Лемма 1 (Цорна (эквивалентна аксиоме выбора)). Если в частично упорядоченном множестве \mathcal{M} каждая цепь (линейно упорядоченное подмножество) имеет верхнюю грань, то существует максимальный элемент в \mathcal{M} .

Ясно, что эта лемма имеет эквивалентную формулировку.

Лемма 2. Если в частично упорядоченном множестве \mathcal{M} каждая цепь имеет нижнюю грань, то существует минимальный элемент в \mathcal{M} .

Выведем из леммы Цорна то, что существует минимальный из простых идеалов, содержащих данный имдеал.

Лемма 3. Пусть $I \triangleleft R$ — собственный идеал, и \mathcal{P} — множество всех простых идеалов, содержащих I. Тогда то \mathcal{P} содержит минимальный (по включению) элемент.

Доказательство. Рассмотрим множество \mathcal{P} всех простых идеалов, содержащих I. Это множество непусто (поскольку любой идеал содержится в некотором простом максимальном, а следовательно, простом идеале). Возьмём произвольную цепь $\{P_{\alpha}\}$ в \mathcal{P} . Тогда $P = \bigcap_{\alpha} P_{\alpha}$ — идеал (пересечение цепи идеалов), и он простой: если $a,b \notin P$, то $\exists \alpha,\beta$ такие, что $a \notin P_{\alpha},b \notin P_{\beta}$. Без ограничения общности $P_{\alpha} \subseteq P_{\beta}$, тогда $a,b \notin P_{\alpha}$, значит, $ab \notin P_{\alpha} \Rightarrow ab \notin P$. Значит, P — простой идеал, содержащий I, и является нижней гранью цепи. По лемме Цорна, в \mathcal{P} есть минимальный элемент, который и будет минимальным простым идеалом над I.

Теорема 1. Пусть R — нетерово кольцо, M — конечно порождённый R-модуль, $P \triangleleft R$ — простой идеал. Тогда следующие утверждения эквивалентны:

- (1) M-P-копримарный модуль (то есть $\operatorname{Ass}_R M=\{P\}$).
- (2) P минимальный среди простых идеалов, содержащих $\operatorname{ann}(M)$, и любой элемент вне P не является делителем нуля на M.
- (3) Существует $k \in \mathbb{N}$ такое, что $P^k \subseteq \text{ann}(M)$, и любой элемент вне P не является делителем нуля на M.

Доказательство. (1) \Rightarrow (2). Пусть $\operatorname{Ass}_R M = \{P\}$. Тогда P — единственный ассоциированный простой идеал. По теореме 1(a) предыдущей лекции $P \supseteq \operatorname{ann}(M)$. С другой стороны по теореме 1(d) предыдущей лекции $\operatorname{Ass}_R M$ содержит все минимальные среди простых идеалов, содержащих $\operatorname{ann}(M)$. Если Q — некоторый минимальный среди простых идеалов, содержащих $\operatorname{ann}(M)$ (а такой существует, как мы доказали), то $Q \in \operatorname{Ass}_R M = \{P\}$. Значит, Q = P.

Так как по теореме 1(b) предыдущей лекции все элементы вне P не являются делителями нуля на M, получаем (2).

 $(2) \Rightarrow (3)$. Пусть $I = \operatorname{ann}(M)$. Тогда:

$$\sqrt{I} = \bigcap_{\substack{P \supseteq I \\ P \text{ простой}}} P.$$

Из (2) следует, что P — минимальный среди простых идеалов, содержащих $\operatorname{ann}(M)$. Докажем, что P — единственный минимальный простой идеал, содержащий $\operatorname{ann}(M)$. Действительно, пусть Q — другой минимальный простой

идеал, содержащий $\operatorname{ann}(M)$. Тогда $Q \in \operatorname{Ass}_R M$ (по теореме предыдущей лекции все минимальные простые идеалы над $\operatorname{ann}(M)$ принадлежат $\operatorname{Ass}_R M$). Но по условию, любой элемент вне P не является делителем нуля на M, значит, $Q \subseteq P$ (иначе элементы из $Q \setminus P$ были бы делителями нуля). Так как P минимальный, Q = P, то есть P — единственный минимальный простой идеал, содержащий $\operatorname{ann}(M)$.

Таким образом:

$$\sqrt{\operatorname{ann}(M)} = \bigcap_{\substack{\widehat{P} \supseteq \operatorname{ann}(M) \\ \widehat{P} \text{ простой}}} \widehat{P} = P,$$

поскольку P — единственный минимальный простой идеал, соджержащий $\operatorname{ann}(M)$, а значит, он лежит в каждом простом идеале, содержащем $\operatorname{ann}(M)$.

Кроме того, поскольку R — нетерово кольцо, идеал P конечно порождён. Пусть $P=(f_1,\ldots,f_m)$. Для каждого i существует k_i такие, что $f_i^{k_i}\in \operatorname{ann}(M)$. Положим $k=\sum k_i$. Тогда $P^k\subseteq \operatorname{ann}(M)$.

