Лекция 1

Определение 1. Пусть G – некоторое множество. n-арной операцией на множестве G называется отображение

$$G \times \ldots \times G \to G$$

из n-ой декартовой степени множества G в множество G.

Рассмотрим бинарную операцию * на множестве G:

$$G \times G \to G$$
, $(g_1, g_2) \to g_1 * g_2$.

Определение 2. Непустое множество G с фиксированной бинарной операцией * называется $\it zpynnoudom$.

Рассмотрим следующие условия (аксиомы) на операцию *.

- А1. Ассоциативность. Для любых элементов $a, b, c \in G$ выполнено (a*b)*c = a*(b*c).
- А2. Существование нейтрального элемента. Существует такой элемент $e \in G$, что для любого $q \in G$ выполняется eq = qe = q.
- А3. Существование обратного элемента. Для каждого элемента $g \in G$ существует элемент $g^{-1} \in G$ такой, что $g * g^{-1} = g^{-1} * g = e$.
 - А4. Коммутативность. Для любых элементов $a, b \in G$ выполнено a * b = b * a.

Накладывая на операцию * различные множества условий, мы будем получать различные алгебраические структуры.

Определение 3. Если * удовлетворяет условию A1, то G называется *полугруппой*.

Если * удовлетворяет условиям A1 и A2, то G называется моноидом.

Если * удовлетворяет условиям A1 и A2 и A3, то G называется группой.

Условие А4 добавляет к названию структуры слово абелев (или, что то же самое, коммутативный). Так условия А1 и А4 задают абелеву (коммутативную) полугруппу, условия А1, А2 и А4 задают абелев (коммутативный) моноид, условия А1, А2, А3 и А4 задают абелеву (коммутативную) группу.

Обозначение 1. Если не очевидно, какая операция на множестве G имеется в виду, то будем использовать обозначение (G,*) для множества G с операцией *.

Упражнение 1. Рассмотрим аксиому, являющуюся "половиной" аксиомы A2.

A2': Существует такой элемент $e \in G$, что для любого $g \in G$ выполняется eg = g. Докажите, что если структура (G,*) удовлетворяет условиям A1,A2' и A3, то G является группой.

Задача 1. Рассмотрим аксиому, являющуюся "половиной аксиомы А3.

A3': Для каждого элемента $g \in G$ существует элемент $g^{\vee} \in G$ такой, что $g * g^{\vee} = e$. Существует ли структура (G,*), удовлетворяющая условиям A1,A2 и A3', но не являющаяся группой.

Рассмотрим некоторые элементарные следствия из аксиом.

Лемма 1. Простые следствия из аксиом.

- 1) (Обобщенная ассоциативность) Пусть (G,*) полугруппа. И пусть $g_1, \ldots, g_k \in G$. Тогда как бы ни были расставлены скобки в выражении $g_1*g_2*\ldots*g_k$ результат будет одинаковым.
 - 2) В моноиде есть единственная единица.
 - 3) В группе для каждого элемента есть единственный обратный.

- 4) Пусть (G,*) группа. Пусть $a,b \in G$. Тогда если a*b=e, то $b=a^{-1}$. Аналогично если b*a=e, то $b=a^{-1}$.
 - 5) Пусть (G,*) группа, $a,b \in G$. Тогда $(a*b)^{-1} = b^{-1}*a^{-1}$.
 - 6) Пусть (G, *) группа, $g \in G$. Тогда $(g^{-1})^{-1} = g$.

Доказательство. 1) Докажем это утверждение индукцией по k.

 $\textit{База индукции } k = 3. \ \text{В этом случае обобщенная ассоциативность совпадает с ассоциативностью, то есть с аксиомой <math>A1$.

$$(\dots(g_1*g_2)*g_3)*\dots*g_{n-1})*g_n=g.$$

Достаточно доказать, что результат, который получается при произвольной расстановке скобок, совпадает с g. Фиксируем некоторую расстановку скобок. Для этой расстановки скобок есть последнее действие, которое дачт операцию от двух скобок. Длиной скобки назовчм количество g_i , входящих в нее. Докажем, что результат совпадает с g индукцией по длине правой скобки (обозначим эту длину s).

База второй индукции s=1. Наша расстановка скобок имеет вид $(...)*g_n$. По предположению первой индукции в левой скобке можно расставить скобки произвольным образом. В том числе стандартным образом. Но тогда в целом мы получим стандартную рассановку скобок. Значит, результат при нашей расстановке скобок совпадает с результатом при стандартной расстановке скобок.

Шаг второй индукции. Пусть при s < m утверждение доказано $(m \ge 2)$. Докажем при s = m. Последнее действие при нашей фиксированной расстановке скобок имеет вид (a) * (b). Поскольку длина скобки (b) равна $m \ge 2$, то b = (c) * (d). Тогда (a) * (b) = (a) * ((c) * (d)). Применяя аксиому A1, получаем

$$(a) * ((c) * (d)) = ((a) * (c)) * (d).$$

Но длина скобки (d) строго меньше, чем длина скобки (b) = ((c) * (d)). Значит, по предположению второй индукции результат получающийся при расстановке скобок ((a) * (c)) * (d) совпадает с q.

- 2) Предположим, что в моноиде (G,*) есть две единицы: e и s. Рассмотрим e*s. Поскольку e единица, получаем e*s=s. С другой стороны так как s единица, то e*s=e. Таким образом, e=s.
- 3) Пусть (G,*) группа. Предположим, что $g \in G$ элемент, у которого есть хотя бы два обратных: f и h. Тогда f = f * (g * h) = (f * g) * h = h.
- 4) Пусть a*b=e. Рассмотрим операцию элемента a^{-1} и левой части и приравняем к операции элемента a^{-1} и правой части. (Домножим на a^{-1} слева.) Получим $a^{-1}*a*b=a^{-1}*e$. То есть $b=a^{-1}$.

Если b*a=e, то аналогично домножая слева на a^{-1} , получаем $b=a^{-1}$.

5) Обозначим $b^{-1}*a^{-1}=c$. Рассмотрим $(a*b)*c=(a*b)*(b^{-1}*a^{-1})=a*(b*b^{-1})*a^{-1}=a*e*a^{-1}=e$. Значит, $c=(a*b)^{-1}$.

6)
$$g^{-1} * g = e$$
, значит $g = (g^{-1})^{-1}$.

Определение 4. Подмножество H группы (G,*) называется noderpynnoй, если (H,*) является группой.

Подмножество S группы (G,*) называется замкнутым относительно операции *, если для любых $a,b \in S$ выполнено $a*b \in S$. Подмножество S группы (G,*) называется

замкнутым относительно взятия обратного, если для любого $s \in S$ элемент s^{-1} также принадлежит S.

Предложение 1. Непустое подмножество H группы (G,*) является подгруппой тогда и только тогда, когда оно замкнуто относительно операции и замкнуто относительно взятия обратного.

Доказательство. Если (H,*) – группа, то операция * корректно определена на H. Значит, H замкнуто относительно операции *. Пусть e – нейтральный элемент группы G, а s – нейтральный элемент группы H. Получаем s*s=s. В группе G есть обратный к s элемент s^{-1} . Умножая на него слева предыдущее равенство, получаем s=e. То есть единицы у групп G и H совпадают. Для каждго $g \in H$ есть обратный элемент g^{-1} в группе G и есть обратный элемент обратный элемент g^{\vee} в группе G и есть обратный элемент обратный элемент g^{\vee} в группе G . Тогда $g*g^{-1}=e=g*g^{\vee}$. Умножив слева на g^{-1} , получаем $g^{-1}=g^{\vee}$. Поскольку для группы G0, выполнена аксиома G1, то G2, замкнуто относительно взятия обратного.

Пусть теперь подмножество H замкнуто относительно операции и взятия обратного. Так как H замкнуто относительно операции, (H,*) – группоид. Поскольку ассоциативность выполнена в G, то она выполнена и в H. Подмножество не пусто. Возьмум элемент $h \in H$. Так как H замкнуто относительно взятия обратного, $h^{-1} \in H$. Пользуясь замкнутостью H относительно операции, получаем $h*h^{-1} = e \in H$. Таким образом, в H выполнена аксиома A2. Поскольку H замкнуто относительно взятия обратного, в H выполнена и аксиома A3.

Зачастую вместо слова "операция" используют слово "умножение". Суть от этого не меняется и имеется в виду некоторая операция в группе. При этом на письме так же как и в случае обычного умножения чисел знак умножения можно опускать. Нейтральный элемент группы в этом случае зачастую называют "единицей группы". Такие обозначения называются мультипликативными.

Если заранее известно, что группа абелева, то часто используют *аддитивные* обозначения. Операция называется сложением и обозначается знаком "+ нейтральный элемент называется нулум, а обратный элемент называется "противоположным элементом".

	α				_
١	Сооерем :	эти оос	значения	В	таблице.

Соберем эти обозначения в таблице.				
общие	мультипликативные	аддитивные		
обозначения	обозначения	обозначения		
произвольная	произвольная	абелева		
группа	группа	группа		
операция *	умножение •	сложение +		
нейтральный элемент e	единица е	ноль 0		
обратный	обратный	противоположный		
элемент g^{-1}	элемент g^{-1}	элемент $-g$		

Определение 5. Порядок группы G – это количество элементов в этой группе. (То есть мощьность множества G.) Порядок группы G обозначается |G|.

Определение 6. Пусть g – элемент группы G, а n – целое число. Определим n-ю степень элемента g следующим образом. Если n положительное, то $g^n = g \cdot \ldots \cdot g$ – произведение n элементов g. Если n отрицательное, то $g^n = (g^{-1})^n$. Нулевая степень любого элемента равна нейтральному элементу e.

Упражнение 2. Выполнены следующие свойства степеней элемента группы:

- $1) g^m g^n = g^{m+n},$
- 2) $(g^m)^n = g^{mn}$

У казание. Рассмотреть все случаи знаков m и n.

Определение 7. Пусть g — элемент группы G. Порядок g — это минимальное натуральное число n такое, что $g^n = e$. Если такого числа не существует, то порядок элемента g равен бесконечности. Порядок элемента g обозначается ordg.

Лемма 2. Пусть g – элемент группы G такой, что $\mathrm{ord} g=n,\ a\ m$ – целое число. Тогда

$$\operatorname{ord} g^m = \frac{n}{HO \mathcal{I}(m, n)}.$$

Доказательство. По свойству степеней $(g^m)^k = g^{mk}$. Следовательно порядок g^m – это минимальное натуральное k такое, что mk делится на n.

