Преподаватель: Д.А.Тимашёв
Занятия проходят в ауд. 404 по средам на каждой чётной неделе на 3-й паре (13:15-14:50) и по пятницам на 2-й паре (10:45-12:20).
Нумерация задач даётся по «Сборнику задач по алгебре» под ред. А.И.Кострикина, 3-е изд., Москва, Физматлит, 2001. Дополнительные задачи помечены знаком ★.
Системы линейных уравнений (СЛУ), их матрицы, элементарные преобразования. Решение СЛУ методом Гаусса.
Задача о полиномиальной интерполяции. Метод Крамера решения квадратных СЛУ малых размеров (2×2 и 3×3). Определители 2-го и 3-го порядка.
Арифметическое векторное пространство R^n. Линейная зависимость, базис системы векторов, координаты вектора в базисе. Стандартный базис в R^n.
Алгоритм нахождения базиса конечной системы векторов в R^n. Ранг матрицы, его вычисление.
Ранг суммы матриц. Пространство решений ОСЛУ, фундаментальная система решений.
Элементы комбинаторики: число размещений, перестановок, сочетаний. Бином Ньютона, свойства биномиальных коэффициентов, треугольник Паскаля. Подстановки: двухрядная запись, умножение, циклические подстановки, разложение на независимые циклы.
Возведение подстановок в степень. Решение уравнений в подстановках.
Чётность и знак подстановок. Знак цикла. Задача про «пятнашки»: можно ли, последовательно передвигая фишки на соседнее свободное место, поменять местами фишки 14 и 15, оставив остальные фишки на месте?
Определители квадратных матриц, их вычисление по развёрнутой формуле. Свойства определителя, его поведение при различных преобразованиях матрицы. Вычисление определителей приведением к треугольному виду.
Вычисление определителей приведением к треугольному виду и приведением к определителю Вандермонда. Определитель с углом нулей. Разложение определителя по строке и столбцу.
Трёхдиагональные определители и линейные однородные рекуррентные уравнения 2-го порядка.
Арифметические операции над матрицами (сложение матриц, умножение матриц на числа, умножение матриц), их свойства, некоммутативность умножения матриц, умножение на диагональные матрицы.
Единичная матрица. Элементарные матрицы, умножение на них слева и справа. Обратная матрица, её единственность и критерий существования. Явная формула для обратной матрицы. Решение матричных уравнений вида AX=B и нахождение обратной матрицы с помощью решения уравнения AX=E.
Определитель произведения матриц. Ранг произведения матриц, случай невырожденности одного из сомножителей. Ранг присоединённой матрицы.
Поле комплексных чисел. Вычисления над комплексными числами в алгебраической форме. Геометрическая интерпретация комплексных чисел, решение алгебраических задач геометрическими методами (пример: уравнение |(z+1-i)/(z-1+i)|=1) и геометрических задач методами алгебры комплексных чисел (пример: доказательство теоремы о том, что сумма квадратов диагоналей параллелограмма равна сумме квадратов его сторон).
Тригонометрическая форма записи комплексных чисел, формула Муавра, вычисления над комплексными числами в тригонометрической форме. Выражение тригонометрических функций кратных углов через функции исходного угла и степеней тригонометрических функций через функции кратных углов в первой степени с помощью комплексных чисел.
Извлечение корней из комплексных чисел. Сумма и произведение всех корней степени n из 1. Вычисление сумм с помощью комплексных чисел.
Многочлены от одной переменной. Деление с остатком, в частности, на линейный двучлен, теорема Безу, схема Горнера. Разложение многочлена по степеням линейного двучлена. Кратность корня многочлена. Производная многочлена, её свойства. Формула Тейлора. Определение кратности корня по значениям высших производных.
Неприводимые многочлены, разложение на неприводимые множители. Наибольший общий делитель (НОД) многочленов и алгоритм Евклида. Линейное выражение НОД через исходные многочлены: (f,g)=uf+vg, его единственность при ограничениях на степени u и v, и его нахождение методом неопределённых коэффициентов.
Избавление от кратных множителей в разложении многочлена на неприводимые множители. Разложение многочленов на неприводимые множители над полями C и R.
Рациональные корни многочлена с целыми или рациональными коэффициентами. Рациональные дроби: представление в виде суммы многочлена и правильной дроби, разложение правильной дроби в сумму простейших дробей методом неопределённых коэффициентов, случай полей C и R.
Многочлены от нескольких переменных, лексикографический порядок на одночленах, старший член произведения многочленов. Симметрические многочлены, примеры: степенные суммы s_k и элементарные симметрические многочлены σ_k. Основная теорема о симметрических многочленах, метод неопределённых коэффициентов для нахождения выражения произвольного симметрического многочлена через элементарные. Выражение степенных сумм s_1, s_2, s_3 через элементарные симметрические многочлены. Теорема Виета. Решение симметрических систем алгебраических уравнений.