Лекция 1

Определение 1. Пусть G – некоторое множество. $\mathit{бинарной one paque \check{u}}$ на множестве G называется отображение

$$G \times G \to G$$

из 2-ой декартовой степени множества G в множество G.

Рассмотрим бинарную операцию * на множестве G:

$$G \times G \to G$$
, $(g_1, g_2) \to g_1 * g_2$.

Определение 2. Непустое множество G с фиксированной бинарной операцией * называется $\it группоидом$.

Рассмотрим следующие условия (аксиомы) на операцию *.

- А1. Ассоциативность. Для любых элементов $a, b, c \in G$ выполнено (a*b)*c = a*(b*c).
- А2. Существование нейтрального элемента. Существует такой элемент $e \in G$, что для любого $g \in G$ выполняется eg = ge = g.
- А3. Существование обратного элемента. Для каждого элемента $g \in G$ существует элемент $g^{-1} \in G$ такой, что $g * g^{-1} = g^{-1} * g = e$.
 - А4. Коммутативность. Для любых элементов $a, b \in G$ выполнено a * b = b * a.

Накладывая на операцию * различные множества условий, мы будем получать различные алгебраические структуры.

Определение 3. Если * удовлетворяет условию A1, то G называется *полугруппой*.

Если * удовлетворяет условиям A1 и A2, то G называется моноидом.

Если * удовлетворяет условиям A1 и A2 и A3, то G называется группой.

Условие А4 добавляет к названию структуры слово абелев (или, что то же самое, коммутативный). Так условия А1 и А4 задают абелеву (коммутативную) полугруппу, условия А1, А2 и А4 задают абелев (коммутативный) моноид, условия А1, А2, А3 и А4 задают абелеву (коммутативную) группу.

Обозначение 1. Если не очевидно, какая операция на множестве G имеется в виду, то будем использовать обозначение (G,*) для множества G с операцией *.

Зачастую вместо слова "операция" используют слово "умножение". Суть от этого не меняется и имеется в виду некоторая операция в группе. При этом на письме так же как и в случае обычного умножения чисел знак умножения можно опускать. Нейтральный элемент группы в этом случае зачастую называют "единицей группы". Такие обозначения называются мультипликативными.

Если заранее известно, что группа абелева, то часто используют *аддитивные* обозначения. Операция называется сложением и обозначается знаком "+", нейтральный элемент называется нулем, а обратный элемент называется "противоположным элементом".

Соберем эти обозначения в таблице.

мультипликативные	аддитивные
обозначения	обозначения
произвольная	абелева
группа	группа
умножение ·	сложение +
единица е	ноль 0
обратный	противоположный
элемент g^{-1}	элемент $-g$
	обозначения произвольная группа умножение · единица е обратный

Предложение 1. (Простые следствия из аксиом.)

 $\Pi ycmv (G,*)$ – группа.

- 1) (Обобщенная ассоциативность) И пусть $g_1, \ldots, g_k \in G$. Тогда как бы ни были расставлены скобки в выражении $g_1 * g_2 * \dots * g_k$ результат будет одинаковым.
 - 2) В G есть единственная единица.
 - 3) В С для каждого элемента есть единственный обратный.
- 4) Пусть $a, b \in G$. Тогда если a * b = e, то $b = a^{-1}$. Аналогично если b * a = e, то $b = a^{-1}$.

 - 5) Пусть $g \in G$. Тогда $(g^{-1})^{-1} = g$. 6) Пусть $a, b \in G$. Тогда $(a * b)^{-1} = b^{-1} * a^{-1}$.

Доказательство. 1) Докажем это утверждение индукцией по k.

База индукции k = 3. В этом случае обобщенная ассоциативность совпадает с ассоциативностью, то есть с аксиомой А1.

UUаг индукции. Предположим, что для k < n данное утверждение уже доказано. Докажем его для k=n. Среди всех расстановок скобок есть стандартная (при ней действия выполняются слева-направо):

$$(\dots(g_1*g_2)*g_3)*\dots*g_{n-1})*g_n=g.$$

Достаточно доказать, что результат, который получается при произвольной расстановке скобок, совпадает с д. Фиксируем некоторую расстановку скобок. Для этой расстановки скобок есть последнее действие, которое дает операцию от двух скобок. Длиной скобки назовем количество g_i , входящих в нее. Обозначим длину правой скобки че-

Случай 1 s=1. Наша расстановка скобок имеет вид $(...)*g_n$. По предположению индукции в левой скобке можно расставить скобки произвольным образом. В том числе стандартным образом. Но тогда в целом мы получим стандартную расстановку скобок. Значит, результат при нашей расстановке скобок совпадает с результатом при стандартной расстановке скобок.