 $(3) \Rightarrow (1)$. Поскольку P — идеал, выполнено $0 \in P$. Все элементы вне P не являются делителями нуля на M, следовательно, если $r \in R \setminus P$, то

$$\forall m \in M, rm = 0 \Rightarrow m = 0.$$

Отсюда следует, что $P\supseteq \mathrm{ann}(M)$. Действительно, если $r\in \mathrm{ann}(M)$, то rm=0 для всех $m\in M$, значит, r — делитель нуля, и по условию $r\in P$.

Так как $P^k \subseteq \operatorname{ann}(M)$, то

$$P \subseteq \sqrt{\operatorname{ann}(M)} = \bigcap_{\substack{Q \supseteq \operatorname{ann}(M) \\ Q \text{ простой}}} Q.$$

Получаем, что все простые идеалы Q, содержащие $\operatorname{ann}(M)$, содержат P. Следовательно,

$$P = \bigcap_{\substack{Q \supseteq \operatorname{ann}(M) \\ Q \text{ простой}}} Q,$$

так как P сам является одним из них, и пересечение не может быть больше, чем P.

Следовательно, P — единственный минимальный простой идеал, содержащий $\mathrm{ann}(M)$. По теореме предыдущей лекции (d), это означает, что $P \in \mathrm{Ass}_R M$.

Теперь покажем, что других ассоциированных идеалов нет. Пусть $Q \in \operatorname{Ass}_R M$. Тогда $Q = \operatorname{ann}(m^*)$ для некоторого $m^* \in M$, $m^* \neq 0$. Так как $Q \supseteq \operatorname{ann}(M)$, и P — единственный минимальный такой идеал, то $Q \supseteq P$. Но включение $Q \supseteq P$ строгое, то существовует элемент $r \in Q \setminus P$, который аннулирует m^* , то есть был r является делителем нуля — противоречие с условием (элементы вне P не являются делителями нуля). Значит, Q = P.

Таким образом,
$$\operatorname{Ass}_R M = \{P\}.$$

Теорема 2. Пусть R — нетерово кольцо, M — конечно порождённый R-модуль, $M' \subseteq M$ — подмодуль. Тогда:

(a) $\operatorname{Ass}_R(M/M') \subseteq \{P_1, \dots, P_n\}$, где $M' = \bigcap_{i=1}^t M_i$, и каждый $M_i - P_i$ -примарный подмодуль. (Такое представление в виде пересечения примарных называется примарным разложением).

- (b) Если это пересечение несократимо (то есть ни один из M_i нельзя убрать без изменения результата), то $\operatorname{Ass}_R(M/M') = \{P_1, \dots, P_n\}.$
- (c) Если пересечение по количеству минимально (т.е. число слагаемых наименьшее возможное), то P_i не повторяются.
- (d) Пусть $U \subseteq R$ мультипликативно замкнуто, P_1, \ldots, P_t те простые идеалы, которые не пересекаются с U. Тогда:

$$M'[U^{-1}] = \bigcap_{i=1}^{t} M_i[U^{-1}].$$

Докажем эту теорему в следующий раз, а пока воспользуемся ей.

Пример 1. Пусть R — нетерово целостное кольцо, $f \in R$, и $f = u \cdot \prod_{i=1}^n p_i^{a_i}$, где u — обратимый элемент, p_i — простые элементы. Тогда:

$$(f) = \bigcap_{i=1}^{n} (p_i^{a_i})$$

есть примарное разложение идеала (f). Покажем это.

Покажем, что каждый идеал $(p_i^{a_i})$ является P_i -примарным, где $P_i = (p_i)$. Рассмотрим модуль $R/(p_i^{a_i})$. Имеем ann $(R/(p_i^{a_i})) = \operatorname{ann}(1+(p_i^{a_i})) = (p_i^{a_i})$. Применим теорему 1 к $P = (p_i)$. Получаем, что удовлетворяется условие (3), а значит, выполнено условие (1), то есть модуль $R/(p_i^{a_i})$ является (p_i) -копримарным.

Теперь нужно показать, что

$$(f) = \bigcap_{i=1}^{n} (p_i^{a_i}).$$

Для этого нам понадобится следующая лемма.

Лемма 4. Пусть $g \notin P$, где P = (p) - npocmoй идеал. Тогда:

$$(g) \cap (p^{\alpha}) = (gp^{\alpha}),$$

Доказательство. \supseteq : очевидно, $(gp^{\alpha}) \subseteq (g) \cap (p^{\alpha})$.

