Лекция 4

Следствие 1. $Ecnu \ |G| < \infty \ u \ \varphi \colon G \to \widetilde{G}$ — гомоморфизм, то

$$|\operatorname{Ker} \varphi| \cdot |\operatorname{Im} \varphi| = |G|.$$

Пример 1. Найдем, чему изоморфна факторгруппа $\mathbb{Z}/n\mathbb{Z}$ по теореме о гомоморфизме. Для того, чтобы применить теорему о гомоморфизме, нам нужно построить гомоморфизм $\varphi \colon Z \to G'$ для некторой группы G' такой, что $\ker \varphi = n\mathbb{Z}$. Легко видеть, что подходит следующий гомоморфизм

$$\varphi \colon \mathbb{Z} \to \mathbb{Z}_n, \qquad k \mapsto k \pmod{n}$$

Действительно, φ – гомоморфизм, $\operatorname{Ker} \varphi = n\mathbb{Z} \ u \ \varphi$ – сюръекция, то есть $\operatorname{Im} \varphi = \mathbb{Z}_n$. По теореме о гомоморфизме $\mathbb{Z}/n\mathbb{Z} \cong \mathbb{Z}_n$.

Определение 1. Центр группы G – это множество Z(G) элементов, коммутирующих со всеми элементами группы. $Z(G) = \{z \in G \mid \forall g \in G : gz = zg\}.$

Лемма 1. Центр – это нормальная подгруппа G.

Доказательство. Пусть $z_1, z_2 \in Z(G)$. Тогда для любого $g \in G$ выполнено

$$z_1 z_2 g = z_1 g z_2 = g z_1 z_2.$$

Значит, Z(G) – замкнутое относительно операции подмножество. Для доказательства замкнутости относительно взятия обратного заметим, что если $z \in Z(G)$, то для любого $g \in G$ выполнено $zg^{-1} = g^{-1}z$. Тогда

$$z^{-1}g = (g^{-1}z)^{-1} = (zg^{-1})^{-1} = gz^{-1}.$$

Кроме того $Z(G) \neq \emptyset$, так как $e \in Z(G)$.

То, что подгруппа Z(G) нормальна следует из равенства $gzg^{-1}=z\in Z(G).$

Предложение 1. Факторгруппа группы G по центру изоморфна группе внутренних атоморфизмов Inn(G).

Доказательство. По предложению $\ref{eq:goality}(6)$ отображение $\Psi\colon G \to \operatorname{Inn}(G), g \mapsto \varphi_g$ является гомоморфизмом. По определению внутренних автоморфизмов гомоморфизм Ψ сюръективен. Ядро Ψ состоит из тех элементов $g \in G$, для которых $\varphi_g = \operatorname{id}$, то есть $\forall h \in G$ выполнено $ghg^{-1} = h$. Это означает $g \in Z(G)$. Итак, $\operatorname{Ker} \varphi = Z(G)$, $\operatorname{Im} \varphi = \operatorname{Inn}(G)$. По теореме о гомоморфизме $G/Z(G) \cong \operatorname{Inn}(G)$.

Предложение 2. Если группа G не коммутативна, то группа G/Z(G) не является циклической.

Доказательство. Предположим, что $G/Z(G) = \langle aZ(G) \rangle$, $a \in G$. Тогда для любого $g \in G$ выполнено $g \in a^k Z(G)$, то есть $g = a^k z$, где $z \in Z(G)$. Возьмем $g_1, g_2 \in G$, тогда $g_1 = a^k z_1, g_2 = a^m z_2$. Имеем

$$g_1g_2 = a^k z_1 a^m z_2 = a^{k+m} z_1 z_2 = a^{k+m} z_2 z_1 = a^m z_2 a^k z_1 = g_2 g_1.$$

Таким образом, G коммутативна. (И следовательно, $G/Z(G)\cong \{e\}.$)

Определение 2. Пусть G и H – две группы. Прямым произведением $G \times H$ называется множество пар (g,h), где $g \in G, h \in H$, с операцией $(g_1,h_1) \cdot (g_2,h_2) = (g_1g_2,h_1h_2)$.

