
Лекция 7

Следствие 1. (из теоремы о согласованных базисах) Любая конечно порожденная
абелева группа изоморфна

Zu1 ⊕ . . .⊕ Zum ⊕ Z⊕ . . .⊕ Z.

Доказательство. Пусть A – конечно порожденная абелева группа. По универсальному
свойству свободной абелевой группы существует сюръективный гомоморфизм φ из
свободной абелевой группы F конечного ранга n в группу A. Применим теорему о
согласованных базисах к паре Kerφ ⊂ F . Получаем

F = ⟨e1⟩ ⊕ . . .⊕ ⟨em⟩ ⊕ ⟨em+1⟩ ⊕ . . .⊕ ⟨en⟩,
Kerφ = ⟨u1e1⟩ ⊕ . . .⊕ ⟨umem⟩ ⊕ {0} ⊕ . . .⊕ {0}.

Применяя теорему о факторизации прямого произведения, получаем

A ∼= F/Kerφ ∼= ⟨e1⟩/⟨u1e1⟩ ⊕ . . .⊕ ⟨em⟩/⟨umem⟩ ⊕ ⟨em+1⟩/{0} ⊕ . . . ∼=
∼= Zu1 ⊕ . . .⊕ Zum ⊕ Z⊕ . . .⊕ Z.

□

Определение 1. Разложение из предыдущего следствия мы назовём первой канони-
ческой формой для группы G.

Определение 2. Абелева группа называется примарной, если она имеет порядок pa,
где p – простое число, a ∈ N.

Применим китайскую теорему об остатках к группе Zu. Пусть u = pα1
1 . . . pαk

k . Тогда
Zu

∼= Zp
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αk
k
.

Применив это к каждрому слагаемому Zui
и переупорядочив слагаемые, получим

следующую форму группы A:
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Здесь каждое простое число может несколько раз встречаться в одной и той же степени
в качестве порядка циклического слагаемого. Такое разложение мы будем называть
второй канонической формой группы G.

Наша цель – доказать что данная форма каноническая (то есть одну группу нельзя
представить двумя различными способами в такой форме). То есть доказать следую-
щую теорему.

Теорема 1 (Теорема о строении конечно порожденных абелевых групп). Пусть A –
конечно порожденная абелева группа. Тогда A изоморфна прямой сумме конечного
числа циклических групп. Каждая из этих циклических групп либо является беско-
нечной циклической группой, либо примарной циклической группой. И такое разло-
жение единственно с точностью до перестановки прямых слагаемых.

Существование такого разложения мы уже доказали.
Докажем сперва лемму.

Лемма 1. Пусть G1, . . . , Gk – группы и gi ∈ Gi. Тогда

ord(g1, . . . , gk) = НОК(ord(g1), . . . , ord(gk)).
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Доказательство. m = ord(g1, . . . , gk) – это минимальное натуральное число такое, что
(g1, . . . , gk)

m = (e, . . . , e). Это означает, что gmi = e для всех 1 ≤ i ≤ k. То есть m
делится на все ord(gi). Минимальное такое число – это НОК(ord(g1), . . . , ord(gk)). □

Доказательство. (Доказательство теоремы 1) Существование такого разложения в
прямую сумму уже доказано (это и есть вторая каноническая форма). Пусть есть два
таких разложения одной и той же группы A. Прежде всего докажем, что количество
бесконечных циклических слагаемых в обоих разложениях одинаково. Для этого опре-
делим следующую подгруппу

Определение 3. Подгруппа кручения TorA (абелевой) группы A – это подгруппа,
состоящая из всех элементов конечного порядка.

Прежде всего нужно объяснить, что множество элементов конечного порядка дей-
ствительно является подгруппой. Для этого заметим, что если ka = 0 и mb = 0, то
km(a+ b) = 0. То есть множество TorA замкнуто относительно сложения. Кроме того
k(−a) = 0, что означает замкнутость TorA относительно взятия противоположного.
Осталось заметить, что 0 ∈ TorA.

Элементы конечного порядка в разложении (1) имеют вид (x1, . . . , xN , 0, . . . , 0), где
в конечных слагаемых идут любые элементы x1, . . . , xN , а в бесконечных слагаемых
все элементы – нули. Таким образом,
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По теореме о факторизации прямого произведения
A/TorA ∼= {0} ⊕ . . .⊕ {0} ⊕ Z⊕ . . .⊕ Z ∼= Zr.

