, h ∈ R
always implies f |g or f |h. Moreover, we say that R is factorially graded if and
only if every nonzero homogeneous nonunit f ∈ R is a product of K-primes. If R is
factorially graded, then it admits a system F = (f1, . . . , fr) of pairwise nonassociated
K-prime generators. By Definition 1.1.7, the projected cone associated to F is

(E
Q
−→ K, γ), where E := Zr, the homomorphism Q : E → K sends the i-th

canonical basis vector ei ∈ E to wi := deg(fi) ∈ K and γ ⊆ EQ is the convex cone
generated by e1, . . . , er. Moreover, we introduced in Definition 1.1.7 the notion of
an F-face: this is a face γ0 � γ such that the product over all fi with ei ∈ γ0 does
not belong to the radical of the ideal 〈fj ; ej 6∈ γ0〉 ⊆ R.

Definition 2.1.1. Let K be a finitely generated abelian group and R a facto-
rially K-graded affine algebra with R∗ = K∗. Moreover, let F = (f1, . . . , fr) be a

system of pairwise nonassociated K-prime generators for R and (E
Q
−→ K, γ) the

associated projected cone.

(i) We say that the K-grading of R is almost free if for every facet γ0 � γ
the image Q(γ0 ∩ E) generates the abelian group K.

(ii) Let ΩF = {Q(γ0); γ0 � γ F-face} denote the collection of projected
F-faces. An F-bunch is a nonempty subset Φ ⊆ ΩF such that
(a) for any two τ1, τ2 ∈ Φ, we have τ◦1 ∩ τ

◦
2 6= ∅,

(b) if τ◦1 ⊆ τ
◦ holds for τ1 ∈ Φ and τ ∈ ΩF, then τ ∈ Φ holds.

(iii) We say that an F-bunch Φ is true if for every facet γ0 ≺ γ the image
Q(γ0) belongs to Φ.

Definition 2.1.2. A bunched ring is a triple (R,F,Φ), where R is an almost
freely factorially K-graded affine K-algebra such that R∗ = K∗ holds, F is a system
of pairwise non-associated K-prime generators for R and Φ is a true F-bunch.

The following multigraded version of the Proj-construction associates to any
bunched ring (R,F,Φ) a variety having R as its Cox ring.
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Construction 2.1.3. Let (R,F,Φ) be a bunched ring and (E
Q
−→ K, γ) its

projected cone. The collection of relevant faces and the covering collection are

rlv(Φ) := {γ0 � γ; γ0 an F-face with Q(γ0) ∈ Φ},

cov(Φ) := {γ0 ∈ rlv(Φ); γ0 minimal}.

Consider the action of the quasitorus H := Spec K[K] on X := SpecR. We define
the localization of X with respect to an F-face γ0 � γ to be

Xγ0 := Xf
u1
1 ···f

ur
r

for some (u1, . . . , ur) ∈ γ◦0 .

This does not depend on the particular choice of (u1, . . . , ur) ∈ γ◦0 . Moreover, we
define an open H-invariant subset of X by

X̂ := X̂(R,F,Φ) :=
⋃

γ0∈rlv(Φ)

Xγ0 =
⋃

γ0∈cov(Φ)

Xγ0 = X̂(Φ),

where X̂(Φ) ⊆ X is the set associated to the bunch Φ ⊆ ΩF = ΩX of orbit cones,

see Definition 1.3.5. Thus, the H-action on X̂ admits a good quotient; we set

X := X(R,F,Φ) := X̂(R,F,Φ)//H

and denote the quotient map by p : X̂ → X . The affine open subsets Xγ0 ⊆ X̂,
where γ0 ∈ rlv(Φ), are H-saturated and their images

Xγ0 := p(Xγ0) ⊆ X

form an affine cover of X . Moreover, every member fi of F defines a prime divisor

Di
X := p(V (X̂, fi)) on X .

Theorem 2.1.4. Let X̂ := X̂(R,F,Φ) and X := X(R,F,Φ) arise from a
bunched ring (R,F,Φ). Then X is a normal A2-variety with

dim(X) = dim(R)− dim(KQ), Γ(X,O∗) = K∗,

there is an isomorphism Cl(X)→ K sending [Di
X ] to deg(fi), the map p : X̂ → X

is a characteristic space and the Cox ring R(X) is isomorphic to R.

Let us illustrate this with a couple of examples. The first one shows how toric
varieties fit into the picture of bunched rings.

Example 2.1.5 (Bunched polynomial rings). Set R := K[T1, . . . , Tr], let K be
a finitely generated abelian group and assume that R is almost freely K-graded via
deg(Ti) = wi with w1, . . . , wr ∈ K. Then R is factorial and has F := (T1, . . . , Tr) as
a system of pairwise non-associated homogeneous K-prime generators. Every face
γ0 � γ is an F-face and thus a true F-bunch is nothing but a true W-bunch for the
vector configuration W = (w1, . . . , wr) in KQ in the sense of Definition II. 2.1.10.
The variety associated to such a bunched ring (R,F,Φ) is the toric variety X asso-
ciated to the W-bunch Φ and its fan Σ = Φ♯ is obtained from Φ via Gale duality as
described in Theorem II. 2.1.14. Note that the sets Xγ0 ⊆ X are precisely the affine
toric charts, where the cones γ0 ∈ cov(Φ) provide the maximal ones. Moreover, the
divisors Di

X are the toric prime divisors.

Example 2.1.6 (A singular del Pezzo surface). Set K := Z2 and consider the
K-grading of K[T1, . . . , T5] defined by deg(Ti) := wi, where wi is the i-th column of
the matrix

Q :=

(
1 −1 0 −1 1
1 1 1 0 2

)

Then this K-grading descends to a K-grading of the following residue algebra which
is factorial due to Proposition 2.4.1:

R := K[T1, . . . , T5] / 〈T1T2 + T 2
3 + T4T5〉.
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The classes fi ∈ R of Ti ∈ K[T1, . . . , T5], where 1 ≤ i ≤ 5, form a system F of
pairwise nonassociated K-prime generators of R. We have

E = Z5, γ = cone(e1, . . . , e5)

and the K-grading is almost free. The F-faces can be directly computed using the
definition, see also 2.4.6; writing γi1,...,ik := cone(ei1 , . . . , eik), they are given as

{0}, γ1, γ2, γ4, γ5, γ1,4, γ1,5, γ2,4, γ2,5, γ1,2,3, γ3,4,5,

γ1,2,3,4, γ1,2,3,5, γ1,2,4,5, γ1,3,4,5, γ2,3,4,5, γ1,2,3,4,5.

In particular, we see that there is precisely one true maximal F-bunch Φ; it has
τ := cone(w2, w5) as its unique minimal cone.

w1

w5

w4

w3
w2

Note that Φ = Φ(w3) is the bunch arising from w3 ∈ τ◦ as in Example 1.3.6. The
collection of relevant faces and the covering collection are

rlv(Φ) = {γ1,4, γ2,5, γ1,2,3, γ3,4,5, γ1,2,3,4, γ1,2,3,5, γ1,2,4,5, γ1,3,4,5, γ2,3,4,5, γ1,2,3,4,5},

cov(Φ) = {γ1,4, γ2,5, γ1,2,3, γ3,4,5}.

The open set X̂(R,F,Φ) in X = V (K5;T1T2 + T 2
3 + T4T5) equals X

ss
(w3) and is

the union of four affine charts:

X̂(R,F,Φ) = Xf1f4 ∪ Xf2f5 ∪ Xf1f2f3 ∪ Xf3f4f5 .

Since X̂(R,F,Φ) is a set of semistable points, the resulting variety X = X(R,F,Φ)
is projective. Moreover, we have

dim(X) = 2, Cl(X) = K, R(X) = R.

In fact, the methods presented later show that X is a Q-factorial del Pezzo surface
with one singularity, of type A2.

Example 2.1.7 (The smooth del Pezzo surface of degree five). Consider the
polynomial ring A(2, 5) := K[Tij ; 1 ≤ i < j ≤ 5] and the ideal I(2, 5) ⊆ A(2, 5)
generated by the Plücker relations:

T12T34−T13T24+T14T23, T12T35−T13T25+T15T23, T12T45−T14T25+T15T24,

T13T45 − T14T35 + T15T34, T23T45 − T24T35 + T25T34.

The ring R := A(2, 5)/I(2, 5) is factorial [137, Prop. 8.5], and the classes fij ∈ R
of Tij define a system F = (fij) of pairwise nonassociated prime generators. The
Plücker relations are homogeneous w.r.t. the grading by K = Z5 which associates
to Tij the ij-th column of the matrix

Q =




0 0 0 0 1 1 1 1 1 1
1 0 0 0 −1 −1 −1 0 0 0
0 1 0 0 −1 0 0 −1 −1 0
0 0 1 0 0 −1 0 −1 0 −1
0 0 0 1 0 0 −1 0 −1 −1




12 13 14 15 23 24 25 34 35 45

In particular, R is K-graded. These data describe the cone over the Grassmannian
Gr (2, 5) with an effective action of the five dimensional torus. The half sum w =
(3,−1,−1,−1,−1) of the columns of Q defines a true F-bunch Φ = Φ(w) and
hence we have a bunched ring (R,F,Φ). As we will see later, the associated variety
X(R,F,Φ) is the smooth del Pezzo surface of degree five, i.e., the blow up of P2 in
four points in general position; compare also [143, Prop. 3.2].
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We say that a variety X is A2-maximal if it is A2 and admits no big open
embedding X ( X ′ into an A2-variety X ′, where big means that X ′ \ X is of
codimension at least two in X ′. Moreover, we call an F-bunch maximal if it cannot
be enlarged by adding further projected F-faces.

Proposition 2.1.8. Let X arise from a bunched ring (R,F,Φ). Then X is
A2-maximal if and only if Φ is maximal.

The following statement shows in particular that every normal A2-variety with
finitely generated Cox ring can be realized as a big open subset in some A2-maximal
one and that the latter ones are obtained by Construction 2.1.3.

Theorem 2.1.9. Let X be a normal A2-variety with Γ(X,O∗) = K∗, finitely
generated divisor class group K := Cl(X) and finitely generated Cox ring R :=
R(X). Suppose that R∗ = K∗ holds and let F be any finite system of pairwise
nonassociated K-prime generators for R.

(i) There exist a maximal F-bunch Φ and a big open embedding X →
X(R,F,Φ).

(ii) If X is A2-maximal, then X ∼= X(R,F,Φ) holds with some maximal F-
bunch Φ.

Corollary 2.1.10. Let X be a normal A2-maximal variety with Γ(X,O) = K,
finitely generated divisor class group and finitely generated Cox ring. Then X ∼=
X(R,F,Φ) holds with some bunched ring (R,F,Φ).

Corollary 2.1.11. Let X be a normal complete A2-variety (e.g. a normal
projective one) with finitely generated divisor class group and finitely generated Cox
ring. Then X ∼= X(R,F,Φ) holds with some bunched ring (R,F,Φ).

2.2. Proofs to Section 2.1. We enter the detailed discussion of Construc-
tion 2.1.3. First we consider almost free gradings and show that this notion is
indeed a property of the grading and does not depend on the choice of a system F

of generators.

Construction 2.2.1. Let K be a finitely generated abelian group, R a fac-
torially K-graded affine algebra with R∗ = K∗ and let F = (f1, . . . , fr) be any
system of pairwise nonassociated K-prime generators for R. Consider the action of
H = Spec K[K] on X = SpecR and set

X̂(F) := X \
⋃

i6=j

V (X ; fi, fj) =

r⋃

i=1

Xf1···fi−1fi+1···fr ⊆ X.

Then the subset X̂(F) ⊆ X is open, H-invariant and its complement X \ X̂(F) is

of codimension at least two in X. In terms of Construction 2.1.3, the set X̂(F) is
the union of the localizations Xγ0 , where γ0 � γ is a facet.

Proposition 2.2.2. Let K be a finitely generated abelian group and R a facto-
rially graded normal affine K-algebra with R∗ = K∗. Moreover, let F = (f1, . . . , fr)
be any system of pairwise nonassociated K-prime generators for R with associated

projected cone (E
Q
−→ K, γ). Then the following statements are equivalent.

(i) For every facet γ0 � γ, the image Q(γ0∩E) generates the abelian group K.

(ii) H acts freely on X̂(F).
(iii) H acts freely on an invariant open subset W ⊆ X with codim(X\W ) ≥ 2.

Proof. Suppose that (i) holds. By construction of X̂(F), we find for every

x ∈ X̂(F) some 1 ≤ i ≤ r such that fj(x) 6= 0 holds for all j 6= i. By (i) the weights
wj = deg(fj), where j 6= i, generate the abelian group K. Thus, Proposition I. 2.2.8
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tells us that the isotropy group Hx is trivial, which gives (ii). The implication
“(ii)⇒(iii)” is obvious. Finally, suppose that (iii) holds. Since W ⊆ X is big and
the fi are pairwise non-associated K-primes, we find for every 1 ≤ i ≤ r a point
x ∈ W with fi(x) = 0 but fj(x) 6= 0 whenever j 6= i. Clearly, the weights wj with
j 6= i generate the orbit group Kx. Since Hx is trivial, we infer Kx = K from
Proposition I. 2.2.8. �

We turn to F-bunches. The following observation enables us to apply Geometric
Invariant Theory for quasitorus actions on affine varieties developed in the preceding
section.