Замечание 1. Прямое произведение групп является группой. Действительно, ассоциативность умножения следует из ассоциативности умножения в каждой из групп Gи H, нейтральным элементом является элемент (e_G, e_H) , обратным к элементу (q, h)является элемент (q^{-1}, h^{-1}) .

Определение 3. Пусть группа G содержит подмножество S. Подгруппой, порожеденной подмножеством S, называется минимальная подгруппа, содержащая S. Обозначается эта подгруппа $\langle S \rangle$. Если $G = \langle S \rangle$, то S называется множеством порождающих группы G.

Лемма 2. Пусть $G = \langle S \rangle$, тогда G совпадает c множеством конечных произведений элементов из S и обратных κ ним, то есть

$$\{s_1^{\pm 1} \dots s_n^{\pm 1} \mid s_i \in S, n \in \mathbb{N}\}.$$

Доказательство. Легко видеть, что множество конечных произведений элементов из S и обратных к ним замкнуто относительно произведения и взятия обратного. Кроме того в нем лежит $ss^{-1} = e$. Значит, это подгруппа, содержащая S, и следовательно, совпадает с G.

Упражнение 1. Докажите, что

- a) $\mathbb{Z} = \langle 1 \rangle$,
- б) $S_n = \langle (1,2), (2,3) \dots, (n-1,n) \rangle = \langle (1,2), (1,2,\dots,n) \rangle,$ в) $A_n = \langle (1,2,3), (1,2,4), \dots, (1,2,n) \rangle.$

Напомним, что прямым произведением групп K и H мы называли множество пар $(k,h) \mid k \in K, h \in H$ с покомпонентным умножением. Назовем такое прямое произведение внешним.

Определение 4. Пусть K и H – нормальные подгруппы в группе G такие, что $K \cap H =$ $\{e\}$ и G порождается подгруппами K и H. Тогда G называется внутренним прямым произведением подгрупп H и K.

Лемма 3. 1) Внешнее прямое произведение групп K и H является внутренним прямым произведением подгрупп $K \times \{e\}$ и $\{e\} \times H$.

2) Пусть K и H – подгруппы в G. И пусть группа G – это внутреннее прямое произведение подгруп $n \ K \ u \ H$. Тогда G изоморфно внешнему прямому произведению $K \times H$.

Доказательство. 1) Рассмотрим подгруппы $K \times \{e\} = \{(k,e) | k \in K\}$ и $\{e\} \times H =$ $\{(e,h)|h\in H\}$ во внешнем прямом произведении $K\times H$. (Проверку, что это подгруппы оставляю читателю.) Тогда

$$(a,b)(k,e)(a,b)^{-1} = (a,b)(k,e)(a^{-1},b^{-1}) = (aka^{-1},beb^{-1}) = (aka^{-1},e) \in K \times \{e\}.$$

Значит, подгруппа $K \times \{e\}$ нормальна в $K \times H$. Аналогично, подгруппа $\{e\} \times H$ нормальна в $K \times H$. Пересечение этих подгрупп – это единственный элемент (e, e), являющийся нейтральным элементом группы. Кроме того, любой элемент (k,h) есть произведение элементов (k,e) и (e,h), то есть эти подгруппы порождают $K \times H$. Таким образом, группа $K \times H$ является внутренним прямым произведением подгрупп $K \times \{e\}$ и $\{e\} \times H$.

2) Так как группа G порождена подгруппами K и H и подгруппа H нормальна, то по лемме ?? любой элемент $g \in G$ представляется в виде g = kh. Значит отображение

$$\varphi \colon K \times H \to G, \qquad \varphi(k,h) = kh$$

сюръективно. Докажем, что φ – изоморфизм групп.

Предположим, что $k_1h_1=k_2h_2$. Тогда, умножая слева на k_2^{-1} , а справа – на h_1^{-1} , получаем $k_2^{-1}k_1=h_2h_1^{-1}\in K\cap H$. Следовательно, $k_2^{-1}k_1=h_2h_1^{-1}=e$, то есть $k_1=k_2$ и $h_1=h_2$. Итак, представление g=kh единственно. Это означает инъективность φ .