Рассмотрим разложения на простые множители чисел n и m. Можем считать, что простые множители входящие в m и n одинаковы, но при этом степени вхождения могут быть равны нулю.

$$n = p_1^{\alpha_1} \dots p_l^{\alpha_l}, \qquad n = p_1^{\beta_1} \dots p_l^{\beta_l}.$$

Имеем: НОД $(m,n)=p_1^{\min\{\alpha_1,\beta_1\}}\dots p_l^{\min\{\alpha_l,\beta_l\}}.$

Отсюда

$$\frac{n}{\text{HOД}(m,n)} = p_1^{\alpha_1 - \min\{\alpha_1,\beta_1\}} \dots p_l^{\alpha_l - \min\{\alpha_l,\beta_l\}} =$$

$$=p_1^{\max\{\alpha_1-\beta_1,0\}}\dots p_l^{\max\{\alpha_l-\beta_l,0\}}$$

Легко видеть, что это минимальное число k такое, что km делится на $p_i^{\alpha_i}$ для каждого i.

Конечную группу можно задавать с помощью таблицы умножения. Таблица умножения – это квадратная таблица, строки и столбцы которой соответствуют элементам группы. А на пересечении строки и столбца стоит произведение элемента, соответствующего столбцу.

Пример 1. Построим таблицу сложения для группы $(\mathbb{Z}_2, +) = \{0, 1\}$

Примеры групп.

1) Числовые аддитивные группы:

$$(\mathbb{Z}, +), (\mathbb{Q}, +), (\mathbb{R}, +), (\mathbb{C}, +).$$

Нейтральный элемент 0, обратный к элементу x – это -x. Выполнение аксиом следуют из свойств сложения чисел. Все данные группы бесконечны и коммутативны.

- 2) Группа вычетов (остатков) по модулю n: (\mathbb{Z}_n , +). Сложение происходит по модулю n. Нейтральный элемент 0, обратный к элементу x это n-x. Выполнение аксиом следуют из свойств остатков. Данная группа коммутативна и имеет порядок n.
 - 3) Числовые мультипликативные группы:

$$\mathbb{Q}^{\times} = (\mathbb{Q} \setminus \{0\}, \cdot), \mathbb{R}^{\times} = (\mathbb{R} \setminus \{0\}, \cdot), \mathbb{C}^{\times} = (\mathbb{C} \setminus \{0\}, \cdot).$$

Нейтральный элемент 1, обратный к элементу x – это $\frac{1}{x}$. Выполнение аксиом следуют из свойств умножения чисел. Данные группы бесконечны и коммутативны.

- 4) (Обобщение примера 3) Пусть R кольцо с единицей. Обозначим множество обратимых элементов через R^{\times} . Рассмотрим группу обратимых элементов (R^{\times} , ·). Нейтральный элемент единица кольца. Обратные элементы существуют так как R^{\times} состоит из обратимых элементов. Если R коммутативное кольцо, то R^{\times} коммутативная группа.
- **Задача 2.** Приведите пример некоммутативного кольца R такого, что R^{\times} коммутативная группа порядка больше 1.
- 5) Группа комплексных корней из единицы n-ой степени. Пусть \mathcal{C}_n множество всех комплексных корней степени n из 1. Тогда (\mathcal{C}_n,\cdot) абелева группа порядка n. Докажем это. Для того, чтобы доказать, что \mathcal{C}_n группа мы воспользуемся, тем, что это подмножество в известной нам группе \mathbb{C}^{\times} . Нам надо лишь проверить, что \mathcal{C}_n замкнуто относительно умножения и взятия обратного. Пусть $a,b\in\mathcal{C}_n$, то есть $a^n=b^n=1$. Тогда $(ab)^n=a^nb^n=1$, значит, $ab\in\mathcal{C}_n$. Мы доказали, что \mathcal{C}_n замкнуто относительно умножения. С другой стороны $(a^{-1})^n=(a^n)^{-1}=1^{-1}=1$, следовательно, \mathcal{C}_n замкнуто относительно взятия обратного. То, что группа \mathcal{C}_n абелева следует из того, что она является подгруппой в абелевой группе \mathbb{C}^{\times} .

Единица этой группы – это 1, обратный к элементу x – это $\frac{1}{x}$.

- 6) Группы перестановок.
- а) Множество S_n всех перестановок n элементов с операцией композиции \circ является группой. Докажем это. Нейтральный элемент этой группы это тождественная перестановка, обратный элемент обратная перестановка. Ассоциативность следует из следующей важной леммы.

Лемма 3. Пусть есть четыре множества: X, Y, Z u T. И пусть фиксированы отображения между этими множествами $\varphi \colon X \to Y, \psi \colon Y \to Z u \zeta \colon Z \to T$. Тогда $(\zeta \circ \psi) \circ \varphi = \zeta \circ (\psi \circ \varphi)$.

Доказательство. Возьмем элемент $x \in X$. Тогда

$$(\zeta \circ \psi) \circ \varphi(x) = (\zeta \circ \psi)(\varphi(x)) = (\zeta(\psi(\varphi(x))).$$

С другой стороны

$$\zeta \circ (\psi \circ \varphi)(x) = \zeta(\psi \circ \varphi)(x) = (\zeta(\psi(\varphi(x))).$$

Применяя данную лемму к случаю $X = Y = Z = T = \{1, 2, ..., n\}$ получаем ассоциативность S_n . Порядок группы S_n равен n!. При n > 3 группа S_n не коммутативна.

- б) Множество A_n четных перестановок из S_n с операцией композиции образует *груп- пу четных перестановок*. Докажем, что A_n подгруппа S_n . Это следует из того, что произведение четных перестановок четная перестановка и обратная к четной перестановке четная. Группа A_n не коммутативна при $n \ge 4$.
- в) Группа клейна. Рассмотрим множество перестановок (в виде произведения независимых циклов) $\{id, (1,2)(3,4), (1,3)(2,4), (1,4)(2,3)\}$. Несложно проверить, что это множество замкнуто относительно композиции и что каждая перестановка из этого множества обратна самой себе. Получаем, что данные перестановки образуют подгруппу в S_4 , которая обозначается V_4 . Эта группа коммутативна.

- 6') (Обобщение примера 6a) Пусть X некоторое множество (возможно бесконечное). Рассмотрим множество S(X) биекций $X \to X$ с операцией композиции. Если $|X| < \infty$, то получаем группу перестановок. В общем случае получаем группу симметий множества X. Нейтральный элемент тождественное преобразование. Обратный обратное преобразование. Ассоциативность следует из леммы 3.
 - 7) Матричные группы. Пусть К поле.
- а) $GL_n(\mathbb{K})$ множество невырожденных матриц $n \times n$ с элементами из \mathbb{K} . Легко видеть, что это множество замкнуто относительно умножения матриц. Умножение матриц ассоциативно, единичная матрица нейтральный элемент и все невырожденные матрицы обратимы (обратная также невырождена). Следовательно, $(GL(\mathbb{K}), \cdot)$ группа.
- б) $SL_n(\mathbb{K})$ множество $n \times n$ матриц с определителем 1 с элементами из \mathbb{K} . Это подмножество замкнуто относительно умножения и взятия обратного.

Эти группы конечны тогда и только тогда, когда поле К конечно.

- 8) Группы преобразований векторного пространства. (Подгруппы в группе S(V), где V векторное пространство.)
 - а) Группа обратимых линейных преобразований V.
 - б) Группа ортогональных линейных преобразований V.
 - в) Группа обратимых аффинных преобразований V.
 - г) Группа движений V.

Во всех этих группах нейтральный элемент — тождественное преобразование, а обратный элемент — обратное преобразование. Эти группы конечны тогда и только тогда, когда поле, над которым V — векторное пространство конечно и размерность V конечна.

Лекция 2

Определение 8. Пусть (G,*) и (H,\circ) – две группы. Отображение $\varphi\colon G\to H$ называется гомоморфизмом, если $\varphi(g_1*g_2)=\varphi(g_1)\circ\varphi(g_2)$.

Докажем следующие элементарные свойства гомоморфизма.

Лемма 4. Пусть $\varphi: (G, *) \to (H, \circ)$ – гомоморфизм. Обозначим через e_G и e_H единицы группы G и H соответственно. Тогда

- 1) $\varphi(e_C) = e_H$.
- 2) $\varphi(g^{-1}) = \varphi(g)^{-1}$. (В левой части обратный берется в группе G, а в правой в H.)

Доказательство. 1) Поскольку e_G – единица группы G. Тогда $e_G * e_G = e_G$, а значит,

$$\varphi(e_G) \circ \varphi(e_G) = \varphi(e_G * e_G) = \varphi(e_G).$$

В группе H есть обратный к $\varphi(e_G)$ элемент. Умножим на него обе части. Получим

$$\varphi(e_G) = e_H$$
.

2)
$$e_H=\varphi(e_G)=\varphi(g*g^{-1})=\varphi(g)\circ\varphi(g^{-1}).$$
 Следовательно, $\varphi(g^{-1})=\varphi(g)^{-1}.$

Задача 3. Пусть (G,*) и (H,\circ) – моноиды с единицами e_G и e_H соответственно. И пусть $\psi \colon G \to H$ – отображение такое, что $\psi(g_1*g_2) = \psi(g_1) \circ \psi(g_2)$. Может ли так быть, что $\psi(e_G) \neq \psi(e_H)$?

Определение 9. Биективный гомоморфизм $\varphi \colon G \to H$ называется *изоморфизмом*, а группы G и H при наличии изоморфизма между ними называются *изоморфными*.

Легко видеть, что если φ – изоморфизм, то обратное отображение φ^{-1} также является изоморфизмом. Кроме того композиция двух изоморфизмов – изоморфизм. Из этого следует, что классы изоморфности групп – это классы эквивалентности.

Пример 2. Рассмотрим две группы: $(\mathbb{R}, +)$ и $(\mathbb{R}_{>0}, \cdot)$. Вторая группа состоит из всех положительных вещественных чисел с операцией умножения. Рассмотрим отображение $\varphi \colon \mathbb{R} \to \mathbb{R}_{>0}$, $\varphi(x) = 2^x$. Легко видеть, что φ – изоморфизм.