Случай 2 s > 2. Последнее действие при нашей фиксированной расстановке скобок имеет вид (a) * (b). Длина скобки b меньше n. По предположению индукции можно считать, что в скобке b расстановка скобок стандартная. Таким образом, стандартная расстановка скобок в скобке b дает $b = d * g_n$. То есть $g = a * (d * g_n) = (a * d) * g_n$. По случаю 1 мы получаем, что в д можно расставить скобки стандартным образом.

- 2) Предположим, что в (G,*) есть две единицы: e и s. Рассмотрим e*s. Поскольку e – единица, получаем e * s = s. С другой стороны так как s – единица, то e * s = e. Таким образом, e = s.
- 3) Предположим, что $g \in G$ элемент, у которого есть хотя бы два обратных: f и h. Тогда f = f * (g * h) = (f * g) * h = h.
- 4) Пусть a*b=e. Рассмотрим операцию элемента a^{-1} и левой части и приравняем к операции элемента a^{-1} и правой части. (Домножим на a^{-1} слева.) Получим $a^{-1}*a*b=$ $a^{-1} * e$. To есть $b = a^{-1}$.

Если b*a=e, то аналогично домножая слева на a^{-1} , получаем $b=a^{-1}$.

5) Обозначим $b^{-1}*a^{-1}=c$. Рассмотрим $(a*b)*c=(a*b)*(b^{-1}*a^{-1})=a*(b*b^{-1})*a^{-1}=c$ $a*e*a^{-1}=e$. Значит, $c=(a*b)^{-1}$. 6) $g^{-1}*g=e$, значит $g=(g^{-1})^{-1}$.

6)
$$g^{-1} * g = e$$
, значит $g = (g^{-1})^{-1}$.

Определение 4. Порядок группы G – это количество элементов в этой группе. (То есть мощность множества G.) Порядок группы G обозначается |G|.

Определение 5. Подмножество H группы (G,*) называется noderpynnoй, если (H,*) является группой.

Подмножество S группы (G,*) называется замкнутым относительно операции *, если для любых $a,b \in S$ выполнено $a*b \in S$. Подмножество S группы (G,*) называется замкнутым относительно взятия обратного, если для любого $s \in S$ элемент s^{-1} также принадлежит S.

Лемма 1. Пусть H – подмножество группы (G,*). Тогда H является подгруппой в G тогда u только тогда, когда выполнены следующие три условия

- 1) *H* не пусто;
- 2) Н оно замкнуто относительно операции;
- 3) Н замкнуто относительно взятия обратного.

Доказательство. Если (H,*) – группа, то операция * корректно определена на H. Значит, H замкнуто относительно операции *. Так как по определению группы в ней есть нейтральный элемент, она является непустым множеством. Пусть e – нейтральный элемент группы G, а s – нейтральный элемент группы G. Получаем g – в группе G есть обратный к g элемент g^{-1} . Умножая на него слева предыдущее равенство, получаем g – g группе g и есть обратный элемент g в группе g и есть обратный элемент g в группе g и есть обратный элемент обратный элемент g в группе g и есть обратный элемент обратный элемент g в группе g и есть обратный элемент обратный элемент g в группе g и есть обратный элемент обратный элемент g в группе g получаем g – g в группе g в группе g в группе g в группы g выполнена аксиома g то g замкнуто относительно взятия обратного.

Пусть теперь непустое подмножество H замкнуто относительно операции и взятия обратного. Так как H замкнуто относительно операции, (H,*) – группоид. Поскольку ассоциативность выполнена в G, то она выполнена и в H. Подмножество не пусто. Возьмем элемент $h \in H$. Так как H замкнуто относительно взятия обратного, $h^{-1} \in H$. Пользуясь замкнутостью H относительно операции, получаем $h*h^{-1} = e \in H$. Таким образом, в H выполнена аксиома A2. Поскольку H замкнуто относительно взятия обратного, в H выполнена и аксиома A3.

Примеры групп.

1) Числовые аддитивные (то есть по сложению) группы:

$$(\mathbb{Z}, +), (\mathbb{Q}, +), (\mathbb{R}, +), (\mathbb{C}, +).$$

Нейтральный элемент 0, обратный к элементу x – это -x. Выполнение аксиом следуют из свойств сложения чисел. Все данные группы бесконечны и коммутативны.

2) Числовые мультипликативные группы:

$$\mathbb{Q}^\times = (\mathbb{Q} \setminus \{0\}, \cdot), \mathbb{R}^\times = (\mathbb{R} \setminus \{0\}, \cdot), \mathbb{C}^\times = (\mathbb{C} \setminus \{0\}, \cdot).$$

Нейтральный элемент 1, обратный к элементу x – это $\frac{1}{x}$. Выполнение аксиом следуют из свойств умножения чисел. Данные группы бесконечны и коммутативны.

