В этой лекции R — произвольное кольцо (как всегда коммутативное, ассоциативное и с единицей).

Определение 1. Многочлен $p(x) \in R[x]$ называется *унитальным*, если его старший коэффициент равен 1.

Теорема 1 (Гамильтон-Кэли). Пусть R- кольцо, $I \triangleleft R$, M- R-модуль, порождённый п образующими, $\varphi-$ эндоморфизм M, такой что $\varphi(M) \subseteq IM$. Тогда существует унитальный многочлен $p(x)=x^n+p_1x^{n-1}+\cdots+p_n$, где $p_i \in I^j$, такой что $p(\varphi)=0$.

Частный случай: Если R=F — поле, I=F, M — n-мерное векторное пространство, φ — линейный оператор, то теорема Гамильтона—Кэли утверждает, что сущесвует унитальный многочлен p(x) степени n (характеристический), который аннулирует φ , то есть $p(\varphi)=0$.

Доказательство. Пусть m_1, \ldots, m_n — порождающие элементы модуля M как R-модуля. Так как $\varphi(M) \subseteq IM$, то для каждого i:

$$\varphi(m_i) = \sum_{j=1}^n a_{ij} m_j, \quad \text{где } a_{ij} \in I.$$

На M можно задать структуру R[x]-модуля, определив действие

$$x \cdot m := \varphi(m)$$

для любого $m\in M.$ Рассмотрим вектор $\vec{m}=\begin{pmatrix} m_1\\ \vdots\\ m_n \end{pmatrix}$ и матрицу $A=(a_{ij}).$

Тогда:

$$x \cdot \vec{m} = A\vec{m}$$
.

Рассмотрим матричное уравнение, полученное из соотношения $(x\cdot E-A)\vec{m}=0$:

$$(x \cdot E - A) \begin{pmatrix} m_1 \\ \vdots \\ m_n \end{pmatrix} = 0,$$

Умножим это уравнение слева на присоединённую матрицу. По свойству присоединённой матрицыполучаем:

$$\det(x \cdot E - A) \cdot E \cdot \vec{m} = 0 \iff \det(x \cdot E - A) m_j = 0$$
 для всех $j = 1, \dots, n$.

Тогда $p(x) = \det(x \cdot E - A)$ аннулирует весь модуль M. Очевидно, что p(x) – унитальный многочлен. Из построения следует, что $p(\varphi)$ является нулевым эндоморфизмом. Матрица $x \cdot E - A$ имеет вид:

$$x \cdot E - A = \begin{pmatrix} x - a_{11} & -a_{12} & \dots & -a_{1n} \\ -a_{21} & x - a_{22} & \dots & -a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ -a_{n1} & -a_{n2} & \dots & x - a_{nn} \end{pmatrix}$$

Коэффициент p_k при x^k в определителе p(x) (для k < n) получается как сумма произведений, в которых n-k элементов взяты вне главной диагонали

матрицы A. Поскольку элементы a_{ij} принадлежат идеалу I, эти произведения принадлежат идеалу I^{n-k} , то есть $p_{n-k} \in I^{n-k}$.

Следствие 1. Пусть $R - \kappa$ ольцо, $M - \kappa$ онечно порождённый R-модуль.

- а) $\alpha: M \to M$ эпиморфизм $\Rightarrow \alpha$ является изоморфизм.
- b) Если M свободный модуль ранга n ($M \cong R^n$), то любая система порождающих этого модуля из n элементов является базисом модуля M.
- с) Ранг свободного модуля определяется однозначно (доказательство для модулей конечного ранга).

Доказательство. (a) Рассмотрим M как R[t]-модуль с действием

$$t \cdot m := \alpha(m)$$
.

Рассмотрим идеал $I = (t) \triangleleft R[t]$. Так как α -эпиморфизм, получаем

$$tM = \alpha(M) = M.$$

Рассмотрим эндоморфизм $\varphi = \text{id.}$ Тогда $\varphi(M) = M$. Так как $\varphi(M) \subseteq IM = M$, по теореме Гамильтона–Кэли существует унитальный многочлен

$$p(x) = x^n + p_1 x^{n-1} + \dots + p_n,$$

где $p_j \in I^j = (t^j)$, такой что $p(\mathrm{id}) = 0$. Многочлен $p = p(x,t) \in (R[t])[x]$ имеет вид

$$p(x,t) = x^n + s_1(t)x^{n-1} + \dots + s_n(t)$$
, где $s_j(t) = t^j \cdot \tilde{s}_j(t) \quad \forall j$.