Пример 3. Группа \mathbb{Z}_n изоморфна группе C_n . Один из возможных автоморфизмов переводит $k \in \mathbb{Z}_n$ в $\cos \frac{2\pi k}{n} + i \sin \frac{2\pi k}{n}$. То, что φ – гомоморфизм обеспечивается тем, что при умножении комплексных чисел их аргументы складываются.

Пример 4. Группа $GL_n(\mathbb{C})$ изоморфна группе невырожденных линейных преобразований векторного пространства \mathbb{C}^n с операцией композиции. Чтобы получить изоморфизм между этими группами нужно выбрать некоторый базис в \mathbb{C}^n и отобразить линейное преобразование в его матрицу в этом базисе.

Изоморфные группы имеют одинаковую алгебраическую структуру. Более строго любой алгебраический факт (то есть формулирующийся только в терминах операции) верный в одной из них, верен и в другой. Поэтому в дальнейшем мы будем отождествлять изоморфные группы и будем изучать группы с точностью до изоморфизма.

На самом деле изоморфизм (биективное соответствие, переводящее умножение одной группы в умножение другой) можно задать в случае, когда про одну из структур не известно, группа это или нет. Тогда вторая структура будет автоматически группой. Воспользуемся этой идеей в следующем примере.

Группа кватернионов Q_8 . Рассмотрим множество из 8 элементов:

$$\{1, -1, i, -i, j, -j, k, -k\}.$$

Умножение устроено следующим образом: знаки умножаются отдельно,

$$i^2 = j^2 = k^2 = -1,$$

$$ij = k$$
, $ji = -k$, $ik = -j$, $ki = j$, $jk = i$, $kj = -i$.

Легко видеть, что 1 — нейтральный элемент, и каждый элемент обратим. Для того, чтобы утверждать, что Q_8 — группа, необходимо проверить ассоциативность. Сделаем это опосредованно.

Рассмотрим следующее множество из 8 комплексных матриц, которое мы обозначим \overline{Q}_8 .

$$\left\{\pm\begin{pmatrix}1&0\\0&1\end{pmatrix},\ \pm\begin{pmatrix}i&0\\0&-i\end{pmatrix},\ \pm\begin{pmatrix}0&1\\-1&0\end{pmatrix},\ \pm\begin{pmatrix}0&i\\i&0\end{pmatrix}\right\}.$$

Здесь і – это мнимая единица (комплексное число).

Рассмотрим биекцию φ между Q_8 и \overline{Q}_8 .

$$\pm 1 \mapsto \pm \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \ i \mapsto \pm \begin{pmatrix} \mathbf{i} & 0 \\ 0 & -\mathbf{i} \end{pmatrix}, \ j \mapsto \pm \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \ k \mapsto \pm \begin{pmatrix} 0 & \mathbf{i} \\ \mathbf{i} & 0 \end{pmatrix}.$$

Легко убедиться, что φ переводит умножение в Q_8 в матричное умножение. Следовательно, (\overline{Q}_8,\cdot) – это замкнутое относительно умножения и взятия обратной матрицы подмножество в $\mathrm{GL}_2(\mathbb{C})$. Значит, \overline{Q}_8 – подгруппа. Тогда Q_8 – группа, изоморфная \overline{Q}_8 .

Ещч один важный пример группы дачт следующая конструкция.

Группа диэдра D_n . Рассмотрим правильный n-угольник. Группа диэдра D_n – это группа всех движений плоскости, сохраняющих этот n-угольник.

Упражнение 3. а) Докажите, что в группе D_n ровно 2n элементов. Среди них n поворотов и n осевых симметрий. Все оси симметрий проходят через центр n- угольника. Если n чүтно, то половина симметрий проходит через 2 вершины, а половина – через две серидины противоположных сторон. Если же n нечутно, то все симметрии проходят через одну вершину и середину противоположной стороны.

б) Найдите, как устроена операция в группе D_n , то есть чему равна композиция двух поворотов, двух симметрий и поворота с симметрией.

Можно конструировать группу из уже известных с помощью следующей конструкции.

Определение 10. Пусть G и H — две группы. Прямым произведением 'nb[групп называется группа $G \times H$, состоящая из пар (g,h), где $g \in G$, $h \in H$. Операция устроена следующим образом: $(g_1,h_1)\cdot (g_2,h_2)=(g_1g_2,h_1h_2)$. Ассоциативность следует из ассоциативности операций в G и H. Нейтральный элемент — это (e_G,e_H) , обратный элемент к элементу (g,h) — это (g^{-1},h^{-1}) . Порядок прямого произведения групп — это произведение их порядков.

Особый интерес представляют гомоморфизмы и изоморфизмы из группы в себя.

Определение 11. Гомоморфизм $\varphi \colon G \to G$ называется эндоморфизмом. Изомомрфизм $\varphi \colon G \to G$ называется автоморфизмом.

Легко видеть, что композиция двух эндоморфизмов — это эндоморфизм, а композиция двух автоморфизмов — автоморфизм. Множество эндоморфизмов группы G с операцией композиции образует моноид $\operatorname{End}(G)$ с нейтральным элементом id. Множество автоморфизмов группы G с операцией композиции образует группу $\operatorname{Aut}(G)$.

Пусть g – элемент группы G. Рассмотрим отображение $\varphi_g \colon G \to G$, определчиное по правилу $\varphi_g(h) = ghg^{-1}$.

Лемма 5. Отображение φ_g является автоморфизмом группы G.

Доказательство. Проверим, что φ_g – гомоморфизм:

$$\varphi_g(hf) = ghfg^{-1} = ghg^{-1}gfg^{-1} = \varphi_g(h)\varphi_g(f).$$

То, что φ_g – биекция следует из того, что существует обратное отображение. А именно, обратное к φ_g отображение – это $\varphi_{g^{-1}}$.

Автоморфизм называются внутренним, если он имеет вид φ_g для некоторого $g \in G$.

Предложение 2. а) Множество внутренних автоморфизмов c операцией композиции образует подгруппу Inn(G) в Aut(G).

б) Отображение $g \to \varphi_g$ – это гомоморфизм из G в $\mathrm{Inn}(G)$.

Доказательство. Докажем равенство $\varphi_g \circ \varphi_h = \varphi_{gh}$. Для этого применим этот гомоморфизм к элементу $s \in G$:

$$\varphi_a \circ \varphi_h(s) = \varphi_a(\varphi_h(s)) = \varphi_a(hsh^{-1}) = ghsh^{-1}g^{-1} = (gh)s(gh)^{-1} = \varphi_{ah}(s).$$

Из доказанного равенства следует пункт б) и замкнутость Inn(G) относительно композиции. Осталось проверить, что Inn(G) замкнуто относительно взятия обратного. Для этого заметим, что $\varphi_q \circ \varphi_{q^{-1}} = \varphi_e = id$.

Определение 12. Группа G называется $uu\kappa nuveckoŭ$, если найдутся элемент $g \in G$ такой, что каждый элемент G имеет вид g^k для некоторого целого числа k.

Элемент g называется nopo жедающим элементом constant G, при этом группа G обозначается constant G.

3амечание 1. В предыдущем определении не требуется, чтобы все степени g были различны.

Пример 5. а) Группа \mathbb{Z} является циклической. В самом деле, $\mathbb{Z} = \langle 1 \rangle$. б) Аналогично $\mathbb{Z}_n = \langle 1 \rangle$.

Упражнение 4. Проверьте, что группы $\mathbb{Z}_2 \times \mathbb{Z}_2$, (Q, +) и \mathbb{Q}^{\times} не являются циклическими.

Лемма 6. Пусть $\operatorname{ord}(g) = n$. Тогда порядок группы $\langle g \rangle$ также равен n.

Доказательство. Рассмотрим множество элементов $S = \{g^0 = e, g, g^2, \dots g^{n-1}\}$. Докажем, что все элементы группы $\langle g \rangle$ лежат в S и что все элементы S различны.

В самом деле, пусть g^k – некоторый элемент $\langle g \rangle$. Разделим k на n с остатком: k = nm + r, где $0 \le k < n$. Тогда $g^k = (g^n)^m g^r = g^r \in S$.

С другой стороны. Пусть $0 \le a < b < n$ и $g^a = g^b$. Умножая последнее равенство на g^{-a} , получаем $e = g^{b-a}$. Поскольку 0 < b - a < n, это противоречит тому, что $\operatorname{ord}(g) = n$.

Если известно, что порядок g равен n, то группу $\langle g \rangle$ обозначают $\langle g \rangle_n$.

Замечание 2. Для каждого элемента g некоторой группы G можно рассмотреть циклическую подгруппу, порождунную этим элементом: $\langle g \rangle \subset G$.

Теорема 1. а) Любая циклическая группа бесконечного порядка изоморфна \mathbb{Z} .

б) Любая циклическая группа порядка п изоморфна \mathbb{Z}_n .

Доказательство. а) Пусть $G=\langle g\rangle$ и $|G|=\infty$. Тогда $\operatorname{ord}(g)=\infty$. Из этого следует, что при $k\neq m$ выполнено $g^k\neq g^m$. Рассмотрим отображение

$$\psi \colon \mathbb{Z} \to G, \qquad k \mapsto g^k.$$

Легко видеть, что ψ – гомоморфизм. Так как все элементы G имеют вид g^k , ψ – сюръекция, а так как при $k \neq m$ выполнено $g^k \neq g^m$, ψ – инъекция. Итак, ψ – изоморфизм.

б) В предыдущей лемме мы доказали, что $G = \{g^0, \dots, g^{n-1}\}$. Рассмотрим отображение

$$\psi \colon \mathbb{Z}_n \to G, \qquad k \mapsto g^k, \qquad k \in \{0, 1, \dots, n-1\}.$$

Легко видеть, что ψ – изоморфизм.

Теорема 2. 1) Подгруппа циклической группы циклическая.

- 2) Все подгруппы в \mathbb{Z} имеют вид $k\mathbb{Z}$.
- 3) Все подгруппы в \mathbb{Z}_n имеют вид $\langle d \rangle = d\mathbb{Z}_n \cong \mathbb{Z}_{\frac{n}{d}}$, где d делитель числа n. В частности, для каждого делителя q числа n есть ровно одна подгруппа в \mathbb{Z}_n , изоморфная \mathbb{Z}_q , а именно, $\langle \frac{n}{q} \rangle$.
 - 4) Пусть $m \in \mathbb{Z}_n$, тогда $\langle m \rangle = \langle HO \mathcal{A}(m,n) \rangle$.