Remark 2.2.3. Let K be a finitely generated abelian group and R a factorially
K-graded affine algebra with R∗ = K∗. Moreover, let F = (f1, . . . , fr) be a system

of pairwise nonassociatedK-prime generators for R and (E
Q
−→ K, γ) the associated

projected cone. By Proposition 1.1.10, the projected F-faces are precisely the orbit
cones of the action H = Spec K[K] on X = SpecR. Thus, the (maximal) F-bunches
are precisely the (maximal) bunches of orbit cones. According to Proposition 1.3.8,
the F-bunch Φ determines a good H-set in X ; concretely this set is given as

X̂(Φ) := {x ∈ X; ω0 ∈ Φ for some ω0 � ωx} ⊆ X.

According to Theorem 1.4.4, the set X̂(Φ) is (H, 2)-maximal if and only if Φ is

maximal. Moreover, the closed H-orbits of X̂(Φ) are precisely the orbits H ·x ⊆ X
with ωx ∈ Φ.

Note that the interpretation in terms of orbit cones shows that an F-bunch does
not depend on the particular choice of the system of generators F. The following
two statements comprise in particular the assertions made in Construction 2.1.3.

Proposition 2.2.4. Situation as in Construction 2.1.3. The good H-subset

X̂(Φ) ⊆ X associated to Φ satisfies

X̂(Φ) =
⋃

γ0∈rlv(Φ)

Xγ0 = X̂(R,F,Φ).

Moreover, the localizations Xγ0 ⊆ X, where γ0 ∈ rlv(Φ), are H-saturated subsets

of X̂(Φ).

Proof. Consider z ∈ X̂(Φ) with H ·z closed in X̂(Φ). By Lemma 1.3.10, the
orbit cone ωz belongs to Φ. In terms of F = (f1, . . . , fr) and its projected cone

(E
Q
−→ K, γ) we have

ωz = cone(deg(fi); fi(z) 6= 0) = Q(γ0), where γ0 := cone(ei; fi(z) 6= 0).

This shows that Xγ0 is a neighbourhood U(z) as considered in Construction 1.3.7.

In particular, we haveXγ0 ⊆ X̂(Φ) and Proposition 1.3.8 ensures that this inclusion

is H-saturated. Going through the points with closed orbit in X̂ , we see that X̂(Φ)
is a union of certain H-saturated subsets Xγ0 with γ0 ∈ rlv(Φ).

To conclude the proof we have to show that in fact every Xγ0 with γ0 ∈ rlv(Φ)

is an H-saturated subset of X̂(Φ). Given γ0 ∈ rlv(Φ), choose a point z ∈ X
satisfying fi(z) 6= 0 if and only if ei ∈ γ0. Then we have ωz = Q(γ0). This implies

z ∈ X̂(Φ) and Lemma 1.3.10 says that H ·z is closed in X̂(Φ). Thus, the preceding

consideration shows that X(γ0) is an H-saturated subset of X̂(Φ). �

Proposition 2.2.5. Let K be a finitely generated abelian group, R an almost
freely factorially graded normal affine K-algebra with R∗ = K∗ and F = (f1, . . . , fr)
a system of pairwise nonassociated K-prime generators for R. Then, for any F-
bunch Φ, the following statements are equivalent.
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(i) The F-bunch Φ is true.

(ii) We have an H-saturated inclusion X̂(F) ⊆ X̂(Φ).

Moreover, if (R,F,Φ) is a bunched ring, then, in the notation of Construction 2.1.3,

every Di
X = p(V (X̂, fi)) is a prime divisor on X.

Proof. If Φ is a proper F-bunch, then Proposition 2.2.4 ensures that we have

H-saturated inclusions Xγ0 ⊆ X̂(Φ), where γ0 ⊆ γ is a facet. Thus, X̂(F) ⊆ X̂(Φ)

is H-saturated. Conversely, if X̂(F) ⊆ X̂(Φ) is H-saturated, then we look at points

zi ∈ X̂(F) with fi(zi) = 0 and fj(zi) 6= 0 for all j 6= i. The orbits H ·zi are closed

in X̂(Φ) and thus the corresponding orbit cones ωi belong to Φ, see Theorem 1.4.4.
In the setting of Definition 2.1.1, the orbit cones ωi are exactly the Q-images of
the facets of γ. It follows that the F-bunch Φ is proper. The supplement is then

clear because the restriction p : X̂(F)→ p(X̂(F)) is a geometric quotient for a free
H-action. �

Proof of Theorem 2.1.4. According to Proposition 2.2.4, the good quotient

p : X̂ → X exists andX is an A2-variety. Proposition 2.2.2 tells us thatH acts freely

on X̂(F) and by Proposition 2.2.5 we have an H-saturated inclusion X̂(F) ⊆ X̂.

Thus, the action of H on X̂ is strongly stable. We conclude that X = X̂//H is of
dimension dim(R)− dim(H). Proposition I. 6.4.5 provides the desired isomorphism

Cl(X) ∼= K and Theorem I. 6.4.3 shows that p : X̂ → X is a characteristic space.
The latter implies R(X) ∼= R. �

Proof of Proposition 2.1.8. Let X be A2-maximal. If Φ were not max-
imal, then we had Φ ( Φ′ with some F-bunch Φ′. This gives an H-saturated

inclusion X̂(Φ) ( X̂(Φ′) and thus an open embedding X ( X ′ of the quotient

varieties. Since X̂(Φ) is big in X̂(Φ′), also X is big in X ′. A contradiction.

Now let Φ be maximal. Consider a big open embedding X ⊆ X ′ into an A2-
variety. Replacing, if necessary, X ′ with its normalization, we may assume that
X ′ is normal. Then X and X ′ share the same Cox ring R and thus occur as good

quotients of open subsets X̂ ⊆ X̂ ′ of their common total coordinate space X. By

(H, 2)-maximality of X̂ ⊆ X , we obtain X̂ = X̂ ′ and thus X = X ′. �

Proof of Theorem 2.1.9. By Theorem I. 5.3.4, the Cox ring R is factorially
K-graded. Consider the corresponding total coordinate space X = SpecR with its

action of H = Spec K[K] and the characteristic space qX : X̂ → X which is a good
quotient for the action of H . By Proposition I. 6.1.6, we have a small complement
X \ q−1

X (X ′), where X ′ ⊆ X denotes the set of smooth points, and H acts freely

on q−1
X (X ′). Proposition 2.2.2 thus tells us that the K-grading is almost free.

Next observe that X̂ is an H-saturated subset of some (H, 2)-maximal subset of X.

According to Theorem 1.4.4, the latter is of the form X̂(Φ) with a maximal F-bunch
Φ ⊆ ΩF = ΩX . Propositions 2.2.2 and 2.2.5 show that Φ is true. Assertions (i)
and (ii) of the theorem follow. �

2.3. Example: flag varieties. We show how flag varieties fit into the lan-
guage of bunched rings. Let G be a connected linear algebraic group. Recall that
a Borel subgroup B ⊆ G is a maximal connected solvable subgroup of G and, more
generally, a parabolic subgroup P ⊆ G is a subgroup containing some Borel sub-
group. The homogeneous space G/P is a smooth projective variety, called a flag
variety. The following example explains this name.
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Example 2.3.1. Consider the special linear group SLn. The subgroup Bn ⊆
SLn of upper triangular matrices is a Borel subgroup; it is the stabilizer of the
standard complete flag

fn = K1 ⊂ . . . ⊂ Kn−1 ∈ Gr (1, n)× . . .×Gr (n− 1, n)

under the diagonal SLn-action on the product of Grassmannians. Thus, SLn/Bn ∼=
SLn ·fn is the set of all complete flags. Similarly, any sequence 0 < d1 < d2 < . . . <
ds < n, defines a parabolic Pd1,...,ds ⊆ SLn, namely the stabilizer of the partial flag

fd1,...,ds = Kd1 ⊂ . . . ⊂ Kds ∈ Gr (d1, n)× . . .×Gr (ds, n)

and the possible flag varieties SLn/P are precisely the SLn-orbits SLn ·fd1,...,ds . If
s = 1 and d1 = k holds, then Pk ⊆ SLn is a maximal parabolic subgroup, and G/Pk
is nothing but the Grassmannian Gr (k, n).

Example 2.3.2. In SL3 we have two maximal parabolic subgroups P1 and P2

with B3 = P1 ∩ P2, namely

P1 =








∗ ∗ ∗
0 ∗ ∗
0 ∗ ∗







 , P2 =








∗ ∗ ∗
∗ ∗ ∗
0 0 ∗







 .

The flag varieties SL3/P1 and SL3/P2 both are isomorphic to P2, while the variety
of complete flags SL3/B3 is given in P2 × P2 as

{([x0, x1, x2], [y0, y1, y2]) ; x0y0 + x1y1 + x2y2 = 0}.

We determine the characteristic space of a flag varietyG/P for simply connected
semisimple G. The following observation is an important ingredient.

Proposition 2.3.3. Let a connected affine algebraic group G with X(G) = {1}
act rationally by means of algebra automorphisms on an affine K-algebra A with
A∗ = K∗. If A is factorial, then the algebra of invariants AG is factorial as well.

Proof. Given a non-zero non-unit a ∈ AG, consider its decomposition into
primes a = aν11 · · · a

νr
r in A. Then, for every g ∈ G, one has

a = g ·a = (g ·a1)
ν1 · · · (g ·ar)

νr .

Using A∗ = K∗, we see that g permutes the ai up to multiplication by a constant.
Since G is connected and X(G) = {1} holds, we can conclude a1, . . . , ar ∈ A

G. �

Now consider a parabolic subgroup P ⊆ G and let P ′ ⊆ P denote its commu-
tator group. Then H := P/P ′ is a torus and it acts freely via multiplication from
the right on the homogeneous space G/P ′. The canonical map G/P ′ → G/P is a
geometric quotient for this H-action.

Proposition 2.3.4. Let G be a simply connected semisimple affine algebraic
group and P ⊆ G a parabolic subgroup. Then we have Cl(G/P ) ∼= X(H) and

G/P ′
/H
−→ G/P is a characteristic space.

Proof. By the assumptions on G, we have Γ(G,O∗) = K∗ and the algebra
Γ(G,O) is factorial; see [96, Prop. 1.2,] and [95, Prop. 4.6,]. Moreover, P ′ is con-
nected and has a trivial character group. Consider the action of P ′ on G by multipli-
cation from the right. Using Chevalley’s Theorem [88, Theorem 11.2], we see that
G/P ′ is a quasiaffine variety. Proposition 2.3.3 applied to the induced representa-
tion of P ′ on Γ(G,O) shows that Γ(G/P ′,O) is factorial. This gives Cl(G/P ′) = 0.
The assertion now follows from Proposition I. 6.4.5 and Theorem I. 6.4.3. �
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Let us express this in terms of bunched rings. We first consider the case of a
Borel subgroup B ⊆ G. Then the commutator B′ ⊆ B is a maximal unipotent
subgroup U ⊆ G and some maximal torus T ⊆ G projects isomorphically onto
H = B/B′. In particular, we have B = TU .

To proceed, we recall some basic representation theory; we refer to [72] for
details. For every simple (finite-dimensional, rational) G-module V , the subspace
V U of U -invariant vectors is one-dimensional, and T acts on V U by a character
µV ∈ X(T ), called the highest weight of V . The set of the highest weights of the
simple G-modules is a submonoid X+(G) ⊆ X(T ) and V 7→ µV induces a bijection

{isomorphism classes of simple G-modules} −→ X+(G).

The elements of X+(G) are called dominant weights of the group G (with respect
to the pair (B, T )). The cone C+ ⊆ X(T )Q generated by X+(G) ⊆ X(T ) is called
the positive Weyl chamber. The intersection C+∩X(T ) coincides with X+(G). The
monoid X+(G) has a unique system of free generators ̟i, 1 ≤ i ≤ s, where s is the
rank of the lattice X(T ); the ̟i are called the fundamental weights of G.

The algebra Γ(G/U,O) comes with the structure of a rationalG-module induced
from the left G-action on G/U . For every µ ∈ X+(G), there is a unique simple G-
submodule V (µ) ⊆ Γ(G/U,O) having µ as highest weight, see [132, Theorem 3.12];
in other words, we have the isotypic decomposition

Γ(G/U,O) =
⊕

µ∈X+(G)

V (µ).

The T -action on Γ(G/U,O) coming from right T -multiplication on G/U induces
scalar multiplication on every submodule V (µ) defined by the highest weight µ∗

of the dual G-module V (µ)∗. Thus, the above isotypic decomposition is a G-
equivariant X+(G)-grading which we consider as a X(T )-grading; note that X+(G)
generates X(T ) as a lattice.

We are ready to turn R := Γ(G/U,O) into a bunched ring. It is factorial, graded
by K := X(T ) and we have R∗ = K∗. For every fundamental weight ̟i ∈ X+(G)
fix a basis Fi = (fij , 1 ≤ j ≤ si) of V (̟i) and put all these bases together to a
family F = (fij). Finally, set Φ := {C+}.

