
Лекция 6

Определение 1. Система элементов S абелевой группы A называется линейно неза-
висимой (над Z), если из того, что k1s1 + . . .+ knsn = 0 для некоторых ki ∈ Z, si ∈ S,
следует что все ki равны нулю.

Определение 2. Базис абелевой группы – это линейно независимая система порож-
дающих этой группы.

Заметим, что не у всякой группы есть базис. Например, у группы Zn базиса нет, так
как для любой системы {s1, . . . , sk} выполнено ns1 = 0, что противоречит линейной
независимости этой системы.

Определение 3. Пусть в абелевой группе A есть базис {e1, . . . , en, . . .}. Тогда группа
A называется свободной абелевой группой. Будем обозначать эту группу

A(e1, . . . , en, . . .).

Если базис конечен и имеет мощность n, то будем говорить, что A – свободная абелева
группа ранга n и обозначать rkA = n.

Лемма 1. Пусть в абелевой группе A есть базис {e1, . . . , en}. Тогда любой другой
базис этой группы также состоит из n элементов. (То есть ранг свободной абелевой
группы определен однозначно.)

Доказательство. Пусть в группе A есть другой базис {e′1, . . . , e′m, . . .} и количество
элементов в нем не равно n. Без ограничения общности мы можем считать, что в
нем больше, чем n элементов. Рассмотрим e′1, . . . , e

′
n+1 Так как {e1, . . . , en} – базис,

каждый элемент e′j выражается через {e1, . . . , en} с целыми коэффициентами: e′j =
c1je1 + . . .+ cnjen. Можно собрать все коэффициенты cij в целочисленную матрицу C
размера n× n+ 1 такую, что

(e′1, . . . , e
′
n+1) = (e1, . . . , en)C.

Интерпретируем столбцы C(1), . . . , C(n+1) матрицы C как векторы из пространства Qn

строк с рациональными коэффициентами длины n. Тогда столбцы – это n+ 1 векто-
ров в n-мерном векторном пространстве. По основной лемме о линейной зависимости
столбцы C линейно зависимы, то есть есть рациональные числа p1

q1
, . . . , pn+1

qn+1
не все

равные нулю такие, что
p1
q1
C(1) . . .+

pn+1

qn+1

C(n+1) = 0.

Домножим это равенство на произведение знаменателей и получим

k1C
(1) . . .+ kn+1C

(n+1) = 0

для некоторых ki ∈ Z не всех равных нулю. Но тогда k1e
′
1 + . . . + kn+1e

′
n+1 = 0, что

противоречит линейной независимости {e′1, . . . , e′n+1, . . .}. □

Замечание 1. Пусть F = A(e1, . . . , en). Тогда F = ⟨e1⟩⊕ . . .⊕⟨en⟩ ∼= Z⊕ . . .⊕Z. В самом
деле, сопоставим элементу k1e1 + . . . knen ∈ A(e1, . . . , en) элемент (k1e1, . . . , knen) ∈
⟨e1⟩ ⊕ . . .⊕ ⟨en⟩. Легко проверить, что это изоморфизм.

Предложение 1. Подгруппа L свободной абелевой группы F ранга n – это свободная
абелева группа ранга m ≤ n.
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Доказательство. Докажем это утверждение индукцией по n.
База индукции n = 1. F ∼= Z. Мы знаем, что подгруппа в Z имеет вид kZ. При k ̸= 0

это свободная абелева группа ранга 1. Если же k = 0 получаем свободную абелеву
группу ранга ноль.

Шаг индукции. Пусть для n < k утверждение доказано. Рассмотрим

P = A(e1, . . . , en−1) ⊂ F.

Обозначим B = P ∩ L. Так как P – свободная группа ранга n− 1, по предположению
индукции B ⊂ P – свободная абелева группа ранга не более n − 1. Если L ⊂ P , то
L = B – свободная абелева группа ранга не более n − 1. Пусть L ̸= B. Рассмотрим
гомоморфизм π : F → Z, π(k1e1 + . . . + knen) = kn. Тогда образ π – циклическая
группа и найдется l ∈ L такой, что Im π = ⟨π(l)⟩. Пусть s = t1e1 + . . . tnen ∈ L. Тогда
π(s) ∈ ⟨π(s)⟩. То есть π(s) = qπ(s) для некоторого целого q. Получаем π(s − ql) = 0,
то есть s − ql ∈ B. Значит, s ∈ B ⊕ ⟨l⟩ (данные две подгруппы пересекаются только
по нулю, так как π(l) ̸= 0). Получаем L = B ⊕ ⟨l⟩ – свободная абелева группа ранга
rkB + 1 ≤ n. □

Теорема 1 (Универсальное свойство свободной абелевой группы). Пусть A – абелева
группа с образующими a1, . . . , an. Тогда существует сюръективный гомоморфизм

φ : A(x1, . . . , xn) → A,

причем φ(xi) = ai.

Доказательство. Подходит гомоморфизм определенный по правилу

φ(k1x1 + . . .+ knxn) = k1a1 + . . .+ knan.

□

Применяя теорему о гомоморфизме, получаем следствие.

Следствие 1. Каждая конечно порожденная абелева группа изоморфна факторгруп-
пе свободной абелевой группы по некоторой подгруппе (ядру гомоморфизму φ).

Опишем все базисы данной свободной абелевой группы через один фиксированный
базис.

Определение 4. Обозначим через GLn(Z) множество целочисленных матриц n × n,
обратные к которым также являются целочисленными.