Таким образом, факторгруппа A/TorA – это свободная абелева группа ранга r, где
r равно количеству прямых слагаемых, изоморфных Z в разложении (1). Поскольку
определение подгруппы кручения не зависит от разложения и ранг свободной абелевой
группы определен однозначно, получаем, что если для группы A есть две вторых
канонических формы, то количество прямых слагаемых Z в них одинаково. Назовем
это число рангом (абелевой) группы A.

Разложение (1) состоит из второй канонической формы группы TorA, к которой
добавлены rkA слагаемых Z. Для того, чтобы доказать, что две вторых канонических
формы группы A совпадают, осталось доказать, что для группы TorA (то есть для
конечной группы) нет двух различных вторых канонических формы.

Пусть B – конечная абелева группа. Для любого натурального числа t можно рас-
смотреть гомоморфизм φt : B → B, φt(b) = tb. Легко видеть, что если B = B1 ⊕ B2,
то φt(b1, b2) = (tb1, tb2) = (φt|B1(b1), φt|B2(b2)). Фиксируем простое число p. Рассмотрим
второе каноническое разложение группы B:

B = Zp ⊕ . . .⊕ Zp ⊕ Zp2 ⊕ . . .⊕ Zp2 ⊕ . . .⊕ Zpk ⊕ . . .⊕ Zpk ⊕ Zq
r1
1
⊕ . . .⊕ Zqrss =

= Zm1
p ⊕ Zm2

p2 ⊕ . . .⊕ Zmk

pk
⊕ Zq

r1
1
⊕ . . .⊕ Zqrss .

Возьмем t = pα, где p – простое число. Рассмотрим, ядро гомоморфизма φt. Пусть
некоторый элемент разложения, умноженный на pα равен нулю. Тогда его координаты
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лежат в ядрах ограничений гомоморфизма φt на каждое слагаемое. При этом ядра
ограничений на Zq

r1
1
, . . . ,Zqrss равны нулю, так как t = pα и qrii взаимно просты. В

группе Zpβ при умножении на pα в ноль переходит
– вся группа, если β < α.
– подгруппа

〈
pβ−α

〉 ∼= Zpα , если β ≥ α.
Отсюда

Kerφpα = Zm1
p ⊕ Zm2

p2 ⊕ . . .⊕ Zmα−1

pα−1 ⊕ Zmα
pα ⊕ Zmα+1

pα ⊕ . . .⊕ Zmk
pα .

Таким образом,

|Kerφpα | = pm1+2m2+...+(α−1)mα−1+α(mα+mα+1+...+mk).

Получаем
|Kerφpα|
|Kerφpα−1|

= pmα+mα+1+...+mk .

Следовательно,

pmα =
|Kerφpα |
|Kerφpα−1 |

· |Kerφpα |
|Kerφpα+1 |

То есть

mα = logp

(
|Kerφpα|2

|Kerφpα+1| · |Kerφpα−1 |

)
=

= 2 logp(|Kerφpα|)− logp(|Kerφpα+1|)− logp(|Kerφpα−1 |).
Заметим, что эта формула верна и при α = 1, тогда φpα−1 = id. Эта формула пока-
зывает, что количество слагаемых Zpα во втором каноническом разложении конечной
абелевой группы B не зависит от этого разложения. Это доказывает теорему.

□

Задача 1. Выведите из единственности второй канонической формы для группы един-
ственность первой канонической формы.

Определение 4. Экспонента группы G – это минимальное натуральное число k такое,
что для любого g ∈ G выполнено gk = e. Если такого числа не существует, то будем
говорить, что экспонента G равна бесконечности. Обозначать экспоненту будем expG.

Лемма 2. Экспонента группы равна наименьшему общему кратному порядков эле-
ментов. (Имеется в виду, что если есть элемент бесконечного порядка или нет
конечного общего кратного у всех порядков, то экспонента бесконечна.)

Доказательство. Если gk = e, то k делится на ord g. Так как expG – минимальное
натуральное число, что gexpG = e для всех g ∈ G, получаем, что expG – минимальное
натуральное число, делящееся на порядки всех элементов. □

Предложение 1 (Критерий цикличности конечной абелевой группы). Пусть A –
конечная абелева группа. Группа A циклическая тогда и только тогда, когда expA =
|A|.

