Лекция 11. Коммутант и разрешимость.

Гайфуллин Сергей Александрович

МГУ

21 октября, 2020

Определение. Пусть x и y – элементы группы G. <u>Коммутатором</u> элементов x и y называется элемент $[x,y] = xyx^{-1}y^{-1}$.

Лемма. [x, y] = e тогда и только тогда, когда элементы x и y перестановочны (то есть xy = yx).

$$xy = yx \Leftrightarrow xyx^{-1} = y \Leftrightarrow xyx^{-1}y^{-1} = e.$$

Замечание. Обратный элемент к коммутатору является коммутатором. В самом деле:

$$[x,y]^{-1} = (xyx^{-1}y^{-1})^{-1} = yxy^{-1}x^{-1} = [y,x].$$

Определение. Коммутант группы G – это подгруппа, порожденная всеми коммутаторами пар элементов из G. Коммутант группы G обозначается G' или [G,G].

Лемма. Коммутант состоит из произведений коммутаторов.

Доказательство. По определению, G' состоит из произведений коммутаторов и обратных к ним. Но, так как обратный к коммутатору – коммутатор, G' состоит из произведения коммутаторов.

Лемма. $G' = \{e\}$ тогда и только тогда, когда G коммутативна.

Доказательство. Если G коммутативна, то все коммутаторы равны e, и значит, $G'=\{e\}$.

Если же G не абелева, то найдутся два элемента x и y такие, что $xy \neq yx$. Тогда $[x,y] \neq e \in G'$.

Лемма. Сопряженный к коммутатору элемент является коммутатором.

$$\begin{split} g[x,y]g^{-1} &= gxyx^{-1}y^{-1}g^{-1} = \\ &= gx(g^{-1}g)y(g^{-1}g)x^{-1}(g^{-1}g)y^{-1}g^{-1} = \\ &= (gxg^{-1})(gyg^{-1})(gx^{-1}g^{-1})(gy^{-1}g^{-1}) = \\ &= (gxg^{-1})(gyg^{-1})(gxg^{-1})^{-1}(gyg^{-1})^{-1} = [gxg^{-1}, gyg^{-1}]. \end{split}$$

Следствие. G' – нормальная подгруппа в G.

Любой элемент G' имеет вид $[x_1, y_1] \cdot [x_2, y_2] \cdot \ldots \cdot [x_n, y_n]$. Тогда

$$g[x_1, y_1][x_2, y_2] \dots [x_n, y_n]g^{-1} =$$

$$= g[x_1, y_1](g^{-1}g)[x_2, y_2](g^{-1}g) \dots (g^{-1}g)[x_n, y_n]g^{-1} =$$

$$= (g[x_1, y_1]g^{-1})(g[x_2, y_2]g^{-1}) \dots (g[x_n, y_n]g^{-1}) =$$

$$= [gx_1g^{-1}, gy_1g^{-1}] \dots [gx_ng^{-1}, gy_ng^{-1}].$$

Лемма. Группа G/G' коммутативна.

Доказательство. Рассмотрим коммутатор двух произвольных элементов из G/G':

$$[gG', hG'] = gG' \cdot hG' \cdot (gG')^{-1} \cdot (hG')^{-1} = [g, h]G' = G'.$$

То есть коммутатор любых элементов из G/G' равен единице группы G/G'. Значит, G/G' – абелева группа.

Теорема. G' — минимальная нормальная подгруппа, фактор по которой абелев. (То есть, если $G \triangleright H$ и группа G/H — абелева группа то $G' \subset H$.)

Доказательство. Рассмотрим коммутатор двух произвольных элементов из G/H:

 $[g_1H,g_2H]=g_1H\cdot g_2H\cdot (g_1H)^{-1}\cdot (g_2H)^{-1}=[g_1,g_2]H$. С другой стороны, так как G/H – абелева группа, $[g_1H,g_2H]=H$.

Получаем $[g_1,g_2]H=H$, следовательно, $[g_1,g_2]\in H$. Поскольку коммутаторы порождают G', выполняется $G'\subset H$.

Теорема. $S'_n = A_n$.

Доказательство. Как известно, $A_n \triangleleft S_n$ и $S_n/A_n \cong \mathbb{Z}_2$ – абелева группа. Значит, $S_n' \subset A_n$.

Обратное включение будет следовать из явных выкладок.

$$[(i,j),(j,k)] = (i,j)(j,k)(i,j)(j,k) = (i,k,j).$$

Значит, любой тройной цикл (i, k, j) лежит в S'_n . Далее утверждение теоремы следует из следующей леммы.

