
Лекция 4

Определение 1. Пусть φ : G → H – гомоморфизм групп. Ядром гомоморфизма φ
называется множество

Kerφ = {g ∈ G | φ(g) = e} ⊆ G.

Образом гомоморфизма φ называется множество
Imφ = {φ(g) | g ∈ G} ⊆ H.

Поскольку φ(e) = e, нейтральный элемент всегда лежит в ядре.

Лемма 1. Пусть φ : G → H – гомоморфизм. Тогда
а) Ядро Kerφ – нормальная подгруппа в группе G.
б) Imφ – подгруппа в H.

Доказательство. а) Пусть g1, g2 ∈ Kerφ. Тогда φ(g1g2) = φ(g1)φ(g2) = e·e = e. Значит,
g1g2 ∈ Kerφ. То есть ядро замкнуто относительно операции. Кроме того

φ(g−1
1 ) = φ(g−1

1 )φ(g1) = φ(g−1
1 g1) = φ(e) = e.

Значит, g−1
1 ∈ Kerφ. Таким образом, ядро замкнуто относительно взятия обратного.

Осталось заметить, что e ∈ Kerφ. Следовательно, Kerφ – подгруппа в G.
Докажем, что подгруппа Kerφ ⊆ G нормальна. Пусть g ∈ G, h ∈ Kerφ. Тогда

φ(ghg−1) = φ(g)φ(h)φ(g)−1 = φ(g)φ(g)−1 = e.

Значит, ghg−1 ∈ Kerφ, то есть Kerφ – нормальная подгруппа.
б) Пусть h1, h2 ∈ Imφ. Тогда найдутся g1, g2 ∈ G такие, что h1 = φ(g1), h2 = φ(g2).

Тогда h1h2 = φ(g1g2) ∈ Imφ и h−1
1 = φ(g−1

1 ) ∈ Imφ. Кроме того e = φ(e) ∈ Imφ.
То есть образ замкнут относительно операции, взятия обратного и содержит единицу.
Следовательно, Imφ – подгруппа в H. □

Теорема 1. (Теорема о гомоморфизме) Пусть φ : G → G̃ – гомоморфизм групп. Тогда
G/Kerφ ∼= Imφ.

Доказательство. Рассмотрим отображение
Ψ: G/Kerφ → Imφ, Ψ(gKerφ) = φ(g).

Сперва нам надо проверить корректность отображения Ψ, то есть то, что оно не
зависит от выбора представителя g из смежного класса. Для этого заметим, что если
gKerφ = g′Kerφ, то g′−1g = h ∈ Kerφ. Тогда g = g′h. Получаем φ(g) = φ(g′h) =
φ(g′)φ(h) = φ(g′)e = φ(g′). Таким образом, отображение Ψ определено корректно.

Докажем, что Ψ – изоморфизм. То, что Ψ –гомоморфизм следует из равенства:
Ψ((gKerφ)(fKerφ)) = Ψ(gfKerφ) = φ(gf) = φ(g)φ(f) = Ψ(gKerφ)Ψ(fKerφ).

Инъективность Ψ проверим по критерию инъективности. Если gKerφ ∈ KerΨ, то
Ψ(gKerφ) = φ(g) = e. Значит, g ∈ Kerφ. То есть gKerφ = Kerφ – единица фактор-
группы. Сюръективность Ψ очевидна, так как для любого элемента φ(g) в Imφ в него
отображается смежный класс gKerφ. □

Пример 1. Найдем, чему изоморфна факторгруппа Z/nZ по теореме о гомоморффиз-
ме. Для того, чтобы применить теорему о гомоморфизме, нам нужно построить
гомоморфизм φ : Z → G′ для некторой группы G′ такой, что Kerφ = nZ. Легко
видеть, что подходит следующий гомоморфизм

φ : Z → Zn, k 7→ k (modn)
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Действительно, φ – гомоморфизм, Kerφ = nZ и φ – сюръекция, то есть Imφ = Zn.
По теореме о гомоморфизме Z/nZ ∼= Zn.