Proposition 2.3.5. The triple (R,F,Φ) is a bunched ring having the flag va-
riety G/B as its associated variety.

In the proof and also later, we make use of the following simple criterion for
K-primality.

Lemma 2.3.6. Let K be finitely generated abelian group and A be a factorially
K-graded K-algebra. If w ∈ S(A) is indecomposable in S(A), then every 0 6= f ∈ Aw
is K-prime.

Proof of Proposition 2.3.5. First recall that the fundamental weights ̟i

generate the weight monoid X+(G). Next note that for any two dominant weights
µ, µ′ ∈ X+(G) the G-module V (µ + µ′) is simple and thus we have a surjective
multiplication map

V (µ)× V (µ′) → V (µ+ µ′).

Consequently, the fij generate R. By Lemma 2.3.6, they are K-prime elements and
clearly they are pairwise non-associated. Since each V (̟i) is of dimension at least
two, Φ is a true F-bunch. Moreover, Φ is the only possible true F-bunch and thus
the associated open subset of SpecR must be G/B′. �



2. BUNCHED RINGS 103

Remark 2.3.7. The total coordinate space SpecR of G/B admits an explicit
realization as a G-orbit closure in a representation space, see [76, Section 5]:

Spec Γ(G/U,O) ∼= G·(v̟1 , . . . , v̟r ) ⊆ V (̟1)⊕ . . .⊕ V (̟r).

We turn to arbitrary flag varieties. Fix a Borel subgroup B ⊆ G and a maximal
torus T ⊆ B. Let C � C+ be a face of the positive Weyl chamber. Set KC :=
K ∩ lin(C) and consider the associated Veronese subalgebra

RC =
⊕

u∈KC

Ru.

Let FC denote the system of generators obtained by putting together the bases Fi
with ̟i ∈ C. Moreover, set ΦC := {C}.

Proposition 2.3.8. The triple (RC ,FC ,ΦC) is a bunched ring with associated
variety G/PC , where PC ⊆ G is the parabolic subgroup defined by the index set
{i;̟i ∈ C}. Moreover, there is a commutative diagram

SpecR
/ eH // SpecRC

G/B′ //

OO

/H

��

G/P ′C

OO

/HC

��
G/B // G/PC

Finally, given any parabolic subgroup P ⊆ G, the associated flag variety G/P is
isomorphic to some G/PC .

Proof of Proposition 2.3.8. Using [132, Theorem 3.12], one verifies that
RC is the ring of functions of G/P ′C . Then the statement follows from Proposi-
tions 2.3.4 and 2.3.5. The supplement is due to the fact that any parabolic P ⊆ G
is conjugate to some PC , see [88, Theorem 30.1]. �

Example 2.3.9. Consider G = SLn and an extremal ray C = cone(̟k) of
the positive Weyl chamber C+. Then PC = Pk holds, G/PC is the Grassmannian
Gr (k, n), and the total coordinate space SpecRC is the affine cone over the Plücker
embedding of Gr (k, n) with the standard Z≥0-grading.

Example 2.3.10. Consider again the special linear group SL3 and the Borel
subgroup B3 ⊆ SL3. Then the commutator U = B′3 and a maximal torus with
B = TU are

U =








1 ∗ ∗
0 1 ∗
0 0 1







 , T =








t1 0 0
0 t2 0
0 0 t3



 ; t1t2t3 = 1



 .

In order to determine SL3/U explicitly, consider the SL3-module K3× (K3)∗, where
SL3 acts canonically on K3 and (K3)∗ is the dual module. The point (e1, e

∗
3) has U

as its stabilizer, and its orbit closure is the affine quadric

Z := SL3 · (e1, e∗3) = V (K3 × (K3)∗; X1Y1 +X2Y2 +X3Y3).

In fact, SL3/U ∼= SL3 · (e1, e∗3) is obtained from Z by removing the coordinate
subspaces V (Z;X1, X2, X3) and V (Z;Y1, Y2, Y3). The T -action on SL3/U via mul-
tiplication from the right looks in coordinates of K3 × (K3)∗ as

t·((x1, x2, x3), (y1, y2, y3)) = ((t1x1, t1x2, t1x3), (t1t2y1, t1t2y2, t1t2y3)),
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and the orbit SL3·(e1, e∗3) coincides with the set of semistable points Zss(χ), where
the weight χ ∈ X(T ) may be taken as χ(t) = t21t2. Thus, we recover the character-
istic space via the identifications

Zss(χ)
/T //

OO
∼=

��

Zss(χ)/T
OO
∼=

��
G/U

/T
// G/B

Let χ1, χ2 ∈ X(T ) denote the characters with χi(t) = ti. Then the fundamental
weights are ̟1 = χ1 and ̟2 = χ1 + χ2. Thus, a weight c1χ1 + c2χ2 is dominant if
and only if c1 ≥ c2 holds.

̟1

C+

̟2

The fundamental modules are V (̟1) ∼= K3 and V (̟2) ∼= Λ2K3 ∼= (K3)∗. Thus, we
may take F1 = (X1, X2, X3) as a basis for V (̟2) and F2 = (Y1, Y2, Y3) as a basis
for V (̟1). The ring R = Γ(G/U,O) is then given as

R = K[X1, X2, X3, Y1, Y2, Y3]/〈X1Y1 +X2Y2 +X3Y3〉.

with deg(Xi) = ̟1 and deg(Yi) = ̟2. Finally, the Veronese subalgebras of R
producing the bunched rings of the flag varieties G/P1 and G/P2 are K[X1, X2, X3]
and K[Y1, Y2, Y3], respectively.

2.4. Example: quotients of quadrics. Here we consider bunched rings aris-
ing from a non-degenerate affine quadric. The resulting varieties are quotients of
suitable quasitorus actions on the quadric; we call them full intrinsic quadrics.

We first give a guide to concrete examples of full intrinsic quadrics, and will
later see that the general ones are isomorphic to these. For m ∈ Z≥1 consider the
quadratic forms

g2m := T1T2 + . . .+ T2m−1T2m,

g2m+1 := T1T2 + . . .+ T2m−1T2m + T 2
2m+1.

Write R(r) := K[T1, . . . , Tr]/〈gr〉 for the factor ring, let fi ∈ R(r) denote the class
of the variable Ti, and set F(r) = (f1, . . . , fr). The following holds even for non
algebraically closed fields K, see [137, Theorem 8.2]; in our case the proof is simple.

Proposition 2.4.1 (Klein-Nagata). For r ≥ 5, the ring R(r) is factorial and
F(r) is a system of pairwise non-associated prime generators.

Proof. For r ≥ 5, the polynomial gr−2 is irreducible, and thus we have an
integral factor ring

K[T2, . . . , Tr]〈gr−2(T3, . . . , Tr)〉 ∼= K[T1, . . . , Tr]〈T1, gr〉 ∼= R(r)/〈f1〉.

In other words, f1 is prime in R(r). Moreover, localizing R(r) by f1 gives a factorial
ring isomorphic to K[T±1

1 , T3, . . . , Tr]. Thus, R(r) is factorial. �

In order to find suitable gradings of R(r), we first observe that there is a unique
maximal grading keeping the variables homogeneous and any other grading keeping
the variables homogeneous is a coarsening of this maximal one.
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Construction 2.4.2 (Maximal diagonal grading). Consider any polynomial
g ∈ K[T1, . . . , Tr] of the form

g = a0T
l01
1 · · ·T l0r

r + . . . + akT
lk1
1 · · ·T lkr

r .

First, we build a k × r matrix Pg from the exponents lij of g. Define row vectors
li := (li1, . . . , lir) and set

Pg =




l1 − l0
...

lk − l0




With the row latticeMg ⊆ Zr of Pg, we define the gradiator of g to be the projection
Qg : Zr → Kg := Zr/Mg. It gives rise to a Kg-grading on K[T1, . . . , Tr] via

deg(T1) := Qg(e1), . . . , deg(Tr) := Qg(er).

This grading is effective and T1, . . . , Tr, g are homogeneous. Moreover, given any
other such grading, say by an abelian group K, there is a commutative diagram

Zr
ei 7→deg Ti //

Qg   B
BB

BB
BB

B K

Kg

α

>>}}}}}}}}

If, instead of one g, we have several g1, . . . , gs, then, replacing Pg with the stack
matrix of Pg1 , . . . , Pgs , we obtain a gradiator Qg1,...,gs with the analogous property.

For our polynomials g2m and g2m+1 the gradiators are obtained by a direct
computation and are easy to write down.

Proposition 2.4.3. For the polynomials g2m and g2m+1, the associated maxi-
mal grading groups are K2m = K2m+1 = Zm+1 and gradiators are given by

Q2m =




1 −1 0 0 0 0

0 0
. . .

. . . 0 0
0 0 0 0 1 −1
0 1 . . . . . . 0 1


 ,

Q2m+1 =




1 −1 0 0 0 0 0

0 0
. . .

. . . 0 0 0
0 0 0 0 1 −1 0
1 1 . . . . . . 1 1 1


 .

From Definition 2.1.1, we directly extract the following (necessary and suffi-
cient) conditions that a grading gives rise to a bunched ring.

Remark 2.4.4. Let R be a factorially K-graded affine K-algebra with R∗ = K∗

and F = (f1, . . . , fr) a system of pairwise nonassociated K-prime generators with

projected cone (E
Q
−→ K, γ).

(i) The K-grading of R is almost free if and only if Q(γ0 ∩ Zr) generates K
as an abelian group for every facet γ0 � γ.

(ii) F = (f1, . . . , fr) admits a true F-bunch if and only if Q(γ1)
◦ ∩Q(γ2)

◦ 6= ∅
holds in KQ for any two facets γ1, γ2 � γ.

Let us illustrate this construction of bunched rings with an example in the case
of six variables; the resulting variety has torsion in its divisor class group.
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Example 2.4.5. For the polynomial g = T1T2 + T3T4 + T5T6 in K[T1, . . . , T6],
we have Kg = Z4. Consider K := Z⊕ Z/3Z and the coarsening

α : Kg → K, e1, e2, e3 7→ (1, 1), e4 7→ (2, 0).

Then Q := α ◦Qg : Z6 → K fullfills the conditions of Remark 2.4.4; more explicitly,
the K-grading of the factor ring R = K[T1, . . . , T6]/〈g〉 is given by

deg(f1) = (1, 1), deg(f2) = (1, 2), deg(f3) = (1, 1),

deg(f4) = (1, 2), deg(f5) = (1, 1), deg(f6) = (1, 2),

where fi is the class of Ti. For F = (f1, . . . , f6), there is one true F-bunch, namely
Φ = {Q≥0}. The variety X = X(R,F,Φ) is a Q-factorial projective 4-fold.

In particular for the treatment of more advanced examples, explicit knowledge
of the F(r)-faces may be useful. Here comes a simple recipe to determine them.

Remark 2.4.6. First let r = 2m and arrange the set R := {1, . . . , r} according
to the following scheme

2 4 . . . 2m− 2 2m

1 3 . . . 2m− 3 2m− 1

The column sets are {1, 2}, . . . , {2m− 1, 2m}. Consider subsets U ∪ V ⊆ R, where
U is located in the upper row and V in the lower one. We look for the types:

(i) the union U ∪ V contains no column set, for example

U 2 4 6 8 10 12

V 1 3 5 7 9 11

(ii) the union U ∪ V contains at least two column sets, for example

U 2 4 6 8 10 12

V 1 3 5 7 9 11

By Proposition 1.1.9, the possible F-faces for R(2m) and F = F(2m) are γ0 =
cone(ei; i ∈ U ∪ V ) � γ with U ∪ V of type (i) or (ii).

Now, let r = 2m+1. Then we arrange the set R := {1, . . . , r} according to the
following scheme

2 4 . . . 2m− 2 2m 2m+ 1

1 3 . . . 2m− 3 2m− 1 2m+ 1

This time the column sets are {1, 2}, . . . , {2m − 1, 2m} and {2m + 1}. Again, we
consider two types of U ∪ V ⊆ R with U in the upper row and V in the lower one:

(i) the union U ∪ V contains no column set,
(ii) the union U ∪ V contains at least two column sets.

Then, as before, the possible F-faces for R(2m + 1) and F = F(2m + 1) are γ0 =
cone(ei; i ∈ U ∪ V ) � γ with a constellation U ∪ V of type (i) or (ii).

By a full intrisic quadric we mean a variety X with Cox ring of the form
R(X) ∼= K[T1, . . . , Tr]/〈g〉, where g is a quadratic form of rank r and the classes
fi ∈ R(X) of the variables Ti are Cl(X)-homogeneous. The following statement
shows that any full intrinsic quadric is isomorphic to the variety arising from a
bunched ring (R(r),F(r),Φ) as discussed before.
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Proposition 2.4.7. Let g ∈ K[T1, . . . , Tr] be a quadratic form of rank r. Con-
sider an effective grading of K[T1, . . . , Tr] by an abelian group K such that T1, . . . , Tr
and g are K-homogeneous. Then there exist linearly independent K-homogeneous
linear forms S1, . . . , Sr in T1, . . . , Tr with g(T1, . . . , Tr) = gr(S1, . . . , Sr).