Лемма. A_n порождается тройными циклами.

Доказательство. Пусть $\sigma \in A_n$. Любая перестановка разлагается в произведение транспозиций. Поскольку σ – четная перестановка, $\sigma = \tau_1 \dots \tau_{2m}$. Рассмотрим $\tau_{2l-1}\tau_{2l}$. Возможны 3 варианта:

- 1) $au_{2l-1} = au_{2l}$. Тогда из произведения можно их удалить.
- 2) $\tau_{2l-1}=(i,j), \ \tau_{2l}=(j,k).$ Тогда $\tau_{2l-1}\tau_{2l}=(i,j,k).$
- 3) $au_{2l-1}=(i,j), \ au_{2l}=(k,s).$ Тогда
- $\tau_{2l-1}\tau_{2l} = (i,j)(j,k)(j,k)(k,s) = (i,j,k)(j,k,s).$

Теорема. 1) $A_3' = \{id\},\$

- 2) $A_4' = V_4$,
- 3) $A'_n = A_n$ при $n \ge 5$.

Доказательство. 1) Группа A_3 изоморфна \mathbb{Z}_3 .

- 2) $|A_4|=12,\ |V_4|=4$, следовательно, $|A_4/V_4|=3$, то есть $A_4/V_4\cong \mathbb{Z}_3$ абелева группа. Значит, $A_4'\subset V_4$. С другой стороны
- [(i,j,k)(i,k,s)] = (i,j,k)(j,k,s)(i,k,j)(j,s,k) = (i,s)(j,k). Следовательно, $V_4 \subset A'_a$. Итак, $A'_a = V_4$.
- 3) Как следует из предыдущего пункта при $n \ge 4$ выполнено $(i,s)(j,k) \in A'_n \ \forall i,j,k,s.$

Далее утверждение теоремы вытекает из следующей леммы.

Лемма. При $n \ge 5$ группа A_n порождается парами несмежных транспозиций (i,j)(k,s).

Лемма. При $n \ge 5$ группа A_n порождается парами несмежных транспозиций (i,j)(k,s).

Доказательство.

Пусть H – подгруппа A_n , $n \ge 5$ порожденная всеми парами несмежных транспозиций.

$$(i,j)(k,s)\cdot (k,s)(j,r)=(i,j)(j,r)=(i,j,r).$$

Значит, H содержит все тройные циклы. Но, как уже доказано, тройные циклы порождают A_n . Следовательно, $H = A_n$.

Теорема. Пусть F – поле такое, что $|F| \ge 4$. Тогда

- 1) $\mathrm{SL}_n(F)' = \mathrm{SL}_n(F)$
- 2) $\operatorname{GL}_n(F)' = \operatorname{SL}_n(F)$

Доказательство. 1) Для удобства записи сделаем нужную выкладку при n=2. Поскольку $|F|\geq 4$, найдется $a\in F$ такое, что $a\notin \{0,1,-1\}$. Тогда есть a^{-1} и для любого $\mu\in F$ существует $\lambda=(a^2-1)^{-1}$. Заметим, что

$$\begin{bmatrix} \begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix}, \begin{pmatrix} 1 & \lambda \\ 0 & 1 \end{pmatrix} \end{bmatrix} =$$

$$= \begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix} \begin{pmatrix} 1 & \lambda \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a^{-1} & 0 \\ 0 & a \end{pmatrix} \begin{pmatrix} 1 & -\lambda \\ 0 & 1 \end{pmatrix} =$$

$$= \begin{pmatrix} a & a\lambda \\ 0 & a^{-1} \end{pmatrix} \begin{pmatrix} a^{-1} & -a^{-1}\lambda \\ 0 & a \end{pmatrix} = \begin{pmatrix} 1 & (a^2 - 1)\lambda \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & \mu \\ 0 & 1 \end{pmatrix}$$

Аналогично, при любом n выполняется $E + \mu E_{ij} \in \operatorname{SL}_n(F)'$ при всех $i \neq j$.

