Лекция 6

Определение 1. Простой идеал $P \triangleleft R$ ассоциирован с модулем M, если P – аннулирующий идеал некоторого элемента $m \in M$.

Множество простых идеалов ассоциированных с M будем обозначать $\mathrm{Ass}_R M$ или $\mathrm{Ass} M$, если кольцо R восстанавливается из контекста.

Замечание 1. Немного противоречивая терминология говорит, что для $I \triangleleft R$ простые идеалы, ассциированные с I – это $\mathrm{Ass}_R(R/I)$, а не Ass_RI . Но это обычно не приводит к путанице.

Предложение 1. Пусть R — кольцо и M — ненулевой R-модуль. И пусть $I \triangleleft R$ — идеал, являющийся максимальным среди идеалов, являющихся аннуляторами ненулевых элементов из M. Тогда I — простой идеал (и следовательно $I \in \mathrm{Ass} M$). В частности, если кольцо R нётерово, то $\mathrm{Ass} M \neq \varnothing$.

Доказательство. Пусть $r, s \in R$ таковы, что $s \notin I$. покажем, что $r \in I$, что докажет простоту I. Пусть $m \in M$ — такой элемент, что $\mathrm{ann}(m) = I$. Тогда rsm = 0, но $sm \neq 0$. Рассмотрим идеал J = (r, I). Имеем $I \subseteq J \subseteq \mathrm{ann}(sm)$. Поскольку I максимален среди идеалов, являющихся аннуляторами ненулевых элементов из M, получаем $I = \mathrm{ann}(sm)$, а значит, I = J = (r, I), откуда следует $r \in I$.

Если кольцо R нётерово, то в нём найдётся идеал максимальный среди идеалов, являющихся аннуляторами ненулевых элементов из M. В самом деле, если идеал не максимален с таким условием, его можно расширить. Но если максимального с таким условием идеала нет, то мы будем бесконечно расширять данный идеал, что даст бесконечную цепочку вложенных идеалов. А это противоречит нётеровости кольца.

Следствие 1. Пусть M – модуль над нётеровым кольцом R. Тогда

- а) Элемент $m \in M$ нулевой тогда и только тогда, когда m = 0 в локализации M_P для всех $P \in \mathrm{Ass} M$.
- б) Пусть $K \subseteq M$ подмодуль. Тогда $K = \{0\}$ тогда и только тогда, когда $K_P = \{0\}$ для всех $P \in AssM$.
- в) Пусть $\varphi \colon M \to N$ гомоморфизм модулей. Он являестя мономорфизмом (инъекцией) тогда и только тогда, когда для каждого $P \in \mathrm{Ass}M$ гомоморфизм $\varphi_P \colon M_P \to N_P$ является мономорфизмом.

Доказательство. а) Пусть $m \neq 0$. Тогда идеал $\mathrm{ann}(m)$ не совпадает со всем кольцом и в силу нётеровости R он может быть включён в идеал P, являющийся максимальным среди идеалов, являющихся аннуляторами ненулевых элементов из M. По предложению 1 идеал P прост. При этом $m = \frac{m}{1} \neq 0$ в M_P , так как $\mathrm{ann}(m) \subseteq P$. В обратную сторону импликация очевидна.

- б) Допустим, что $K \neq 0$. Выберем $m \neq 0 \in K$. По пункту а) существует простой идеал P такой, что $m \in K_P$ не нулевой, что означает $K_P \neq \{0\}$. В обратную сторону импликация очевидна.
- в) Из того, что $R[U^{-1}]$ плоский модуль для любого мультипликативно замкнутого множества U (и в частности для $U=R\setminus P$), следует, что $\operatorname{Ker}\varphi_P=(\operatorname{Ker}\varphi)_P$. Применим пункт б) для $K=\operatorname{Ker}\varphi$.

Лемма 1. Пусть M, M' и M'' - R-модули. Тогда а) Если $M = M' \oplus M''$, то $\mathrm{Ass} M = \mathrm{Ass} M' \cup \mathrm{Ass} M''$.

б) Если $0 \to M' \to M \to M'' \to 0$ – короткая точная последовательность, то $\mathrm{Ass}M' \subseteq \mathrm{Ass}M \subseteq \mathrm{Ass}M' \cup \mathrm{Ass}M''$.

Доказательство. Докажем сперва пункт б), а из него выведем пункт а).

- б) Включение $\mathrm{Ass}M'\subseteq \mathrm{Ass}M$ выполнено по определению, поскольку есть включение $M'\subseteq M$. Пусть $P\in \backslash \mathrm{Ass}M'$. По определению существует элемент $x\in M$ такой, что $P=\mathrm{ann}(x)$. Тогда циклический модуль Rx изоморфен R/P. Рассмотрим любой элемент $z=y+P\neq 0\in R/P$. Имеем $\mathrm{ann}(z)\supseteq P$. С другой стороны rz=0 влечёт $ry\in P$, что в силу простоты P означает $r\in P$. Таким образом, $\mathrm{ann}(z)=P$. Поскольку $P\notin \mathrm{Ass}M'$, получаем $Rx\cap M'=\{0\}$. Значит, Rx изоиморфно проектируется на свой образ в M''. Таким образом, $P\in \mathrm{Ass}M''$.
- а) Чтобы получить утверждение пункта а) нужно применить пункт б) к короткой точной последовательности

$$0 \to M' \to M' \oplus M'' \to M'' \to 0.$$

Определение 2. R-модуль M называется $n\ddot{e}mepoвым$, если любой подмодуль в M конечно порождён.