Proof. We may assume that the groupK is finitely generated. The K-grading
on K[T1, . . . , Tr] is given by a linear action of a quasitorus H := Spec K[K] on Kr.
Let O(g) be the subgroup of GLr(K) consisting of linear transformations preserving
the quadratic form g and EO(g) be the extension of O(g) by the subgroup of scalar
matrices.

By assumption, H is a subgroup of EO(g) consisting of diagonal matrices. Since
g is of rank r, the subgroup EO(g) is conjugate to EO(gr), and this conjugation
sends H to a subgroup H ′ of EO(gr). Since H ′ is diagonalizable, it is contained in
a maximal torus of EO(gr), see [88, Section 22.3, Cor. B].

On the other hand, the intersection of EO(gr) with the subgroup of diagonal
matrices is a maximal torus of EO(gr). Any two maximal tori of an affine algebraic
group are conjugate, and we may assume that H ′ is a subgroup of EO(gr) consisting
of diagonal matrices. So the conjugation sends H to H ′. This means that every
new basis vector is a linear combination of the old ones having the same degree,
and the assertion follows. �

We conclude the section with two classification results on full intrinsic quadrics
with small divisor class groups from [31].

Proposition 2.4.8. Let X be a full intrinsic quadric with Cl(X) ∼= Z. Then
X arises from a bunched ring (R,F,Φ) with Φ given by

(wi,j ;µi)

with positive integers wi,j , where 0 ≤ i ≤ n and 1 ≤ j ≤ µi, such that wi,1 < wi+1,1,
wij = wik and wi,1 + wn−i,1 = w holds for some fixed w ∈ N, and the µi satisfy

µi ≥ 1, µi = µn−i, µ0 + . . .+ µn ≥ 5.

The variety X is always Q-factorial, projective, and Q-Fano, and for its dimension,
we have

dim(X) = µ1 + . . .+ µn − 2.

Moreover, X is smooth if and only if n = 0 and w01 = 1 hold, and in this case it is
a smooth projective quadric.

The second result is the “intrinsic quadrics version” of Kleinschmidt’s classi-
fication [93] of smooth complete toric varieties with Picard number two, compare
also Example 4.2.10.

Theorem 2.4.9. Let X be a smooth full intrinsic quadric with Cl(X) ∼= Z2.
Then X arises from a bunched ring (R,F,Φ) with an F-bunch Φ given by one of
the following figures:

(e2; µ)

(e1; µ)

(2e2 − e1; µ1)

(e1; µ1)

(e2; µ2)

where in the left hand side case, µ ≥ 3 holds, and in the right hand side case, one
has µi ≥ 1 and 2µ1 + µ2 ≥ 5. Any such X is projective, and its dimension is given
by

dim(X) = 2µ− 3, or dim(X) = 2µ1 + µ2 − 3,
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where the first equation corresponds to the l.h.s. case, and the second one to the
r.h.s. case. The variety X is Fano if and only if Φ belongs to the l.h.s. case.
Moreover, different figures define non-isomorphic varieties.

Example 2.4.10. In the setting of Theorem 2.4.9, consider the bunch arising
frome the l.h.s. picture with µ = 3. Then R is defined by a quadratic form of rank
six and X equals the flag variety SL3/B3 discussed in Example 2.3.10

2.5. The canonical toric embedding. As we will see here, every variety
defined by a bunched ring allows a closed embedding into a toric variety with nice
properties. For a fixed bunched ring, we give a canonical construction in 2.5.3.
The toric ambient variety arising from this construction may be (non-canonically)
completed, this is discussed in 2.5.5 and 2.5.6.

Remark 2.5.1. Consider a morphism ϕ : X → Z from a normal variety X to a
toric variety Z with acting torus T and base point z0 ∈ Z. Let Di

Z = T ·zi, where
1 ≤ i ≤ r, be the T -invariant prime divisors and set

Z ′ := T ·z0 ∪ T ·z1 ∪ . . . ∪ T ·zr.

Suppose that ϕ−1(Di
Z), where 1 ≤ i ≤ r, are pairwise different irreducible hyper-

surfaces in X . Then the complement X \ ϕ−1(Z ′) is of codimension at least two
in X , and we have a canonical pullback homomorphism

WDivT (Z) = CDivT (Z ′)
ϕ∗

// CDiv(ϕ−1(Z ′)) ⊆WDiv(X)

It sends principal divisors to principal divisors and consequently induces a pullback
homomorphism ϕ∗ : Cl(Z)→ Cl(X) on the level of divisor class groups.

Definition 2.5.2. Let X be a normal variety and Z a toric variety with acting
torus T and invariant prime divisorsDi

Z = T ·zi, where 1 ≤ i ≤ r. A neat embedding
ofX into Z is a closed embedding ı : X → Z such that ı−1(Di

Z), where 1 ≤ i ≤ r, are
pairwise different irreducible hypersurfaces in X and the pull back homomorphism
ı∗ : Cl(Z)→ Cl(X) is an isomorphism.

Construction 2.5.3. Let (R,F,Φ) be a bunched ring and (E
Q
−→ K, γ) the

associated projected cone. Then, with M := ker(Q), we have the mutually dual
exact sequences

0 // L // F
P // N

0 Koo E
Q

oo Moo 0oo

The envelope of the collection rlv(Φ) of relevant F-faces is the saturatedQ-connected
γ-collection

Env(Φ) := {γ0 � γ; γ1 � γ0 and Q(γ1)
◦ ⊆ Q(γ0)

◦ for some γ1 ∈ rlv(Φ)}.

Let δ ⊆ FQ denote the dual cone of γ ⊆ EQ and for γ0 � γ let γ∗0 = γ⊥0 ∩ δ be the
corresponding face. Then one has fans in the lattices F and N :

Σ̂ := {δ0 � δ; δ0 � γ
∗
0 for some γ0 ∈ Env(Φ)},

Σ = {P (γ∗0); γ0 ∈ Env(Φ)}.

Consider the action of H := Spec K[K] on X := SpecR. Set X̂ := X̂(R,F,Φ) and
X := X(R,F,Φ). Let Z = Kr denote the toric variety associated to the cone δ
in F . The system F = (f1, . . . , fr) of generators of R defines a closed embedding

ı : X → Z, z 7→ (f1(z), . . . , fr(z)),
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which becomes H-equivariant if we endow Z with the diagonal H-action given by

the characters χw1 , . . . , χwr , where wi = deg(fi) ∈ K. Denoting by Ẑ and Z toric

varieties associated to the fans Σ̂ and Σ, we obtain a commutative diagram

X
ı // Z

X̂
bı //

//H pX

��

OO

Ẑ

//HpZ

��

OO

X ı
// Z

where the map ı̂ is the restriction of ı and the toric morphism pZ : Ẑ → Z arises
from P : F → N . We call the induced map of quotients ı : X → Z the canonical
toric embedding associated to the bunched (R,F,Φ).

Proposition 2.5.4. In the setting of Construction 2.5.3, the following state-
ments hold.

(i) The quotient morphism pZ : Ẑ → Z is a toric characteristic space, we

have X̂ = ı−1(Ẑ) and ı : X → Z is a closed embedding.
(ii) For any γ0 ∈ rlv(Φ) and the associated toric affine chart ZP (γ∗

0 ) ⊆ Z we

have Xγ0 = ı−1(ZP (γ∗
0 )).

(iii) The prime divisors Di
X = pX(V (X̂, fi)) and Di

Z = pZ(V (Ẑ, Ti)) satisfy
Di
X = ı∗(Di

Z) and we have a commutative diagram

Cl(X)

[Di
X ] 7→deg(fi) ∼=

��

Cl(Z)
ı∗

∼=
oo

[Di
Z ] 7→deg(Ti)∼=

��
K K

In particular, the embedding ı : X → Z of the quotient varieties is a neat
embedding.

(iv) The maximal cones of the fan Σ are precisely the cones P (γ∗0 ) ∈ Σ, where
γ0 ∈ cov(Φ).

(v) The image ı(X) ⊆ Z intersects every closed toric orbit of Z nontrivially.

Proof of Construction 2.5.3 and Proposition 2.5.4. First note that
by Proposition II. 2.3.5, the collection of cones Σ is indeed a fan. Moreover, by

Theorem II. 1.3.1, the toric morphism pZ : Ẑ → Z is a characteristic space. For

each γ0 ∈ rlv(Φ), the affine toric chart of Ẑ corresponding to γ∗0 ∈ Σ̂ is the local-
ization Zγ0 = ZTu , where u ∈ γ◦0 and T u = T u1

1 · · ·T
ur
r . Thus, we obtain

ı−1(Zγ0) = ı−1(ZTu1
1 ···T

ur
r

) = Xf
u1
1 ···f

ur
r

= Xγ0 .

Since Ẑ and X̂ are the union of the localizations of Z and X by faces γ0 ∈ rlv(Φ),

we conclude X̂ = ı−1(Ẑ). By Theorem I. 2.3.6, the induced map ı : X → Z is a
closed embedding. This establishes the construction and the first two items of the
proposition.

We turn to the third assertion of the proposition. By the commutative diagram
given in the construction, we have

ı−1(Di
Z) = pX(ı−1(p−1

Z (Di
Z))) = pX(V (X̂ ; fi)) = Di

X .

Thus, denoting by T the acting torus of Z, we have a well defined pullback homo-
morphism ı∗ : WDivT (Z)→WDiv(X). It satisfies ı∗(Di

z) = Di
X because of

ı∗(p∗Z(Di
Z)) = ı∗(div(Ti)) = div(fi) = p∗X(Di

X).
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As a consequence, we obtain that the diagram of (iii) is commutative and thus the
embedding ı : X → Z is neat.

We show (iv) and (v) of the proposition. By definition, the envelope Env(Φ)
has the covering collection cov(Φ) as its collection of minimal cones. Consequently,

the maximal cones of Σ̂ and Σ are given by

Σ̂max = {γ∗0 ; γ0 ∈ cov(Φ)}, Σmax = {P (γ∗0); γ0 ∈ cov(Φ)}.

This verifies in particular the fourth assertion. The last one is then a simple conse-
quence. �

Note that, if the variety X associated to the bunched ring (R,F,Φ) is complete
(projective), then the canonical ambient toric variety Z need not be complete (pro-
jective). Passing to completions of Z, means to give up the last two properties of
the above proposition. However, the following construction preserves the first three
properties.

Construction 2.5.5. Situation as in Construction 2.5.3. Let B ⊆ faces(γ) be
any saturated Q-connected collection comprising Env(Φ). Then B defines fans in
F in N :

Σ̂1 := {δ0 � δ; δ0 � γ
∗
0 for some γ0 ∈ B},

Σ1 = {P (γ∗0); γ0 ∈ Θ}.

The fans Σ̂ and Σ defined by the envelope Env(Φ) are subfans of Σ̂1 and Σ1 respec-

tively. With the toric varieties Ẑ1 and Z1, associated to Σ̂1 and Σ1, we obtain a
commutative diagram

X
ı // Z

id // Z

X̂
bı //

//HpX

��

OO

Ẑ
bı1 //

//HpZ

��

OO

Ẑ1

//HpZ1

��

OO

X ı
// Z ı1

// Z1

where ı̂1 and ı1 are open embeddings, the compositions ı1 ◦ ı, ı̂1 ◦ ı̂ and ı1 ◦ ı are
closed embeddings satisfying the assertions (i), (ii) and (iii) of Proposition 2.5.4. In
particular, ı1 ◦ ı : X → Z1 is a neat embedding.

Proof. Since X̂ ⊆ X is (H, 2)-maximal, we obtain X̂ = (ı1 ◦ ı)−1(Ẑ1). The
remaining assertions are then obvious. �

The following special case of the above construction provides projective toric
ambient varieties for the case that our variety arising from the bunched ring is
projective.

Construction 2.5.6. Situation as in Construction 2.5.3. Let Λ(X,H) and
Λ(Z,H) denote the GIT-fans of the actions of H on X and Z respectively. Suppose
that the F-bunch Φ arises from a GIT-cone λ ∈ Λ(X,H) that means that we have

Φ = {Q(γ0); γ0 � γ F-face with λ◦ ⊆ Q(γ0)}.

Then X = X
ss

(λ) holds. Moreover, for any GIT-cone η1 ∈ Λ(Z,H) with η◦1 ⊆ λ◦,
Construction 2.5.5 provides a neat embedding X → Z1 into the projective toric
variety Z1 = Z

ss
(η1)//H associated to bunch of cones arising from η1.
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Example 2.5.7. Consider again the bunched ring (R,F,Φ) with K = Z2

from 2.1.6. The graded ring is given by

R = K[T1, . . . , T5] / 〈T1T2 + T 2
3 + T4T5〉,

Q =

(
1 −1 0 −1 1
1 1 1 0 2

)
,

where deg(Ti) = wi with the i-th column wi of Q. The classes fi of Ti give F =
(f1, . . . , f5) and the F-bunch Φ is

Φ = {τ}, τ = cone(w2, w5)

In the associated projected cone (E
Q
−→ K, γ) we have E = Z5 and γ =

cone(e1, . . . , e5). The covering collection is

cov(Φ) = {γ1,4, γ2,5, γ1,2,3, γ3,4,5},

where γi1,...,ik := cone(ei1 , . . . , eik). A Gale dual map P : F → N for Q : E → K is
given by the matrix

P =




−1 −1 2 0 0
−1 −1 0 1 1
−1 0 1 −1 0



 .

