Семинары, 108 группа

Преподаватель: Д.А.Тимашёв

Занятия проходят по средам и пятницам на 2-й паре (10:45-12:20) в ауд. 463.

Нумерация задач даётся по «Сборнику задач по алгебре» под ред. А.И.Кострикина, 3-е изд., Москва, Физматлит, 2001. Дополнительные задачи помечены знаком ★.


7 февраля 2018

Векторные пространства: простейшие следствия из аксиом, примеры (в частности: множество 2^X всех подмножеств множества X как векторное пространство над Z_2, абелеву группу Z нельзя превратить в векторное пространство). Линейные комбинации векторов, линейная зависимость, примеры линейно независимых систем функций.

Домашнее задание:

9 февраля 2018

Базис, размерность, координаты. Матрица перехода к другому базису, её свойства, преобразование координат вектора при замене базиса. Расширения полей как векторные пространства, число элементов конечного поля. Подпространства, примеры.

Домашнее задание:

14 февраля 2018

Способы задания подпространств (линейная оболочка и однородная система линейных уравнений). Базис, согласованный с подпространством. Пересечение и сумма двух подпространств (объединение — вообще говоря, не подпространство). Базис, согласованный с парой подпространств, формула Грассмана для размерности их суммы (пример: 7-мерное подпространство пространства матриц размера 4×4 содержит ненулевую симметрическую матрицу). Инварианты взаимного расположения пары подпространств, обсуждение инвариантов троек и четвёрок подпространств (в последнем случае дискретных инвариантов недостаточно, пример: двойное отношение четвёрки прямых на плоскости). Прямая сумма подпространств, проекции на прямые слагаемые (пример: разложение пространства квадратных матриц в прямую сумму подпространств симметрических и кососимметрических матриц).

Домашнее задание:

16 февраля 2018

Линейные функции на векторном пространстве V, их координатная запись. Ядро линейной функции. Сопряжённое пространство V*, сопряжённый базис. Канонический изоморфизм пространств V и (V*)* в конечномерном случае. Двойственность между векторами и линейными функциями (ковекторами).

Аннулятор подпространства, его размерность. Совпадение второго аннулятора подпространства с этим подпространством в конечномерном случае. Задание подпространства однородной системой линейных уравнений ⇔ нахождение базиса аннулятора подпространства.

Домашнее задание:

21 февраля 2018

Критерий базисности набора ковекторов, применение: интерполяционная формула Лагранжа. Нахождение суммы и пересечения подпространств.

Линейные отображения, их матрицы, запись линейного отображения в координатах. Преобразование матрицы линейного отображения при замене базисов.

Домашнее задание:

28 февраля 2018

Ядро и образ линейного отображения. Канонический вид матрицы линейного отображения. Линейные операторы в векторном пространстве, их матрицы. Преобразование матрицы линейного оператора при замене базиса.

Домашнее задание:

2 марта 2018

Инвариантные подпространства линейного оператора. Собственные векторы и собственные значения. Характеристический многочлен, его коэффициенты. Собственные подпространства, их линейная независимость. Алгебраическая и геометрическая кратности собственного значения. Диагонализуемые операторы, эквивалентные условия диагонализуемости.

Домашнее задание:

7 марта 2018

Корневые векторы и корневые подпространства линейного оператора, их инвариантность, размерность и линейная независимость. Нильпотентные операторы: жорданов базис, диаграммы Юнга. Жорданова нормальная форма (ЖНФ) линейного оператора, формулы для количества жордановых клеток с заданным собственным значением (всех и данного размера).

Домашнее задание:

14 марта 2018

Нахождение ЖНФ и жорданового базиса для линейного оператора. Применения ЖНФ: критерий нильпотентности линейного оператора в терминах собственных значений, нижняя оценка размерности централизатора линейного оператора.

Домашнее задание:

16 марта 2018

Многочлены от линейных операторов и матриц. Аннулирующие многочлены, теорема Гамильтона–Кэли. Минимальный многочлен, его свойства и вычисление. Вычисление многочлена от линейного оператора (матрицы) нахождением остатка при делении на минимальный многочлен. Аналитические функции от линейных операторов и матриц.

Домашнее задание:

21 марта 2018

Пример: вычисление экспоненты матрицы.

Билинейные функции, их запись в координатах (билинейные формы). Матрица билинейной функции, её преобразование при замене базиса. Ранг билинейной функции. Классификация билинейных функций ранга ≤1.

Домашнее задание:

23 марта 2018

Дискриминант, невырожденные билинейные функции. Симметрические и кососимметрические билинейные функции, разложение пространства билинейных функций в прямую сумму подпространств симметрических и кососимметрических функций. Квадратичные функции, поляризация. Канонический вид симметрических билинейных и квадратичных функций, методы Лагранжа и Якоби приведения к каноническому виду.

Домашнее задание:

28 марта 2018

Нормальный вид квадратичных функций над полями C и R, закон инерции. Неотрицательные и положительно определённые квадратичные фукнции, критерий Сильвестра. Геометрический смысл индексов инерции.

Домашнее задание:

30 марта 2018

Коллоквиум


4 апреля 2018

Контрольная работа
  1. Нахождение базиса и системы линейных уравнений для суммы двух подпространств, заданных системами линейных уравнений (1 вариант); нахождение размерности и базиса пересечения двух подпространств, заданных своими базисами (2 вариант).
  2. Нахождение собственных векторов и жордановой нормальной формы линейного оператора.
  3. Вычисление экспоненты матрицы (1 вариант) и многочлена от матрицы (2 вариант).
  4. Приведение симметрической билинейной формы (1 вариант) и квадратичной формы (2 вариант) к каноническому виду.
  5. Выяснение положительной определённости квадратичной формы в зависимости от значений параметра (1 вариант); выяснение эквивалентности двух квадратичных форм над полями C и R (2 вариант).

