Мы знаем, что если $0 \to M' \to M \to M'' \to 0$ — точная последовательность, то

$$\operatorname{Ass} M' \subset \operatorname{Ass} M \subset \operatorname{Ass} M' \cup \operatorname{Ass} M''.$$

Приведём пример ситуации, когда правое включение строгое.

Пример 1. Рассмотрим точную последовательность

$$0 \to \mathbb{Z} \xrightarrow{\cdot p} \mathbb{Z} \to \mathbb{Z}_p \to 0.$$

Имеем $Ass(M') = Ass(\mathbb{Z}) = \{0\}, Ass(M) = Ass(\mathbb{Z}) = \{0\}.$ При этом

$$\operatorname{Ass}(M'') = \operatorname{Ass}(\mathbb{Z}_p) = \{(p)\}.$$

Таким образом, $\operatorname{Ass}(M') \subseteq \operatorname{Ass}(M) \subsetneq \operatorname{Ass}(M') \cup \operatorname{Ass}(M'')$.

Теорема 1. Пусть R — кольцо, M — конечно порождённый R-модуль. Тогда:

- (a) $\operatorname{Ass} M$ конечное непустое множество простых идеалов, каждый из которых содержит ann(M).
- (b) $\bigcup_{P \in \text{Ass } M} P = \{x \in R \mid x \text{делитель нуля на } M\}.$ (c) $\text{Ass}_{R[U^{-1}]} M[U^{-1}] = \{PR[U^{-1}] \mid P \in \text{Ass } M, \ P \cap U = \varnothing\}.$
- (d) Ass M содержит все простые идеалы, минимальные среди простых идеалов, содержащих ann(M).

Доказательство. Пункт (а) был доказан на прошлой лекции.

(b) Пусть $P \in Ass M$, тогда существует $m \neq 0$ в M такое, что P = ann(m). Тогда для любого $r \in P$ имеем rm = 0, то есть r — делитель нуля на M. Следовательно, $P \subseteq \{r \in R \mid r$ — делитель нуля на $M\}$.

Далее, пусть r — делитель нуля на M, то есть $\exists m' \neq 0$ такой, что rm' = 0. Тогда $r \in \operatorname{ann}(m')$. Рассмотрим идеал $I = \{s \in R \mid sm' = 0\} = \operatorname{ann}(m')$. Поскольку R — нетерово кольцо, в множестве всех идеалов, содержащих ann(m'), существует максимальный элемент среди аннуляторов ненулевых элементов $M.\ \Pi$ о предложению 1 из лекции 6 это простой идеал P из $\mathrm{Ass}(M)$. Получаем $I\subseteq P$. Тогда $P\in \mathrm{Ass}\,M,$ и $r\in P.$ Следовательно, $\{r\in R\mid r$ — делитель нуля на $M\}\subseteq$ $\bigcup_{P \in \operatorname{Ass} M} P$. Таким образом, равенство доказано.

Пункт (с) мы оставим без доказательства. (Оно не очень сложное, но довольно длинное.)

(d) Пусть P — простой идеал, минимальный среди простых идеалов, содержащих ann(M). Положим $U=R\setminus P$. Тогда $R[U^{-1}]$ — локальное кольцо с максимальным идеалом $PR[U^{-1}]$. Модуль $M[U^{-1}]$ является ненулевым, так как ann $(M)\cap U=\varnothing$. Тогда $\mathrm{Ass}_{R[U^{-1}]}M[U^{-1}]\neq\varnothing$, и существует $Q\in$ $\operatorname{Ass}_{R[U^{-1}]}M[U^{-1}]$, причём $Q=PR[U^{-1}]$. В самом деле, это единственный максимальный простой идеал, поскольку все элементы вне $PR[U^{-1}]$ обратимы, а простой идеал меньше дал бы простой идеал меньше, чем P в R. Но тогда $P \in \operatorname{Ass}_R M$, поскольку ассоциированные идеалы локализации соответствуют ассоциированным идеалам исходного модуля, не пересекающимся с U по пункту (с).

Лемма 1 (об избегании простых идеалов). Пусть $I_1, \ldots, I_n, J \triangleleft R$ и

$$J \subseteq \bigcup_{k=1}^{n} I_k.$$

Если R содержит бесконечное поле или все I_k , кроме возможно двух, — простые идеалы, то $\exists k_0 : J \subseteq I_{k_0}$.

 $\@ifnextchar[{\@ifnextchar[$

Теперь перейдём к доказательству в случае, когда все I_j , кроме возможно двух идеалов простые.

Индукция по n:

База: n = 1 — тривиально.

Cлучай n=2: Предположим, что $J \not\subseteq I_1$ и $J \not\subseteq I_2$. Тогда $\exists \, x_1 \in J \setminus I_2$, $\exists \, x_2 \in J \setminus I_1$. Рассмотрим $x_1+x_2 \in J$. Получаем $x_1+x_2 \notin I_1 \cap I_2$. В самом деле, $x_1 \in J \setminus I_2 \subseteq (I_1 \cup I_2) \setminus I_2 \implies x_1 \in I_1$, аналогично $x_2 \in I_2$. Значит, если $x_1+x_2 \in I_1$, то $x_2=(x_1+x_2)-x_1 \in I_1$, что противоречит выбору x_2 . То есть $x_1+x_2 \notin I_1$. Аналогично, $x_1+x_2 \notin x_2$.