Доказательство. 1) Пусть $G = \langle g \rangle$ и пусть H — некоторая подгруппа в G. Если $H = \{e\}$, то утверждение доказано. Пусть $H \neq \{e\}$. Если $g^k \in H$, то $g^{-k} \in H$. Значит существует положительное число k такое, что $g^k \in H$. Пусть l — наименьшее положительное число такое, что $g^l \in H$. Разделим

m на l с остатком: m = ls + r, где $0 \le r < l$. Получаем $g^r = g^m(g^l)^{-s} \in H$. Поскольку l минимальное положительное число такое, что $g^l \in H$, получаем r = 0. То есть в G все элементы имеют вид $(g^l)^s$, значит $G = \langle g^s \rangle$.

- 2) По пункту 1 любая подгруппа в циклической группе \mathbb{Z} имеет вид $\langle k \rangle = k \mathbb{Z}$.
- 3) По доказательству пункта 1 подгруппа $H \subset \langle g \rangle$ циклическая и порождается элементом g^l для минимального положительного l такого, что $g^l \in H$. Значит если H подгруппа \mathbb{Z}_n , то $H = \langle d \rangle$, где d минимальное положительное число такое, что его вычет лежит в H. Допустим, что n не делится на d. Тогда n = dq + r, где 0 < r < d. Однако тогда r положительное число меньше d такое, что его вычет лежит в H. Это противоречие с выбором d. Значит, n делится на d. Легко видеть, что $\langle d \rangle = d\mathbb{Z}_n \cong \mathbb{Z}_{\frac{n}{d}}^n$.
 - 4) По лемме 2 порядок элемента $m \in \mathbb{Z}_n$ равен $\frac{n}{\text{HOД}(m,n)}$. А значит,

$$\langle m \rangle \cong \mathbb{Z}_{\frac{n}{\mathrm{HOД}(m,n)}}.$$

Но по пункту 3 есть ровно одна подгруппа в \mathbb{Z}_n , изоморфная $\mathbb{Z}_{\frac{n}{\text{НОД}(m,n)}}$ и это $\langle \text{НОД}(m,n) \rangle$. Следовательно, $\langle m \rangle = \langle \text{НОД}(m,n) \rangle$.

ЛЕКЦИЯ 3

Теорема 3. 1) $\operatorname{Aut}(\mathbb{Z}) \cong \mathbb{Z}_2$, 2) $\operatorname{Aut}(\mathbb{Z}_n) \cong \mathbb{Z}_n^{\times}$.

Замечание 3. Напомним, что \mathbb{Z}_n^{\times} – это группа обратимых по умножению элементов кольца вычетов \mathbb{Z}_n . Группа \mathbb{Z}_n^{\times} состоит из вычетов взаимно простых с n. В частности, $|\mathbb{Z}_n^{\times}| = \varphi(n)$, где $\varphi(\cdot)$ – функция Эйлера.

Доказательство теоремы 3. 1) Пусть ψ – автоморфизм \mathbb{Z} . Тогда $\psi(0)=0$. Пусть $\psi(1)=k$. Тогда

$$\psi(2) = \psi(1+1) = \psi(1) + \psi(1) = 2k,$$

$$\psi(3) = \psi(1+1+1) = \psi(1) + \psi(1) + \psi(1) = 3k,$$

и т.д. Аналогично $\psi(-1) = -k$, $\psi(-2) = \psi((-1) + (-1)) = -2k$. Получаем

$$\psi(m) = mk$$
.

Однако при $k \neq \pm 1$ гомоморфизм ψ не будет сюръективен. При k = 1 и k = -1 получаем тождественное отображение и отображение $\{x \mapsto -x\}$. Легко видеть, что эти два автоморфизма с операцией композиции образуют группу, изоморфную \mathbb{Z}_2 .

2) Аналогично случаю 1 любой гомоморфизм $\psi \colon \mathbb{Z}_n \to \mathbb{Z}_n$ имеет вид

$$\psi_k \colon m \mapsto km$$
.

Если k не обратим, то в образе ψ_k не лежит 1, а значит, ψ_k не сюръективно. Если же k обратим, то для любого вычета l имеем $\psi_k(k^{-1}l) = l$. Следовательно, ψ_k сюръективно, а значит, так как множество \mathbb{Z}_n конечно, гомоморфизм ψ_k – биекция.

Итак, $\operatorname{Aut}(\mathbb{Z}_n)$ состоит из ψ_k для $k \in \mathbb{Z}_n^{\times}$. Докажем, что отображение

$$\zeta \colon \operatorname{Aut}(\mathbb{Z}_n) \to \mathbb{Z}_n^{\times}, \qquad \zeta(\psi_k) = k$$

является изоморфизмом. Это очевидно биекция, осталось проверить, что ζ – гомоморфизм. Это следует из равенства $\psi_k \circ \psi_m = \psi_{km}$, которое легко проверить.

Определение 13. Пусть H – подгруппа группы G. Рассмотрим элемент $g \in G$. Левым смеженым классом элемента q по подгруппе H называется множество

$$gH = \{gh \mid h \in H\}.$$

Правым смежным классом элемента g по подгруппе H называется множество

$$Hg = \{hg \mid h \in H\}.$$

Лемма 7. 1) $g \in fH$ тогда и только тогда, когда $f^{-1}g \in H$,

- 1') $g \in Hf$ тогда и только тогда, когда $gf^{-1} \in H$,
- 2) Левые (правые) смежные классы это классы эквивалентности. (Более точно, отношение $g \sim f$, если $g \in fH$ является отношением эквивалентности.)
 - 3) Следующие мощности одинаковы |gH| = |Hg| = |H|.

Доказательство. 1) $g \in fH \iff g = fh \iff f^{-1}g = h$.

- 1') $g \in Hf \iff g = hf \iff gf^{-1} = h$.
- 2) Докажем только для левых смежных классов. Для правых аналогично.

Рефлексивность: $g \in gH$ так как $e \in H$,

Симметричность:

$$g \in fH \iff f^{-1}g \in H \iff (f^{-1}g)^{-1} = g^{-1}f \in H \iff f \in gH.$$

Транзитивность:

$$g \in fH, f \in sH \Longrightarrow f^{-1}g \in H, s^{-1}f \in H \Longrightarrow s^{-1}ff^{-1}g = s^{-1}g \in H.$$

3) Следует из того, что $gh_1 = gh_2$ тогда и только тогда, когда $h_1 = h_2$.

Замечание 4. Из пункта 2 следует, что левые (правые) смежные классы либо не пересекаются, либо совпадают.

Определение 14. Индекс подгруппы H группы G – это мощность множества левых смежных классов. Обозначается индекс [G:H]

Задача 4. Докажите, что $gH \leftrightarrow Hg^{-1}$ – биекция между левыми и правыми смежными классами, и следовательно мощность правых смежных классов также равна индексу подгруппы.

Теорема 4. (Лагранж) Пусть G – конечная группа u H – подгруппа G. Тогда

$$|G| = |H| \cdot [G:H].$$

Доказательство. Поскольку каждый элемент группы G лежит в некотором левом смежном классе и левые смежные классы либо совпадают, либо не пересекаются, вся группа G разбивается на непересекающиеся левые смежные классы. Так как мощность каждого смежного класса равна |H|, мощность всей группы равна |H| умножить на количество смежных классов.

Следствие 1. (Следствия из теоремы Лагранжа)

- 1) Порядок конечной группы делится на порядок ее подгруппы.
- 2) Порядок конечной группы делится на порядок ее элемента.
- 3) Для любого элемента д конечной группы G выполнено $q^{|G|} = e$.
- 4) Группа простого порядка циклическая.
- 5) (Теорема Эйлера) Пусть m и n взаимно простые натуральные числа. Тогда $n^{\varphi(m)}$ имеет остаток 1 при делении на m.

Доказательство. 1) Очевидно следует из теоремы Лагранжа.

- 2) Пусть g элемент конечной группы G. Рассмотрим циклическую подгруппу $H = \langle g \rangle$. Поскольку $\operatorname{ord}(g) = |H|$, порядок G делится на $\operatorname{ord}(g)$.
 - 3) Пусть $|G| = \text{ord}(g) \cdot k$. Тогда $g^{|G|} = (g^{\text{ord}(g)})^k = e^k = e$.
- 4) Пусть |G| = p простое число. Рассмотрим $g \neq e \in G$. Поскольку порядок g делит p и не равен 1, получаем $\operatorname{ord}(g) = p$. А значит, $G = \langle g \rangle$.
 - 5) Применим пункт 3 к группе \mathbb{Z}_{m}^{\times} и ее элементу n. Получаем

$$n^{|\mathbb{Z}_m^{\times}|} = n^{\varphi(m)} = 1.$$

Задача 5. Приведите пример конечной группы и делителя ее порядка такого, что в группе нет подгруппы такого порядка.

Теорема 5. (Коши) Пусть p – простой делитель порядка конечной группы G. Тогда в G есть элемент g порядка p.

Доказательство. Рассмотрим множество

$$S = \{(g_1, \dots, g_p) \mid g_i \in G, g_1 \cdot \dots \cdot g_p = e\}.$$

Найдчм мощность S. Элементы g_1,\ldots,g_{p-1} можно выбрать любыми, а элемент g_p равен $(g_1\cdot\ldots\cdot g_{p-1})^{-1}$. Таким образом $|S|=|G|^{p-1}$. Так как |G| делится на p, то и |S| делится на p. Множество S есть объединение двух непересекающихся множеств: $U=\{g,\ldots,g\mid g^p=e\}$ и

$$T = \{(g_1, \dots, g_p) \mid \exists \ g_i \neq g_j\}.$$

Рассмотрим $(g_1, \ldots, g_p) \in T$. Так как $g_1 \cdot \ldots \cdot g_p = e$, получаем $g_1 \cdot \ldots \cdot g_{p-1} = g_p^{-1}$. Умножая на g_p слева, имеем $g_p \cdot g_1 \cdot \ldots \cdot g_{p-1} = e$. Аналогично

$$(g_1, \ldots, g_p) \in T, (g_p, g_1, \ldots, g_{p-1}) \in T, \ldots, (g_2, \ldots, g_p, g_1) \in T.$$

Докажем, что все эти элементы T, получающиеся друг из друга циклическими сдвигами, различны. Допустим, что совершив k < p сдвигов мы получим тот же элемент. Так как HOД(k,p)=1, существуют целые u и v такие, что uk+vp=1. Сделав u раз по k циклических двигов получим тот же элемент. (Если u меньше нуля, то циклические сдвиги делаем в другую сторону.) Затем сделаем v раз по p сдвигов. Снова получим тот же элемент. Но в итоге мы сделали ровно один циклический сдвиг. Значит, все элементы g_i одинаковы. Это противоречит определению T.

