
Лекция 8

Определение 1. Пусть G – группа, а X – множество. Действием группы G на мно-
жестве X называется отображение α : G×X → X, удовлетворяющее следующим усло-
виям:

1) для любых g, h ∈ G и x ∈ X выполнено α(g, α(h, x)) = α(gh, x),
2) для любого x ∈ X выполнено α(e, x) = x.

Если задано действие группы G на множестве X, то говорят, что G действует на
X и обозначают G↷ X (в некоторой литературе обозначают G : X). При этом α(g, x)
называется действием (или применением) элемента g к элементу x, и α(g, x) обозна-
чается g · x. В таких обозначениях свойства действия из определения 1 принимают
вид:

1) для любых g, h ∈ G и x ∈ X выполнено g · (h · x) = (gh) · x,
2) для любого x ∈ X выполнено e · x = x.
Заметим, что при фиксированном g ∈ G отображение αg : X → X, αg(x) = α(g, x)

является биекцией. В самом деле, легко убедиться, что αg ◦αh = αgh, при этом αe = id.
Это означает, что αg−1 – обратное отображение к αg. Таким образом, мы получаем
гомоморфизм φα из G в S(X). Напомним, что S(X) – это группа биекций X → X.
Гомоморфизм φα определяется следующим образом: φα(g) = αg.

Наоборот, если дан гомоморфизм φ : G → S(X), то можно определить действие αφ

группы G на X следующим образом: g · x = φ(g)(x).

Лемма 1. Отображения Φ: α 7→ φα и Ψ: φ 7→ αφ являются взаимно обратными и,
следовательно, устанавливают биекцию между действиями G на X и гомоморфиз-
мами из G в S(X).

Доказательство. Пусть β – некоторое действие G на X. Имеем Ψ ◦Φ(β) = Ψ(φβ). По
определению, это действие устроено по правилу g · x = φβ(g)(x). С другой стороны по
определению φβ(g) = βg, то есть φβ(g)(x) = βg(x) = β(g, x). Таким образом Ψ ◦Φ(β) =
β, то есть Ψ ◦ Φ = id.

Пусть теперь φ : G → S(X) – гомоморфизм. Тогда Φ ◦ Ψ(φ) = Φ(αφ). По определе-
нию Φ имеем Φ(αφ)(g)(x) = αφ(g, x) = φ(g)(x). Так как это верно для любого x и для
любого g имеем Φ ◦Ψ(φ) = φ, то есть Φ ◦Ψ = id. □

Пример 1. Пусть X = {1, 2, . . . , n}. Тогда есть естественное действие симметри-
ческой группы Sn на X, заданное по формуле σ · i = σ(i).

То, что это действие сводится к проверкам
1) σ · (δ · i) = σ(δ(i)) = (σ ◦ δ)(i) = (σ ◦ δ) · i,
2) id · i = id(i) = i.

Пример 2. Пусть K – поле. Тогда зададим действие GL(K) ↷ Kn по следующей

формуле. Для A ∈ GL(K) и Y =


y1
y2
...
yn

 ∈ Kn положим A · Y = AY . Доказательство

того, что это действие сводится к проверкам
1) A · (B · Y ) = ABY = (AB) · Y ,
2) E · Y = EY = Y .
Такое действие называется тавтологическим.
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Важный частный случай действий – это действия группы на себе, то есть случай,
когда X = G. Есть три естественных действия G↷ G.

Пример 3. 1) Действие G на себе левыми сдвигами.
По определению g · g = gg.
Тогда g1 · (g2 · g) = g1g2g = (g1g2) · g и e · g = eg = g.
2) Действие G на себе правыми сдвигами.
По определению g · g = gg−1. Проверим, что это действие.

g1 · (g2 · g) = g1 · (gg−1
2 ) = (gg−1

2 )g−1
1 = g(g1g2)

−1 = (g1g2) · g,
e · g = g · e = g.

3) Действие G на себе сопряжениями.
По определению g · g = ggg−1. Проверим, что это действие.

g1 · (g2 · g) = g1 · (g2gg−1
2 ) = g1g2gg

−1
2 g−1

1 = (g1g2)g(g1g2)
−1 = (g1g2) · g.

e · g = ege−1 = g.

Замечание 1. Заметим, что нельзя определить правое действие (действие правыми
сдвигами) таким образом g · g = gg, так как при этом

g1 · (g2 · g) = g1 · (gg2) = gg2g1, (g1g2) · g = gg1g2.

Если группа G не коммутативная, то найдутся два элемента g1 и g2 такие, что
gg2g1 ̸= gg1g2.