Подставляя $x = \mathrm{id}$ и $t = \alpha$, получаем:

$$p(\mathrm{id}, \alpha) = \mathrm{id} + \alpha \cdot \tilde{q}(\alpha) = 0.$$

Соотношение $\tilde{q}(\alpha)\cdot \alpha=-\mathrm{id}$ означает, что α обратим, то есть является изоморфизмом.

- (b) Пусть $M\cong R^n$. Это означает, что существует изоморфизм $\gamma:M\to R^n$. Пусть m_1,\ldots,m_n образующие элементы M. Рассмотрим эпиморфизм $\beta:R^n\to M$, определённый по правилу $(r_1,\ldots,r_n)\mapsto \sum r_im_i$. Тогда отображение $\beta\circ\alpha:M\to M$ является эпиморфизмом. По пункту (a) получаем, что $\beta\circ\alpha$ изоморфизм. Следовательно, β изоморфизм $(\beta^{-1}=\alpha\circ(\beta\circ\alpha)^{-1})$. Получили $\ker\beta=\{0\}$, значит из равенства $\sum r_im_i=0$ следует все $r_i=0$. Следовательно, m_1,\ldots,m_n базис модуля M.
- (c) Предположим противное: пусть $R^n \cong R^m$, и пусть m < n. Пусть e_1, \ldots, e_m базис R^m . Рассмотрим элементы $(e_1, \ldots, e_m, 0, \ldots, 0)$ (где нулей n-m штук). Это система образующих. По пункту (b) это базис в R^n , противоречие с тем, что данная система очевидно линейно зависима.

Предложение 1. Пусть R — кольцо, $J \triangleleft R[x]$, S = R[x]/J. Обозначим s = x + J. Тогда:

- а) Кольцо S порождено как R-модуль $\leq n$ элементами тогда и только тогда, когда J содержит унитальный многочлен степени $\leq n$. B этом случае образующие S как R-модуля это $s^0, s^1, s^2, \ldots, s^{n-1}$.
- b) S является конечно порождённым свободным R-модулем тогда u только тогда, когда J порождён одним унитальным многочленом степени n.

B этом случае, система образ. $s^0, s^1, s^2, \ldots, s^{n-1}$ — базис.

Доказательство. R[x] порождается элементами x^k $k \in \mathbb{N} \cup \{0\}$ как R-модуль. Следовательно, S порождается $1,s,\ldots,s^k,\ldots$ как R-модуль.

(a) \sqsubseteq Пусть J содержит унитальный многочлен $p(x) = x^n + r_{n-1}x^{n-1} + \cdots + r_0$. Тогда в S выполняется соотношение:

$$s^n = -r_{n-1}s^{n-1} - \dots - r_0.$$

Пусть $k \geq n$, тогда

$$s^k = -r_{n-1}s^{k-1} - \dots - r_0s^{k-n}.$$

Следовательно, любой элемент s^k при $k \geq n$ выражается через $1, s, \ldots, s^{k-1}$. Значит, S порождён как R-модуль элементами $1, s, \ldots, s^{n-1}$ то есть $\leq n$ элементами.

 $\Longrightarrow S$ порождён m_1, \ldots, m_n . Определим эндоморфизм φ модуля S по правилу $\varphi(\tilde{s}) := s \cdot \tilde{s}$. Положим I = R и применим теорему Гамильтона-Кэли. Получим, что существует унитальный многочлен p степени n такой, что $p(\varphi) = 0$. Имеем $p(\varphi)(1) = p(s) \cdot 1 \Rightarrow p(s) = 0$. Следовательно, $p(x) \in J$.

(b) \Longrightarrow Пусть J=(p(x)), где p(x) — унитальный многочлен степени n. Тогда из пункта а) S порождён как R-модуль элементами $1, s, \ldots, s^{n-1}$. Покажем, что это базис.

Действительно, пусть $\sum_{i=0}^{n-1} a_i s^i = 0$, где $a_i \in R$. Рассмотрим многочлен $q(x) = \sum_{i=0}^{n-1} a_i x^i$. Тогда q(s) = 0, значит, $q(s) \in J = (p(x))$. Следовательно, $p(x) \mid q(x)$. Но $\deg q \leq n-1 < \deg p$, поэтому q(x) = 0, то есть все $a_i = 0$.