6 апреля 2018

Евклидовы векторные пространства. Длина вектора, её свойства. Неравенство Коши–Буняковского. Ортогональность векторов, линейная независимость ортогональной системы ненулевых векторов. Обобщённая теорема Пифагора. Ортогональные и ортонормированные базисы, ортогональные системы координат. Ортогональное дополнение к подпространству, его свойства. Ортогональная проекция и ортогональная составляющая вектора относительно подпространства. Процесс ортогонализации Грама–Шмидта. Матрица и определитель Грама, их свойства.

Домашнее задание:

11 апреля 2018

Объём многомерного параллелепипеда в евклидовом пространстве. Вычисление объёма параллелепипеда, натянутого на одночлены 1, x, x², в пространстве многочленов со скалярным умножением (f|g)=∫fgdx (интеграл по [-1,1]). Расстояние между векторами в евклидовом пространстве, его свойства. Расстояние между вектором и подпространством.

Домашнее задание:

13 апреля 2018

Угол между векторами, линейная независимость системы векторов с попарными углами π/3. Угол между вектором и подпространством.

Ортогональные операторы и их матрицы, примеры: поворот плоскости и пространства, отражение относительно подпространства. Свойства ортогональных операторов: сохранение длин, расстояний. Всякая линейная изометрия евклидова пространства — ортогональный оператор.

Домашнее задание:

18 апреля 2018

Свойства ортогональных операторов: сохранение углов, возможные собственные значения, ортогональность собственных подпространств, инвариантность ортогонального дополнения к инвариантному подпространству. Канонический вид матрицы ортогонального оператора, его нахождение. Комплексификация вещественных векторных пространств и линейных операторов, нахождение 2-мерного инвариантного подпространства для линейного оператора над R, не имеющего собственных векторов.

Домашнее задание:

20 апреля 2018

Соответствие между линейными операторами и билинейными функциями в евклидовом пространстве. Сопряжённый оператор, его матрица. Подпространство U инвариантно относительно оператора A ⇒ ортогональное дополнение к U инвариантно относительно сопряжённого оператора A*. Оператор A ортогонален ⇔ A* обратен к A.

Симметрические (самосопряжённые) и кососимметрические операторы. Наличие собственного вектора и ортогональность собственных подпространств симметрического оператора. Канонический вид матрицы симметрического оператора, его нахождение. Приведение симметрических билинейных и квадратичных функций к главным осям.

Домашнее задание:

25 апреля 2018

Неотрицательные и положительно определённые симметрические операторы, пример: A*·A, где A — произвольный оператор в евклидовом пространстве. Критерий неотрицательности и положительной определённости симметрического оператора в терминах собственных значений. Извлечение квадратного корня из неотрицательного и положительно определённого оператора. Полярное разложение невырожденного линейного оператора в евклидовом пространстве.

Домашнее задание:

27 апреля 2018

Аффинные пространства. Векторизация. Координаты в аффинном пространстве, замена координат. Плоскости в аффинном пространстве, способы их задания (опорная точка + направляющее подпространство, параметрический способ, аффинная оболочка, система линейных уравнений). Взаимное расположение плоскостей в аффинном пространстве, размерность аффинной оболочки их объединения и их пересечения, степень параллельности.

Домашнее задание:

4 мая 2018

Задача: провести через точку прямую, пересекающую две плоскости. Евклидовы аффинные пространства: расстояние между точками, задача: может ли данная матрица быть матрицей расстояний между точками. Расстояние от точки до плоскости и между плоскостями в евклидовом аффинном пространстве.

Домашнее задание:

11 мая 2018

Аффинные отображения, достаточное условие наличия неподвижных точек. Движения евклидовых пространств, вектор скольжения. Классификация движений в размерностях 2 и 3, задача на геометрическое описание движения 2-мерной плоскости.

Домашнее задание:

16 мая 2018

Задача на геометрическое описание движения 3-мерного пространства.

Квадратичные функции на аффинном пространстве, их координатная запись, расширенная матрица квадратичной функции. Квадратичные гиперповерхности (квадрики). Приведение квадратичной функции (квадрики) к каноническому или к нормальному виду и к главным осям. Различные типы квадрик (центральные и нецентральные, конические и неконические). Центр квадратичной функции (квадрики), его нахождение.

Домашнее задание:

18 мая 2018

Тензоры, примеры: тензоры малых валентностей, det. Операции над тензорами: сложение, умножение на скаляры, тензорное умножение. Компоненты тензора, тензорный базис, правило Эйнштейна. Операции над тензорами в координатах, разложимые тензоры. Преобразование компонент тензора при замене координат.

Домашнее задание:

23 мая 2018

Свёртка тензора. Выражение различных операций линейной алгебры в терминах тензорного произведения и свёртки. Ковариантные и контравариантные тензоры, симметрические и кососимметрические тензоры, симметризация и альтернирование. Внешнее умножение внешних форм, его свойства, связь с определителями. Базис и размерность пространства внешних форм. Канонический вид кососимметрической билинейной функции, приведение к каноническому виду с помощью внешнего умножения (аналог метода Лагранжа).

Домашнее задание:

25 мая 2017

Контрольная работа
  1. Ортогонализация системы векторов (1 вариант); вычисление объёма параллелепипеда (2 вариант).
  2. Нахождение угла между вектором и подпространством (1 вариант); вычисление расстояния от точки до плоскости (2 вариант).
  3. Приведение симметрической билинейной формы (1 вариант) и квадратичной формы (2 вариант) к главным осям.
  4. Определение типа движения плоскости (1 вариант) и пространства (2 вариант) и его полное геометрическое описание.
  5. Полярное разложение невырожденного линейного оператора.