The maximal cones of the fan Σ constructed via Env(Φ) in 2.5.3 correspond to the
members of the covering collection; in terms the v1, . . . , vr of P they are given as

cone(v2, v3, v5), cone(v1, v3, v4), cone(v4, v5), cone(v1, v2).

In particular, we see that the canonical toric ambient variety Z of X determined by
(R,F,Φ) is not complete. Completions of Z are obtained as in 2.5.6. Recall that

X = X(R,F,Φ) = X
ss

(w3)//H

holds with the action of H = Spec K[K] onX = SpecR. The two GIT-fans Λ(X,H)
and Λ(Z,H) are

w1

w5

w4

w3

w2

Λ(X,H)

w1

w5

w4

w3

w2

Λ(Z,H)

In Λ(X,H), the weight w3 belongs to the GIT-cone λ = cone(w2, w5). In Λ(Z,H),
we have three choices:

η1 := cone(w2, w3), η12 := cone(w3), η2 := cone(w3, w5).

The GIT-cones η1, η2 provide Q-factorial projective toric completions Z1, Z2 of Z,
whereas η12 gives a projective toric completion with non-Q-factorial singularities.

3. Geometry via defining data

3.1. Stratification and local properties. We observe that the variety aris-
ing from a bunched ring comes with a decomposition into locally closed subvarieties;
these turn out to be the intersections with the toric orbits of the canonical toric
ambient variety. We show that the local divisor class groups are constant along the
pieces and conclude some local properties from this.
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Construction 3.1.1. Let (R,F,Φ) be a bunched ring, consider the action of
H := Spec K[K] on X := SpecR and set

X̂ := X̂(R,F,Φ), X := X(R,F,Φ).

Let (E
Q
−→ K, γ) be the projected cone associated to F = (f1, . . . , fr). To any

F-face γ0 � γ, we associate a locally closed subset

X(γ0) := {z ∈ X ; fi(z) 6= 0⇔ ei ∈ γ0 for 1 ≤ i ≤ r} ⊆ X.

These sets are pairwise disjoint and cover the whole X. Taking the pieces defined
by relevant F-faces, one obtains a constructible subset

X̃ :=
⋃

γ0∈rlv(Φ)

X(γ0) ⊆ X̂.

Note that X̃ is the union of all closed H-orbits of X̂. The images of the pieces

inside X̃ form a decomposition of X into pairwise disjoint locally closed pieces:

X =
⋃

γ0∈rlv(Φ)

X(γ0), where X(γ0) := pX(X(γ0)).

Example 3.1.2. If we have R = K[T1, . . . , Tr] and F = {T1, . . . , Tr}, then X
is the toric variety arising from the image fan Σ associated to rlv(Φ), and for any
γ0 ∈ rlv(Φ), the piece X(γ0) ⊆ X is precisely the toric orbit corresponding to the
cone P (γ∗0 ) ∈ Σ.

Proposition 3.1.3. Situation as in Construction 3.1.1. For every γ0 ∈ rlv(Φ),
the associated piece X(γ0) ⊆ X has the following descriptions.

(i) In terms of the embedding X ⊆ Z constructed in 2.5.3, the piece X(γ0)
is the intersection of X with the toric orbit of Z given by P (γ∗0) ∈ Σ.

(ii) In terms of the prime divisors Di
X ⊆ X defined in 2.1.3 via the generators

fi ∈ F, the piece X(γ0) is given as

X(γ0) =
⋂

ei 6∈γ0

Di
X \

⋃

ej∈γ0

Dj
X

(iii) In terms of the open subsets Xγ1 ⊆ X and Xγ1 ⊆ X defined in 2.1.3 via
relevant faces γ1 ∈ rlv(Φ), we have

X(γ0) = Xγ0 \
⋃

γ0≺γ1∈rlv(Φ)

Xγ1 ,

p−1
X (X(γ0)) = Xγ0 \

⋃

γ0≺γ1∈rlv(Φ)

Xγ1 .

Proof of Construction 3.1.1 and Proposition 3.1.3. Obviously, X is
the union of the locally closed pieces X(γ0), where γ0 � γ runs through the F-

faces. Proposition 2.2.4 tells us that X̂ ⊆ X is the (H, 2)-maximal subset given by
the bunch of orbit cones

Φ = {ωz; H ·z closed in X̂}.

Moreover, it says that the closed orbits of X̂ are precisely the orbits H ·z ⊆ X with

ωz ∈ Φ. Given z ∈ X̃, we have ωz = Q(γ0) for some γ0 ∈ rlv(Φ) and thus H ·z is

closed in X̂. Conversely, if H ·z is closed in X̂, consider the F-face

γ0 := cone(ei; fi(z) 6= 0) � γ.

Then we have z ∈ X(γ0) and Q(γ0) = ωz ∈ Φ. The latter shows that γ0 is a relevant

face. This implies z ∈ X̃.
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All further statements are most easily seen by means of a neat embedding
X ⊆ Z as constructed in 2.5.3. Let X ⊆ Z = Kr denote the closed H-equivariant
embedding arising from F. Then, X intersects precisely the Z(γ0), where γ0 is an
F-face, and in these cases we have

X(γ0) = Z(γ0) ∩X.

As mentioned in Example 3.1.2, the images Z(γ0) = pZ(Z(γ0)), where γ0 ∈ rlv(Φ),
are precisely the toric orbits of Z. Moreover, we have

X̂ = Ẑ ∩X, X̃ = Z̃ ∩X.

Since pZ separates H-orbits along Z̃, we obtain X(γ0) = Z(γ0) ∩ X for every
γ0 ∈ rlv(Φ). Consequently, the X(γ0), where γ0 ∈ rlv(Φ), are pairwise disjoint
and form a decomposition of X into locally closed pieces. Finally, using X(γ0) =
Z(γ0) ∩X and Di

X = ı∗(Di
Z), we obtain assertions 3.1.3 (ii) and (iii) directly from

the corresponding representations of the toric orbit Z(γ0). �

We use the decomposition into pieces to study local properties of the variety
associated to a bunched ring. First recall from Proposition I. 6.2.1 that we associated

to any point x ∈ X of a varietyX with characteristic space qX : X̂ → X a submonoid
of the divisor class group as follows. Let x̂ ∈ q−1

X (x) be a point with closed HX -orbit
and set

Sx := {[D] ∈ Cl(X); f(x̂) 6= 0 for some f ∈ Γ(X,R[D])} ⊆ Cl(X).

A first task is to is to express this for a variety X arising from a bunched
ring (R,F,Φ) in terms of the defining data. For this we use the isomorphism
Cl(X) → K of Theorem 2.1.4 sending the class of the prime divisor Di

X ⊆ X
defined by fi ∈ F to the degree deg(fi) ∈ K.

Proposition 3.1.4. Situation as in Construction 3.1.1. Let γ0 ∈ rlv(Φ) and
x ∈ X(γ0). Then, under the isomorphism Cl(X) → K of Theorem 2.1.4, the
monoid Sx corresponds to Q(γ0 ∩ E).

Proof. According to Theorem I. 6.4.3 and Remark I. 6.4.7, we may identify
the quasitorus H = Spec K[K] with HX = Spec K[Cl(X)] and the characteristic

space p : X̂(R,F,Φ) → X with qX : X̂ → X constructed from a Cox sheaf. Let

z ∈ X(γ0). Then z is a point with closed H-orbit in X̂ and thus, for x = p(z), we
see that Sx equals Q(γ0 ∩ E). �

As an application, we compute the local class group Cl(X,x); recall that this
is the group of Weil divisors WDiv(X) modulo the subgroup of all divisors being
principal on a neighbourhood of x ∈ X .

Proposition 3.1.5. Situation as in Construction 3.1.1. Let γ0 ∈ rlv(Φ) and
x ∈ X(γ0). Then we have a commutative diagram

Cl(X) //
OO

∼=

��

Cl(X,x)
OO
∼=

��
K // K/Q(lin(γ0) ∩ E))

In particular, the local divisor class groups are constant along the pieces X(γ0),
where γ0 ∈ rlv(Φ).

Proof. By Proposition I. 6.2.1, the kernel of Cl(X)→ Cl(X,x) is the subgroup
of Cl(X) generated by Sx. Thus, Proposition 3.1.4 gives the assertion. �
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Corollary 3.1.6. Situation as in Construction 3.1.1. Inside the divisor class
group Cl(X) ∼= K, the Picard group of X is given by

Pic(X) ∼=
⋂

γ0∈cov(Φ)

Q(lin(γ0) ∩ E).

Proof. The divisor class given by w ∈ K stems from a Cartier divisor if
and only if it defines the zero class in Cl(X,x) for any x ∈ X . According to
Proposition 3.1.5, the latter is equivalent to w ∈ Q(lin(γ0) ∩E) for all γ0 ∈ rlv(Φ).
Since we have cov(Φ) ⊆ rlv(Φ), and for any γ0 ∈ rlv(Φ), there is a γ1 ∈ cov(Φ) with
γ1 � γ0, it suffices to take the γ0 ∈ cov(Φ). �

Corollary 3.1.7. Let X be the variety associated to a bunched ring and X ⊆ Z
the associated canonical toric embedding as provided in 2.5.3.

(i) For every x ∈ X we have an isomorphism Cl(X,x) ∼= Cl(Z, x).
(ii) We have an isomorphism Pic(X) ∼= Pic(Z).

In particular, if the ambient variety Z has a toric fixed point, then the Picard group
Pic(X) is torsion free.

Proof. The two items are clear. For the supplement, recall that a toric variety
with toric fixed point has free Picard group; see for example [70, Sec. 3.4]. �

A point x ∈ X is factorial (Q-factorial) if and only if every Weil divisor is
Cartier (Q-Cartier) at x. Thus, Proposition 3.1.5 has the following application to
singularities.

Corollary 3.1.8. Situation as in Construction 3.1.1. Consider a relevant face
γ0 ∈ rlv(Φ) and point x ∈ X(γ0).

(i) The point x is factorial if and only if Q maps lin(γ0) ∩E onto K.
(ii) The point x is Q-factorial if and only if Q(γ0) is of full dimension.

Corollary 3.1.9. The variety X arising from a bunched ring (R,F,Φ) is Q-
factorial if and only if Φ consists of cones of full dimension.

Whereas local factoriality admits a simple combinatorial characterization,
smoothness is difficult in general. Nevertheless, we have the following statement.

Proposition 3.1.10. Situation as in Construction 3.1.1. Suppose that X̂ is
smooth, let γ0 ∈ rlv(Φ), and x ∈ X(γ0). Then x is a smooth point if and only if Q
maps lin(γ0) ∩ E onto K.

Proof. The “only if” part is clear by Corollary 3.1.8. Conversely, if Q maps
lin(γ0) ∩ E onto K, then Propositions I. 2.2.8 and 1.1.10 say that the fibre p−1(x)
consists of a single free H-orbit. Consequently, H acts freely over an open neigh-
bourhood U ⊆ X of x. Thus x is smooth. �

Corollary 3.1.11. Let X be the variety associated to a bunched ring and
X ⊆ Z the embedding into the toric variety Z constructed in 2.5.3. Moreover, let
x ∈ X.

(i) The point x is a factorial (Q-factorial) point of X if and only if it is a
smooth (Q-factorial) point of Z.

(ii) If X̂ is smooth, then x is a smooth point of X if and only if it is a smooth
point of Z.

As an immediate consequence of general results on quotient singularities,
see [41] and [86], one obtains the following.



3. GEOMETRY VIA DEFINING DATA 115

Proposition 3.1.12. Let (R,F,Φ) be a bunched ring. Set X = X(R,F,Φ)

and X̂ = X̂(R,F,Φ). Suppose that X̂ is smooth. Then X has at most rational
singularities. In particular, X is Cohen-Macaulay.

Example 3.1.13. Consider the surface X = X(R,F,Φ) from 2.1.6. Recall that
R is graded by K = Z2 and this is given as

R = K[T1, . . . , T5] / 〈T1T2 + T 2
3 + T4T5〉,

Q =

(
1 −1 0 −1 1
1 1 1 0 2

)
,

where deg(Ti) = wi with the i-th column wi of Q. The system F consists of the
classes of T1, . . . , T5 and the F-bunch is

Φ = {τ}, τ = cone(w2, w5).

In the projected cone (E
Q
−→ K, γ), we have E = Z5 and γ = cone(e1, . . . , e5).

With γi1,...,ik := cone(ei1 , . . . , eik), the collection of relevant faces is

rlv(Φ) = {γ1,4, γ2,5, γ1,2,3, γ3,4,5, γ1,2,3,4, γ1,2,3,5, γ1,2,4,5, γ1,3,4,5, γ2,3,4,5, γ1,2,3,4,5}.