 $\mathit{Переход:}\ n>2$. Предположим, что лемма верна для n-1. Допустим, что $J\not\subseteq\bigcup_{j\neq k}I_j$ для всех k. Тогда $\forall k$ существует $x_k\in J\setminus\bigcup_{s\neq k}I_s$. Заметим, что $x_k\in I_k$, но $x_k\notin I_s$ при $s\neq k$. Будем считать, что идеал I_1 простой (хотя бы один из I_j должен быть простым.)

Рассмотрим элемент $x=x_1+x_2\cdots x_n$. Так как J — идеал, то $x\in J$, значит, $x\in I_m$ для некоторого m.

Если m=1, то

$$x_1 + x_2 \cdots x_n \in I_1.$$

Но $x_1 \in I_1$, поэтому $x_2 \cdots x_n \in I_1$. Так как I_1 — простой идеал, то $\exists j \geq 2$ такое, что $x_j \in I_1$. Но это противоречит тому, что $x_j \notin I_1$ (по построению).

Значит, $m \neq 1$. Тогда $x_2 \dots x_n \in I_m$, а значит, $x_1 \in I_m$. Но это противоречит выбору x_1 .

Итак, наше предположение неверно, то есть найдётся k такое, что $J\subseteq\bigcup_{i\neq k}I_j$. Тогда по предположению индукции $\exists\,k_0:J\subseteq I_{k_0}$.

Следствие 1. Пусть R — нетерово кольцо, M — конечно порождённый R-модуль, $I \triangleleft R$. Тогда либо I содержит делитель нуля на M, либо I аннулирует некоторый элемент из M.

$$I\cap \left(\bigcup_{P\in \mathrm{Ass}\,M}P\right)=\varnothing,$$

так как по теореме (a), $\bigcup_{P\in \operatorname{Ass} M} P$ — множество всех делителей нуля на M. Однако объединение $\bigcup_{P\in \operatorname{Ass} M} P$ конечно. Тогда по лемме об избегании простых идеалов, существует $P\in \operatorname{Ass} M$ такой, что $I\subseteq P$. Но $P=\operatorname{ann}(m)$ для некоторого $m\in M,\ m\neq 0$. Значит, $I\subseteq\operatorname{ann}(m)$, то есть I аннулирует элемент $m\in M$.

Определение 1. Подмодуль $N \subseteq M$ называется P-примарным, если $\mathrm{Ass}_R(M/N) = \{P\}$, где P — простой идеал.

Определение 2. Подмодуль $N \subseteq M$ называется *копримарным*, если $\mathrm{Ass}_R \, N = \{P\}$ для некоторого простого идеала P.

Следствие 2. Пусть R — нетерово кольцо, M — конечно порождённый R-модуль, $P \triangleleft R$ — простой идеал, N_1, \ldots, N_t — подмодули в M. Если каждый N_i — это P-примарный подмодуль, то $\bigcap_{i=1}^t N_i$ — также P-примарный подмодуль.

Доказательство. Индукция по t:

База: t = 1 — очевидно.

Переход: пусть t=2. Обозначим $\widetilde{N}=N_1\cap N_2$. Рассмотрим точную последовательность:

$$0 \to M/\widetilde{N} \to M/N_1 \oplus M/N_2$$
.

Так как M/N_1 и M/N_2-P -копримарные модули, то $\mathrm{Ass}(M/N_1)=\{P\},\,\mathrm{Ass}(M/N_2)=\{P\}.$ Тогда

$$\operatorname{Ass}(M/\widetilde{N}) \subseteq \operatorname{Ass}(M/N_1 \oplus M/N_2) = \operatorname{Ass}(M/N_1) \cup \operatorname{Ass}(M/N_2) = \{P\}.$$

Поскольку $M/\widetilde{N} \neq 0$, то $\mathrm{Ass}(M/\widetilde{N}) \neq \varnothing$, значит, $\mathrm{Ass}(M/\widetilde{N}) = \{P\}$, то есть \widetilde{N} — это P-примарный подмодуль.

Для t>2 применяем индукцию: $\bigcap_{i=1}^t N_i = \left(\bigcap_{i=1}^{t-1} N_i\right) \cap N_t$ — пересечение двух P-примарных подмодулей, а значит, снова P-примарный.

Теорема 2. Пусть $P \triangleleft R$ — простой идеал. Тогда следующие утверждения эквивалентны:

- (a) M- копримарный модуль с единственным ассоциированным простым идеалом P.
- (b) P минимальный среди простых идеалов, содержащих $\operatorname{ann}(M)$, и любой элемент вне P не является делителем нуля на M.
- (c) Существует $k \in \mathbb{N}$ такое, что $P^k \subseteq \operatorname{ann}(M)$, и любой элемент вне P не является делителем нуля на M.

Доказательство будет на следующей лекции.