 \subseteq : пусть $h \in (g) \cap (p^{\alpha})$. Тогда $h = gr_1 = p^k r_2$ для некоторых $r_1, r_2 \in R$. Тогда из равенства $gr_1 = p^{\alpha} r_2$ следует, что $p \mid gr_1$, и так как $p \nmid g$, то $p \mid r_1$. Значит, $r_1 = ps$ для некоторого $s \in R$, и тогда $h = gr_1 = gps = p^{\alpha} r_2$. Поскольку R – область целостности, получаем $gs = p^{\alpha-1} r_2$. Действуя аналогично, получим, что $r_1 = p$, а значит, $h = gr_1 = gp^{\alpha} r \in (gp^{\alpha})$. Следовательно, $(g) \cap (p^{\alpha}) \subseteq (gp^{\alpha})$. Итак, $(g) \cap (p^{\alpha}) = (gp^{\alpha})$.

Вернёмся к нашему примеру. То, что $f \in \bigcap_i (p_i^{a_i})$ очевидно.

Рассмотрим пересечение двух примарных идеалов: $(p_1^{a_1}) \cap (p_2^{a_2})$. Пусть $g=p_1^{a_1},\ h=p_2^{a_2}$. Тогда:

$$(p_1^{a_1}) \cap (p_2^{a_2}) = (g) \cap (h).$$

Если $P_1=(p_1),\,P_2=(p_2)$ — различные простые идеалы, то по лемме выше:

$$(g) \cap (h) = (gh) = (p_1^{a_1} p_2^{a_2}),$$

поскольку $g \notin P_2$, $h \notin P_1$. Далее, по индукции: если $(p_1^{a_1}) \cap \cdots \cap (p_k^{a_k}) = (p_1^{a_1} \cdots p_k^{a_k})$, то добавление $(p_{k+1}^{a_{k+1}})$ даёт:

$$(p_1^{a_1}\cdots p_k^{a_k})\cap (p_{k+1}^{a_{k+1}})=(p_1^{a_1}\cdots p_{k+1}^{a_{k+1}}),$$

так как p_{k+1} не делит произведение $p_1^{a_1}\cdots p_k^{a_k}$ (в целостном кольце). Следовательно, $\bigcap_i(p_i^{a_i})=(f)$, где $f=u\cdot\prod_i p_i^{a_i}$.

Теорема 3. R — факториально (любой элемент однозначно разложим на неприводимые) \iff любой простой идеал, минимальный над главным, является главным.

 Доказательство. \Rightarrow Пусть (f) — главный идеал. Поскольку R факториально, имеем

$$f = u \prod_{i=1}^{n} p_i^{e_i},$$

где u — обратимый элемент, а p_i — неприводимые. В факториальном кольце неприводимые элементы являются простыми (действительно, если q — неприводим и $q \mid ab$, то из единственности разложения следует, что q делит a или b).

Тогда по теореме 2

$$Ass(R/(f)) = \{(p_1), \dots, (p_n)\}.$$

Имеем $\operatorname{ann}(R/(f))=(f)$. Пусть Q — простой идеал, минимальный над (f). Тогда $Q\in\operatorname{Ass}(R/(f))$, откуда $Q=(p_j)$ для некоторого j. Следовательно, Q — главный.

 \Leftarrow Сначала докажем существование разложения на неприводимые. Пусть $f \in R$ не является неприводимым, то есть f = ab с $a, b \notin R^{\times}$. Тогда $(f) \subsetneq (a)$. Если a также не неприводим, повторяем процесс. Получаем возрастающую цепочку главных идеалов

$$(f) \subsetneq (a_1) \subsetneq (a_2) \subsetneq \dots$$

Кольцо R нётерово, поэтому эта цепочка обрывается. Следовательно, любой элемент допускает разложение на неприводимые.

Теперь докажем единственность разложения. Пусть

$$p_1 \cdots p_k = q_1 \cdots q_m,$$

где все p_i,q_j — неприводимые. По условию любой неприводимый элемент порождает простой идеал: действительно, пусть h — неприводим, тогда (h) содержится в некотором простом идеале P, минимальном над (h). По предположению P главный, то есть P=(p) для некоторого p. Тогда $h\in(p)$, откуда h=ps. Поскольку h неприводим, один из множителей обратим; p не обратим (иначе P=R), значит, s обратим, и $h\sim p$. Следовательно, h ассоциирован с простым элементом p, а значит, сам h прост.

Таким образом, все p_i,q_j — простые элементы. Тогда из $p_1\mid q_1\cdots q_m$ следует, что $p_1\mid q_j$ для некоторого j. Без ограничения общности j=1, и тогда $p_1\sim q_1$. Сокращая обе части на p_1 , получаем

$$p_2 \cdots p_k = u \, q_2 \cdots q_m$$

для некоторого обратимого u. Продолжая индукцией, получаем k=m и $p_i\sim q_{\sigma(i)}$ для некоторой перестановки σ . Следовательно, разложение единственно с точностью до ассоциированности и порядка множителей.

Итак, R факториально.