Итак, мы доказали, что все p элементов, полученных из элемента T циклическими сдвигами, различны. А значит, |T| делится на p. Но тогда |U| = |S| - |T| также делится на p. Очевидно, что $(e,e,\ldots,e) \in U$. Так как |U| не равно 1, есть другой элемент $(g,\ldots,g) \in U$. Тогда $g^p = e$, а значит (так как p – простое число) $\operatorname{ord}(g) = p$.

Определение 15. Подгруппа H группы G называется нормальной, если для любого $g \in G$ выполнено gH = Hg. То, что H – нормальная подгруппа G обозначается так: $G \triangleright H$.

Обозначим через gHg^{-1} множество $\{ghg^{-1} \mid h \in H\}$.

Лемма 8. Следующие условия равносильны:

- 1) $G \triangleright H$,
- 2) для каждого $g \in G$ выполнено $gHg^{-1} = H$,
- 3) для каждого $q \in G$ выполнено $qHq^{-1} \subset H$,

Доказательство. $1 \Longrightarrow 2$ В множестве gH = Hg каждый элемент имеет вид $gh_1 = h_2g$. При этом и h_1 и h_2 пробегают всю группу H. Домножим каждый элемент справа на g^{-1} , получим $gh_1g^{-1}=h_2$. То есть $gHg^{-1}=H$.

 $2 \Longrightarrow 3$ Очевидно.

 $3\Longrightarrow 1.$ Для каждых $g\in G$ и $h\in H$ выполнено $ghg^{-1}=\tilde{h}\in H.$ Тогда $gh=ghg^{-1}g=$ $\widetilde{h}g$. Отсюда $gH\subset Hg$. Аналогично $hg=gg^{-1}hg=g\widehat{h}$ для $\widehat{h}=g^{-1}hg\in H$. Значит, $qH \supset Hq$. В итоге qH = Hq.

Лекция 4

Определение 16. Пусть H – нормальная подгруппа в группе G. Факторгруппа G/H- это множество (левых, они же правые) смежных классов по подгруппе H с операцией

$$(g_1H)\cdot(g_2H)=(g_1g_2)H.$$

Определение умножения в факторгруппе требует проверки корректности, то есть проверки того, что результат умножения не зависит от выбора представителей в смежных классах. Потенциальная проблема содержится в том, что $g_1H = g_1'H$, $g_2H = g_2'H$, но при этом смежный класс g_1g_2H может не совпадать с $g_1'g_2'H$. Тогда умножение называется некорректным.

Предложение 3. Пусть G – группа, H – подгруппа. Тогда умножение на множестве левых смежных классов корректно тогда и только тогда, когда Н нормальна.

Доказательство. Пусть H нормальна и $g_1H=g_1'H,\ g_2H=g_2'H.$ Получаем, что $g_1'^{-1}g_1 \in H$ и $g_2'^{-1}g_2 \in H$. Обозначим $g_1'^{-1}g_1$ через h. Имеем

$$(g_1'g_2')^{-1}(g_1g_2) = g_2'^{-1}g_1'^{-1}g_1g_2 = g_2'^{-1}hg_2 \in H$$

Это означает, что g_1g_2H совпадает с $g_1'g_2'H$. Значит, умножение корректно.

Пусть теперь H не нормальна. Тогда найдутся $q \in G$ и $h \in H$ такие, что $qhq^{-1} \notin H$. Тогда gH = (gh)H. Рассмотрим следующие смежные классы: gH = (gh)H и $g^{-1}H$. Имеем $gH \cdot g^{-1}H = H$, но $(gh)H \cdot g^{-1}H = (ghg^{-1})H \neq H$. Значит, умножение не корректно.

Легко видеть, что G/H действительно группа. Ассоциативность произведения следует из ассоциативности произведения в G, единичный элемент – это eH=H, обратный к gH элемент – это $g^{-1}H$. Из теоремы Лагранжа следует, что если G – конечная группа, то $|G/H|=\frac{|G|}{|H|}.$ Пусть $\varphi\colon G\to G'$ – гомоморфизм групп.

Определение 17. Ядро гомоморфизма φ – это полный прообраз единицы $\{g \in G \mid$ $\varphi(q) = e$. Обозначается ядро через Ker φ .

Образ гомоморфизма φ – это множество $\operatorname{Im} \varphi = \{ \varphi(g) \mid g \in G \}.$

Лемма 9. 1) Ядро $\text{Ker } \varphi$ – нормальная подгруппа в группе G.

2) Образ $\operatorname{Im} \varphi$ – nodrpynna в группе G'.

Доказательство. 1) Пусть $g_1, g_2 \in \text{Ker } \varphi$, тогда $\varphi(g_1g_2) = \varphi(g_1)\varphi(g_2) = e$. Значит, $g_1g_2 \in \operatorname{Ker} \varphi$. То есть $\operatorname{Ker} \varphi$ замкнуто относительно произведения. Аналогично, если $g \in G$, то $\varphi(g^{-1}) = \varphi(g)^{-1} = e$. То есть $\operatorname{Ker} \varphi$ замкнуто относительно взятия обратного. Поскольку $e \in \text{Ker } \varphi$, ядро не пусто. По предложению 1 ядро является подгруппой.

Пусть $g \in G$, $h \in \text{Ker } \varphi$. Тогда

$$\varphi(ghg^{-1})=\varphi(g)\varphi(h)\varphi(g)^{-1}=\varphi(g)\varphi(g)^{-1}=e.$$

Значит, $ghg^{-1} \in \text{Ker } \varphi$, то есть $\text{Ker } \varphi$ – нормальная подгруппа.

2) Пусть $\varphi(g)$ и $\varphi(h)$ – два элемента из $\operatorname{Im} \varphi$. Тогда $\varphi(g)\varphi(h) = \varphi(gh) \in \operatorname{Im} \varphi$. Значит, $\operatorname{Im} \varphi$ замкнуто относительно умножения. Кроме того $\varphi(g)^{-1} = \varphi(g^{-1})$, то есть $\operatorname{Im} \varphi$ замкнуто относительно взятия обратного. Поскольку $\operatorname{Im} \varphi$ не пусто, это подгруппа. \square

Определение 18. Рассмотрим следующее отображение $\pi_H \colon G \to G/H, g \mapsto gH$. Из определения операции в факторгруппе следует, что π_H – гомоморфизм. Легко видеть, что он сюръективен. Гомоморфизм π_H называется *каноническим гомоморфизмом*.

Для канонического гомоморфизма ядро – это нормальная подгруппа H, а образ – факторгруппа G/H. Следующая теорема показывает, что ситуация аналогична для любого гомоморфизма.

Теорема 6. (Теорема о гомоморфизме) Пусть $\varphi \colon G \to G'$ – гомоморфизм групп. Тогда $G/\mathrm{Ker}\, \varphi \cong \mathrm{Im}\, \varphi$.

Доказательство. Рассмотрим отображение

$$\Psi \colon G/\operatorname{Ker} \varphi \to \operatorname{Im} \varphi, \qquad \Psi(g\operatorname{Ker} \varphi) = \varphi(g).$$

Сперва нам надо проверить корректность отображения Ψ , то есть то, что оно не зависит от выбора представителя g из смежного класса. Для этого заметим, что если $g\mathrm{Ker}\,\varphi=g'\mathrm{Ker}\,\varphi$, то $g'^{-1}g=h\in\mathrm{Ker}\,\varphi$. Тогда g=g'h. Получаем $\varphi(g)=\varphi(g'h)=\varphi(g')\varphi(h)=\varphi(g')e=\varphi(g')$. Таким образом, отображение Ψ определено корректно.

Докажем, что Ψ – изоморфизм. То, что Ψ –гомоморфизм следует из равенства:

$$\Psi((g\operatorname{Ker}\varphi)(f\operatorname{Ker}\varphi)) = \Psi(gf\operatorname{Ker}\varphi) = \varphi(gf) = \varphi(g)\varphi(f) = \Psi(g\operatorname{Ker}\varphi)\Psi(f\operatorname{Ker}\varphi).$$

Инъективность Ψ следует из того, что если $\varphi(g) = \varphi(f)$, то $\varphi(f^{-1}g) = e$, то есть $f^{-1}g \in \text{Ker } \varphi$, а значит, $g\text{Ker } \varphi = f\text{Ker } \varphi$. Сюръективность Ψ очевидна, так как для любого элемента $\varphi(g)$ в $\text{Im } \varphi$ в него отображается смежный класс $g\text{Ker } \varphi$.

Следствие 2. Eсли $|G| < \infty$ $u \varphi \colon G \to G'$ – гомоморфизм, то

$$|\operatorname{Ker} \varphi| \cdot |\operatorname{Im} \varphi| = |G|.$$

Пример 6. Найдем, чему изоморфна факторгруппа $\mathbb{Z}/n\mathbb{Z}$. Для того, чтобы применить теорему о гомоморфизме, нам нужно построить гомоморфизм $\varphi \colon Z \to G'$ для некторой группы G' такой, что $\operatorname{Ker} \varphi = n\mathbb{Z}$. Легко видеть, что подходит следующий гомоморфизм

$$\varphi \colon \mathbb{Z} \to \mathbb{Z}_n, \qquad k \mapsto k \pmod{n}$$

Действительно, φ – гомоморфизм, $\operatorname{Ker} \varphi = n\mathbb{Z} \ u \ \varphi$ – сюръекция, то есть $\operatorname{Im} \varphi = \mathbb{Z}_n$. По теореме о гомоморфизме $\mathbb{Z}/n\mathbb{Z} \cong \mathbb{Z}_n$.