Следующие два определения играют центральную роль в теории действий.

Определение 2. Пусть G действует на X и x ∈ X. Орбитой элемента x называется
множество Gx = {g · x | g ∈ G} ⊂ X.

Определение 3. Пусть G действует на X и x ∈ X. Стабилизатором элемента x
называется множество St(x) = Gx = {g ∈ G | g · x = x}.

Лемма 2. Орбиты – это классы эквивалентности, и следовательно, орбиты либо
не пересекаются, либо совпадают.

Доказательство. Докажем, что отношение "x ∼ y если x лежит в орбите Gy"является
отношением эквивалентности.

1) Рефлексивность. x ∼ x так как e · x = x, а значит, x ∈ Gx.
2) Симметричность. Если x ∼ y, то найдется g ∈ G такое, что g · y = x. Значит,

g−1 · x = y, то есть y ∼ x.
3) Транзитивность. Пусть x ∼ y и y ∼ z. Тогда x = g · y, y = g · z. Тогда x = (gg) · z.

Следовательно, x ∼ z. □

Лемма 3. Стабилизатор St(x) является подгруппой в G.

Доказательство. Пусть g, h ∈ St(x). Тогда (gh) · x = g · (h · x) = g · x = x, то есть
gh ∈ St(x), а значит, множество St(x) замкнуто относительно умножения.

Если g ∈ St(x), то g · x = x. Подействуем на обе части этого равенства элементом
g−1. Получим g−1 · (g · x) = g−1 · x. Но g−1 · (g · x) = e · x = x. Значит, g−1 ∈ St(x), то
есть St(x) замкнут относительно взятия обратного.

Осталось заметить, что единица группы лежит в стабилизаторе любого элемента.
□
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Пусть G группа и H – ее подгруппа. Пусть g ∈ G. Через gHg−1 мы обозначаем
множество {ghg−1 | h ∈ H}. Отображение h 7→ ghg−1 устанавливает изоморфизм
(биекцию, переводящую умножение в умножение) между H и gHg−1. Следовательно,
gHg−1 – подгруппа, изоморфная H. Эта подгруппа называется подгруппой, сопряжен-
ной к H.

Лемма 4. Пусть y = g · x. Тогда St(y) = gSt(x)g−1. (Стабилизаторы элементов
одной орбиты сопряжены.)

Доказательство. Докажем, что St(y) ⊇ gSt(x)g−1. Пусть h ∈ St(x). Тогда

(ghg−1) · y = (ghg−1) · (g · x) = g · (h · x) = g · x = y.

Но аналогично, так как x = g−1 · y, имеем St(x) ⊇ g−1St(y)g. А значит,

gSt(x)g−1 ⊇ St(y).

Так как доказаны включения в обе стороны, получаем St(y) = gSt(x)g−1. □

Следствие 1. Если группа G абелева, то стабилизаторы элементов в одной орбите
совпадают.

Теорема 1. Существует биекция между множеством левых смежных классов груп-
пы G по подгруппе St(x) и элементами орбиты Gx.

Доказательство. Определим отображение ψ, которое сопоставляет смежному классу
gSt(x) элемент орбиты g · x. Прежде всего нужно проверить корректность этого отоб-
ражения, то есть что если gSt(x) = hSt(x), то g ·x = h ·x. В самом деле gSt(x) = hSt(x)
тогда и только тогда, когда h−1g ∈ St(x), то есть g = hs, где s ∈ St(x). Получаем
g · x = h · (s · x) = h · x. Итак, ψ определено корректно.

Пусть ψ(gSt(x)) = ψ(hSt(x)), тогда g ·x = h ·x. Подействуем на последнее равенство
элементом h−1. Получим (h−1g) · x = x, то есть h−1g ∈ St(x). Тогда gSt(x) = hSt(x), то
есть ψ – инъекция.

То, что ψ сюръективно следует из того, что в элемент орбиты g·x переходит смежный
класс gSt(x). □

Следствие 2. Пусть G – конечная группа. Тогда |G| = |Gx| · |St(x)|.

С помощью только что доказанной формулы посчитаем количество элементов в
группе вращений куба Sym+(K). Данная группа состоит из всех движений R3, сохра-
няющих ориентацию. (Так как центр куба остается неподвижен, то движение, сохраня-
ющее куб является линейным преобразованием. Ориентацию сохраняют те движения,
определитель которых равен 1.)

Предложение 1. Порядок группы Sym+(K) равен 24.

