
Лекция 1

Определение 1. Пусть G – некоторое множество. бинарной операцией на множестве
G называется отображение

G×G→ G

из 2-ой декартовой степени множества G в множество G.
Расcмотрим бинарную операцию ∗ на множестве G:

G×G→ G, (g1, g2) → g1 ∗ g2.
Определение 2. Непустое множество G с фиксированной бинарной операцией ∗ на-
зывается группоидом.

Рассмотрим следующие условия (аксиомы) на операцию ∗ .
А1. Ассоциативность. Для любых элементов a, b, c ∈ G выполнено (a∗b)∗c = a∗(b∗c).
А2. Существование нейтрального элемента. Существует такой элемент e ∈ G, что

для любого g ∈ G выполняется eg = ge = g.
А3. Существование обратного элемента. Для каждого элемента g ∈ G существует

элемент g−1 ∈ G такой, что g ∗ g−1 = g−1 ∗ g = e.
А4. Коммутативность. Для любых элементов a, b ∈ G выполнено a ∗ b = b ∗ a.
Накладывая на операцию ∗ различные множества условий, мы будем получать раз-

личные алгебраические структуры.
Определение 3. Если ∗ удовлетворяет условию А1, то G называется полугруппой.

Если ∗ удовлетворяет условиям А1 и А2, то G называется моноидом.
Если ∗ удовлетворяет условиям А1 и А2 и A3, то G называется группой.
Условие А4 добавляет к названию структуры слово абелев (или, что то же самое,

коммутативный). Так условия А1 и А4 задают абелеву (коммутативную) полугруппу,
условия А1, А2 и А4 задают абелев (коммутативный) моноид, условия А1, А2, А3 и
А4 задают абелеву (коммутативную) группу.
Обозначение 1. Если не очевидно, какая операция на множестве G имеется в виду,
то будем использовать обозначение (G, ∗) для множества G с операцией ∗.

Зачастую вместо слова "операция"используют слово "умножение". Суть от этого
не меняется и имеется в виду некоторая операция в группе. При этом на письме так
же как и в случае обычного умножения чисел знак умножения можно опускать. Ней-
тральный элемент группы в этом случае зачастую называют "единицей группы". Та-
кие обозначения называются мультипликативными.

Если заранее известно, что группа абелева, то часто используют аддитивные обо-
значения. Операция называется сложением и обозначается знаком ”+”, нейтральный
элемент называется нулем, а обратный элемент называется "противоположным эле-
ментом".

Соберем эти обозначения в таблице.
общие мультипликативные аддитивные

обозначения обозначения обозначения
произвольная произвольная абелева

группа группа группа
операция ∗ умножение · сложение +

нейтральный элемент e единица e ноль 0
обратный обратный противоположный

элемент g−1 элемент g−1 элемент −g
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Предложение 1. (Простые следствия из аксиом.)
Пусть (G, ∗) – группа.
1) (Обобщенная ассоциативность) И пусть g1, . . . , gk ∈ G. Тогда как бы ни были

расставлены скобки в выражении g1 ∗ g2 ∗ . . . ∗ gk результат будет одинаковым.
2) В G есть единственная единица.
3) В G для каждого элемента есть единственный обратный.
4) Пусть a, b ∈ G. Тогда если a ∗ b = e, то b = a−1. Аналогично если b ∗ a = e, то

b = a−1.
5) Пусть g ∈ G. Тогда (g−1)−1 = g.
6) Пусть a, b ∈ G. Тогда (a ∗ b)−1 = b−1 ∗ a−1.

Доказательство. 1) Докажем это утверждение индукцией по k.
База индукции k = 3. В этом случае обобщенная ассоциативность совпадает с ассо-

циативностью, то есть с аксиомой А1.
Шаг индукции. Предположим, что для k < n данное утверждение уже доказано.

Докажем его для k = n. Среди всех расстановок скобок есть стандартная (при ней
действия выполняются слева-направо):

(. . . (g1 ∗ g2) ∗ g3) ∗ . . . ∗ gn−1) ∗ gn = g.

Достаточно доказать, что результат, который получается при произвольной расстанов-
ке скобок, совпадает с g. Фиксируем некоторую расстановку скобок. Для этой расста-
новки скобок есть последнее действие, которое дает операцию от двух скобок. Длиной
скобки назовем количество gi, входящих в нее. Обозначим длину правой скобки че-
рез s.