Определение 19. Пусть группа G содержит подмножество S. Подгруппой, порожедчиной подмножеством S, называется минимальная подгруппа, содержащая S. Обозначается эта подгруппа $\langle S \rangle$. Если $G = \langle S \rangle$, то S называется множеством порожедающих группы G.

Лемма 10. Пусть $G = \langle S \rangle$, тогда G совпадает c множеством конечных произведений элементов из S и обратных κ ним, то есть

$$\{s_1^{\pm 1} \dots s_n^{\pm 1} \mid s_i \in S, n \in \mathbb{N}\}.$$

Доказательство. Легко видеть, что множество конечных произведений элементов из S и обратных к ним замкнуто относительно произведения и взятия обратного. Кроме того в нум лежит $ss^{-1} = e$. Значит, это подгруппа, содержащая S, и следовательно, совпадает с G.

Упражнение 5. Докажите, что

- a) $\mathbb{Z} = \langle 1 \rangle$,
- 6) $S_n = \langle (1,2), (2,3), \dots, (n-1,n) \rangle = \langle (1,2), (1,2,\dots,n) \rangle$, B) $A_n = \langle (1,2,3), (1,2,4), \dots, (1,2,n) \rangle$.

Пример 7. Напомним конструкцию сюр π ективного гомоморфизма $S_4 \rightarrow S_3$. Рассмотрим 4 переменные x_1, x_2, x_3, x_4 и три многочлена от этих переменных:

$$f_1 = x_1x_2 + x_3x_4,$$
 $f_2 = x_1x_3 + x_2x_4,$ $f_3 = x_1x_4 + x_2x_3.$

Если применить к x_1, x_2, x_3, x_4 перестановку σ , то f_i переставятся между собой по перестановке $\tau(\sigma)$. Ясно, что $\tau(\sigma \circ \delta) = \tau(\sigma) \circ \tau(\delta)$, то есть τ – гомоморфизм $S_4 \to S_3$.

Заметим, что $\tau(2,3)=(1,2)$, значит, $(1,2)\in {\rm Im}\, \tau$. Аналогично можно проверить, что все транспозиции лежат в образе τ . Поскольку S_3 порождается транспозициями, гомоморфизм τ сюръективен. Легко видеть, что $V_4 \subset \operatorname{Ker} \varphi$. C другой стороны $|\operatorname{Ker} \varphi| = \frac{|S_4|}{|S_3|} = 4$. Следовательно, $\operatorname{Ker} \varphi = V_4$.

По теореме о гомоморфизме получаем следующий изоморфизм:

$$S_4/V_4 \cong S_3$$
.

Лемма 11. Пусть G – группа, $H \triangleleft G$ – нормальная подгруппа, $K \subseteq G$ – подгруппа. Тогда $\langle K \cup H \rangle = KH = \{kh \mid k \in K, h \in H\}.$

Доказательство. Докажем, что KH замкнуто относительно умножения. Действительно,

$$(k_1h_1)(k_2h_2) = k_1k_2k_2^{-1}h_1k_2h_2 = k_1k_2(k_2^{-1}h_1k_2)h_2 = k_1k_2\widehat{h}h_2 \in KH.$$

Теперь докажем, что KH замкнуто относительно взятия обратного:

$$(kh)^{-1} = h^{-1}k^{-1} = k^{-1}kh^{-1}k^{-1} = k^{-1}(kh^{-1}k^{-1}) = k^{-1}\tilde{h} \in KH.$$

Поскольку KH не пусто, это группа. Очевидно, что KH – наименьшая подгруппа, содержащая K и H.

Теорема 7. (Вторая теорема о гомоморфизме) Пусть G – группа, $H \triangleleft G$ – нормальная $noderpynna, K \subset G - noderpynna.$

- 1) $H \cap K$ нормальная подгруппа в K и H нормальная подгруппа в KH,
- 2) $KH/H \cong K/(H \cap K)$.

Доказательство. 1) Пусть $a \in H \cap K$, $k \in K$. Тогда $a \in H \Rightarrow kak^{-1} \in H$. С другой стороны $a \in K \Rightarrow kak^{-1} \in K$. То есть $kak^{-1} \in H \cap K$. То есть $(H \cap K) \triangleleft K$.

Пусть $h \in H, g \in KH$, тогда, так как $g \in G, ghg^{-1} \in H$. Значит, $H \triangleleft KH$.

2) Рассмотрим $\Psi \colon K \to (KH)/H, k \mapsto kH$. Докажем, что Ψ – сюръекция. Действительно, пусть $khH \in (KH)/H$. Тогда $khH = kH = \Psi(k)$. Легко видеть, что Ψ – гомоморфизм. Найдем ядро Ψ . Пусть $k \in \text{Ker } \Psi$, тогда kH = H. Это значит, что $k \in H$. С другой стороны $k \in K$. То есть $k \in (H \cap K)$. Итак, $\ker \Psi = H \cap K$. По теореме о гомоморфизме $K/(H \cap K) \cong KH/H$. **Теорема 8.** (Третья теорема о гомоморфизме) Пусть $\varphi \colon G \to G'$ – сюръективный гомоморфизм, $K = \operatorname{Ker} \varphi$, $H' \subset G'$ –подгруппа. Пусть $H = \varphi^{-1}(H')$ – полный прообраз. Тогда

- 1) $H' \leftrightarrow H$ биекция между подгруппами в G' и подгруппами в G, содержащими K.
 - 2) Подгруппа H нормальна в G тогда и только тогда, когда H' нормальна в G'.
 - 3) Если H и H' нормальны, то $G/H \cong G'/H'$.

Доказательство. 1) Для подгруппы $H' \subset G'$ обозначим через $\Omega(H') = H$ подгруппу $\varphi^{-1}(H') \subset G$. Легко видеть, что $\Omega(H')$ содержит $K = \varphi^{-1}(e)$. Пусть H – подгруппа G, содержащая K, обозначим через $\Theta(H)$ образ $\varphi(H)$, это подгруппа в G'. Докажем, что Ω и Θ – взаимно обратные отображения. Для этого надо проверить, что $\Omega \circ \Theta = \mathrm{id}$ и $\Theta \circ \Omega = \mathrm{id}$. Действительно, $\Theta \circ \Omega(H')$ – это образ от полного прообраза H', то есть H'. Теперь рассмотрим $\Omega \circ \Theta(H)$ – полный прообраз от образа H. Очевидно, что $H \subset \Omega \circ \Theta(H)$. Пусть $g \in \Omega \circ \Theta(H)$, тогда $\varphi(g) \in \Theta(H)$. Следовательно, есть $h \in H$ такое, что $\varphi(h) = \varphi(g)$. Тогда $\varphi(h^{-1}g) = e$, то есть $h^{-1}g \in K$. Значит $g = hk \in H$. Итак, $\Omega \circ \Theta(H) = H$.

2) Пусть $G \triangleright H$. Рассмотрим $h' \in H'$, $g' \in G'$. Так как гомоморфизм φ сюръективный, найдутся $h \in H$ и $g \in G$ такие, что $\varphi(h) = h'$, $\varphi(g) = g'$. Тогда $ghg^{-1} \in H$, а значит, $g'h'g'^{-1} = \varphi(ghg^{-1}) \in H'$. Таким образом, $H' \triangleleft G'$.

Пусть теперь $H' \triangleleft G'$. Рассмотрим $g \in G$, $h \in H$. Тогда $\varphi(g) \in G'$, $\varphi(h) \in H'$, а значит, $\varphi(ghg^{-1}) = \varphi(g)\varphi(h)\varphi(g)^{-1} \in H'$. Тогда $ghg^{-1} \in H$, то есть $G \triangleright H$.

3) Рассмотрим композицию гомоморфизмов $\Psi = \pi_{H'} \circ \varphi \colon G \to G'/H'$. Так как φ и $\pi_{H'}$ – сюръекции, Ψ – также сюръекция. Заметим, что $\Psi(g) = eH'$ тогда и только тогда, когда $\varphi(g) \in H'$, то есть $g \in H$. Получаем, что $\ker \Psi = H$. По теореме о гомоморфизме получаем $G/H \cong G'/H'$.

Лекция 5

$$(G/N)/(H/N) \cong G/H$$
.

Доказательство. Гомоморфизм $\pi_N \colon G \to G/N = G'$ сюръективен. Значит, мы находимся в условиях третьей теоремы о гомоморфизме. Поскольку H – нормальная подгруппа в G, $\pi_N(H)$ – также нормальная подгруппа в G/N. Так как $\ker \pi_N = N$, $\pi_N(H) \cong H/N$. По пункту 3) третьей теоремы о гомоморфизме

$$G/H \cong (G/N)/\pi_N(H)$$
.

Пример 8. Рассмотрим нормальные подгруппы $V_4 \subset A_4$ в S_4 . По предыдущему следствию получаем $S_4/A_4 \cong (S_4/V_4)(A_4/V_4)$. В самом деле, $S_4/A_4 \cong \mathbb{Z}_2$, $S_4/V_4 \cong S_3$ (см. пример 7), $|A_4/V_4| = 3$, а значит, $A_4/V_4 \cong \mathbb{Z}_3$. При этом $\pi_{V_4}(A_4) \cong \mathbb{Z}_3$ – подгруппа в S_3 , следовательно, $\pi_{V_4}(A_4) = A_3$. И мы получаем, что $(S_4/V_4)(A_4/V_4) \cong S_3/A_3 \cong \mathbb{Z}_2$.

Определение 20. Центр группы G – это множество Z(G) элементов, коммутирующих со всеми элементами группы. $Z(G) = \{z \in G \mid \forall g \in G : gz = zg\}.$

Лемма 12. Центр – это нормальная подгруппа G.

Доказательство. Пусть $z_1, z_2 \in Z(G)$. Тогда для любого $g \in G$ выполнено

$$z_1 z_2 g = z_1 g z_2 = g z_1 z_2.$$

Значит, Z(G) – замкнутое относительно операции подмножество. Для доказательства замкнутости относительно взятия обратного заметим, что если $z \in Z(G)$, то для любого $q \in G$ выполнено $zq^{-1} = q^{-1}z$. Тогда

$$z^{-1}g = (g^{-1}z)^{-1} = (zg^{-1})^{-1} = gz^{-1}.$$

Кроме того $Z(G) \neq \emptyset$, так как $e \in Z(G)$.

То, что подгруппа Z(G) нормальна следует из равенства $gzg^{-1} = z \in Z(G)$.