Доказательство. Рассмотрим куб K с вершинами ABCDA′B′C ′D′. Есть естественное
действие Sym+(K) на множестве {A,B,C,D,A′B′C ′D′}. В группе Sym+(K) содержит-
ся вращение относительно оси, соединяющей две противоположные грани. С помощью
композиции таких вращений можно перевести любую вершину в любую другую. Зна-
чит, орбита точки A состоит из 8 точек. По следствию 2 получаем

|Sym+(K)| = |Sym+(K)A| · |St(A)| = 8 · |St(A)|.
Осталось найти |H|, где H = St(A). Пусть вершины, смежные с A – это B, D и
A′. Получаем естественное действие H на множестве {B,D,A′}. Легко видеть, что в



4

группеH лежат вращения относительно диагонали AC ′ на углы 2π
3

и 4π
3

. Они переводят
B в D и A′ соответственно. Значит, действие H на {B,C,D} имеет единственную
орбиту |HB| = 3. При этом по следствию 2 получаем

|H| = |HB| · |StH(B)| = 3|StH(B)|.
(Здесь мы используем индекс в StH(B), чтобы подчеркнуть, что это стабилизатор при
действии группы H, а не при действии группы G.) Осталось найти |StH(B)|. Пусть
ξ ∈ |StH(B). Тогда ψ(A) = A, ψ(B) = B. Поскольку смежные с A вершины – это B,
D и A′, получаем, что либо ψ(D) = D и ψ(A′) = A′, либо ψ(D) = A′ и ψ(A′) = D.
Но если ψ(D) = A′ и ψ(A′) = D, то ψ меняет ориентацию. Следовательно, ψ(A) = A,
ψ(B) = B, ψ(D) = D и ψ(A′) = A′. То есть ψ сохраняет 4 точки не лежащие в одной
плоскости. Значит, ψ = id. Следовательно, |StH(B)| = 1. Таким образом

|Sym+(K)| = 8 · |St(A)| = 24 · |StH(B)| = 24.

□

Теперь разберемся более подробно с группой Sym+(K) вращений куба.

Предложение 2. Группа вращений куба изоморфна S4.

Доказательство. Группа Sym+(K) действует на множестве диагоналей куба. (Оче-
видно, что любой элемент этой группы переводит диагонали в диагонали, то есть
производит перестановку диагоналей. При этом композиция элементов дает компози-
цию перестановок.) То есть мы имеем гомоморфизм φ : Sym+(K) → S4. Посколько
|Sym+(K)| = |S4| = 24, для того, чтобы доказать, что φ – изоморфизм достаточно
доказать, что φ – сюръекция. Пусть K – середина ребра AA′, а L – середина ребра
CC ′. Рассмотрим ξ вращение на π вокруг KL. Ясно, что ξ ∈ Sym+(K).

ξ(A) = A′, ξ(A′) = A, ξ(C) = C ′, ξ(C ′) = C, ξ(B) = D′, ξ(D′) = B, ξ(B′) = D, ξ(D) = B′.

Значит, применение ξ меняет местами диагонали AC ′ и A′C и оставляет на месте
диагонали BD′ и B′D. То есть образ ξ в S4 – это транспозиция. Но аналогично мы мо-
жем доказать, что любая транспозиция лежит в образе φ. Поскольку S4 порождается
транспозициями, φ – сюръекция. □

Аналогично докажем другую геометрическую реализацию группы S4. Напомним,
что группа симметрий фигуры – это группа всех движений пространства (для плоской
фигуры – плоскости), сохраняющих данную фигуру. (Группа симметрий не состоит
только из симметрий относительно плоскостей/прямых!)

Предложение 3. Группа симметрий правильного тетраэдра изоморфна S4.

Доказательство. Группа симметрий правильного тетраэдра действует на множестве
его вершин (их 4). получаем гомоморфизм из этой группы в S4. Этот гомоморфизм
инъективен, так как у него тривиальное ядро. В самом деле, если некое преобразова-
ние плоскости лежит в ядре, то оно оставляет на месте вершины тетраэдра (4 точки, не
лежащие в одной плоскости), а значит, это тождественное преобразование. Теперь до-
кажем сюръективность данного гомоморфизма. Рассмотрим симметрию относительно
плоскости, проходящей через ребро тетраэдра и середину противоположного ребра.
Данная симметрия меняет ровно 2 вершины. Значит, в образе нашего гомоморфизма
лежат транспозиции. Так как они порождают S4, гомоморфизм сюръективен. Итак,
мы построили гомоморфизм из группы симметрий правильного тетраэдра в S4, кото-
рый является биекцией, то есть изоморфизмом. □
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Теперь рассмотрим действие группы G на себе сопряжениями. Орбиты и стабилиза-
торы при этом действии имеют отдельные названия. Орбиты называются классами со-
пряженности, а стабилизаторы – централизаторами. Класс сопряженности элемента
g ∈ G обозначается C(g), а централизатор элемента g обозначается Z(g). Следствие 2,
примененное к действию G на себе сопряжениями, дает формулу |C(g)| · |Z(g)| = |G|.

