
Лекция 3

Теорема 1. 1) Подгруппа циклической группы циклическая;
2) Все подгруппы Z имеют вид ⟨k⟩ = kZ ∼= Z;
3) Все подгруппы Zn имеют вид ⟨d⟩ = dZn

∼= Zn
d

для некоторого d – делителя n;
4) Пусть m ∈ Zn. Тогда ⟨m⟩ = ⟨НОД(m,n)⟩.

Доказательство. 1) Следует из пунктов 2) и 3).
2) Пусть H – подгруппа в Z. Если H = {0}, то H = ⟨0⟩, что укладывается в утвер-

ждение задачи. Пусть H ̸= {0}. Если h ∈ H – отрицательное число, то положительное
число −h также лежит в H. Значит, в H есть натуральные числа. Выберем k – ми-
нимальное натуральное число из H. Пусть h ∈ H. Тогда h = kq + r, где 0 ≤ r < k.
При этом kq ∈ H, h ∈ H, следовательно, r ∈ H. Если r ̸= 0, получаем противоречие с
выбором k. Значит, r = 0 и h делится на k. Отсюда H = ⟨k⟩.

3) Пусть H – подгруппа в Zn. Если H = {0}, то H = ⟨n⟩, что укладывается в
утверждение задачи. Пусть H ̸= {0}. Рассмотрим минимальное натуральное число d
такое, что его класс лежит в H. Ясно, что d < n. Пусть h ∈ H. Тогда h = dq + r, где
0 ≤ r < d. При этом dq ∈ H, h ∈ H, следовательно, r ∈ H. Если r ̸= 0, получаем
противоречие с выбором d. Значит, r = 0 и h делится на d. Отсюда H = ⟨d⟩. Докажем,
что d – делитель n. Если это не так, то n = kd+ s, 0 < s < d. Но тогда в Zn выполнено
s = kd ∈ H, противоречие с выбором d. Итак, d – делитель n. Осталось сказать, что
порядок d в группе Zn равен n

d
. Значит, H = ⟨d⟩ ∼= Zn

d
.

4) ⟨m⟩ – циклическая группа. По лемме ??, ord(m) = n
НОД(m,n)

. Значит |⟨m⟩| =
n

НОД(m,n)
. Следовательно, по пункту 3), ⟨m⟩ = ⟨НОД(m,n)⟩. □

Определение 1. Пусть H – подгруппа группы G. Рассмотрим элемент g ∈ G. Левым
смежным классом элемента g по подгруппе H называется множество

gH = {gh | h ∈ H}.

Правым смежным классом элемента g по подгруппе H называется множество

Hg = {hg | h ∈ H}.

Лемма 1. 1) g ∈ fH тогда и только тогда, когда f−1g ∈ H,
1’) g ∈ Hf тогда и только тогда, когда gf−1 ∈ H,
2) Левые (правые) смежные классы – это классы эквивалентности. (Более точно,

отношение g ∼ f , если g ∈ fH является отношением эквивалентности.)
3) Следующие мощности одинаковы |gH| = |Hg| = |H|.

Доказательство. 1) g ∈ fH ⇐⇒ g = fh⇐⇒ f−1g = h.
1’) g ∈ Hf ⇐⇒ g = hf ⇐⇒ gf−1 = h.
2) Докажем только для левых смежных классов. Для правых аналогично.
Рефлексивность: g ∈ gH так как e ∈ H,
Симметричность:

g ∈ fH ⇐⇒ f−1g ∈ H ⇐⇒ (f−1g)−1 = g−1f ∈ H ⇐⇒ f ∈ gH.

Транзитивность:

g ∈ fH, f ∈ sH =⇒ f−1g ∈ H, s−1f ∈ H =⇒ s−1ff−1g = s−1g ∈ H.

3) Следует из того, что gh1 = gh2 тогда и только тогда, когда h1 = h2. □
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Замечание 1. Из пункта 2 следует, что левые (правые) смежные классы либо не пере-
секаются, либо совпадают.

Определение 2. Индекс подгруппы H группы G – это мощность множества левых
смежных классов. Обозначается индекс [G : H]

Задача 1. Докажите, что gH ↔ Hg−1 – биекция между левыми и правыми смежными
классами, и следовательно мощность правых смежных классов также равна индексу
подгруппы. (То, что количество левых и правых смежных классов одинаково для ко-
нечной группы будет следовать из теоремы Лагранжа, но это верно и для бесконечных
групп.)

Теорема 2. (Лагранж) Пусть G – конечная группа и H – подгруппа G. Тогда

|G| = |H| · [G : H].

Доказательство. Поскольку каждый элемент группы G лежит в некотором левом
смежном классе и левые смежные классы либо совпадают, либо не пересекаются, вся
группа G разбивается на непересекающиеся левые смежные классы. Так как мощность
каждого смежного класса равна |H|, мощность всей группы равна |H| умножить на
количество смежных классов. □

Следствие 1. (Следствия из теоремы Лагранжа)
1) Порядок конечной группы делится на порядок ее подгруппы.
2) Порядок конечной группы делится на порядок ее элемента.
3) Для любого элемента g конечной группы G выполнено g|G| = e.
4) Группа простого порядка циклическая.
5) (Малая теорема Ферма) Пусть p – простое число и a – число, не делящееся на

p. Тогда ap−1 имеет остаток 1 при делении на p.