Осталось проверить, что φ – гомоморфизм. Пусть теперь $k_1, k_2 \in K$ и $h_1, h_2 \in H$. Докажем, что $h_1k_2h_1^{-1}k_2^{-1}=e$. В самом деле так как K – нормальная подгруппа, $h_1k_2h_1^{-1}=\widehat{k}\in K$, с другой стороны, так как H – нормальна подгруппа, $k_2h_1^{-1}k_2^{-1}=\widehat{h}\in H$. Тогда

$$h_1 k_2 h_1^{-1} k_2^{-1} = h_1 \widehat{h} = \widehat{k} k_2^{-1} \in K \cap H = \{e\}.$$

Итак, $h_1k_2h_1^{-1}k_2^{-1}=e$. Значит, $h_1k_2=k_2h_1$. Но тогда

$$\varphi(k_1, h_1)\varphi(k_2, h_2) = k_1 h_1 k_2 h_2 = k_1 k_2 h_1 h_2 = \varphi(k_1 k_2, h_1 h_2).$$

В дальнейшем мы не будем различать внутренниее и внешнее прямые произведения и будем использовать единый термин "прямое произведение".

Теорема 1 (Теорема о факторизации прямого произведения). Пусть G_1, \ldots, G_k - группы. В каждой группе G_i фиксируем нормальную подгруппу H_i . Тогда $H_1 \times \ldots \times H_k$ является нормальной подгруппой $G_1 \times \ldots \times G_k$ и

$$(G_1 \times \ldots \times G_k)/(H_1 \times \ldots \times H_k) \cong G_1/H_1 \times \ldots \times G_k/H_k.$$

Доказательство. Рассмотрим отображение

$$\varphi \colon G_1 \times \ldots \times G_k \to G_1/H_1 \times \ldots \times G_k/H_k,$$

 $\varphi \colon (g_1, \ldots, g_k) \mapsto (g_1H_1, \ldots, g_kH_k).$

Легко видеть, что φ — это сюръективный гомоморфизм, ядро которого совпадает с $H_1 \times \ldots \times H_k$. Это доказывает оба утверждения.

Замечание 2. Так же как в случае абелевой группы мы используем аддитивные обозначения, если группы A и B абелевы, то прямое произведение групп A и B мы будем называть npsmoù суммой и обозначать $A \oplus B$.

Теорема 2 (Китайская теорема об остатках.). Пусть m u n – натуральные числа. Тогда следующие условия эквивалентны:

- 1) $HO_{2}(m,n) = 1;$
- 2) $\mathbb{Z}_{mn} \cong \mathbb{Z}_m \oplus \mathbb{Z}_n$.

Доказательство. $1 \Rightarrow 2$. Рассмотрим

$$\varphi \colon \mathbb{Z}_{mn} \to \mathbb{Z}_m \oplus \mathbb{Z}_n, \qquad \varphi(u) = (u \mod m, u \mod n).$$

Докажем, что φ — изоморфизм. Из определения видно, что φ переводит сложение в сложение, то есть является гомоморфизмом.

Пусть $u \in \text{Ker } \varphi$. Тогда u делится и на m, и на n. Значит, так как m и n взаимно просты, u делится на mn. То есть u равен нулю по модулю mn. Следовательно, $\text{Ker } \varphi = \{0\}$, а значит, гомоморфизм φ инъективен. Но поскольку $|\mathbb{Z}_{mn}| = |\mathbb{Z}_m \oplus \mathbb{Z}_n|$ из инъективности φ следует его биективность. Итак, φ – изоморфизм.

 $2\Rightarrow 1.$ Пусть НОД(m,n)=d>1. Тогда для любого элемента $(a,b)\in\mathbb{Z}_m\oplus\mathbb{Z}_n$ выполнено

$$\frac{mn}{d}(a,b) = HOK(m,n)(a,b) = (0,0).$$

Значит, любой элемент в $\mathbb{Z}_m \oplus \mathbb{Z}_n$ имеет порядок не больше $\frac{mn}{d}$, то есть нет элемента из $\mathbb{Z}_m \oplus \mathbb{Z}_n$, порядок которого равен mn. Значит, группа $\mathbb{Z}_m \oplus \mathbb{Z}_n$ не циклическая и не изоморфна \mathbb{Z}_{mn} .

Для абелевых групп будем использовать аддитивную терминологию. Операцию будем обозначать "+"и называть сложением. Нейтральный элемент называем нулем. При этом степень g^k элемента g, будет обозначатся kg.