Замечание 2. Множество GLn(Z) является группой по умножению матриц. В самом
деле, умножение двух целочисленных матриц A и B дает целочисленную матрицу, об-
ратная к которой равна (AB)−1 = B−1A−1, а значит, целочисленная. Таким образом,
GLn(Z) замкнуто относительно умножения. Замкнутость относительно взятия обрат-
ного элемента очевидна. Также E ∈ GLn(Z). Мы проверили, что GLn(Z) – подгруппа
в GLn(Q).

Лемма 2. Группа GLn(Z) состоит из целочисленных матриц с определителем ±1

Доказательство. У целочисленной матрицы целый определитель. Значит, если A ∈
GLn(Z), то detA, detA−1 ∈ Z. Но (detA)(detA−1) = 1. Значит, detA = ±1.

Напротив, если для целочисленной матрицы выполнено detA = ±1, то применяя
формулу через алгебраические дополнения, получаем, что обратная матрица A−1 так-
же является целочисленной. □
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Предложение 2. Пусть {e1, . . . , en} базис свободной абелевой группы F . Тогда сле-
дующие условия эквивалентны:

1) {e′1, . . . , e′n} – базис F ;
2) (e′1, . . . , e

′
n) = (e1, . . . , en)C, где C ∈ GLn(Z).

Доказательство. 1 ⇒ 2. Поскольку {e1, . . . , en} – базис F , каждый вектор выражается
через {e1, . . . , en}. Значит, (e′1, . . . , e′n) = (e1, . . . , en)C, где C – некоторая целочисленная
матрица n × n. Аналогично (e1, . . . , en) = (e′1, . . . , e

′
n)D для некоторой целочисленной

матрицы D. Тогда (e1, . . . , en) = (e1, . . . , en)CD. Так как {e1, . . . , en} – базис, получаем
CD = E. Значит, C ∈ GLn(Z).
2 ⇒ 1. Для любого f ∈ F выполняется

f =
(
e1 . . . en

)k1
...
kn

 =
(
e′1 . . . e′n

)
C−1

k1
...
kn

 .

Таким образом любой элемент f выражается через {e′1, . . . , e′n}. Так как матрица C
невырожденная, система {e′1, . . . , e′n} линейно независима над Z. Значит, это базис F .

□

Примерами матриц из GLn(Z) являются матрицы следующих элементарных преоб-
разований:

1) прибавление одной строки к другой с целым коэффициентом,
2) смена двух строк местами
3) умножение строки на −1.
Таким образом, переходя от базиса (e1, . . . , en) к базису (e1, . . . , en)C мы можем де-

лать данные элементарные преобразования с данным базисом. Назовем данные эле-
ментарные преобразования базиса допустимыми.

Рассмотрим пару состоящую из свободной абелевой группы F = A(x1, . . . , xn) и ее
подгруппы L = A(y1, . . . , ym), m ≤ n. Тогда

(y1, . . . , ym) = (x1, . . . , xn)P,

где P – целочисленная матрица размера n×m.

Теорема 2 (Теорема о согласованных базисах). Существует такой базис {e1, . . . , en}
группы F и такие натуральные числа u1, . . . um, что система {u1e1, . . . , umem} явля-
ется базисом L.

Доказательство. Будем делать элементарные преобразования с базисами группы F
и подгруппы L. Пусть (x′

1, . . . , x
′
n) = (x1, . . . , xn)C, (y′1, . . . , y

′
m) = (y1, . . . , ym)D, то-

гда равенство (y1, . . . , ym) = (x1, . . . , xn)P дает (y′1, . . . , y
′
m) = (x′

1, . . . , x
′
n)C

−1PD. При
умножении P слева на матрицу C−1 и справа на матрицу D происходят допустимые
элементарные преобразования со строками и столбцами P . Далее утверждение теоре-
мы следует из следующей леммы.
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Лемма 3. Пусть P – целочисленная матрица n×m. Делая допустимые элементар-
ные преобразования со строками и столбцами P можно привести P к виду

u1 0 0 . . . 0
0 u2 0 . . . 0
...

... . . . ... 0
0 0 0 0 um

0 0 0 0 0
...

...
...

...
...

0 0 0 0 0


.

Доказательство леммы. Если не все коэффициенты матрицы равны нулю, то пере-
становкой строк и столбцов можно поставить на место p11 ненулевой элемент с мини-
мальным модулем. Далее будем уменьшать минимальный модуль ненулевого элемента
пока это будет возможно.

Случай 1. В первой строке матрицы P есть элемент p1i не делящийся на p11.
Поделим p1i на p11 с остатком: p1i = qp11 + r, 0 < |r| < |p11|. Прибавим первый столбец
к i-му с коэффициентом −q. На месте p1i получим r. Таким образом мы уменьшили
модуль минимального по модулю ненулевого элемента.

Случай 2. В первом столбце матрицы P есть элемент pi1 не делящийся на p11.
Прибавляя 1-ю строку к i-ой с нужным коэффициентом получаем элемент с модулем
меньше |p11| в первом столбце.

Случай 3. Все элементы первой строки и первого столбца делятся на p11. Можно
сделать все элементы первой строки и первого столбца нулевыми. Получим матрицу

u1 0 0 . . . 0
0 p22 p23 . . . p2m
0 p32 p33 . . . p3m
...

...
...

...
...

0 pn2 pn3 . . . pnm


Далее работаем аналогичным образом с матрицей без первой строки и первого столбца.
При этом элементарные преобразования строк со 2 по n-ю и столбцов со 2-го по m-ый
не меняют первые строку и столбец. В итоге получаем нужный вид матрицы. □

□