Упражнение 1. Докажите, что модуль M нётеров тогда и только тогда, когда любая возрастающая цепочка подмодулей в M стабилизируется.

Указание: нужно по сути повторить доказательство эквивалентности различных определений нётерова кольца.

Лемма 2. Если R – нётерово кольцо, а M –конечно порождённый R-модуль, то модуль M нётеров.

Доказательство. Пусть модуль M порождён элементами f_1, \dots, f_t и N – подмодуль в M. Докажем то, что N конечно порождён индукцией по t.

База t=1. Рассмотрим гомоморфизм $\pi\colon R\to M,\ 1\mapsto f_1$. Тогда подный прообраз $\pi^{-1}(N)$ – идеал в R. Этот идеал конечно порождён, так как R – нётерово кольцо. Но тогда образы его порождающих порождают N.

 $extit{ Шаг индукции.}$ Пусть для любого числа образующих меньше t утверждение верно. Рассмотрим гомоморфизм $\pi\colon M\to M/Rf_1$. Тогда модуль $\overline{N}=\pi(N)$ конечно порождён по предположению индукции как подмодуль в M/Rf_1 . Пусть g_1,\ldots,g_s — такие элементы из M, что $\pi(g_1),\ldots,\pi(g_s)$ — порождающие \overline{N} . Поскольку для t=1 утверждение уже доказано, модуль Rf_1 нётеров, а следовательно его подмодуль $N\cap Rf_1$ конечно порождён. Пусть h_1,\ldots,h_r — его порождающие. Докажем, что элементы $g_1,\ldots,g_s,h_1,\ldots,h_r$ порождают N. Возьмём $n\in N$. Тогда сущестывуют $r_1,\ldots,r_s\in R$ такие, что $\pi(n-\sum_{i=1}^s r_ig_i)=0$. Значит,

$$n-\sum\limits_{i=1}^{s}r_{i}g_{i}\in Rf_{1}\cap N.$$
 Следовательно этот элемент – линейная комбинация элементов h_{1},\ldots,h_{r} с коэффициентами из $R.$

Предложение 2. Если R – нётерово кольцо и M – конечно порождённый R-модуль. Тогда на M существует следующая фильтрация возрастающими подмодулями

$$0 = M_0 \subseteq M_1 \subseteq M_2 \subseteq \ldots \subseteq M_n = M,$$

где $M_{i+1}/M_i \cong R/P_i$ для некоторых простых идеалов $P_i \triangleleft R$.

Доказательство. Если $M \neq \{0\}$, то по предложению 1 выполнено Ass $M \neq \varnothing$. Пусть $P_1 \in \mathrm{Ass}M$. Тогда рассмотрим $M_1 = Rx \cong R/P_1$ – подмодуль в M. Если $M \neq M_1$, то $M/M_1 \neq \{0\}$. Применяя к M/M_1 те же рассуждения, получаем подмодуль $\widetilde{M}_2 \subseteq M/M_1$. Его прообраз при $\pi \colon M \to M/M_1$ – это подмодуль M_2 в M. При этом $M_1/M_1 \cong \widetilde{M}_2 \cong R/P_2$. Действуя аналогичным образом мы будем продолжать нашу фильтрацию. Однако, по лемме 2 не может быть бесконечной возрастающей цепочки подмодулей в M. Значит, найдётся $n \in \mathbb{N}$ такое, что $M_n = M$.

Теорема 1. Пусть R – нётерово кольцо и M – ненулевой конечно порождённый модуль. Тогда

- a) AssM конечное непустое множество простых идеалов, каждый из которых содержит $\operatorname{ann}(M)$.
 - $O(n) \bigcap_{P \in \mathrm{Ass}M} P = \{0\} \cup \{\partial$ елители нуля на $M\}.$
- abla Bзятие AssM коммутирует с локализацией по любому мультипликативно замкнутому множеству U, то есть

$$\operatorname{Ass}_{R[U^{-1}]} M[U^{-1}] = \{ PR[U^{-1}] \mid P \in \operatorname{Ass} M, P \cap U = \emptyset \}.$$

Доказательство. а) То, что $\mathrm{Ass} M \neq \varnothing$ было доказано в предложении 1. Пусть $P \in \mathrm{Ass} M$. Тогда $P = \mathrm{ann}(m) \supseteq \mathrm{ann}(M)$. То, что множество $\mathrm{Ass} M$ конечно следует из применения леммы $1(\mathfrak{G})$ к результату предложения 2. Получаем, что в $\mathrm{Ass} M$ входят только те простые идеалы P_i , которые встречаются как M_{i+1}/M_1 в фильтрации, построенной в предложении 2. (Но, вообще говоря, не обязательно все они, как ошибочно утверждалось на лекции.)

Остальные пункты обсудим на следующей лекции.