Доказательство. Пусть A циклическая. Тогда есть элемент, порядок которого равен
|A|, то есть expA ≥ |A|. Порядки всех элементов – делители |A|, значит, expA ≤ |A|.
Получаем expA = |A|.

Пусть наоборот, expA = |A| = pk11 pk22 . . . pkmm , где pi – простые числа. Так как expA –
наименьшее общее кратное порядков всех элементов, для каждого 1 ≤ j ≤ m найдется
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bj ∈ A такое, что ord bj = p
kj
j t, где t не делится на pj. Обозначим aj = tbj. Легко видеть,

что ord aj = p
kj
j . Рассмотрим элемент a = a1+ . . .+am, докажем, что его порядок равен

|A|. Для этого заметим, что |A|a = 0 по теореме Лагранжа, но

|A|
pj

a = pk11 pk22 . . . p
kj−1
j . . . pkmm (a1 + . . .+ aj + . . . am) =

= 0 + . . .+ 0 + pk11 pk22 . . . p
kj−1
j . . . pkmm aj + 0 + . . .+ 0 = pk11 pk22 . . . p

kj−1
j . . . pkmm aj ̸= 0.

А значит, простое число pj входит в ord a именно в степени kj. Так как это выполняется
для всех j, порядок a равен |A|. Следовательно, группа A циклическая. □

Напомним, что полем называется множество F с двумя бинарными операциями:
сложением и умножением, удовлетворяющим следующим аксиомам.

1) ∀a, b, c ∈ F : (a+ b) + c = a+ (b+ c),
2) ∃ 0 ∈ F : ∀x выполнено 0 + x = x+ 0 = x,
3) ∀x ∈ F ∃ (−x) : x+ (−x) = (−x) + x = 0,
4) ∀a, b ∈ F : a+ b = b+ a,
5) ∀a, b, c ∈ F : (a+ b)c = ac+ bc,
6) ∀a, b, c ∈ F : (ab)c = a(bc),
7) ∀a, b ∈ F : ab = ba,
8) ∃ e ∈ F : ∀x выполнено ex = xe = x,
9) ∀x ̸= 0 ∈ F ∃x−1 : xx−1 = x−1x = e.
Поле является частным случаем кольца. Мы ранее говорили, что для произволь-

ного кольца R можно рассмотреть группу (R×, ·), состоящую из всех обратимых по
умножению элементов, с операцией множения. Для поля F× = F \{0} и группа (F×, ·)
называтся мультипликативной группой поля F .

Предложение 2. Конечная подгруппа в мультипликативной группе

F× = (F \ {0}, ·)
поля F циклическая.

Доказательство. Пусть G – конечная подгруппа в мультипликативной группе поля
F×. Предположим, что G не является циклической. Так как F× коммутативна, ее
подгруппа G также коммутативна. По предложению 1 экспонента G не равна |G|.
Значит, expG = k < |G|. Тогда в поле F у многочлена xk − e как минимум |G| корней
(все элементы группы G являются такими корнями). Однако ненулевой многочлен не
может иметь в поле больше корней, чем его степень. В самом деле это следует из того,
что, если f(c) = 0, то по теореме Безу f(x) делится на x− c. Получаем противоречие.
Следовательно, исходное предположение, что G не циклическая не верно. □

Очевидным следствием предыдущего предложения является следующее утвержде-
ние.

Следствие 2. Мультипликативная группа конечного поля циклическая.

Определение 5. Пусть G – группа, а X – множество. Действием группы G на мно-
жестве X называется отображение α : G×X → X, удовлетворяющее следующим усло-
виям:

1) для любых g, h ∈ G и x ∈ X выполнено α(g, α(h, x)) = α(gh, x),
2) для любого x ∈ X выполнено α(e, x) = x.
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Если задано действие группы G на множестве X, то говорят, что G действует на
X и обозначают G ↷ X (в некоторой литературе обозначают G : X). При этом α(g, x)
называется действием (или применением) элемента g к элементу x, и α(g, x) обозна-
чается g · x. В таких обозначениях свойства действия из определения 5 принимают
вид:

1) для любых g, h ∈ G и x ∈ X выполнено g · (h · x) = (gh) · x,
2) для любого x ∈ X выполнено e · x = x.


