Преподаватель: Д.А.Тимашёв
Занятия проходят по четвергам на 2-й паре (10:45-12:20) в ауд. 14-05 и по субботам на каждой чётной неделе на 1-й паре (9:00-10:35) в ауд. 13-27.
Нумерация задач даётся по «Сборнику задач по алгебре» под ред. А.И.Кострикина, новое изд., Москва, МЦНМО, 2009. Дополнительные задачи помечены знаком ★.
Системы линейных уравнений (СЛУ), их матрицы. Метод Крамера решения квадратных СЛУ малых размеров (2×2 и 3×3). Определители 2-го и 3-го порядка.
Элементарные преобразования СЛУ и их матриц. Метод Гаусса решения СЛУ.
Связь решений совместной СЛУ и ассоциированной однородной системы линейных уравнений (ОСЛУ). Критерии определённости совместной СЛУ и квадратной СЛУ: ассоциированная ОСЛУ должна быть определена. Задача интерполяции, теорема о полиномиальной интерполяции. Арифметическое векторное пространство R^n. Линейная зависимость системы векторов.
Базис системы векторов (три эквивалентных определения), координаты вектора в базисе. Стандартный базис в R^n. Алгоритм нахождения базиса конечной системы векторов в R^n.
Подпространства в векторном пространстве, пример: пространство решений ОСЛУ. Фундаментальная система решений ОСЛУ, её нахождение.
Ранг матрицы, его свойства. Вычисление ранга матрицы.
Алгебраические операции над матрицами, их свойства, нулевая и единичная матрицы. Некоммутативность умножения матриц, делители нуля и нильпотентные матрицы, нильпотентность нильтреугольных матриц. Умножение на диагональные матрицы и на матричные единицы.
Обратная матрица. Если матрица A нильпотентна, то матрицы E+A и E-A обратимы. Решение матричных уравнений вида AX=B. Нахождение обратной матрицы.
Элементарные матрицы, умножение на них слева и справа. Задача: как изменится A^{-1}, если записать строки матрицы A в обратном порядке?
Перестановки и подстановки, их количество. Умножение подстановок. Циклические подстановки, разложение произвольной подстановки на независимые циклы, применение к возведению подстановок в степень.
Чётность и знак перестановок и подстановок. Знак циклической подстановки. Задача про «пятнашки»: можно ли, последовательно передвигая фишки на соседнее свободное место, поменять местами фишки 14 и 15, оставив остальные фишки на месте?
Определители квадратных матриц, их вычисление по развёрнутой формуле.
Свойства определителя, его изменение при различных преобразованиях матрицы. Вычисление определителей приведением к треугольному виду. Определитель матрицы с углом нулей. Определитель Вандермонда.
Разложение определителя по строке и столбцу. Трёхдиагональные определители и линейные однородные рекуррентные уравнения 2-го порядка.
Комплексные числа: алгебраическая форма записи. Вычисления над комплексными числами в алгебраической форме. Геометрическая интерпретация комплексных чисел, решение алгебраических задач геометрическими методами (пример: уравнение |(z-1+i)/(z+1-i)| = 1) и геометрических задач методами алгебры комплексных чисел (пример: доказательство теоремы о том, что сумма квадратов диагоналей параллелограмма равна сумме квадратов его сторон).
Тригонометрическая форма записи комплексных чисел, вычисления над комплексными числами в тригонометрической форме. Выражение тригонометрических функций кратных углов через функции исходного угла.
Извлечение корней из комплексных чисел. Корни из 1, сумма и произведение всех корней степени n из 1. Вычисление сумм с помощью комплексных чисел.
Многочлены от одной переменной над полем: деление с остатком, теорема Безу, схема Горнера. Разложение многочлена по степеням линейного двучлена, значения высших производных и кратность корня многочлена, формула Тейлора.
Рациональные корни многочлена с целыми или рациональными коэффициентами. Неприводимые многочлены, разложение многочлена на неприводимые множители. Наибольший общий делитель (НОД) многочленов и алгоритм Евклида. Линейное выражение НОД через исходные многочлены: НОД(f,g) = u·f+v·g, его единственность при ограничениях на степени u и v, и его нахождение методом неопределённых коэффициентов.
Избавление от кратных множителей в разложении многочлена на неприводимые множители. Разложение многочленов на неприводимые множители над полями C и R. Неприводимых многочленов над любым полем бесконечно много. Существование неприводимых многочленов сколь угодно большой степени над конечным полем. Алгоритм нахождения всех неприводимых многочленов степени ≤n над конечным полем. Нахождение всех неприводимых многочленов степени ≤3 над полем Z_2.
Редукция многочленов с целыми коэффициентами по простому модулю, её свойства. Примитивные многочлены, лемма Гаусса. Разложимость многочлена с целыми коэффициентами на множители меньшей степени в Q[x] равносильна разложимости на множители меньшей степени в Z[x]. Разложение многочленов на множители над Q с помощью редукций.
Рациональные дроби: представление в виде суммы многочлена и правильной дроби, разложение правильной дроби в сумму простейших дробей методом неопределённых коэффициентов, случай полей C и R.
Многочлены от нескольких переменных, степень одночлена и многочлена, однородные компоненты многочлена. Лексикографический порядок на одночленах, старший член многочлена, старший член произведения многочленов. Симметрические многочлены: основная теорема, метод неопределённых коэффициентов для нахождения выражения произвольного симметрического многочлена через элементарные. Выражение степенных сумм s_1, s_2, s_3, s_4 через элементарные симметрические многочлены. Теорема Виета.