The stratum X(γ1,2,3,4,5) ⊆ X is open. The facets of γ define open sets of the prime
divisors Di

X divisors and we have four strata, each consisting of one point:

X(γ1,2,3,4) = D5
X , . . . , X(γ2,3,4,5) = D1

X ,

X(γ1,4), X(γ2,5), X(γ1,2,3), X(γ3,4,5).

In order to determine the local class groups, note that for the relevant faces γ0 � γ
we obtain

Q(γ0 ∩ E) =

{
Z · (−1, 1) + Z · (0, 3) γ0 = γ2,5,

Z2 else.

Thus, all points different from the point x0 ∈ X(γ2,5) have trivial local class group.
Moreover,

Cl(X,x0) = Z/3Z, Pic(X) = Z · (−1, 1) + Z · (0, 3) ⊆ Z2 = Cl(X).

Clearly, X is Q-factorial. Since X̂(R,F,Φ) is smooth, the singular locus is deter-
mined by the combinatorial part of the data; it is X(γ2,5) = {x0}.

3.2. Base loci and cones of divisors. We first provide general descriptions
of (stable) base loci as well as the cones of effective, movable, semiample and ample
divisor classes on a variety in terms of its Cox ring. Then we interprete the results
in the language of bunched rings.

Recall that a Weil divisor D ∈WDiv(X) on a normal prevariety X is effective
if its multiplicities are all non-negative. The effective cone is the cone Eff(X) ⊆
ClQ(X) generated by the classes of effective divisors. Note that Eff(X) is convex,
and, given D ∈ WDiv(X), we have [D] ∈ Eff(X) if and only if there is a non-zero
f ∈ Γ(X,OX(nD)) for some n > 0.

Proposition 3.2.1. Let X be a normal prevariety with Γ(X,O∗) = K∗ and
finitely generated divisor class group Cl(X). Let fi, i ∈ I, be any system of non-
zero homogeneous generators of the Cox ring R(X). Then the cone of effective
divisor classes of X is given by

Eff(X) = cone(deg(fi); i ∈ I).

Proof. Clearly each deg(fi) is the class of an effective divisor and thus the
cone on the right hand side is contained in Eff(X). Conversely, if [D] belongs to
Eff(X), then some multiple n[D] is represented by an effective nD ∈WDiv(X) and
the canonical section 1nD defines an non-zero element in Γ(X,R[nD]) which is a
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polynomial in the fi. Consequently, [D] is a non-negative linear combination of the
classes deg(fi). �

For a Weil divisor D on a normal prevariety X and a section f ∈ Γ(X,OX(D))
we introduced the D-divisor as divD(f) = div(f)+D. The base locus and the stable
base locus of D are defined as

Bs(D) :=
⋂

f∈Γ(X,OX(D))

Supp(divD(f)), Bs(D) :=
⋂

n∈Z≥1

Bs(nD).

Remark 3.2.2. The base locus and the stable base locus of a Weil divisor D
on a normal prevariety X only depend on the class [D] ∈ Cl(X). Moreover, if we
have Γ(X,O∗) = K∗ and Cl(X) is finitely generated, then we may write the base
locus in terms of the Cox ring as

Bs(D) =
⋂

f∈Γ(X,R[D])

Supp(div[D](f)).

A Weil divisor D ∈ WDiv(X) is called movable, if its stable base locus is of
codimension at least two in X . The moving cone Mov(X) ⊆ ClQ(X) is the cone
consisting of the classes of movable divisors. Note that Mov(X) is convex.

Proposition 3.2.3. Let X be a normal complete variety with finitely generated
divisor class group Cl(X) and let fi, i ∈ I, be any system of pairwise non-associated
Cl(X)-prime generators for the Cox ring R(X). Then the moving cone is given as

Mov(X) =
⋂

i∈I

cone(deg(fj); j ∈ I \ {i}).

Lemma 3.2.4. Let X be a normal complete variety with Cl(X) finitely generated
and let w ∈ Cl(X) be effective. Then the following two statements are equivalent.

(i) The stable base locus of the class w ∈ Cl(X) contains a divisor.
(ii) There exist an w0 ∈ Cl(X) with dim Γ(X,Rnw0) = 1 for any n ∈ Z≥0

and an f0 ∈ Γ(X,Rw0) such that for any m ∈ Z≥1 and f ∈ Γ(X,Rmw)
one has f = f ′f0 with some f ′ ∈ Γ(X,Rmw−w0).

Proof. The implication “(ii)⇒(i)” is obvious. So, assume that (i) holds. The
class w ∈ Cl(X) is represented by some non-negative divisor D. Let D0 be a prime
component of D which occurs in base locus of any positive multiple of D, and let
w0 ∈ Cl(X) be the class of D0. Then the canonical section of D0 defines an element
f0 ∈ Γ(X,Rw0) which by Proposition I. 5.3.9 divides any f ∈ Γ(X,Rmw), where
m ∈ Z≥1. Note that Γ(X,Rnw0) is of dimension one for every n ∈ Z≥1, because
otherwise Γ(X,Rna0w0) where a0 > 0 is the multiplicity of D0 in D, would provide
enough sections in Γ(X,Rnw) to move na0D0. �

Proof of Proposition 3.2.3. Set wi := deg(fi) and denote by I0 ⊆ I the
set of indices with dim Γ(X,Rnw0) ≤ 1 for all n ∈ N. Let w ∈ Mov(X). Then
Lemma 3.2.4 tells us that for any i ∈ I0, there must be a monomial of the form∏
j 6=i f

nj

j in some Γ(X,Rnw). Consequently, w lies in the cone of the right hand
side. Conversely, consider an element w of the cone of the right hand side. Then,
for every i ∈ I0, a product

∏
j 6=i f

nj

j belongs to some Γ(X,Rnw). Hence none of the

fi, i ∈ I0, divides all elements of Γ(X,Rnw). Again by Lemma 3.2.4, we conclude
w ∈Mov(X). �

Now suppose that we are in the situation of Construction I. 6.1.3. That means
that X is of affine intersection, Γ(X,O∗) = K∗ holds, Cl(X) is finitely generated
and the Cox sheaf R is locally of finite type. Then we have a characteristic space
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qX : X̂ → X , where X̂ = SpecXR, which is a good quotient for the action of
HX = Spec K[Cl(X)]. For x ∈ X , we already considered the submonoid

Sx = {[D] ∈ Cl(X); f(x̂) 6= 0 for some f ∈ Γ(X,R[D])} ⊆ Cl(X),

where x̂ ∈ q−1
X (x) is a point with closed HX -orbit. Let ωx ⊆ ClQ(X) denote the

convex cone generated by Sx.

Proposition 3.2.5. Situation as in Construction I. 6.1.3. Then the base locus
and the stable base locus of a Weil divisor D on X are given as

Bs(D) = {x ∈ X ; [D] 6∈ Sx}, Bs(D) = {x ∈ X ; [D] 6∈ ωx}.

Proof. The assertions immediately follow from the description of the monoid
Sx in terms of the [D]-divisors provided by Corollary I. 6.1.8:

Sx = {[D] ∈ Cl(X); x 6∈ div[D](f) for some f ∈ Γ(X,R[D])}

= {[D] ∈ Cl(X); D ≥ 0, x 6∈ Supp(D)}.

�

Recall that a Weil divisor D in a normal prevariety X is said to be semiample
if its stable base locus is empty. The cone SAmple(X) in ClQ(X) generated by the
classes of semiample divisors is convex. Moreover, D is ample if X is covered by
affine sets XnD,f for some n ∈ Z≥1. The classes of ample divisors generate a cone
Ample(X) in ClQ(X) which is again convex.

Proposition 3.2.6. Situation as in Construction I. 6.1.3. The the cones of
semiample and ample divisor classes in ClQ(X) are given as

SAmple(X) =
⋂

x∈X

ωx, Ample(X) =
⋂

x∈X

ω◦x.

Proof. The statement on the semiample cone follows directly from the de-
scription of the stable base locus given in Proposition 3.2.5.

We turn to the ample cone. Surely, Ample(X) is the intersection of all cones
ωax ⊆ ClQ(X) generated by the submonoid

Sax := {[D] ∈ Cl(X); x ∈ X[D],f for an f ∈ Γ(X,R[D]) with X[D],f affine}

⊆ Cl(X).

Thus, we have to verify ωax = ω◦x for any x ∈ X . We first show ωax ⊇ ω◦x. Let
[E] ∈ ω◦x. Then [E] admits a neighbourhood in ω◦x of the form

[E] ∈ cone([E1], . . . , [Ek]) ⊆ ω◦x.

Here, we may assume that there are gi ∈ Γ(X,R[Ei]) with x ∈ X[Ei],gi
. Take any

[D] ∈ ωax and f ∈ Γ(X,R[D]) such that X[D],f is affine. Then we have

q−1
X (x) ⊆ X̂fg1···gr ⊆ X̂f = q−1

X (X[D],f).

Since the restricted quotient map qX : X̂f → X[D],f separates the disjoint closed

HX -invariant subsets X̂f \ X̂fg1···gr , we find a function h ∈ Γ(X[D],f ,OX) with

h(x) 6= 0, h|qX( bXf\ bXfg1···gr ) = 0.

Fix n ∈ Z≥1 with f ′ := hfn ∈ Γ(X,R[nD]). For any choice a1, . . . , ak of positive
integers, we obtain a qX -saturated affine open neighbourhood of the fiber over x:

q−1
X (x) ⊆ X̂f ′g

a1
1 ···g

ar
r
⊆ X̂f = q−1

X (X[D],f ).

Thus, Xn[D]+a1[E1]+...+ak[Ek],f ′g
a1
1 ···g

ar
r

is an affine neighbourhood of x. Conse-

quently, all n[D] + a1[E1] + . . .+ ak[Ek] belong to ωax. We conclude [E] ∈ ωax.
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To show ωax ⊆ ω◦x, let [D] ∈ ωax. Replacing D with a suitable positive mul-

tiple, we may assume that X̂f is an affine neighbourhood of q−1
X (x) for some

f ∈ Γ(X,R[D]). This enables us to choose an H-equivariant affine closure X̂ ⊆ Z

with X̂f = Zf . Let HX ·x̂ be the closed orbit of the fiber q−1
X (x). Then we have

[D] ∈ ωZ,bx ⊆ ωx.

Let ω � ωZ,bx be the face with [D] ∈ ω◦. Then ω = ωZ,z holds for some z ∈ HX ·x̂,
where the closure is taken with respect to Z. Proposition 1.1.6 tells us f(z) 6= 0.

Since q−1(x) and hence HX · x̂ are closed in X̂f and f vanishes along Z \ X̂f , we
obtain z ∈ HX ·x̂ which implies ω = ωZ,bx and [D] ∈ ω◦Z,bx ⊆ ω

◦
x. �

Now we consider the variety X arising from a bunched ring (R,F,Φ). We first
take a close look at the canonical isomorphism K ∼= Cl(X) provided by Theo-
rem 2.1.4. Set

E(R) :=
⋃

w∈K

E(R)w, E(R)w :=
{ g
h

; g, h ∈ R homog., deg(g)− deg(h) = w
}
.

Then the vector space E(R)w contains precisely the homogeneous rational functions
of weight w onX ; use R∗ = K∗ to see this. In the actual context, Proposition I. 6.4.5
tells us the following.

Proposition 3.2.7. Let (R,F,Φ) be a bunched ring. Set X̂ := X̂(R,F,Φ) and
X := X(R,F,Φ). Then there is an epimorphism of abelian groups

δ : E(R) → WDiv(X), f 7→ p∗(div(f)).

We have div(f) = p∗(p∗(div(f))) for every f ∈ E(R). The epimorphism δ induces
a well-defined isomorphism

K → Cl(X), w 7→ [δ(f)], with any f ∈ E(R)w.

Fix f ∈ E(R)w and set D := δ(f). Then, for every open set U ⊆ X, we have an
isomorphism of Γ(U,O)-modules

Γ(U,OX(D)) → Γ(p−1(U),O bX)w, g 7→ fp∗(g).

Moreover, for any section g = h/f ∈ Γ(X,OX(D)), the corresponding D-divisor
satisfies

divD(g) = p∗(div(h)), p∗(divD(g)) = div(h).

If in this situation the open subset XD,g ⊆ X is affine, then its inverse image is

given as p−1(XD,g) = Xh.

Proposition 3.2.8. Situation as in Construction 2.1.3. Then, for every w ∈
K ∼= Cl(X), the base locus and the stable base locus are given as

Bs(w) =
⋃

γ0∈rlv(Φ)

w 6∈Q(γ0∩E)

X(γ0), Bs(w) =
⋃

γ0∈rlv(Φ)

w 6∈Q(γ0)

X(γ0).

Proof. Proposition 3.1.4 tells us that, for every γ0 ∈ rlv(Φ) and x ∈ X(γ0),
the monoid Sx ⊆ Cl(X) corresponds to Q(γ0 ∩ E). Thus, Proposition 3.2.5 gives
the desired statements. �

Proposition 3.2.9. Situation as in Construction 2.1.3. The cones of effective,
movable, semiample and ample divisor classes of X in ClQ(X) = KQ are given as

Eff(X) = Q(γ), Mov(X) =
⋂

γ0 facet of γ

Q(γ0),

SAmple(X) =
⋂

τ∈Φ

τ, Ample(X) =
⋂

τ∈Φ

τ◦.
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Moreover, if X ⊆ Z is the canonical toric embedding constructed in 2.5.3, then
the cones of effective, movable, semiample and ample divisor classes in ClQ(X) =
KQ = ClQ(Z) coincide for X and Z.