Случай 1 s = 1. Наша расстановка скобок имеет вид (. . .) ∗ gn. По предположе-
нию индукции в левой скобке можно расставить скобки произвольным образом. В том
числе стандартным образом. Но тогда в целом мы получим стандартную расстановку
скобок. Значит, результат при нашей расстановке скобок совпадает с результатом при
стандартной расстановке скобок.

Случай 2 s ≥ 2. Последнее действие при нашей фиксированной расстановке скобок
имеет вид (a) ∗ (b). Длина скобки b меньше n. По предположению индукции можно
считать, что в скобке b расстановка скобок стандартная. Таким образом, стандартная
расстановка скобок в скобке b дает b = d ∗ gn. То есть g = a ∗ (d ∗ gn) = (a ∗ d) ∗ gn. По
случаю 1 мы получаем, что в g можно расставить скобки стандартным образом.

2) Предположим, что в (G, ∗) есть две единицы: e и s. Рассмотрим e ∗ s. Поскольку
e – единица, получаем e ∗ s = s. С другой стороны так как s – единица, то e ∗ s = e.
Таким образом, e = s.

3) Предположим, что g ∈ G – элемент, у которого есть хотя бы два обратных: f и
h. Тогда f = f ∗ (g ∗ h) = (f ∗ g) ∗ h = h.

4) Пусть a∗b = e. Рассмотрим операцию элемента a−1 и левой части и приравняем к
операции элемента a−1 и правой части. (Домножим на a−1 слева.) Получим a−1∗a∗b =
a−1 ∗ e. То есть b = a−1.

Если b ∗ a = e, то аналогично домножая слева на a−1, получаем b = a−1.
5) Обозначим b−1∗a−1 = c. Рассмотрим (a∗b)∗c = (a∗b)∗(b−1∗a−1) = a∗(b∗b−1)∗a−1 =

a ∗ e ∗ a−1 = e. Значит, c = (a ∗ b)−1.
6) g−1 ∗ g = e, значит g = (g−1)−1. □

Определение 4. Порядок группы G – это количество элементов в этой группе. (То
есть мощность множества G.) Порядок группы G обозначается |G|.
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Определение 5. Подмножество H группы (G, ∗) называется подгруппой, если (H, ∗)
является группой.

Подмножество S группы (G, ∗) называется замкнутым относительно операции ∗,
если для любых a, b ∈ S выполнено a∗b ∈ S. Подмножество S группы (G, ∗) называется
замкнутым относительно взятия обратного, если для любого s ∈ S элемент s−1

также принадлежит S.

Лемма 1. Пусть H – подмножество группы (G, ∗). Тогда H является подгруппой в
G тогда и только тогда, когда выполнены следующие три условия

1) H не пусто;
2) H оно замкнуто относительно операции;
3) H замкнуто относительно взятия обратного.

Доказательство. Если (H, ∗) – группа, то операция ∗ корректно определена на H.
Значит, H замкнуто относительно операции ∗. Так как по определению группы в ней
есть нейтральный элемент, она является непустым множеством. Пусть e – нейтральный
элемент группы G, а s – нейтральный элемент группы H. Получаем s∗s = s. В группе
G есть обратный к s элемент s−1. Умножая на него слева предыдущее равенство,
получаем s = e. То есть единицы у групп G и H совпадают. Для каждго g ∈ H есть
обратный элемент g−1 в группе G и есть обратный элемент обратный элемент g∨ в
группе H. Тогда g ∗ g−1 = e = g ∗ g∨. Умножив слева на g−1, получаем g−1 = g∨.
Поскольку для группы (H, ∗) выполнена аксиома А3, то H замкнуто относительно
взятия обратного.

Пусть теперь непустое подмножество H замкнуто относительно операции и взятия
обратного. Так как H замкнуто относительно операции, (H, ∗) – группоид. Поскольку
ассоциативность выполнена в G, то она выполнена и в H. Подмножество не пусто.
Возьмем элемент h ∈ H. Так как H замкнуто относительно взятия обратного, h−1 ∈ H.
Пользуясь замкнутостью H относительно операции, получаем h ∗ h−1 = e ∈ H. Таким
образом, в H выполнена аксиома А2. Поскольку H замкнуто относительно взятия
обратного, в H выполнена и аксиома А3. □

Примеры групп.
1) Числовые аддитивные (то есть по сложению) группы:

(Z,+), (Q,+), (R,+), (C,+).