- 3) Группа вычетов (остатков) по модулю n: (\mathbb{Z}_n , +). Сложение происходит по модулю n. Нейтральный элемент 0, обратный к элементу x это n-x. Выполнение аксиом следуют из свойств остатков. Данная группа коммутативна и имеет порядок n.
- 4) Группы перестановок. Множество S_n всех перестановок n элементов с операцией композиции \circ является группой. Докажем это. Нейтральный элемент этой группы это тождественная перестановка, обратный элемент обратная перестановка. Ассоциативность следует из следующей важной леммы.

Лемма 2. Пусть есть четыре множества: X, Y, Z u W. И пусть фиксированы отображения между этими множествами $\varphi \colon X \to Y, \ \psi \colon Y \to Z \ u \ \zeta \colon Z \to W$. Тогда $(\zeta \circ \psi) \circ \varphi = \zeta \circ (\psi \circ \varphi)$.

Доказательство. Возьмем элемент $x \in X$. Тогда

$$(\zeta \circ \psi) \circ \varphi(x) = (\zeta \circ \psi)(\varphi(x)) = (\zeta(\psi(\varphi(x))).$$

С другой стороны

$$\zeta \circ (\psi \circ \varphi)(x) = \zeta(\psi \circ \varphi)(x) = (\zeta(\psi(\varphi(x))).$$

Применяя данную лемму к случаю $X = Y = Z = W = \{1, 2, ..., n\}$ получаем ассоциативность S_n . Порядок группы S_n равен n!. При $n \ge 3$ группа S_n не коммутативна.

- 5) Матричные группы. Пусть \mathbb{K} поле, например, $\mathbb{K} = \mathbb{Q}$, \mathbb{R} или \mathbb{C} .
- а) $GL_n(\mathbb{K})$ множество невырожденных матриц $n \times n$ с элементами из \mathbb{K} . Легко видеть, что это множество замкнуто относительно умножения матриц. Умножение матриц ассоциативно, единичная матрица нейтральный элемент и все невырожденные матрицы обратимы (обратная также невырождена). Следовательно, $(GL(\mathbb{K}), \cdot)$ группа.
- б) $SL_n(\mathbb{K})$ множество $n \times n$ матриц с определителем 1 с элементами из \mathbb{K} . Это подмножество в $GL(\mathbb{K})$ замкнуто относительно умножения и взятия обратного. Следовательно, это подгруппа.
- в) $O_n(\mathbb{K})$ множество ортогональных матриц $n \times n$ с элементами из \mathbb{K} . Это подмножество в $GL(\mathbb{K})$ замкнуто относительно умножения и взятия обратного. Следовательно, это подгруппа.

Эти группы конечны тогда и только тогда, когда поле $\mathbb K$ конечно. Они не коммутативны при $n\geq 2.$

- 6) Группы преобразований.
- а) (Обобщение примера 4) Пусть X некоторое множество (возможно бесконечное). Рассмотрим множество S(X) биекций $X \to X$ с операцией композиции. Если $|X| < \infty$, то получаем группу перестановок. В общем случае получаем группу симметий множества X. Нейтральный элемент тождественное преобразование. Обратный обратное преобразование. Ассоциативность следует из леммы 2.
- б) Группы преобразований векторного пространства. (Подгруппы в группе S(V), где V векторное пространство.)
 - Группа обратимых линейных преобразований V.
 - Группа ортогональных линейных преобразований V.
 - Группа движений V.

Во всех этих группах нейтральный элемент — тождественное преобразование, а обратный элемент — обратное преобразование. Эти группы конечны тогда и только тогда, когда поле, над которым V — векторное пространство конечно и размерность V конечна.

в) Группа симметрий фигуры (то есть движений, сохраняющих фигуру). Например, группа диэдра D_n . Рассмотрим правильный n-угольник. Группа диэдра D_n – это группа всех движений плоскости, сохраняющих этот n-угольник.

Упражнение 1. а) Докажите, что в группе D_n ровно 2n элементов. Среди них n поворотов и n осевых симметрий. Все оси симметрий проходят через центр n- угольника. Если n четно, то половина симметрий проходит через 2 вершины, а половина —

через две серидины противоположных сторон. Если же n нечетно, то все симметрии проходят через одну вершину и середину противоположной стороны.

б) Найдите, как устроена операция в группе D_n , то есть чему равна композиция двух поворотов, двух симметрий и поворота с симметрией.