Proof. The descriptions of the effective and the moving cone are clear by
Propositions 3.2.1 and 3.2.3. For the semiample and the ample cone, note as before
that Sx ⊆ Cl(X) corresponds to Q(γ0 ∩E) ⊆ K and apply Proposition 3.2.6. �

Example 3.2.10. We continue the study of the surface X = X(R,F,Φ)
from 2.1.6. The ring R and its grading by K = Z2 are given as

R = K[T1, . . . , T5] / 〈T1T2 + T 2
3 + T4T5〉,

Q =

(
1 −1 0 −1 1
1 1 1 0 2

)
,

where deg(Ti) = wi with the i-th column wi of Q. The system F consists of the
classes of T1, . . . , T5 and the F-bunch is

Φ = {τ}, τ = cone(w2, w5).

The cones of effective, movable and semiample divisor classes in ClQ(X) = Q2 are
given by

Eff(X) = cone(w1, w4), Mov(X) = SAmple(X) = cone(w2w5).

In the projected cone (E
Q
−→ K, γ), we have E = Z5 and γ = cone(e1, . . . , e5).

With γi1,...,ik := cone(ei1 , . . . , eik), the collection of relevant faces is

rlv(Φ) = {γ1,4, γ2,5, γ1,2,3, γ3,4,5, γ1,2,3,4, γ1,2,3,5, γ1,2,4,5, γ1,3,4,5, γ2,3,4,5, γ1,2,3,4,5}.

Recall that X(γ2,5) consists of the singular point of X . For the (stable) base loci of
w := (0, 1), we obtain

Bs(w) = Bs(2w) = X(γ2,5), Bs(3w) = Bs(w) = ∅.

3.3. Complete intersections. We consider a bunched ring (R,F,Φ), whereR
is a homogeneous complete intersection in the sense defined below. In this situation,
there is a simple description of the canonical divisor and intersection numbers can
easily be computed.

Definition 3.3.1. Let (R,F,Φ) be a bunched ring with grading group K and
F = (f1, . . . , fr). We say that (R,F,Φ) is a complete intersection, if the kernel I(F)
of the epimorphism

K[T1, . . . , Tr] → R, Ti 7→ fi.

is generated by K-homogeneous polynomials g1, . . . , gd ∈ K[T1, . . . , Tr], where d =
r − dim R. In this situation, we call (w1, . . . , wr), where wi := deg(fi) ∈ K and
(u1, . . . , ud), where ui := deg(gi) ∈ K, degree vectors for (R,F,Φ).

Proposition 3.3.2. Let the bunched ring (R,F,Φ) be a complete intersection
with degree vectors (w1, . . . , wr) and (u1, . . . , ud). Then the canonical divisor class
of X = X(R,F,Φ) is given in Cl(X) = K by

wcan
X =

d∑

j=1

uj −
r∑

i=1

wi.
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Proof. Consider the embedding X → Z into a toric variety Z of X as con-
structed in 2.5.3. Then Proposition 3.1.11 tells us that the respective embeddings
of the smooth loci fit into a commutative diagram

Xreg //

��

Zreg

��
X // Z

Note that all maps induce isomorphisms on the respective divisor class groups.
Moreover, the restrictions of the canonical divisors KX and KZ of X and Z give
the canonical divisors of Xreg and Zreg, respectively, see for example [108, p. 164].
Thus, we may assume that X and its ambient toric variety Z are smooth.

Let I ⊂ OZ be the ideal sheaf of X . Then the normal sheaf of X in Z is
the rank d locally free sheaf NX := (I/I2)∗, and a canonical bundle on X can be
obtained as follows, see for example [78, Prop. II.8.20]:

KX = KZ |X ⊗
(∧d

NX
)
.

Choose a cover of Z by open subsets Ui such that I/I2 is free over Ui. Then the

gl generate the relations of the fj over Ûi := p−1
Z (Ui). Thus, after suitably refining

the cover, we find functions hil ∈ O∗(Ûi) of degree deg(gl) such that I/I2(Ui) is
generated by g1/hi1, . . . , gd/hid. Therefore over Ui, the d-th exterior power of I/I2

is generated by the function
g1
hi1
∧ · · · ∧

gd
hid

.

Proposition 3.2.7 tells us that the class of
∧d I/I2 in K is minus the sum of

the degrees of the gj . As
∧dNX is the dual sheaf, its class is deg(g1)+ . . .+deg(gl).

Furthermore, from II. 4.2.8 we know that the class of the canonical divisor of Z in
K is given by −(w1 + . . .+wr). Putting all together we arrive at the assertion. �

A variety is called (Q-)Gorenstein if (some multiple of) its anticanonical divisor
is Cartier. Moreover, it is called (Q-)Fano if (some multiple of) its anticanonical
class is an ample Cartier divisor.

Corollary 3.3.3. Let the bunched ring (R,F,Φ) be a complete intersection
with degree vectors (w1, . . . , wr) and (u1, . . . , ud) and let X = X(R,F,Φ) be the
associated variety.

(i) X is Q-Gorenstein if and only if

r∑

i=1

wi −
d∑

j=1

uj ∈
⋂

τ∈Φ

lin(τ),

(ii) X is Gorenstein if and only if

r∑

i=1

wi −
d∑

j=1

uj ∈
⋂

γ0∈cov(Φ)

Q(lin(γ0) ∩E).

(iii) X is Q-Fano if and only if we have

r∑

i=1

wi −
d∑

j=1

uj ∈
⋂

τ∈Φ

τ◦,
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(iv) X is Fano if and only if we have

r∑

i=1

wi −
d∑

j=1

uj ∈
⋂

τ∈Φ

τ◦ ∩
⋂

γ0∈cov(Φ)

Q(lin(γ0) ∩ E).

Construction 3.3.4 (Computing intersection numbers). Let the bunched
ring (R,F,Φ) be a complete intersection with degree vectors (w1, . . . , wr) and
(u1, . . . , ud) and suppose that Φ = Φ(λ) holds with a full-dimensional GIT-cone
λ ∈ Λ(X,H). Fix a full-dimensional η ∈ Λ(Z,H) with η◦ ⊆ λ◦. For wi1 , . . . , win+d

let wj1 , . . . , wjr−n−d
denote the complementary weights and set

τ(wi1 , . . . , win+d
) := cone(wj1 , . . . , wjr−n−d

),

µ(wi1 , . . . , win+d
) = [K : 〈wj1 , . . . , wjr−n−d

〉].

Then the intersection product Kn+d
Q → Q of the (Q-factorial) toric variety Z1

associated to Φ(η) is determined by the values

wi1 · · ·win+d
=

{
µ(wi1 , . . . , win+d

)−1, η ⊆ τ(wi1 , . . . , win+d
),

0, η 6⊆ τ(wi1 , . . . , win+d
).

As a complete intersection, X ⊆ Z1 inherits intersection theory. For a tuple
Di1
X , . . . , D

in
X on X , its intersection number can be computed by

Di1
X · · ·D

in
X = wi1 · · ·win · u1 · · ·ud.

Note that the intersection number Di1
X · · ·D

in
X vanishes if cone(ei1 , . . . , ein) does not

belong to rlv(Φ).

Example 3.3.5. We continue the study of the surface X = X(R,F,Φ)
from 2.1.6. The ring R and its grading by K = Z2 are given as

R = K[T1, . . . , T5] / 〈T1T2 + T 2
3 + T4T5〉,

Q =

(
1 −1 0 −1 1
1 1 1 0 2

)
,

where deg(Ti) = wi with the i-th column wi of Q. The system F consists of the
classes of T1, . . . , T5 and the F-bunch is

Φ = {τ}, τ = cone(w2, w5).

The degree of the defining relation is deg(T1T2 + T 2
3 + T4T5) = 2w3 and thus the

canonical class of X is given as

wcX = 2w3 − (w1 + w2 + w3 + w4 + w5) = −3w3.

In particular, we see that the anticanonical class is ample and thus X is a singular
del Pezzo surface. The self intersection number of the canonical class is

(−3w3)
2 =

9(w1 + w2)(w4 + w5)

4
=

9

4
(w1 · w4 + w2 · w4 + w1 · w5 + w2 · w5)

The wi · wj equal the toric intersection numbers 2wi · wj · w3. In order to compute
these numbers, let w1

ij , w
2
ij denote the weights in {w1, . . . , w5} \ {wi, wj , w3}. Then

we have

wi · wj · w3 =

{
µ(wi, wj , w3)

−1 τ ⊆ cone(w1
ij , w

2
ij),

0 τ 6⊆ cone(w1
ij , w

2
ij),

where the multiplicity µ(wi, wj , w3)
−1 is the absolute value of det(w1

ij , w
2
ij). Thus,

we can proceed in the computation:

(−3w3)
2 =

9 · 2

4

(
| det(w2, w5)|

−1 + | det(w1, w4)|
−1
)

=
9

2
·
4

3
= 6.
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Finally, we apply the techniques for complete intersections to complete d-
dimensional varieties X with divisor class group Cl(X) ∼= Z. The Cox ring R(X)
is finitely generated and the total coordinate space X := SpecR(X) is a factorial
affine variety coming with an action of K∗ defined by the Cl(X)-grading of R(X).
Choose a system f1, . . . , fν of homogeneous pairwise nonassociated prime generators
for R(X). This provides an K∗-equivariant embedding

X → Kν, x 7→ (f1(x), . . . , fν(x)).

where K∗ acts diagonally with the weights wi = deg(fi) ∈ Cl(X) ∼= Z on Kν .

Moreover, X is the geometric K∗-quotient of X̂ := X \ {0}, and the quotient map

p : X̂ → X is a characteristic space.

Proposition 3.3.6. For any x = (x1, . . . , xν) ∈ X̂ the local divisor class group
Cl(X,x) of x := p(x) is finite of order gcd(wi; xi 6= 0). The index of the Picard
group Pic(X) in Cl(X) is given by

[Cl(X) : Pic(X)] = lcmx∈X(|Cl(X,x)|).

Suppose that the ideal of X ⊆ Kν is generated by Cl(X)-homogeneous polynomials
g1, . . . , gν−d−1 of degree γj := deg(gj). Then one obtains

−KX =

ν∑

i=1

wi −
ν−d−1∑

j=1

γj , (−KX)d =




ν∑

i=1

wi −
ν−d−1∑

j=1

γj



d

γ1 · · · γν−d−1

w1 · · ·wν

for the anticanonical class −KX ∈ Cl(X) ∼= Z. In particular, X is a Q-Fano variety
if and only if the following inequality holds

ν−d−1∑

j=1

γj <

ν∑

i=1

wi.

3.4. Mori dream spaces. We take a closer look to Q-factorial projective
varieties with a finitely generated Cox ring; Hu and Keel [87] called them Mori
dream spaces . The Mori dream spaces sharing a given Cox ring fit into a nice
picture provided by the GIT-fan; by the moving cone of the K-graded algebra R
we mean here the intersection Mov(R) over all cone(w1, . . . , ŵi, . . . , wr), where the
wi are the degrees of any system of pairwise nonassociated homogeneous K-prime
generators for R.

Remark 3.4.1. Let R = ⊕KRw be an almost freely factorially graded affine
algebra with R0 = K and consider the GIT-fan Λ(X,H) of the action of H =
Spec K[K] on X = SpecR.

Then every GIT-cone λ ∈ Λ(X,H) defines a projective variety X(λ) := X
ss

(λ)//H .
If λ◦ ⊆ Mov(R)◦ holds, then X(λ) is the variety associated to the bunched ring
(R,F,Φ(λ)) with Φ(λ) defined as in 1.3.6. In particular, in this case we have

Cl(X(λ)) = K, R(X(λ)) = R,

Mov(X(λ)) = Mov(R), SAmple(X(λ)) = λ.

All projective varieties with Cox ring R are isomorphic to some X(λ) with λ◦ ⊆
Mov(R)◦ and the Mori dream spaces among them are precisely those arising from
a full dimensional λ.
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Let X be the variety arising from a bunched ring (R,F,Φ). Every Weil divisor
D on X defines a positively graded sheaf

S+ :=
⊕

n∈Z≥0

S+
n , S+

n := OX(nD).

Using Propositions I. 1.2.2, I. 6.1.1 and I. 6.1.4, we see that this sheaf is locally of
finite type, and thus we obtain a rational map

ϕ(D) : X → X(D), X(D) := Proj(Γ(X,S+)).

Note that X(D) is explicitly given as the closure of the image of the rational map
X → Pm determined by the linear system of a sufficiently big multiple nD.

Remark 3.4.2. Consider the GIT-fan Λ(X,H) of the action of H = Spec K[K]
on X = SpecR. Let λ ∈ Λ(X,H) be the cone with [D] ∈ λ◦ and W ⊆ X the open
subset obtained by removing the zero sets of the generators f1, . . . , fr ∈ R. Then
we obtain a commutative diagram

X̂ ⊇

//H

��

W ⊆

��

X
ss

(λ)

//H

��
X ⊇

ϕ(D) ..