Замечание 3. То, что абелева группа A порождается подмножеством $S \subset A$ означает, что каждый элемент $a \in A$ представляется в виде $a = k_1 s_1 + \ldots + k_n s_n$, где $s_i \in S$, $k_i \in \mathbb{Z}$.

Мы почти всегда будем ограничиваться рассмотрением только конечно порожденных абелевых групп, то есть таких групп A, для которых множество S может быть выбрано конечным.

Определение 5. Система элементов S абелевой группы A называется линейно независимой (над \mathbb{Z}), если из того, что $k_1s_1 + \ldots + k_ns_n = 0$ для некоторых $k_i \in \mathbb{Z}$, $s_i \in S$, следует что все k_i равны нулю.

Определение 6. *Базис* абелевой группы – это линейно независимая система порождающих этой группы.

Заметим, что не у всякой группы есть базис. Например, у группы \mathbb{Z}_n базиса нет, так как для любой системы $\{s_1,\ldots,s_k\}$ выполнено $ns_1=0$, что противоречит линейной независимости этой системы.

Определение 7. Пусть в абелевой группе A есть базис $\{e_1, \ldots, e_n, \ldots\}$. Тогда группа A называется csobodhoù abenesoù rpynnoù. Будем обозначать эту группу

$$\mathcal{A}(e_1,\ldots,e_n,\ldots).$$

Если базис конечен и имеет мощность n, то будем говорить, что A – свободная абелева группа ранга n и обозначать $\operatorname{rk} A = n$.

Лемма 4. Пусть в абелевой группе A есть базис $\{e_1, \ldots, e_n\}$. Тогда любой другой базис этой группы также состоит из n элементов. (То есть ранг свободной абелевой группы определен однозначно.)

Доказательство. Пусть в группе A есть другой базис $\{e'_1,\ldots,e'_m,\ldots\}$ и количество элементов в нем не равно n. Без ограничения общности мы можем считать, что в нем больше, чем n элементов. Рассмотрим e'_1,\ldots,e'_{n+1} Так как $\{e_1,\ldots,e_n\}$ — базис, каждый элемент e'_j выражается через $\{e_1,\ldots,e_n\}$ с целыми коэффициентами: $e'_j=c_{1j}e_1+\ldots+c_{nj}e_n$. Можно собрать все коэффициенты c_{ij} в целочисленную матрицу C размера $n\times n+1$ такую, что

$$(e'_1,\ldots,e'_{n+1})=(e_1,\ldots,e_n)C.$$

Интерпретируем столбцы $C^{(1)}, \ldots, C^{(n+1)}$ матрицы C как векторы из пространства \mathbb{Q}^n строк с рациональными коэффициентами длины n. Тогда столбцы - это n+1 векторов в n-мерном векторном пространстве. По основной лемме о линейной зависимости столбцы C линейно зависимы, то есть есть рациональные числа $\frac{p_1}{q_1}, \ldots, \frac{p_{n+1}}{q_{n+1}}$ не все равные нулю такие, что

$$\frac{p_1}{q_1}C^{(1)}\dots + \frac{p_{n+1}}{q_{n+1}}C^{(n+1)} = 0.$$

Домножим это равенство на произведение знаменателей и получим

$$k_1 C^{(1)} \dots + k_{n+1} C^{(n+1)} = 0$$

для некоторых $k_i \in \mathbb{Z}$ не всех равных нулю. Но тогда $k_1e_1' + \ldots + k_{n+1}e_{n+1}' = 0$, что противоречит линейной независимости $\{e_1', \ldots, e_{n+1}', \ldots\}$.

Замечание 4. Пусть $F = \mathcal{A}(e_1, \ldots, e_n)$. Тогда $F = \langle e_1 \rangle \oplus \ldots \oplus \langle e_n \rangle \cong \mathbb{Z} \oplus \ldots \oplus \mathbb{Z}$. В самом деле, сопоставим элементу $k_1 e_1 + \ldots k_n e_n \in \mathcal{A}(e_1, \ldots, e_n)$ элемент $(k_1 e_1, \ldots, k_n e_n) \in \langle e_1 \rangle \oplus \ldots \oplus \langle e_n \rangle$. Легко проверить, что это изоморфизм.