
Лекция 9

На протяжении этой лекции R – нётерово кольцо и M – конечно порождён-
ный R-модуль.

Пусть P – минимальный простой идеал в R, содержащий аннулятор annM
модуля M . Рассмотрим гомоморфизм локализации π : M → MP . Пусть

Kerπ = M ′.

Лемма 1. Подмодуль M ′ ⊆ M является P -примарным.

Доказательство. Поскольку π : M → MP и Kerπ = M ′, гомоморфизм π ин-
дуцирует сложение M/M ′ ↪→ MP . При этом Ass(M/M ′) ⊆ Ass(MP ).

Заметим, что annM/M ′ = {r ∈ R | rM ⊆ M ′}. Следовательно, annM ⊆
annM/M ′. С другой стороны если r ∈ annM/M ′, то для любого m ∈ M име-
ем rm ∈ M ′, то есть существует u ∈ U = R \ P такой, что urm = 0. Пусть
m1, . . . ,mk – образующие M . Тогда выбрав для них u1, . . . , uk со свойствами
uirmi = 0, положим u = u1 . . . uk. Получаем urmi = 0 для всех i, а следова-
тельно, urm = 0 для любого m ∈ M . Итак, ur ∈ annM ⊆ P . Так как u /∈ P то
означает r ∈ P . Итак,

annM ⊆ annM/M ′ ⊆ P.

Мы знаем, что P – минимальный простой идеал, содержащий annM . Следо-
вательно, P – минимальный простой идеал, содержащий annM/M ′.

При этом, если v ∈ U = R\P является делителем нуля на M/M ′, то vm ∈ M ′

для некоторого mM \ M ′, то есть π(vm) = 0, что означает, что существует
v′ ∈ U такой, что v′vm = 0. Так как vv′ ∈ U и m /∈ M ′ это даёт противоречие.
Следовательно, не существует делителей нуля на M/M ′ в U .

Итак, P – минимальный простой идеал, содержащий annM/M ′ и любой эле-
мент не из P не является делителем нуля на M/M ′. По теореме 1 из лекции 8,
модуль M/M ′ является P -копримарным. То есть подмодуль M ′ является P -
примарным. □

Определение 1. Подмодуль M ′ называется P -примарной компонентой до-
дуля M .

Замечание 1. Подмодуль M ′ зависит только от M и P .

Теорема 1. Пусть R – нётерово кольцо и M – конечно порождённый R-
модуль. И пусть M ′ ⊆ M – некоторый подмодуль. Тогда:

a. Модуль M ′ может быть представлен в виде конечного пересечения

M ′ =
n⋂

j=1

Mi, где подмодули Mj являются Pj-примарными подмодуля-

ми в M и каждый P ∈ Ass(M/M ′) встречается среди Pj (такое пред-
ставление в виде пересечения называется примарным разложением M ′);

b. Если это пересечение несократимо, то есть ни один из Mj нельзя
убрать, то Ass(M/M ′) = {P1, . . . , Pn};

c. Если это пересечение минимально (то есть с минимальным возмож-
ным n), то Pj не повторяются. Если при этом ещё и выполнено, что
Pk минимален над annM/M ′, то Mk – это Pk-примарная компонен-
та M ′;
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d. Если M ′ =
n⋂

j=1

Mi – минимальное примарное разложение и U – муль-

типликативно замкнутое подмножество в R. Будем считать, что
{P1, . . . , Pt} – это те Pj, которые не пересекаются с U . Тогда

M ′[U−1] =

t⋂
j=1

Mi[U
−1]

есть минимальное примарное разложение для M ′[U−1].

Доказательство.

Определение 2. Скажем, что подмодуль N ⊆ M неприводим, если он не
является пересечением двух строго больших подмодулей.

Докажем сперва существование несколько другого разложения подмодуля
M ′. Покажем, что можно представить M ′ как

M ′ =

k⋂
j=1

Nj ,

где Nj неприводимы. Докажем это от противного. Пусть такого разложения
не существует. Тогда M ′ не является неприводимым. Значит, M ′ = M1 ∩ M2.
Если модули M1 и M2 неприводимы, то мы получили разложение. Иначе один
из них можно снова представить в виде объединения двух. Например,

M1 = M11 ∩M12.