Предложение 4. Факторгруппа группы G по центру изоморфна группе внутренних атоморфизмов Inn(G).

Доказательство. По предложению 2(б) отображение $\Psi \colon G \to \operatorname{Inn}(G), g \mapsto \varphi_g$ является гомоморфизмом. По определению внутренних автоморфизмов гомоморфизм Ψ сюръективен. Ядро Ψ состоит из тех элементов $g \in G$, для которых $\varphi_g = \operatorname{id}$, то есть $\forall h \in G$ выполнено $ghg^{-1} = h$. Это означает $g \in Z(G)$. Итак, $\operatorname{Ker} \varphi = Z(G)$, $\operatorname{Im} \varphi = \operatorname{Inn}(G)$. По теореме о гомоморфизме $G/Z(G) \cong \operatorname{Inn}(G)$.

Предложение 5. Если группа G не коммутативна, то группа G/Z(G) не является циклической.

Доказательство. Предположим, что $G/Z(G) = \langle aZ(G) \rangle$, $a \in G$. Тогда для любого $g \in G$ выполнено $g \in a^k Z(G)$, то есть $g = a^k z$, где $z \in Z(G)$. Возьмем $g_1, g_2 \in G$, тогда $g_1 = a^k z_1, g_2 = a^m z_2$. Имеем

$$q_1q_2 = a^k z_1 a^m z_2 = a^{k+m} z_1 z_2 = a^{k+m} z_2 z_1 = a^m z_2 a^k z_1 = q_2 q_1.$$

Таким образом, G коммутативна. (И следовательно, $G/Z(G)\cong \{e\}.$)

Пусть S – некоторое множество. Рассмотрим множество конечных слов от букв $s \in S$ и s^{-1} , где $s \in S$. (Так как на множестве S нет никакой операции, то s^{-1} – некий формальный символ.) Также мы рассматриваем пустое слово \varnothing . Два слова назовем эквивалентными, если одно переводится в другое некой конечной цепочкой следующих элементарных преобразований:

- 1) Если в некотором месте есть пара подряд идущих букв ss^{-1} или $s^{-1}s$, то их можно убрать.
 - 2) В любое место можно вписать пару ss^{-1} или $s^{-1}s$.

Конкатенацией двух слов называется операция приписывания одного слова к другому. Например, $(xyx^{-1})(xzzx) = xyx^{-1}xzzx$.

Лемма 13. Класс эквивалентности конкатенации слов из двух классов эквивалентности не зависит от выбора представителей в этих классах.

Доказательство. Пусть слово A эквивалентно слову B, а слово C эквивалентно слову D. Наша задача доказать, что слова AC и BD эквивалентны. Заметим, что мы можем делать с левой частью слова AC те же элементарные преобразования, что и со словом A и получим слово BC. Затем будем делать с правой частью BC те же элементарные преобразования, что и с C. Получим CD.

Определение 21. Свободной группой с множеством порождающих S называется множество классов эквивалентности конечных слов от букв $s \in S$ и s^{-1} , где $s \in S$ с операцией конкатенации. Обозначать эту группу мы будем $\langle S \rangle$.

Если множество S конечно, то |S| называется рангом свободной группы $\langle S \rangle$.

Замечание 5. Легко видеть, что свободная группа действительно является группой. Ассоциативность конкатенации очевидна. Нейтральный элемент – класс пустого слова. Обратный элемент к каждому слову легко выписать.

Теорема 9. Пусть G группа c порождающими g_1, \ldots, g_k . Существует единственный гомоморфизм из свободной группы $\langle x_1, \ldots, x_k \rangle$ ранга k в группу G такой, что $\varphi(x_i) = g_i$. Гомоморфизм φ сюръективен.

 \mathcal{A} оказательство. Пусть φ переводит класс слова $x_{i_1}^{\varepsilon_1} x_{i_2}^{\varepsilon_2} \dots x_{i_m}^{\varepsilon_m}, \, \varepsilon_j = \pm 1, \, \mathrm{B}$

$$g = g_{i_1}^{\varepsilon_1} g_{i_2}^{\varepsilon_2} \dots g_{i_m}^{\varepsilon_m} \in G.$$

Чтобы проверить корректность определения, нужно доказать, что g не зависит от выбора представителя в классе. Если два слова отличаются элементарным преобразованием, то в одном из них есть "дополнительное" $x_i x_i^{-1}$, которое переходит в $g_i g_i^{-1} = e$. Это не меняет образ. То, что φ – гомоморфизм и $\varphi(x_i) = g_i$ очевидно. Сюръективность следует из того, что G порождается g_1, \ldots, g_k .

Определение 22. Пусть M – некоторое подмножество группы G. Нормальное замыкание M – это наименьшая по включению нормальная N(M) в G подгруппа, содержащая M.

Легко видеть, что пересечение нормальных подгрупп — это нормальная подгруппа. Из этого следует, что наименьшая нормальная подгруппа, содержащая M существует.

Лемма 14. Подгруппа N(M) совпадает с подгруппой, порожденной элементами gmg^{-1} для всех $m \in M, g \in G$.

Доказательство. Поскольку N(M) — нормальная подгруппа и $M \subset N(M)$, получаем $gmg^{-1} \in N(M)$, а значит, $\langle gmg^{-1} \mid g \in G, m \in M \rangle \subset N(M)$. С другой стороны $\langle gmg^{-1} \mid g \in G, m \in M \rangle$ — это нормальная подгруппа. В самом деле, $(gmg^{-1})^{-1} = gm^{-1}g^{-1}$. А значит, любой элемент $\langle gmg^{-1} \mid g \in G, m \in M \rangle$ имеет вид

$$(g_1 m_1^{\varepsilon_1} g_1^{-1}) \dots (g_k m_k^{\varepsilon_k} g_k^{-1}) \qquad \varepsilon_j = \pm 1.$$

При этом

$$g(g_1 m_1^{\varepsilon_1} g_1^{-1}) \dots (g_k m_k^{\varepsilon_k} g_k^{-1}) g^{-1} =$$

$$= (gg_1 m_1^{\varepsilon_1} g_1^{-1} g^{-1}) (gg_2 m_2^{\varepsilon_2} g_2^{-1} g^{-1}) \dots (gg_k m_k^{\varepsilon_k} g_k^{-1} g^{-1}) \in \langle gmg^{-1} \mid g \in G, m \in M \rangle.$$

Определение 23. Говорят, что группа G задана образующими g_1, \ldots, g_k и соотношениями $g_1^{\alpha_1} \ldots g_k^{\alpha_k}, \ldots, g_1^{\beta_1} \ldots g_k^{\beta_k}$, если для гомоморфизма $\varphi \colon \langle x_1, \ldots, x_k \rangle \to G, \ x_i \mapsto g_i$ ядро совпадает с $N(x_1^{\alpha_1} \ldots x_k^{\alpha_k}, \ldots, x_1^{\beta_1} \ldots x_k^{\beta_k})$. Тогда

$$G \cong \langle x_1, \dots, x_k \rangle / N(x_1^{\alpha_1} \dots x_k^{\alpha_k}, \dots, x_1^{\beta_1} \dots x_k^{\beta_k}).$$

В таком случае пишут

$$G = \langle g_1, \dots, g_k \mid g_1^{\alpha_1} \dots g_k^{\alpha_k}, \dots, g_1^{\beta_1} \dots g_k^{\beta_k} \rangle.$$

Пример 9. Докажем, что $D_n = \langle a, b \mid a^2, b^2, (ab)^n \rangle$.

Ясно, что D_n порождается двумя симметриями с минимальным углом между ними. Их композиция – это поворот на $\frac{2\pi}{n}$. Если обозначить эти симметриии а и b, то ясно, что $a^2 = b^2 = (ab)^n = e$. То есть для $\varphi \colon \langle x_1, x_2 \rangle \to D_n$, $x_1 \mapsto a, x_2 \mapsto b$ ядро

содержит $N(x_1^2, x_2^2, (x_1x_2)^n)$. Наша цель – доказать, что $\ker \varphi = N(x_1^2, x_2^2, (x_1x_2)^n)$. Если это не так, то по следствию 3 имеем:

$$G \cong \langle x_1, x_2 \rangle / \text{Ker } \varphi \cong (\langle x_1, x_2 \rangle / N(x_1^2, x_2^2, (x_1 x_2)^n)) / (\text{Ker } \varphi / N(x_1^2, x_2^2, (x_1 x_2)^n)).$$

Тогда порядок группы G будет строго меньше, чем $H = \langle a,b \mid a^2,b^2,(ab)^n \rangle = \langle x_1,x_2 \rangle/N(x_1^2,x_2^2,(x_1x_2)^n)$. Докажем, что в H не более 2n элементов. Легко видеть, что любой элемент H может быть записан либо в виде конечного слова $abab\dots$, либо в виде $baba\dots$ Действительно, $a^{-1}=a,\,b^{-1}=b$, значит, любое слово от $a,b,a^{-1},b^{-1}-b$ это слово от a b. При этом если есть сочетание aa или bb, то его можно сократить. Поскольку $(ab)^n=e$, среди слов $abab\dots$ различными являются слова длины $0,1,2\dots,2n-1$. C другой стороны $ba=b^{-1}a^{-1}=(ab)^{-1}$. Значит, $(ba)^n=e$ и среди слов $baba\dots$ также различными являются слова длины $0,1,2\dots,2n-1$. Осталось заметить, что

$$b = (ab)^{n}b = (ab)^{n-1}a;$$

$$ba = (ab)^{n}ba = (ab)^{n-1};$$

$$\vdots$$

$$(ba)^{n-1}b = (ab)^{n}(ba)^{n-1}b = a.$$

Таким образом, все слова вида baba . . . представляются словами вида abab Значит, $|H| \leq 2n$. Отсюда следует, что $D_n = H$.

Лекция 6

Проблема равенства слов. Пусть S — некоторое множество. И пусть даны два конечных слова от букв $s_i \in S$ и s_i^{-1} . Возникает вопрос: эквивалентны ли эти два слова, то есть дают ли они один и тот же элемент свободной группы $\langle S \rangle$? Этот вопрос называется проблеммой равенства слов.

Один из способов решить проблему равенства слов – это определить некий канонический вид, к которому можно привести каждое слово, приччм этот вид должен быть единственным. Если этот подход будет реализован, то для проверки эквивалентности двух слов нужно оба слова привести к каноническому виду и сравнить результаты.