Теорема 2. (Критерий инъективности гомоморфизма) Гомоморфизм φ : G → H
инъективен тогда и только тогда, когда Kerφ = {e}.
Доказательство. Пусть Kerφ ̸= {e}. Тогда существует g ̸= e, g ∈ Kerφ. То есть
φ(g) = e = φ(e). Следовательно, гомоморфизм φ не инъективен.

Допустим, гомоморфизм φ не инъективен. Тогда φ(g1) = φ(g2) для некоторых g1 ̸=
g2 ∈ G. Значит, φ(g1g

−1
2 ) = φ(g1)φ(g2)

−1 = e. То есть g1g
−1
2 ∈ Kerφ, но g1g

−1
2 ̸= e.

Значит, Kerφ ̸= {e}. □

Особый интерес представляют гомоморфизмы и изоморфизмы из группы в себя.

Определение 2. Изомомрфизм φ : G → G называется автоморфизмом.

Легко видеть, что композиция двух автоморфизмов – это автоморфизм. Множество
автоморфизмов группы G с операцией композиции образует группу Aut(G) с нейтраль-
ным элементом id.

Пусть g – элемент группы G. Рассмотрим отображение φg : G → G, определенное по
правилу φg(h) = ghg−1.

Лемма 2. Отображение φg является автоморфизмом группы G.

Доказательство. Проверим, что φg – гомоморфизм:

φg(hf) = ghfg−1 = ghg−1gfg−1 = φg(h)φg(f).

То, что φg – биекция следует из того, что существует обратное отображение. А именно,
обратное к φg отображение – это φg−1 . □

Автоморфизм называются внутренним, если он имеет вид φg для некоторого g ∈ G.

Предложение 1. Множество внутренних автоморфизмов с операцией композиции
образует подгруппу Inn(G) в Aut(G).

Доказательство. Докажем равенство φg ◦ φh = φgh. Для этого применим этот гомо-
морфизм к элементу s ∈ G:

φg ◦ φh(s) = φg(φh(s)) = φg(hsh
−1) = ghsh−1g−1 = (gh)s(gh)−1 = φgh(s).

Из доказанного равенства следует замкнутость Inn(G) относительно композиции. Кро-
ме того id = φe ∈ Inn(G). Осталось проверить, что Inn(G) замкнуто относительно
взятия обратного. Для этого заметим, что φg ◦ φg−1 = φe = id. □

Определение 3. Центр группы G – это множество Z(G) элементов, коммутирующих
со всеми элементами группы. Z(G) = {z ∈ G | ∀g ∈ G : gz = zg}.
Лемма 3. Центр – это нормальная подгруппа в G. Факторгруппа G/Z(G) изоморфна
группе внутренних автоморфизмов Inn(G).

Доказательство. Чтобы доказать сразу оба утверждения, рассмотрим гомоморфизм
Ψ: G → Inn(G), Ψ(g) = φg.

Докажем, что Ψ – гомоморфизм. В самом деле

φg1g2(x) = g1g2x(g1g2)
−1 = g1g2xg

−1
2 g−1

1 = g1(g2xg
−1
2 )g−1

1 =

= φg1(g2xg
−1
2 ) = φg1(φg2(x)) = φg1 ◦ φg2(x).
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Так как это верно для любого x, получаем φg1g2 = φg1 ◦ φg2 . Следровательно,
Ψ(g1g2) = φg1g2 = φg1 ◦ φg2 = Ψ(g1) ◦Ψ(g2).

Итак, Ψ – гомоморфизм. Найдём ядро Ψ. То, что φg = Ψ(g) = id равносильно тому, что
для каждого x ∈ G выполнено gxg−1 = x, что равносильно gx = xg. Таким образом,
KerΨ = Z(G). Это показывает, что Z(G) – нормальная подгруппа в G.

По теореме о гомоморфизме G/Z(G) ∼= ImΨ. Однако гомоморфизм Ψ очевидно
сюръективен, то есть ImΨ = Inn(G). Получаем G/Z(G) ∼= Inn(G). □