И т.д. Если ни на каком конечном шаге разложение не будет получено, то мы
получим бесконечную цепочку вложенных подмодулей модуля M , что противо-
речит нётеровсти M (а конечно порождённый модуль над нётеровым кольцом,
как мы знаем, является нётеровым). Такое разложение называется неприводи-
мым разложением M ′.

Теперь покажем, что любое неприводимое разложение является примарным.
Для этого для неприводимого подмодуля N ⊆ M покажем, что модуль M/N
копримарный. Если это не так, то |Ass(M/N)| ≥ 2. Выберем P,Q ∈ Ass(M/N).
По определению идеал P является аннулятором некоторого элемента m ∈ M .
Рассмотрим циклический подмодуль A = Rm ⊆ M . Он изоморфен R/P . Ана-
логично есть подмодуль B ⊆ M , изоморфный R/Q. При этом аннулятор любо-
го ненулевого элемента в A равен P , а аннулятор любого ненулевого элемента
в B равен Q. Следовательно, A ∩ B = {0}. Пусть π : → M/N – канонический
гомоморфизм модулей. Тогда полные прообюразы π−1(A) ⊆ M и π−1(B) ⊆ M
пересекаются по подмодулю N . Но поскольку подмодуль N неприводим, он сов-
падает лиюбо с π−1(A), либо с π−1(B). Значит, M/N совпадает либо с A, либо
с B. Это противоречит тому, что A ∩ B = {0} и подмодули A и B ненулевые.
Полученное противоречие показывает, что M/N копримарный.

Итак, мы показали, что примарное разложение существует и тем самым до-
казали часть пункта a. Заметим далее, что все утверждения теоремя являются
утверждениями о фактормодуле M/M ′. Заменим модуль M на модуль M/M ′

и далее будем считать, что M ′ = {0}. (При этом мы ничего не потеряем.)
Завершим доказательство пункта a. Как мсы договорились, считаем, что

M ′ = {0} и у нас есть примарное разложение {0} = M ′ =
n⋂

j=1

Mj . Рассмотрим
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отображение M →
n⊕

j=1

M/Mj . (Отображение в каждое прямое слагаемое – это

канонический гомоморфизм.) Ядро этого отображения – это
⋂n

j=1 Mj = {0}.
То есть это вложение. Следовательно, (по доказанному ранее)

Ass(M/M ′) = Ass(M) ⊆ Ass

 n⊕
j=1

M/Mj

 =

n⋃
j=1

Ass(M/Mj) =

n⋃
j=1

Pj .

Пункт a доказан.
b. Мы всё ещё считаем, что M ′ = {0}. Если данное примарное разложение

несократимо, то для каждого j0 выполнено
⋂

j ̸=j0

Mj ̸= {0}. Так как

Mj0 ∩
⋂
j ̸=j0

Mj = {0}.

Тогда

⋂
j ̸=j0

Mj =
⋂
j ̸=j0

Mj/

Mj0 ∩
⋂
j ̸=j0

Mj

 =

 ⋂
j ̸=j0

Mj

+Mj0

 /Mj0 ⊆ M/Mj0 .

Однако, а модуль M/Mj является Pj0 -копримарным. Значит, модуль
⋂

j ̸=j0

Mj

является Pj0 -копримарным. Следовательно,

{Pj0} = Ass(
⋂
j ̸=j0

Mj) ⊆ Ass(M) = Ass(M/M ′).

Так как это верно для любого j0, пункт b доказан.
c. Ранее было доказано, что пересечение P -примарных модулей является

P -примарным. Следовательно, если в некотором примарном разложении заме-
нить все P -примарные модули на их пересечение, то мы получим вообще говоря
другое примарное разложение. При этом количество пересекаемых подмодулей
уменьшится, если среди P1, . . . , Pn были совпадающие. Значит, для минималь-
ного рпазложения все Pj различны.

Пусть теперь Pk – минимальный простой идеал над annM = annM/M ′. По-
кажем, что Mk – это Pk-примарная компонента, то есть ядро отображения
локализации α : M → MPk

. Рассмотрим следующую коммутативную диаграм-
му:

M MPk

M/Mk (M/Mk)Pk

Здесть верхняя горизонтальная стрелка – это α, левая вертикальная стрел-
ка – это β : M → M/Mk – канонический гомоморфизм, правая вертикальная
стрелка – это γ – канонический гомоморфизм при факторизации по локали-
зации Mk, нижняя горизонтальная стрелка – это δ – это локализация по Pk
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модуля M/Mk. Ясно, что Mk = Kerβ. Чтобы доказать, что Kerα = Mk надо
доказать, что γ и δ – вложения.