Определение 6. Пусть (G,*) и (H,\circ) – две группы. Отображение $\varphi: G \to H$ называется гомоморфизмом, если $\varphi(g_1*g_2) = \varphi(g_1) \circ \varphi(g_2)$.

На самом деле, чтобы определить гомоморфизм нам не нужно, чтобы G и H были группами. Достаточно, чтобы на них были заданы некие операции (т.е., чтобы они были группоидами).

Докажем следующие элементарные свойства гомоморфизма.

Лемма 3. Пусть $\varphi: (G, *) \to (H, \circ)$ – гомоморфизм. Обозначим через e_G и e_H единицы группы G и H соответственно. Тогда

- 1) $\varphi(e_G) = e_H$,
- $(2) \varphi(g^{-1}) = \varphi(g)^{-1}$. (В левой части обратный берется в группе G, а в правой в H.)

Доказательство. 1) Поскольку e_G – единица группы G. Тогда $e_G*e_G=e_G$, а значит, $\varphi(e_G)\circ\varphi(e_G)=\varphi(e_G*e_G)=\varphi(e_G).$

В группе H есть обратный к $\varphi(e_G)$ элемент. Умножим на него обе части. Получим

$$\varphi(e_G) = e_H$$
.

2)
$$e_H=\varphi(e_G)=\varphi(g*g^{-1})=\varphi(g)\circ\varphi(g^{-1}).$$
 Следовательно, $\varphi(g^{-1})=\varphi(g)^{-1}.$

Определение 7. Биективный гомоморфизм $\varphi \colon G \to H$ называется *изоморфизмом*, а группы G и H при наличии изоморфизма между ними называются *изоморфными*.

Изоморфные группы имеют одинаковую алгебраическую структуру. Более строго любой алгебраический факт (то есть формулирующийся только в терминах операции) верный в одной из них, верен и в другой. Поэтому в дальнейшем мы будем отождествлять изоморфные группы и будем изучать группы с точностью до изоморфизма.

Пример 1. Рассмотрим две группы: $(\mathbb{R}, +)$ и $(\mathbb{R}_{>0}, \cdot)$. Вторая группа состоит из всех положительных вещественных чисел с операцией умножения. Рассмотрим отображение $\varphi \colon \mathbb{R} \to \mathbb{R}_{>0}$, $\varphi(x) = 2^x$. Легко видеть, что φ – изоморфизм.

Пример 2. Группа $GL_n(\mathbb{C})$ изоморфна группе невырожденных линейных преобразований векторного пространства \mathbb{C}^n с операцией композиции. Чтобы получить изоморфизм между этими группами нужно выбрать некоторый базис в \mathbb{C}^n и отобразить линейное преобразование в его матрицу в этом базисе.

На самом деле изоморфизм (биективное соответствие, переводящее умножение одной группы в умножение другой) можно задать в случае, когда про одну из структур не известно, группа это или нет. Тогда вторая структура будет автоматически группой.

Теорема 1. Пусть G – группа, а H – группоид. И пусть φ : $G \to H$ – биекция и гомоморфизм (то есть $\varphi(g_1g_2) = \varphi(g_1)\varphi(g_2)$. (Можно сказать, что φ – изоморфизм группоидов.) Тогда H – также группа и φ – изоморфизм групп.

Доказательство. Докажем, что H – группа. Проверим ассоциативность. Пусть $h_1,h_2,h_3\in H$. Обозначим $g_i=\varphi^{-1}(h_i),\,i=1,2,3$. Тогда

$$\begin{aligned} h_1(h_2h_3) &= \varphi(g_1)(\varphi(g_2)\varphi(g_3)) = \varphi(g_1)\varphi(g_2g_3) = \\ &= \varphi(g_1(g_2g_3)) = \varphi((g_1g_2)g_3) = \varphi(g_1g_2)\varphi(g_3) = (\varphi(g_1)\varphi(g_2))\varphi(g_3) = (h_1h_2)h_3. \end{aligned}$$

Проверим, что $l = \varphi(e)$ – нейтральный элемент. Действительно, пусть $h = \varphi(g)$. Тогда $hl = \varphi(g)\varphi(e) = \varphi(ge) = \varphi(g) = h$ и $lh = \varphi(e)\varphi(g) = \varphi(eg) = \varphi(g) = h$.

Теперь проверим наличие обратного к элементу $h=\varphi(g)$. Докажем, что это $f=\varphi(g^{-1})$. Действительно, $hf=\varphi(g)\varphi(g^{-1})=\varphi(e)=l$ и $fh=\varphi(g^{-1})\varphi(g)=\varphi(e)=l$.

Итак, мы проверили, что H – группа. Таким образом φ – биективный гомоморфизм групп, то есть изоморфизм. \square