Преподаватель: Д.А.Тимашёв
Занятия проходят по средам на каждой нечётной неделе на 3-й паре (13:15-14:50) в ауд. 464 и по пятницам на 3-й паре (13:15-14:50) в ауд. 454.
Нумерация задач даётся по «Сборнику задач по алгебре» под ред. А.И.Кострикина, 3-е изд., Москва, Физматлит, 2001. Дополнительные задачи помечены знаком ★.
Системы линейных уравнений (СЛУ). Метод Крамера решения квадратных СЛУ малых размеров (2×2 и 3×3). Определители 2-го и 3-го порядка.
Решение СЛУ методом Гаусса. Связь решений совместной СЛУ и ассоциированной однородной системы линейных уравнений (ОСЛУ). Критерии определённости совместной СЛУ и квадратной СЛУ: ассоциированная ОСЛУ должна быть определена. Задача интерполяции, теорема о полиномиальной интерполяции.
Линейная зависимость, базис системы векторов (три эквивалентных определения). Когда система векторов обладает единственным базисом? Алгоритм нахождения базиса конечной системы векторов в R^n.
Ранг матрицы, его свойства: неизменность при элементарных преобразованиях и транспонировании. Вычисление ранга матрицы. Ранг суммы матриц.
Фундаментальная система решений ОСЛУ. Арифметические операции над матрицами (сложение матриц, умножение матриц на числа, умножение матриц), их свойства, некоммутативность умножения матриц, нулевая и единичная матрицы.
Делители нуля и нильпотентные матрицы, нильпотентность нильтреугольных матриц. Умножение на диагональные матрицы и матричные единицы. Квадратные матрицы, коммутирующие со всеми матрицами того же размера, скалярны.
Обратная матрица, её нахождение. Если матрица A нильпотентна, то матрицы E+A и E-A обратимы. Решение матричных уравнений вида AX=B. Элементарные матрицы, умножение на них слева и справа.
Умножение подстановок. Разложение подстановки на независимые циклы, применение к возведению подстановок в степень. Решение уравнений в подстановках. Чётность и знак перестановок и подстановок.
Можно ли, вращая слои куба Рубика на шарнирах, добиться того, чтобы угловые кубики одной из граней переставились по кругу, а остальные кубики остались на своих местах (возможно, повернувшись)?
Определители квадратных матриц, их вычисление по развёрнутой формуле. Поведение определителя при различных преобразованиях матрицы. Вычисление определителя порядка 4 приведением к треугольному виду.
Вычисление определителей приведением к треугольному виду. Определитель Вандермонда. Определитель произведения матриц.
Разложение определителя по строке и по столбцу. Трёхдиагональные определители и линейные однородные рекуррентные уравнения 2-го порядка (случай различных корней характеристического уравнения).
Трёхдиагональные определители и линейные однородные рекуррентные уравнения 2-го порядка (случай кратного корня характеристического уравнения). Ранг произведения матриц, случай невырожденности одного из сомножителей. Ранг присоединённой матрицы. Формула для обратной матрицы.
Кольца и поля вычетов. Решение СЛУ и квадратных уравнений над полями вычетов. Использование колец вычетов для решения диофантовых уравнений (примеры: 23x-17y=5, 3x²+2=y², 7x²+2=y³). Малая теорема Ферма. Обратимые элементы кольца вычетов, функция Эйлера, теорема Эйлера. Задача: последовательность k_1=2, k_{n+1}=2^{k_n} стабилизируется по модулю 7.
Поле комплексных чисел. Вычисления над комплексными числами в алгебраической форме. Геометрическая интерпретация комплексных чисел, решение алгебраических задач геометрическими методами (пример: уравнение |(z+1-i)/(z-1+i)|=1) и геометрических задач методами алгебры комплексных чисел (пример: доказательство теоремы о том, что сумма квадратов диагоналей параллелограмма равна сумме квадратов его сторон).
Тригонометрическая форма записи комплексных чисел, формула Муавра, вычисления над комплексными числами в тригонометрической форме. Выражение тригонометрических функций кратных углов через функции исходного угла и степеней тригонометрических функций через функции кратных углов в первой степени с помощью комплексных чисел.
Свойства операции сопряжения. Автоморфизмы полей и их расширений, группы Галуа.
Извлечение корней из комплексных чисел. Группа U_n комплексных корней степени n из 1, сумма и произведение всех корней степени n из 1. Вычисление сумм с помощью комплексных чисел.
Многочлены от одной переменной над полем K: деление с остатком на линейный двучлен, теорема Безу, схема Горнера. Разложение многочлена по степеням линейного двучлена, значения высших производных и кратность корня многочлена. Наибольший общий делитель (НОД) многочленов и алгоритм Евклида. Линейное выражение НОД через исходные многочлены: (f,g)=uf+vg, его единственность при ограничениях на степени u и v, и его нахождение методом неопределённых коэффициентов.
Избавление от кратных множителей в разложении многочлена на неприводимые множители. Разложение многочленов на неприводимые множители над полями C и R. Неприводимых многочленов над любым полем бесконечно много. Существование неприводимых многочленов сколь угодно большой степени над конечным полем. «Решето Эратосфена» для нахождения всех неприводимых многочленов степени ≤n над конечным полем. Нахождение всех неприводимых многочленов степени ≤4 над полем Z_2.
Рациональные корни многочлена с целыми или рациональными коэффициентами. Разложимость многочлена с целыми коэффициентами на множители меньшей степени в Q[x] влечёт разложимость на множители меньшей степени в Z[x]. Редукция многочленов с целыми коэффициентами по простому модулю, её свойства. Редукционный признак неприводимости. Разложение многочленов на неприводимые множители над Q с помощью редукций.
Рациональные дроби: представление в виде суммы многочлена и правильной дроби, разложение правильной дроби в сумму простейших дробей методом неопределённых коэффициентов, случай поля C.
Разложение рациональной дроби на простейшие над полем R. Симметрические многочлены, примеры: степенные суммы s_k и элементарные симметрические многочлены σ_k. Теорема Виета. Основная теорема о симметрических многочленах, метод неопределённых коэффициентов для нахождения выражения произвольного симметрического многочлена через элементарные. Выражение степенных сумм s_1, s_2, s_3 через элементарные симметрические многочлены. Решение симметрических систем алгебраических уравнений.