Специальный курс "Кольца и алгебры", мехмат МГУ, осенний и весенний семестры 2025/2026

Лектор Гордиенко Алексей Сергеевич

Название осеннего семестра Ассоциативные кольца, весеннего семестра - Алгебры Ли.

Годовой (но можно сдавать и полгода) спецкурс для студентов 2-6 курса, магистрантов и аспирантов.

понедельник, 18:30-20:05, ауд. 14-08 (главное здание МГУ), первая лекция 8 сентября 2025 года

среда, 16:45-18:20, ауд. станет известна позднее, в следующие даты: 12, 19, 26 ноября и (возможно, если 3 ноября не будет лекции) 10 декабря.

Экзамен по задачам осеннего семестра состоится 15 декабря вместо последней лекции.

Аннотация курса. Кольца и алгебры находят своё применение в самых различных областях математики и физики. В осеннем семестре спецкурс называется «Ассоциативные кольца» и посвящён тем разделам теории ассоциативных колец, которых по причине недостатка времени не удаётся коснуться в общем курсе алгебры. Осенью планируется рассмотреть следующие темы: модули над кольцами, артиновы кольца, радикал Джекобсона, простые и полупростые кольца, теорема плотности, теорема Веддербёрна-Артина. Особое внимание планируется уделить когомологиям Хохшильда и гомологическим методам в теории колец. В частности, при помощи когомологий Хохшильда будет доказана знаменитая теорема Веддербёрна-Мальцева об отщеплении радикала Джекобсона максимальной полупростой подалгеброй. Весенний семестр будет посвящён алгебрам Ли.

Литература:

  1. Херстейн И. Некоммутативные кольца.
  2. Пирс Р. Ассоциативные алгебры.
  3. Weibel, C.A. Introduction to homological algebra. Опечатки.
  4. Хамфрис Дж. Введение в теорию алгебр Ли и их представлений.
  5. Гото М., Гроссханс Ф. Полупростые алгебры Ли.