E
J

O
S

V Z

W/H // X(λ)

X(D)

We list basic properties of the maps ϕ(D); by a small birational map we mean
a rational map defining an isomorphism of open subsets with complement of codi-
mension two.

Remark 3.4.3. Let D ∈ WDiv(X) be any Weil divisor, and denote by [D] ∈
Cl(X) its class. Then the assocciated rational map ϕ(D) : X → X(D) is

(i) birational if and only if [D] ∈ Eff(X)◦ holds.
(ii) small birational if and only if [D] ∈ Mov(X)◦ holds.
(iii) a morphism if and only if [D] ∈ SAmple(X) holds.
(iv) an isomorphism if and only if [D] ∈ Ample(X) holds.

Recall that two Weil divisors D,D′ ∈WDiv(X) are said to be Mori equivalent ,
if there is a commutative diagram of rational maps

X
ϕ(D)

||yy
yy

yy
yy ϕ(D′)

""F
FFFFFFF

X(D) oo ∼=
// X(D′)

where the horizontal arrow stands for an isomorphism of varieties. The Mori equiv-
alence is described by the GIT-fan of the characteristic quasitorus action on the
total coordinate space.

Proposition 3.4.4. Let X = X(R,F,Φ) be the variety arising from a bunched
ring and let Λ(X,H) be the GIT-fan of the action of H = Spec K[K] on X = SpecR.
Then for any two D,D′ ∈WDiv(X), the following statements are equivalent.

(i) The divisors D and D′ are Mori equivalent.
(ii) One has [D], [D′] ∈ λ◦ for some GIT-chamber λ ∈ Λ(X,H).

Proof. The assertion follows immediately from the observation that X(D) is
the GIT-quotient associated to the chamber λ ∈ Λ(X,H) with [D] ∈ λ◦. �
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We are ready to prove the characterization of Mori dream spaces given by Hu
and Keel; their statement extends to arbitrary normal complete varieties and says
the following.

Theorem 3.4.5. Let X be a normal complete variety with finitely generated
divisor class group. Then the following statements are equivalent.

(i) The Cox ring R(X) is finitely generated.
(ii) There are small birational maps πi : X → Xi, where i = 1, . . . , r, such

that each semiample cone SAmple(Xi) ⊆ ClQ(X) is polyhedral and

Mov(X) = π∗1(SAmple(X1)) ∪ . . . ∪ π∗r (SAmple(Xr)).

Moreover, if one of these two statements holds, then Xi from (ii) can be taken
Q-factorial and projective.

Lemma 3.4.6. Let X be a normal complete variety with Cl(X) finitely generated.
Then Mov(X) is of full dimension in the rational divisor class group ClQ(X).

Proof. Using Chow’s Lemma and resolution of singularities, we obtain a
birational morphism π : X ′ → X with a smooth projective variety X ′. Let
D1, . . . , Dr ∈ WDiv(X) be prime divisors generating Cl(X), and consider their
proper transforms D′1, . . . , D

′
r ∈WDiv(X ′). Moreover, let E′ ∈WDiv(X ′) be very

ample such that all E′ + D′i are also very ample, and denote by E ∈ WDiv(X)
its push-forward. Then the classes E and E +Di generate a fulldimensional cone
τ ⊆ ClQ(X) and, since E′ and the E′ +D′i are movable, we have τ ⊆Mov(X). �

Lemma 3.4.7. Let X be a normal complete variety with finitely generated divisor
class group Cl(X). If Mov(X) is polyhedral then also Eff(X) is polyhedral.

Proof. In the situation of Proposition 3.2.3, set wi := deg(fi). Since Mov(X)
is polyhedral, it has only finitely many facets and these are cut out by hyperplanes
H1, . . . , Hm. Let H+

k denote the closed half space bounded by Hk which comprises

Mov(X). We claim that for every k, there is at most one wi with wi 6∈ H+
k .

Otherwise, we have two wi, wj 6∈ H+
k . Let σk = Mov(X) ∩ Hk be the facet of

Mov(X) cut out by Hk. Then the cones

τi := Q≥0 · wi + σk, τj := Q≥0 · wj + σk,

are of full dimension and their relative interiors intersect nontrivially. Consider any
w ∈ τ◦i ∩τ

◦
j . Then, by the description of Mov(X) given in Proposition 3.2.3, we have

w ∈ Mov(X). On the other hand, we have w 6∈ H+
k , a contradiction. This proves

our claim, i.e., each H+
k has at most the generator wi in its complement. Thus,

besides the generators of Mov(X), only finitely many wi are needed to generate
Eff(X). �

Proof of Theorem 3.4.5. Set K := Cl(X) and R := R(X). Let F =
(f1, . . . , fr) be a system of pairwise nonassociated homogeneous prime generators
of R and set wi := deg(fi). By Proposition I. 6.1.6 and Construction I. 6.3.1, the
group H := Spec K[K] acts freely on an open subset W ⊆ X of X = SpecR such
that X \W is of codimension at least two in X. Proposition 2.2.2 then tells us that
the corresponding K-grading of R is almost free. Moreover, by Lemma 3.4.6, the
moving cone of X is of full dimension, and by Proposition 3.2.3, it is given as

Mov(X) =

r⋂

i=1

cone(wj ; j 6= i).

Thus, we are in the setting of Remark 3.4.1. That means that Mov(X) is a union
of fulldimensional GIT-chambers λ1, . . . , λr, the relative interiors of which are con-
tained in the relative interior of Mov(X) and the associated projective varieties



3. GEOMETRY VIA DEFINING DATA 125

Xi := X̂i//H , where X̂i := X
ss

(λi), are Q-factorial, have R(X) as their Cox ring
and λi as their semiample cone.

Moreover, if q : X̂ → X and qi : X̂i → Xi denote the associated characteristic
spaces, then the desired small birational maps πi : X → Xi are obtained as follows.
Let X ′ ⊆ X and X ′i ⊆ Xi be the respective sets of smooth points. Then, by

Proposition I. 6.1.6, the sets q−1(X ′) and q−1
i (X ′i) have a small complement in X

and thus we obtain open embeddings with a small complement

X (q−1(X ′) ∩ q−1
i (X ′i))//H

oo // Xi.

Now suppose that (ii) holds. Then Mov(X) is polyhedral and hence, by
Lemma 3.4.7, also Eff(X) is polyhedral. Let w1, . . . , wd ∈ Eff(X) be those primi-
tive generators of extremal rays of Eff(X) that satisfy dim Γ(X,Rnwi) ≤ 1 for any
n ∈ Z≥0 and fix 0 6= fi ∈ R(X)niwi with ni minimal. Then we have

⊕

n∈Z≥0

R(X)nwi = K[fi].

Set λi := π∗i (SAmple(Xi)). Then, by Gordon’s Lemma and [87, Lemma 1.8], we
have another finitely generated subalgebra of the Cox ring, namely

S(X) :=
⊕

w∈Mov(X)

R(X)w =

r∑

i=1

(
⊕

w∈λi

R(X)w

)
.

We show that R(X) is generated by S(X) and the fi ∈ R(X)niwi . Consider any
0 6= f ∈ R(X)w with w 6∈ Mov(X). Then, by Lemma 3.2.4, we have f = f (1)fi for
some 1 ≤ i ≤ d and some f (1) ∈ R(X) homogeneous of degree w(1) := w − niwi.
If w(1) 6∈ Mov(X) holds, then we repeat this procedure with f (1) and obtain f =
f (2)fifj with f (2) homogeneous of degree w(2). At some point, we must end with

w(n) = deg(f (n)) ∈ Mov(X), because otherwise the sequence of the w(n)’s would
leave the effective cone. �

Theorem 3.4.8. Let X be a normal complete surface with finitely generated
divisor class group Cl(X). Then the following statements are equivalent.

(i) The Cox ring R(X) is finitely generated.
(ii) One has Mov(X) = SAmple(X) and this cone is polyhedral.

Moreover, if one of these two statements holds, then the surface X is Q-factorial
and projective.

Proof. For“(i)⇒(ii)”, we only have to show that the moving cone coincides
with the semiample cone. Clearly, we have SAmple(X) ⊆ Mov(X). Suppose that
SAmple(X) 6= Mov(X) holds. Then Mov(X) is properly subdivided into GIT-
chambers, see Remark 3.4.1. In particular, we find two chambers λ′ and λ both
intersecting the relative interior of Mov(X) such that λ′ is a proper face of λ. The
associated GIT-quotients Y ′ and Y of the total coordinate space X have λ′ and λ
as their respective semiample cones. Moreover, the inclusion λ′ ⊆ λ gives rise to
a proper morphism Y → Y ′, which is an isomorphism in codimension one. As Y
and Y ′ are normal surfaces, we obtain Y ∼= Y ′, which contradicts the fact that the
semiample cones of Y and Y ′ are of different dimension.

The verification of “(ii)⇒(i)” runs as in the preceding proof; this time one uses
the finitely generated subalgebra

S(X) :=
⊕

w∈Mov(X)

R(X)w =
⊕

w∈SAmple(X)

R(X)w.
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Moreover, by Theorem 3.4.5, there is a small birational map X → X ′ with X ′

projective and Q-factorial. As X and X ′ are complete surfaces, this map already
defines an isomorphism. �

In the case of a Q-factorial surface X , we obtain the following simpler char-
acterization involving the cone Nef(X) ⊆ ClQ(X) of numerically effective divisor
classes; note that the implication “(ii)⇒(i)” was obtained for smooth surfaces in [74,
Cor. 1].

Corollary 3.4.9. Let X be a Q-factorial projective surface with finitely gen-
erated divisor class group Cl(X). Then the following statements are equivalent.

(i) The Cox ring R(X) is finitely generated.
(ii) The effective cone Eff(X) ⊆ ClQ(X) is polyhedral and Nef(X) =

SAmple(X) holds.

Proof. If (i) holds, then we infer from [29, Cor. 7.4] that the semiample cone
and the nef cone of X coincide. Now suppose that (ii) holds. From

SAmple(X) ⊆ Mov(X) ⊆ Nef(X)

we then conclude Mov(X) = Nef(X). Moreover, since Eff(X) is polyhedral, Nef(X)
is given by a finite number of inequalities and hence is also polyhedral. Thus, we
can apply Theorem 3.4.8. �
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[8] K. Altmann, J. Hausen, H. Süß: Gluing affine torus actions via divisorial fans. Transformation
Groups 13 (2008), no. 2, 215–242.

[9] D.F. Anderson: Graded Krull domains. Comm. Algebra 7 (1979), no. 1, 79–106.
[10] E. Arbarello, M. Cornalba, P.A. Griffiths, J. Harris: Geometry of algebraic curves.
Grundlehren der Mathematischen Wissenschaften 267, Springer-Verlag, New York, 1985

[11] M. Artebani, J. Hausen, A. Laface: On Cox rings of K3-surfaces. To appear in Compositio
Math., arXiv:0901.0369.

[12] M. Artebani, A. Laface: Cox rings of surfaces and the anticanonical Iitaka dimension.
Preprint, arXiv:0909.1835.

[13] M. Artin: Some numerical criteria for contractability of curves on algebraic surfaces. Amer.
J. Math. 84 (1962), 485–496.

[14] I.V. Arzhantsev Projective embeddings of homogeneous spaces with small boundary. Izvestiya
RAN: Ser. Mat. 73 (2009), no. 3, 3–22 (Russian); English transl.: Izvestya Mathematics 73 (2009),
no. 3, 437–453.

[15] I.V. Arzhantsev: On the factoriality of Cox rings. Mat. Zametki 85 (2009), no. 5, 643–651
(Russian); English transl.: Math. Notes 85 (2009), no. 5, 623–629.

[16] I.V. Arzhantsev, S.A. Gaifullin: Cox rings, semigroups and automorphisms of affine algebraic
varieties. Mat. Sbornik 201 (2010), no. 1, 3–24 (Russian); English transl.: Sbornik Math. 201
(2010), no. 1, 1–21.

[17] I.V. Arzhantsev, J. Hausen: On embeddings of homogeneous spaces with small boundary.
J. Algebra 304 (2006), no. 2, 950–988.

[18] I.V. Arzhantsev, J. Hausen: On the multiplication map of a multigraded algebra. Math. Res.
Lett. 14 (2007), no. 1, 129–136.

[19] I.V. Arzhantsev, J. Hausen: Geometric Invariant Theory via Cox rings. J. Pure Appl. Algebra
213 (2009), no. 1, 154–172.

[20] M.F. Atiyah, I.G. Macdonald: Introduction to commutative algebra. Addison-Wesley Pub-
lishing Co., Reading, Mass.-London-Don Mills, Ont. 1969

[21] M. Audin: The topology of torus actions on symplectic manifolds. Prog. Math., 93. Birkhäuser
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[33] A. Bia lynicki-Birula, J. Świȩcicka: Complete quotients by algebraic torus actions. In: Group
actions and vector fields (Vancouver, B.C., 1981), 10–22, Lecture Notes in Math. 956, Springer,
Berlin, 1982
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