Замечание 2. Заметим, что и класс сопряженности и централизатор зависят не только
от самого элемента g, но и от того, элементом какой группы он рассматривается.
Путаница может произойти, например, в случае, когда в группе G есть подгруппа
H. Тогда любой элемент h ∈ H можно рассматривать как элемент G, а можно –
как элемент H. Чтобы различать эти ситуации будем там, где это необходимо писать
группу в качестве индекса. При этом может так случиться, что CG(g) ̸= CH(g) и
ZG(g) ̸= ZH(g). Однако легко видеть, что всегда имеются включения в одну сторону:
CH(g) ⊂ CG(g), ZH(g) ⊂ ZG(g).

Следующее утверждение следует непосредственно из определений.

Лемма 5. Подгруппа H ⊂ G является нормальной тогда и только тогда, когда H
состоит из классов сопряженности. (Имеется в виду, что каждый класс сопря-
женности либо целиком содержится в H, либо целиком содержится в дополнениии
к H.)

Доказательство. Подгруппа H нормальна тогда и только тогда, когда для любых h ∈
H и g ∈ G выполнено ghg−1 ∈ H. То есть для любого h ∈ H выполнено C(h) ⊂ H. □

Для того, чтобы описывать нормальные подгруппы (и для других целей) бывает
удобно явно описать классы сопряженности в группе. Сделаем это для группы Sn.
Назовем цикловой структурой перестановки σ ∈ Sn неупорядоченный набор длин
независимых циклов этой перестановки.

Лемма 6. Пусть σ ∈ Sn. Тогда CSn(σ) состоит из всех перестановок δ ∈ Sn с такой
же цикловой структурой.

Доказательство. Пусть разложение σ в независимые циклы имеет вид

σ = (a1, . . . , ak)(b1, . . . , bm) . . . (c1, . . . , cl).

Возьмем π ∈ Sn. Имеем:

πσπ−1 = (π(a1), . . . , π(ak))(π(b1), . . . , π(bm)) . . . (π(c1), . . . , π(cl)). (∗)
В самом деле π : {1, 2, , . . . , n} → {1, 2, . . . , n} – биекция. А значит, любой элемент
i ∈ {1, 2, . . . , n} равен π(j). С другой стороны πσπ−1(π(j)) = π(σ(j)). Отсюда следует
приведенная выше формула (∗). Видно, что перестановка πσπ−1 имеет ту же цикловую
структуру, что и σ.

Напротив, пусть
δ = (a′1, . . . , a

′
k)(b

′
1, . . . , b

′
m) . . . (c

′
1, . . . , c

′
l)

имеет такую же цикловую структуру, что и σ. Положим

π =

(
a1 . . . akb1 . . . bm . . . c1 . . . cl
a′1 . . . a

′
kb

′
1 . . . b

′
m . . . c

′
1 . . . c

′
l

)
.

Тогда πσπ−1 = δ. □

Задача 1. Найдите все нормальные подгруппы в S4.
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Задача 2. Пусть σ ∈ An. Докажите, что CSn(σ) либо совпадает с CAn(σ), либо есть
объединение двух равномощных классов сопряженности в An. А именно, CSn(σ) сов-
падает с CAn(σ), если в разложении на независимые циклы перестановки из данного
класса сопряженности есть цикл четной длины или 2 цикла одинаковой нечетной дли-
ны.

Определение 4. Группа G называется p-группой, если |G| = pk для простого p и
некоторого натурального k.

Теорема 2. Центр p-группы не равен {e}.
Доказательство. Заметим, что центр состоит из всех элементов, классы сопряжен-
ности которых состоят ровно из одного элемента. Пусть |G| = pk. B пусть g ∈ G.
Тогда

|C(g)| = |G|
|Z(g)|

= pm,m ∈ N ∪ {0}.

Таким образом, порядок любого смежного класса C(g) либо равен 1, либо делится
на p. Получаем, что G \ Z(G) разбивается на классы сопряженности, порядок кото-
рых делится на p, а значит, |G| − |Z(G)| делится на p. Отсюда |Z(G)| делится на p.
Следовательно, Z(G) ̸= {e}. □

Следствие 3. Группа порядка p2 абелева.