Нейтральный элемент 0, обратный к элементу x – это −x. Выполнение аксиом следуют
из свойств сложения чисел. Все данные группы бесконечны и коммутативны.

2) Числовые мультипликативные группы:

Q× = (Q \ {0}, ·),R× = (R \ {0}, ·),C× = (C \ {0}, ·).
Нейтральный элемент 1, обратный к элементу x – это 1

x
. Выполнение аксиом следуют

из свойств умножения чисел. Данные группы бесконечны и коммутативны.
3) Группа вычетов (остатков) по модулю n: (Zn,+). Сложение происходит по модулю

n. Нейтральный элемент 0, обратный к элементу x – это n − x. Выполнение аксиом
следуют из свойств остатков. Данная группа коммутативна и имеет порядок n.

4) Группы перестановок. Множество Sn всех перестановок n элементов с операцией
композиции ◦ является группой. Докажем это. Нейтральный элемент этой группы –
это тождественная перестановка, обратный элемент – обратная перестановка. Ассоци-
ативность следует из следующей важной леммы.
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Лемма 2. Пусть есть четыре множества: X, Y , Z и W . И пусть фиксированы
отображения между этими множествами φ : X → Y , ψ : Y → Z и ζ : Z → W .
Тогда (ζ ◦ ψ) ◦ φ = ζ ◦ (ψ ◦ φ).

Доказательство. Возьмем элемент x ∈ X. Тогда
(ζ ◦ ψ) ◦ φ(x) = (ζ ◦ ψ)(φ(x)) = (ζ(ψ(φ(x))).

С другой стороны
ζ ◦ (ψ ◦ φ)(x) = ζ(ψ ◦ φ)(x) = (ζ(ψ(φ(x))).

□

Применяя данную лемму к случаю X = Y = Z = W = {1, 2, . . . , n} получаем ассо-
циативность Sn. Порядок группы Sn равен n!. При n ≥ 3 группа Sn не коммутативна.

5) Матричные группы. Пусть K – поле, например, K = Q,R или C.
а) GLn(K) – множество невырожденных матриц n × n с элементами из K. Легко

видеть, что это множество замкнуто относительно умножения матриц. Умножение
матриц ассоциативно, единичная матрица – нейтральный элемент и все невырожден-
ные матрицы обратимы (обратная также невырождена). Следовательно, (GL(K), ·) –
группа.

б) SLn(K) – множество n × n матриц с определителем 1 с элементами из K. Это
подмножество в GL(K замкнуто относительно умножения и взятия обратного. Следо-
вательно, это подгруппа.

в) On(K) – множество ортогональных матриц n×n с элементами из K. Это подмно-
жество в GL(K замкнуто относительно умножения и взятия обратного. Следовательно,
это подгруппа.

Эти группы конечны тогда и только тогда, когда поле K конечно. Они не коммута-
тивны при n ≥ 2.

6) Группы преобразований.
а) (Обобщение примера 4) Пусть X – некоторое множество (возможно бесконечное).

Рассмотрим множество S(X) биекций X → X с операцией композиции. Если |X| <
∞, то получаем группу перестановок. В общем случае получаем группу симметий
множества X. Нейтральный элемент – тождественное преобразование. Обратный –
обратное преобразование. Ассоциативность следует из леммы 2.

б) Группы преобразований векторного пространства. (Подгруппы в группе S(V ), где
V – векторное пространство.)

– Группа обратимых линейных преобразований V .
– Группа ортогональных линейных преобразований V .
– Группа движений V .
Во всех этих группах нейтральный элемент – тождественное преобразование, а об-

ратный элемент – обратное преобразование. Эти группы конечны тогда и только тогда,
когда поле, над которым V – векторное пространство конечно и размерность V конеч-
на.

в) Группа симметрий фигуры (то есть движений, сохраняющих фигуру).

Упражнение 1. Докажите, что движения, сохраняющие данную фигуру, образуют
подгруппу в группе всех движений.