Теорема. Пусть F – поле такое, что $|F| \geq$ 4. Тогда

- 1) $\operatorname{SL}_n(F)' = \operatorname{SL}_n(F)$
- $2) \operatorname{GL}_n(F)' = \operatorname{SL}_n(F)$

Продолжение доказательства. 1) Группа $\operatorname{SL}_n(F)$ порождается элементами вида $E + \mu E_{ij}$. В самом деле, любую матрицу A из $\operatorname{SL}_n(F)$ можно привести элементарными преобразованиями первого типа к матрице E. При этом происходит умножение на матрицы вида $E + \mu E_{ij}$. Получаем $(E + \mu_k E_{i_k j_k}) \dots (E + \mu_1 E_{i_1 j_1}) A = E$. Значит,

$$A = (E - \mu_1 E_{i_1 j_1}) \dots (E - \mu_k E_{i_k j_k}).$$

2) $\operatorname{GL}_n(F)' \supset \operatorname{SL}_n(F)' = \operatorname{SL}_n(F)$. С другой стороны $\operatorname{GL}_n(F)/\operatorname{SL}_n(F) \cong F^{\times}$ – абелева группа, а значит, $\operatorname{GL}_n(F)' \subset \operatorname{SL}_n(F)$. Получаем $\operatorname{GL}_n(F)' = \operatorname{SL}_n(F)$.

Лемма. Пусть $\varphi\colon G\to K$ – гомоморфизм групп. Тогда $\varphi(G')\subset K'$. Если гомоморфизм φ сюръективен, то $\varphi(G')=K'$.

Доказательство. Поскольку φ – гомоморфизм, $\varphi([x,y]) = \varphi(xyx^{-1}y^{-1}) = = \varphi(x)\varphi(y)\varphi(x)^{-1}\varphi(y)^{-1} = [\varphi(x),\varphi(y)].$ Значит, $\varphi([x,y]) \in K'$, и следовательно, $\varphi(G') \subset K'$. Если же φ сюръективен, то для любых $a,b \in K$ найдутся $x,y \in G$ такие, что $\varphi(x) = a$, $\varphi(y) = b$. Тогда $[a,b] = [\varphi(x),\varphi(y)] = \varphi([x,y]) \subset \varphi(G')$. Значит, $\varphi(G') = K'$.

Следствие. Пусть $G \triangleright H$. Тогда $(G/H)' \cong G'/(H \cap G')$.

Доказательство. Применим лемму к сюръективному каноническому гомоморфизму $\pi_H \colon G \to G/H$. Получим $(G/H)' = \pi_H(G')$. Рассмотрим ограничение $\pi_H \mid_{G'}$. Имеем $\operatorname{Ker}(\pi_H \mid_{G'}) = H \cap G'$, $\operatorname{Im}(\pi_H \mid_{G'}) = \pi_H(G')$ По теореме о гомоморфизме получаем утверждение следствия.

Определение. Подгруппа $H\subset G$ называется характеристической, если для любого автоморфизма $\overline{\varphi}\colon G\to G$ выполнено $\varphi(H)=H.$

Характеристическая подгруппа автоматически является нормальной. Для доказательства этого достаточно рассмотреть внутренний автоморфизм $\varphi_g \colon h \mapsto ghg^{-1}$.

Лемма. Характеристическая подгруппа характеристической подгруппы является характеристической.

Доказательство. Пусть H — характеристическая подгруппа G, а N — характеристическая подгруппа H. Пусть $\varphi \in \operatorname{Aut}(G)$. Тогда $\varphi(H) = H$. Поскольку $\varphi^{-1}(H) = H$, получаем, что $\varphi \mid_H \colon H \to H$ — автоморфизм H. Значит, поскольку N характеристическая, $\varphi(N) = \varphi \mid_H (N) = N$.

Замечание. Напомним, что нормальная подгруппа нормальной подгруппы не всегда нормальна.

Предложение. Коммутант и центр – характеристические подгруппы.

Доказательство. Пусть G – группа. Рассмотрим $z \in Z(G)$, и пусть $\varphi \in \operatorname{Aut}(G)$. Тогда для любого $g \in G$ выполнено $\varphi(z)g = \varphi(z\varphi^{-1}(g)) = \varphi(\varphi^{-1}(g)z) = g\varphi(z)$. То есть $\varphi(z) \in Z(G)$.

Пусть теперь
$$g\in G'.$$
 Тогда $g=[x_1,y_1]\dots[x_k,y_k].$ Получаем $\varphi(g)=[\varphi(x_1),\varphi(y_1)]\dots[\varphi(x_k),\varphi(y_k)]\in G'.$

Рассмотрим ряд кратных коммутантов.

$$G\supset G'\supset G''\supset \overline{G^{(3)}}\supset \overline{G^{(4)}}\supset\ldots$$

Из предложения следует, что $G^{(i)}$ – характеристическая (и в частности нормальная) подгруппа в G.

