Преподаватель: Д.А.Тимашёв
Занятия проходят по средам и пятницам на 2-й паре (10:45-12:20) в ауд. 463.
Нумерация задач даётся по «Сборнику задач по алгебре» под ред. А.И.Кострикина, 3-е изд., Москва, Физматлит, 2001. Дополнительные задачи помечены знаком ★.
Векторные пространства: простейшие следствия из аксиом, примеры (в частности: множество 2^X всех подмножеств множества X как векторное пространство над Z_2, абелеву группу Z нельзя превратить в векторное пространство). Линейные комбинации векторов, линейная зависимость, примеры линейно независимых систем функций.
Базис, размерность, координаты. Матрица перехода к другому базису, её свойства, преобразование координат вектора при замене базиса. Расширения полей как векторные пространства, число элементов конечного поля. Подпространства, примеры.
Способы задания подпространств (линейная оболочка и однородная система линейных уравнений). Базис, согласованный с подпространством. Пересечение и сумма двух подпространств (объединение — вообще говоря, не подпространство). Базис, согласованный с парой подпространств, формула Грассмана для размерности их суммы (пример: 7-мерное подпространство пространства матриц размера 4×4 содержит ненулевую симметрическую матрицу). Инварианты взаимного расположения пары подпространств, обсуждение инвариантов троек и четвёрок подпространств (в последнем случае дискретных инвариантов недостаточно, пример: двойное отношение четвёрки прямых на плоскости). Прямая сумма подпространств, проекции на прямые слагаемые (пример: разложение пространства квадратных матриц в прямую сумму подпространств симметрических и кососимметрических матриц).
Линейные функции на векторном пространстве V, их координатная запись. Ядро линейной функции. Сопряжённое пространство V*, сопряжённый базис. Канонический изоморфизм пространств V и (V*)* в конечномерном случае. Двойственность между векторами и линейными функциями (ковекторами).
Аннулятор подпространства, его размерность. Совпадение второго аннулятора подпространства с этим подпространством в конечномерном случае. Задание подпространства однородной системой линейных уравнений ⇔ нахождение базиса аннулятора подпространства.
Критерий базисности набора ковекторов, применение: интерполяционная формула Лагранжа. Нахождение суммы и пересечения подпространств.
Линейные отображения, их матрицы, запись линейного отображения в координатах. Преобразование матрицы линейного отображения при замене базисов.
Ядро и образ линейного отображения. Канонический вид матрицы линейного отображения. Линейные операторы в векторном пространстве, их матрицы. Преобразование матрицы линейного оператора при замене базиса.
Инвариантные подпространства линейного оператора. Собственные векторы и собственные значения. Характеристический многочлен, его коэффициенты. Собственные подпространства, их линейная независимость. Алгебраическая и геометрическая кратности собственного значения. Диагонализуемые операторы, эквивалентные условия диагонализуемости.
Корневые векторы и корневые подпространства линейного оператора, их инвариантность, размерность и линейная независимость. Нильпотентные операторы: жорданов базис, диаграммы Юнга. Жорданова нормальная форма (ЖНФ) линейного оператора, формулы для количества жордановых клеток с заданным собственным значением (всех и данного размера).
Нахождение ЖНФ и жорданового базиса для линейного оператора. Применения ЖНФ: критерий нильпотентности линейного оператора в терминах собственных значений, нижняя оценка размерности централизатора линейного оператора.
Многочлены от линейных операторов и матриц. Аннулирующие многочлены, теорема Гамильтона–Кэли. Минимальный многочлен, его свойства и вычисление. Вычисление многочлена от линейного оператора (матрицы) нахождением остатка при делении на минимальный многочлен. Аналитические функции от линейных операторов и матриц.
Пример: вычисление экспоненты матрицы.
Билинейные функции, их запись в координатах (билинейные формы). Матрица билинейной функции, её преобразование при замене базиса. Ранг билинейной функции. Классификация билинейных функций ранга ≤1.
Дискриминант, невырожденные билинейные функции. Симметрические и кососимметрические билинейные функции, разложение пространства билинейных функций в прямую сумму подпространств симметрических и кососимметрических функций. Квадратичные функции, поляризация. Канонический вид симметрических билинейных и квадратичных функций, методы Лагранжа и Якоби приведения к каноническому виду.
Нормальный вид квадратичных функций над полями C и R, закон инерции. Неотрицательные и положительно определённые квадратичные фукнции, критерий Сильвестра. Геометрический смысл индексов инерции.