Доказательство. Пусть |G| = p2. Тогда, так как |G| делится на |Z(G)|, есть 3 варианта:
|Z(G)| = 1, |Z(G)| = p2 и |Z(G)| = p. Первый случай не возможен по предыдущей
теореме. Второй соответствует абелевой группе. Осталось показать, что не может быть
|Z(G)| = p. Допустим, что |Z(G)| = p, тогда |G/Z(G)| = p. Значит, группа G/Z(G)
циклическая, но мы доказывали, что такого быть не может. □

Теорема 3 (Теорема Кэли). Пусть G – конечная группа порядка n. Тогда G изоморф-
на некоторой подгруппе в Sn.

Доказательство. Пусть |G| = n. Рассмотрим α – действие G на себе левыми сдвигами.
Это действие соответствует гомоморфизму φα : G → S(G) ∼= Sn. (Явно этот гомомор-
физм задается по правилу: элемент g переходит в биекцию g 7→ gg из G в G.) При
этом ядро φα равно {e}, так как. Значит, φα задает вложение G в Sn. □

Определение 5. ПустьG – конечная группа порядка |G| = pkm, где p – простое число,
а m – число не делящееся на p. Подгруппа S ⊂ G называется cиловской p-подгруппой
в G, если |S| = pk.

Теорема 4 (Первая теорема Силова). Для каждого простого числа p существует
силовская p-подгруппа S ⊂ G.

Доказательство. Докажем данное утверждение индукцией по |G|. Базой индукции
будет случай, когда |G| не делится на p. Тогда S = {e}.

Проведем шаг индукции.
Случай 1. |Z(G)| делится на p.
Z(G) – абелева группа. В ней найдется некая подгруппа A такая, что |A| = p. Ясно,

что A – нормальная подгруппа в G. При этом |G/A| = n
p
, где n = |G|. По предположе-

нию индукции в G/A есть силовская p-подгруппа B. Рассмотрим π−1
A (B) ⊂ G. Имеем,

|π−1
A (B)| = |Ker (πa |π−1

A (B))| · |Im (πa |π−1
A (B))| = |A| · |B| = pk. Можно взять S = π−1

A (B).
Случай 2. |Z(G)| не делится на p.
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Расмотрим разложение группы G на классы сопряженных элементов. Классы сопря-
женности, состоящие из одного элемента – это элементы центра. Так как |G| делится
на p (иначе мы в условиях базы индукции), найдется класс сопряженности C такой,
что |C| ̸= 1 не делится на p. Пусть g ∈ C. Рассмотрим |Z(g)| = |G|

|C| < |G|. С другой
стороны, |Z(g)| делится на pk. По предположению индукции есть силовская подгруппа
S ⊂ Z(g) ⊂ G, при этом |S| = pk. □

Лемма 7. Если силовская подгруппа единственна, то она нормальна.

Доказательство. Рассмотрим gSg−1 – это подгруппа G (проверьте это). Но |gSg−1| =
|S|. В самом деле, очевидно, что |gSg−1| ≤ |S|, с другой стороны, S = g−1(gSg−1)g,
значит, S ≤ |gSg−1|. Имеем, gSg−1 – силовская подгруппа G, а значит, gSg−1 = S, то
есть S нормальна. □

Теорема 5 (Вторая теорема Силова). 1) Любая p-подгруппа G содержится в неко-
торой силовской.

2) Любые две силовские p-подгруппы сопряжены.

Доказательство. Случай m = 1 ясен. Пусть m > 1.
1) Пусть S – силовская p-подгруппа, |S| = pk. Пусть H ⊂ G – подгруппа порядка pl,

l ≤ k. Рассмотрим действие H на множестве левых смежных классов по S:
h · gS = (hg)S.

Корректность очевидна: если gS = g′S, то g′ = gs для некоторого s ∈ S. Тогда hg′ =
hgs и hgS = hg′S. Из теоремы Лагранжа количество левых смежных классов по S

равно |G|
|S| = m. Имеем, |H| = pl = |St(gS)| · |Orb(gS)|, значит, порядок каждой орбиты

либо 1, либо степень p. Так как сумма порядков орбит не делится на p, есть орбита
из одного элемента. То есть hgS = gS. Отсюда g−1hg ∈ S, то есть h ∈ gSg−1. Значит,
H ⊂ gSg−1, где |gSg−1| = pk.

2) Если H – силовская подгруппа, то |H| = pk. По доказанному в пункте 1) выполне-
но H ⊂ gSg−1. Поскольку |H| = |gSg−1|, имеем H = gSg−1. Значит, любая силовская
p-подгруппа H сопряжена фиксированной силовской p-подгруппе S. □