Доказательство. 1) Очевидно следует из теоремы Лагранжа.
2) Пусть g – элемент конечной группы G. Рассмотрим циклическую подгруппу H =

⟨g⟩. Поскольку ord(g) = |H|, порядок G делится на ord(g).
3) Пусть |G| = ord(g) · k. Тогда g|G| = (gord(g))k = ek = e.
4) Пусть |G| = p – простое число. Рассмотрим g ̸= e ∈ G. Поскольку порядок g

делит p и не равен 1, получаем ord(g) = p. А значит, G = ⟨g⟩.
5) Применим пункт 3 к группе Z×

p = (Zp \ {0}, ·) и ее элементу a. Получаем

a|Z
×
p | = ap−1 = 1(mod p).

□

Определение 3. Подгруппа H группы G называется нормальной, если для любого
g ∈ G выполнено gH = Hg. То, что H – нормальная подгруппа G обозначается так:
G ▷ H.

Обозначим через gHg−1 множество {ghg−1 | h ∈ H}.

Лемма 2. Следующие условия равносильны:
1) G ▷ H,
2) для каждого g ∈ G выполнено gHg−1 = H,
3) для каждого g ∈ G выполнено gHg−1 ⊆ H,
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Доказательство. 1 =⇒ 2 В множестве gH = Hg каждый элемент имеет вид gh1 = h2g.
При этом и h1 и h2 пробегают всю группу H. Домножим каждый элемент справа на
g−1, получим gh1g

−1 = h2. То есть gHg−1 = H.
2 =⇒ 3 Очевидно.
3 =⇒ 1. Для каждых g ∈ G и h ∈ H выполнено ghg−1 = h̃ ∈ H. Тогда gh = ghg−1g =

h̃g. Отсюда gH ⊆ Hg. Аналогично hg = gg−1hg = gĥ для ĥ = g−1hg ∈ H. Значит,
gH ⊇ Hg. В итоге gH = Hg. □

Пример 1. Любая подгруппа в абелевой группе нормальна, так как ghg−1 = h.

Пример 2. SLn(C) – нормальная подгруппа в GLn(C). Действительно, пусть A ∈
GLn(C), B ∈ SLn(C). Тогда det(ABA−1) = detA detB(detA)−1 = 1. То есть ABA−1 ∈
SLn(C).

Пример 3. Подгруппа ⟨(1, 2)⟩ = {id, (1, 2)} ⊆ S3 не является нормальной. В самом
деле,

(1, 2, 3)(1, 2)(1, 2, 3)−1 = (1, 2, 3)(1, 2)(1, 3, 2) = (2, 3) /∈ ⟨(1, 2)⟩.

Определение 4. Пусть H – нормальная подгруппа в группе G. Факторгруппа G/H –
это множество (левых, они же правые) смежных классов по подгруппе H с операцией

(g1H) · (g2H) = (g1g2)H.

Определение умножения в факторгруппе требует проверки корректности, то есть
проверки того, что результат умножения не зависит от выбора представителей в смеж-
ных классах. Потенциальная проблема содержится в том, что g1H = g′1H, g2H = g′2H,
но при этом смежный класс g1g2H может не совпадать с g′1g

′
2H. Тогда умножение

называется некорректным.

Предложение 1. Пусть G – группа, H – подгруппа. Тогда умножение на множе-
стве левых смежных классов корректно тогда и только тогда, когда H нормальна.

Доказательство. Пусть H нормальна и g1H = g′1H, g2H = g′2H. Получаем, что
g′−1
1 g1 ∈ H и g′−1

2 g2 ∈ H. Обозначим g′−1
1 g1 через h. Имеем

(g′1g
′
2)

−1(g1g2) = g′−1
2 g′−1

1 g1g2 = g′−1
2 hg2 ∈ H

Это означает, что g1g2H совпадает с g′1g′2H. Значит, умножение корректно.
Пусть теперь H не нормальна. Тогда найдутся g ∈ G и h ∈ H такие, что ghg−1 /∈ H.

Тогда gH = (gh)H. Рассмотрим следующие смежные классы: gH = (gh)H и g−1H.
Имеем gH · g−1H = H, но (gh)H · g−1H = (ghg−1)H ̸= H. Значит, умножение не
корректно. □

Легко видеть, что G/H действительно группа. Ассоциативность произведения сле-
дует из ассоциативности произведения в G, единичный элемент – это eH = H, обрат-
ный к gH элемент – это g−1H. Из теоремы Лагранжа следует, что если G – конечная
группа, то |G/H| = |G|

|H| .

Пример 4. Найдем, чему изоморфна факторгруппа Z/nZ. Подгруппа nZ нормальна,
так как группа Z абелева. Смежные классы имеют вид k+nZ. При этом k+nZ = l+Z
тогда и только тогда, когда k и l имеют одинаковые остатки при делении на n. Со-
поставим смежному классу k+ nZ остаток при делении k на n. Докажем, что это
сопоставление – это изоморфизм ψ между Z/nZ и Zn. Действительно, сложению



4

смежных классов соответствует сложение остатков. Кроме того ψ сюръектив-
но, так как любой остаток – это остаток некоторого числа k, а значит, он равен
ψ(k + nZ). Проверим инъективность ψ. Пусть ψ(k + nZ) = ψ(l + nZ). Значит, k и l
сравнимы помодулю n. Следовательно, k + nZ = l + nZ.