Евклидовы векторные пространства. Длина вектора, её свойства. Неравенство Коши–Буняковского. Ортогональность векторов, линейная независимость ортогональной системы ненулевых векторов. Обобщённая теорема Пифагора. Ортогональные и ортонормированные базисы, ортогональные системы координат. Ортогональное дополнение к подпространству, его свойства. Ортогональная проекция и ортогональная составляющая вектора относительно подпространства. Процесс ортогонализации Грама–Шмидта. Матрица и определитель Грама, их свойства.
Объём многомерного параллелепипеда в евклидовом пространстве. Вычисление объёма параллелепипеда, натянутого на одночлены 1, x, x², в пространстве многочленов со скалярным умножением (f|g)=∫fgdx (интеграл по [-1,1]). Расстояние между векторами в евклидовом пространстве, его свойства. Расстояние между вектором и подпространством.
Угол между векторами, линейная независимость системы векторов с попарными углами π/3. Угол между вектором и подпространством.
Ортогональные операторы и их матрицы, примеры: поворот плоскости и пространства, отражение относительно подпространства. Свойства ортогональных операторов: сохранение длин, расстояний. Всякая линейная изометрия евклидова пространства — ортогональный оператор.
Свойства ортогональных операторов: сохранение углов, возможные собственные значения, ортогональность собственных подпространств, инвариантность ортогонального дополнения к инвариантному подпространству. Канонический вид матрицы ортогонального оператора, его нахождение. Комплексификация вещественных векторных пространств и линейных операторов, нахождение 2-мерного инвариантного подпространства для линейного оператора над R, не имеющего собственных векторов.
Соответствие между линейными операторами и билинейными функциями в евклидовом пространстве. Сопряжённый оператор, его матрица. Подпространство U инвариантно относительно оператора A ⇒ ортогональное дополнение к U инвариантно относительно сопряжённого оператора A*. Оператор A ортогонален ⇔ A* обратен к A.
Симметрические (самосопряжённые) и кососимметрические операторы. Наличие собственного вектора и ортогональность собственных подпространств симметрического оператора. Канонический вид матрицы симметрического оператора, его нахождение. Приведение симметрических билинейных и квадратичных функций к главным осям.
Неотрицательные и положительно определённые симметрические операторы, пример: A*·A, где A — произвольный оператор в евклидовом пространстве. Критерий неотрицательности и положительной определённости симметрического оператора в терминах собственных значений. Извлечение квадратного корня из неотрицательного и положительно определённого оператора. Полярное разложение невырожденного линейного оператора в евклидовом пространстве.
Аффинные пространства. Векторизация. Координаты в аффинном пространстве, замена координат. Плоскости в аффинном пространстве, способы их задания (опорная точка + направляющее подпространство, параметрический способ, аффинная оболочка, система линейных уравнений). Взаимное расположение плоскостей в аффинном пространстве, размерность аффинной оболочки их объединения и их пересечения, степень параллельности.
Задача: провести через точку прямую, пересекающую две плоскости. Евклидовы аффинные пространства: расстояние между точками, задача: может ли данная матрица быть матрицей расстояний между точками. Расстояние от точки до плоскости и между плоскостями в евклидовом аффинном пространстве.
Аффинные отображения, достаточное условие наличия неподвижных точек. Движения евклидовых пространств, вектор скольжения. Классификация движений в размерностях 2 и 3, задача на геометрическое описание движения 2-мерной плоскости.
Задача на геометрическое описание движения 3-мерного пространства.
Квадратичные функции на аффинном пространстве, их координатная запись, расширенная матрица квадратичной функции. Квадратичные гиперповерхности (квадрики). Приведение квадратичной функции (квадрики) к каноническому или к нормальному виду и к главным осям. Различные типы квадрик (центральные и нецентральные, конические и неконические). Центр квадратичной функции (квадрики), его нахождение.
Тензоры, примеры: тензоры малых валентностей, det. Операции над тензорами: сложение, умножение на скаляры, тензорное умножение. Компоненты тензора, тензорный базис, правило Эйнштейна. Операции над тензорами в координатах, разложимые тензоры. Преобразование компонент тензора при замене координат.
Свёртка тензора. Выражение различных операций линейной алгебры в терминах тензорного произведения и свёртки. Ковариантные и контравариантные тензоры, симметрические и кососимметрические тензоры, симметризация и альтернирование. Внешнее умножение внешних форм, его свойства, связь с определителями. Базис и размерность пространства внешних форм. Канонический вид кососимметрической билинейной функции, приведение к каноническому виду с помощью внешнего умножения (аналог метода Лагранжа).