Напомним, что слова называются эквивалентными, если от одного до другого можно добраться следующими элементарными преобразованиями: можно сокращать подряд идущие пары символов типа xx^{-1} или $x^{-1}x$, а также можно приписывать в любое место слова пары символов xx^{-1} или $x^{-1}x$. Преобразования первого типа назовем сокращениями, а второго – приписываниями. Любое слово можно сокращениями привести к несократимому виду, то есть к виду, в котором нет подряд идущих сочетаний вида xx^{-1} и $x^{-1}x$.

Теорема 10. B каждом классе эквивалентности есть только одно несократимое слово.

Доказательство. Пусть есть два различных несократимых слова u и v, которые эквивалентны. Рассмотрим цепочку элементарных преобразований, переводящих u в v. Пусть в этой цепочке есть сокращение, идущее после приписывания. Докажем, что эту пару можно заменить либо на пару сокращение, а затем приписывание, либо убрать. В самом деле если ни один из сокращенных символов не совпадает с только что приписанными, то можно поменять эти две операции. Остачтся случай, когда было приписывание xx^{-1} , а затем сокращение, использующее один или оба из приписанных символов. Но тогда в результате этих двух операций слово не поменялось и можно

эту пару убрать. Назовчм такую замену одной пары другой (или убирание пары) перестройкой.

Для цепочки элементарных преобразований рассмотрим сумму позиций, на которых стоят сокращения. (То есть в цепочке "сокращение, приписывание, приписывание, сокращение, сокращение "сокращения стоят на 1, 4 и 5 местах и сумма равна 10.) При перестройке данная сумма уменьшается. Следовательно, не возможно бесконечное число перестроек и за конечное число перестроек мы достигнем цепочки, в которой сначала идут несколько сокращений, а затем несколько приписываний. Однако слово и несократимо. Значит, цепочка не могла начинаться с сокращений. Тогда она состоит только из приписываний. Но это противоречит несократимости слова v. П

Замечание 6. Можно поставить аналогичный вопрос равенства слов не только в свободной группе, но и в группе с соотношениями. В этом случае слова эквивалентны не только, когда они различаются цепочкой сокращений и приписываний, но также можно вставлять в любое место или убирать любые элементы из $N(r_1, \ldots, r_k)$, где r_i — соотношения. Оказывается, что проблема равенства слов может стать гораздо сложнее, более того она не всегда резрешима. Более точно, существует конечно порожденная группа с конечным числом соотношений, в которой проблема равенства слов алгоритмически не разрешима.

Внутреннее прямое произведение подгрупп.

Напомним, что прямым произведением групп K и H мы называли множество пар $(k,H) \mid k \in K, h \in H$ с покомпонентным умножением. Назовум такое прямое произведение внешним.

Определение 24. Пусть K и H – нормальные подгруппы в группе G такие, что $K \cap H = \{e\}$ и G порождается подгруппами K и H. Тогда G называется внутренним $nрямым \ npouзведением подгрупп \ H$ и K.

Лемма 15. Пусть K и H – подгруппы в G. Следующие условия эквивалентны:

- 1) Группа G это внутреннее прямое произведение подгрупп K и H.
- 2) Каждый элемент $g \in G$ единственным образом представляется в виде произведения g = kh, $k \in K$, $h \in H$. При этом если $g_1 = k_1h_1$ и $g_2 = k_2h_2$, то $g_1g_2 = k_1k_2h_1h_2$.

Доказательство. $1 \Rightarrow 2$. Так как группа G порождена подгруппами K и H и подгруппа H нормальна, то по лемме 11 любой элемент $q \in G$ представляется в виде q = kh. Предположим, что $k_1h_1=k_2h_2$. Тогда, умножая слева на k_2^{-1} , а справа – на h_1^{-1} , получаем $k_2^{-1}k_1=h_2h_1^{-1}\in K\cap H$. Следовательно, $k_2^{-1}k_1=h_2h_1^{-1}=e$, то есть $k_1=k_2$ и $h_1=h_2$. Йтак, представление g=kh единственно.

Пусть теперь $g_1 = k_1 h_1$ и $g_2 = k_2 h_2$. Докажем, что $h_1 k_2 h_1^{-1} k_2^{-1} = e$. В самом деле так как K – нормальная подгруппа, $h_1k_2h_1^{-1}=\widehat{k}\in K$, с другой стороныб так как H – нормальна подгруппа, $k_2h_1^{-1}k_2^{-1} = \hat{h} \in H$. Тогда

$$h_1k_2h_1^{-1}k_2^{-1} = h_1\hat{h} = \hat{k}k_2^{-1} \in K \cap H = \{e\}.$$

Итак, $h_1k_2h_1^{-1}k_2^{-1}=e$. Значит, $h_1k_2=k_2h_1$. Но тогда $g_1g_2=k_1h_1k_2h_2=k_1k_2h_1h_2$. $2\Rightarrow 1$. Рассмотрим $g\in G,\ k\in K$. Тогда $g=k_0h_0,\ k=ke$. Рассмотрим $\overline{g}=k_0^{-1}h_0^{-1}$. По правилу умножения $g\overline{g}=k_0k_0^{-1}h_0h_0^{-1}=e$, значит, $\overline{g}=g^{-1}$. Получаем $ghg^{-1}=(k_0h_0)(ke)(k_0^{-1}h_0^{-1})$. По правилу умножения это равно $(k_0kk_0^{-1})(h_0eh_0^{-1})=k$. Значит, K-нормальная подгруппа. Аналогично доказывается, что H - нормальная подгруппа.

Пусть $s \in K \cap H$. Тогда s = se = es – два представления s в виде kh. Так как такое представление должно быть единственно, s = e. То есть $K \cap H = \{e\}$.

Осталось заметить, что раз любой элемент g равен kh, то G – группа, порожденная подгруппами K и H.

Замечание 7. Результат предыдущей леммы можно интерпретировать так: внутреннее прямое произведение подгрупп изоморфно внешнему произведению этих подгрупп. Для установления этого изоморфизма нужно отождествить kh и (k,h).

С другой стороны любое внешнее прямое произведение может быть интерпретировано как внутреннее. Действительно, рассмотрим во внешнем прямом произведении $K \times H$ подгруппы $K' = \{(k,e)\} \cong K$ и $H' = \{(e,h)\} \cong H$. Тогда $K \times H$ является внутренним прямым произведением подгрупп K' и H'.

В дальнейшем мы не будем различать внутренниее и внешнее прямые произведения и будем использовать единый термин "прямое произведение".

Теорема 11 (Теорема о факторизации прямого произведения). Пусть G_1, \ldots, G_k - группы. В каждой группе G_i фиксируем нормальную подгруппу H_i . Тогда $H_1 \times \ldots \times H_k$ является нормальной подгруппой $G_1 \times \ldots \times G_k$ и

$$(G_1 \times \ldots \times G_k)/(H_1 \times \ldots \times H_k) \cong G_1/H_1 \times \ldots \times G_k/H_k.$$

Доказательство. Рассмотрим отображение

$$\varphi \colon G_1 \times \ldots \times G_k \to G_1/H_1 \times \ldots \times G_k/H_k,$$

 $\varphi \colon (g_1, \ldots, g_k) \mapsto (g_1H_1, \ldots, g_kH_k).$

Легко видеть, что φ – это сюръективный гомоморфизм, ядро которого совпадает с $H_1 \times \ldots \times H_k$. Это доказывает оба утверждения.

Лемма 16 (Критерий инъективности гомоморфизма). Пусть $\varphi: G \to G'$ – гомоморфизм групп. Тогда φ инъективен если и только если $\operatorname{Ker} \varphi = \{e\}$.

Доказательство. Пусть $g \neq e \in \operatorname{Ker} \varphi$. Тогда $\varphi(g) = e = \varphi(e)$, то есть гомоморфизм φ не инъективен.

Пусть теперь φ не инъективен. Тогда есть два элемента $x \neq y \in G$ такие, что $\varphi(x) = \varphi(y)$. Но тогда $\varphi(xy^{-1}) = e$. Следовательно, $xy^{-1} \neq e \in \operatorname{Ker} \varphi$.

Замечание 8. Так же как в случае абелевой группы мы используем аддитивные обозначения, если группы A и B абелевы, то прямое произведение групп A и B мы будем называть npsmoù суммой и обозначать $A \oplus B$.

Теорема 12 (Китайская теорема об остатках.). Пусть m u n – натуральные числа. Тогда следующие условия эквивалентны:

- 1) $HO_{\mathbb{Z}}(m,n) = 1;$
- 2) $\mathbb{Z}_{mn} \cong \mathbb{Z}_m \oplus \mathbb{Z}_n$.

Доказательство. $1 \Rightarrow 2$. Рассмотрим

$$\varphi \colon \mathbb{Z}_{mn} \to \mathbb{Z}_m \oplus \mathbb{Z}_n, \qquad \varphi(u) = (u \mod m, u \mod n).$$

Докажем, что φ – изоморфизм. Из определения видно, что φ переводит сложение в сложение, то есть является гомоморфизмом.

Пусть $u \in \text{Ker } \varphi$. Тогда u делится и на m, и на n. Значит, так как m и n взаимно просты, u делится на mn. То есть u равен нулю по модулю mn. Следовательно, $\text{Ker } \varphi = \{0\}$, а значит, по лемме 16 гомоморфизм φ инъективен. Но поскольку $|\mathbb{Z}_{mn}| = |\mathbb{Z}_m \oplus \mathbb{Z}_n|$ из инъективности φ следует его биективность. Итак, φ – изоморфизм.

 $2 \Rightarrow 1$. Пусть НОД(m,n) = d > 1. Тогда для любого элемента $(a,b) \in \mathbb{Z}_m \oplus \mathbb{Z}_n$ выполнено

выполнено $\frac{mn}{d}(a,b) = \text{HOK}(m,n)(a,b) = (0,0).$ Значит, любой элемент в $\mathbb{Z}_m \oplus \mathbb{Z}_n$ имеет порядок не больше $\frac{mn}{d}$, то есть нет элемента из $\mathbb{Z}_m \oplus \mathbb{Z}_n$, порядок которого равен mn. Значит, группа $\mathbb{Z}_m \oplus \mathbb{Z}_n$ не циклическая и не изоморфна \mathbb{Z}_{mn} .