Докажем то, что δ – вложение. Если некоторый элемент при локализации
по U = R \Pk переходит в ноль, то в его аннуляторе лежит некоторый элемент
u ∈ U . Но при этом мы знаем, что модуль M/Mk является Pk-копримарным.
Следовательно, аннулятор любого ненулевого элемента равен Pk и не пересе-
кается с U . Следовательно, ядро δ равно {0}.

Докажем то, что γ – вложение. Напомним, что
n⋂

j=1

Mj = {0}. Следовательно,

φ : M →
⊕n

i=1 M/Mj – вложение. Тогда отображение

φPk
: MPk

→
n⊕

i=1

(M/Mj)Pk

является вложением. Так как Pk минимален над annM = annM/M ′ и каждый
Pj содержит annM , не существует такого j ̸= k, что Pj ⊆ Pk. Но при этом
модуль M/Mj является Pj-копримарным. Следовательно, (M/Mj)Pk

= {0} для
каждого j ̸= k. В самом деле, так как для каждого j ̸= k выполнено Pj ⊊ Pk,
значит Pj ∩ U ̸= ∅, где U = R \ Pk. Пусть u ∈ Pj ∩ U . Тогда для каждого
a ̸= 0 ∈ M/Mj выполнено ua = 0, так как u ∈ Pj = ann a. Следовательно, так
как u ∈ U , образ a при локализации по Pk равен нулю. Итак, (M/Mj)Pk

= {0}
при j ̸= k. Значит,

⊕n
i=1(M/Mj)Pk

= (M/Mk)Pk
. Это показывает, что γ –

вложение.
d. Пусть U – мультипликативно замкнутое подмножество в R. Ранее было

доказано следующее утверждение. Если U ∩ Pj = ∅, то Pj [U
−1] – простой

идеал в R[U−1]. При этом поскольку локализация перестановочна со взятием
мнеожества ассоциированных простых идеалов, подмодуль Mj [U

−1] является
Pi[U

−1]-примарным. Если же U ∩ Pj ̸= {0}, то Mj [U
−1] = M [U−1] (так как

локализация по U обнуляет Mj).
Получаем

{0} =

n⋂
j=1

Mj [U
−1] =

t⋂
j=1

Mj [U
−1]

есть примарное разложение {0} = M ′[U−1]. □

Пример 1. Пусть M = Z2 ⊕ Z4 ⊕ Z3 ⊕ Z27 ⊕ Z5 – конечная абелева группа.
Тогда A – это Z-модуль. Рассмотрим подмодуль M ′ = {0}. Найдём примарное
разложение M ′.

Ясно, что Ass(M) = {(2), (3), (5)}. Так как эти идеалы не содержатся друг в
друге, по пункту c предыдущей теоремы, минималоьное примарное разложение
будет состоять из примарных компонент M . Легко видеть, что

• (2)-примарная компонента M равна Z3 ⊕ Z27 ⊕ Z5;
• (3)-примарная компонента M равна Z2 ⊕ Z4 ⊕ Z5;
• (5)-примарная компонента M равна Z2 ⊕ Z4 ⊕ Z3 ⊕ Z27.

Итак,

{0} = (Z3 ⊕ Z27 ⊕ Z5) ∩ (Z2 ⊕ Z4 ⊕ Z5) ∩ (Z2 ⊕ Z4 ⊕ Z3 ⊕ Z27)−

это примарное разложение {0}.
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Пример 2. Пусть R = F [x](x). И пусть M = R ⊕ R/(x). Тогда Ass(M) =
{(x), {0}}.

Рассмотрим подмодуль M ′ = {0}. Найдём примарное разложение M ′.
Пусть M1 = {(0, a)} = {0} ⊕ R/(x) и M2 = R(1, a(1 + x)) для некоторого

a ∈ R. При этом {0} = M1 ∩M2 – (не однозначное) примарное разложение.