Замечание 1. Тут используется, что многочлен *p* унитальный. Вообще говоря, для колец с делителями нуля ступуень произведения многочленов ожет быть меньше суммы степеней. Но если один из старших коэффициентов равен единице, то такого не может случиться.

Значит, $1, s, \dots, s^{n-1}$ — линейно независимы. Они также порождают S. Следовательно, $1, s, \dots, s^{n-1}$ — базис S как R-модуля.

Пусть S — свободный R-модуль. Тогда $S\cong R^n$, следовательно, S порождён n элементами. Из пункта а) следует, что существует унитальный многочлен p(x) степени $\deg p(x) \leq n$, содержащийся в идеале J. На самом деле, степень p(x) равна n (иначе S будет порождён меньшим числом элементов, что противоречит корректности ранга). Тогда S как R-модуль порождён элементами $1,s,\ldots,s^{n-1}$. По следствию 1 элементы $1,s,\ldots,s^{n-1}$ образуют базис S как R-модуля.

Докажем, что J=(p(x)) от противного: пусть $f(x)\in J$ и f(x)=q(x)p(x)+r(x), где $\deg r<\deg p$. Это корректно, так как p(x) — унитальный многочлен. Поскольку $f(x)\in J$ и $p(x)\in J$, то r(x)=f(x)-q(x)p(x) также принадлежит J.

Так как $r(x) \in J$, имеем r(s) = 0. Учитывая, что $\deg r < \deg p = n$, это означает, что r(s) = 0 является линейной зависимостью на базисных элементах $1, s, \ldots, s^{n-1}$. Противоречие. Значит, r(x) = 0. Таким образом, f(x) = q(x)p(x), то есть J = (p(x)).

Определение 2. Пусть R — подкольцо кольца $S, S \supseteq R$. Будем говорить, что S-R-алгебра.

Определение 3. Элемент $s \in S$ является *целым над* R, если существует унитальный многочлен $p(x) \in R[x]$ такой, что p(s) = 0.

S- uела hаd R, если каждый элемент $s \in S$ целый над R.

Определение 4. S называется *конечной над* R, если это конечно порождённый R-модуль.

Следствие 2. Пусть S-R-алгебра. Тогда S- конечно порождённый R-модуль тогда и только тогда, когда S порождена конечным числом целых элементов (как R-алгебра).

Доказательство. \implies Пусть m_1, \ldots, m_n — образующие S как R-модуля. Рассмотрим $s \in S$. Определим эндоморфизм $\varphi(\tilde{s}) := s \cdot \tilde{s}$. По теореме Гамильтона—Кэли для I = R и M = S, существует унитальный многочлен p(x) такой, что $p(\varphi) = 0$. Тогда $p(\varphi)(\tilde{s}) = 0$. В частности, для $\tilde{s} = 1$:

$$p(\varphi)(1) = p(s) \cdot 1 = 0 \Rightarrow p(s) = 0.$$

Таким образом, \forall элемент s целый над R. Следовательно, m_1,\dots,m_n — целые и порождают S как R-алгебру.

 \Leftarrow

Пусть S порождена как R-алгебра элементами s_1, \ldots, s_k — целыми над R. Рассмотрим последовательность расширений:

$$R \subseteq R[s_1] \subseteq R[s_1, s_2] \subseteq \cdots \subseteq R[s_1, \ldots, s_k] = S.$$

 $R[s_1]$ — конечно порождённый R-модуль, так как $R[s_1]\cong R[x]/\mathcal{J}$, где $\mathcal{J}=(p_1(x))$, и $p_1(x)$ — унитальный (поскольку s_1 — целый).

 $R[s_1,s_2]$ — конечно порождённый $R[s_1]$ -модуль (аналогично: s_2 — целый над $R\Rightarrow s_2$ целый над $R[s_1]$).

 $R[s_1,s_2]$ — конечно порождённый R-модуль: если $f\in R[s_1,s_2],$ то

$$f = \alpha_1 v_1 + \dots + \alpha_d v_d = \sum_{i=1}^d \sum_{j=1}^k \beta_{ij} m_j v_i$$

где v_i — образующие $R[s_1,s_2]$ как $R[s_1]$ -модуля, v_i — образующие $R[s_1]$ как R-модуля, m_jv_i — образующие $R[s_1,s_2]$ как R-модуля.

Аналогично: $R[s_1,\ldots,s_k]$ — конечно порождённый R-модуль.