Теорема 1. Предположим, что в поле F выполнено $2 \neq 0$. Пусть $\Phi \colon (F^n)^n \to F$ – кососимметричная полилинейная функция. Тогда $\Phi(A) = \Phi(E) \det(A)$. (Тут $\det u \Phi$ рассматривается как функция от системы строк, то есть $\det(A) = \det(A_1, \ldots, A_n)$.)

Доказательство. Из линейности следует, что если в матрице B есть нулевая строка, то $\Phi(B)=0$. Действительно, умножим эту строку на ноль, с одной стороны Φ умножится на ноль, а с другой – не изменится. Из кососимметричности следует, что если в матрице C есть две одинаковые строки, то $\Phi(C)=0$. В самом деле, поменяем эти строки. С одной стороны определитель умножится на минус 1, а с другой – не изменится. Это значит, что удвоенный определитель равен нулю, а так как $2\neq 0$, на 2 можно поделить.

Из линейности, если в матрице D есть две пропорциональные строки, то $\Phi(D)=0$. Отсюда можно так же, как и для определителя, вывести, что Φ не меняется при элементарных преобразованиях строк I типа. Из кососимметричности, при элементарных преобразованиях II типа Φ умножается на -1. Из линейности, при элементарных преобразованиях строк III типа с коэффициентом c, определитель умножается на c. Таким образом, Φ и det умножаются на одинаковые числа при всех элементарных преобразованиях.

Приведем матрицу A к улучшенному ступенчатому виду S. При этом для некоторого $\mu \neq 0$ выполнено $\Phi(A) = \mu \Phi(S)$, $\det(A) = \mu \det(S)$. Если S имеет нулевую строку, то $\det(S) = \Phi(S) = 0$, а значит, $\det(A) = \Phi(A) = 0$. И выполнено $\Phi(A) = \Phi(E) \det(A)$.

Если же в S нет нулевой строки, то S=E. Имеем $\det(A)=\mu\det(E)=\mu$. Тогда

$$\Phi(A) = \mu \Phi(E) = \Phi(E) \det(A).$$

Замечание 1. Мы доказываем эту теорему (и все дальнейшее, что на нее опирается) в предположении, что $2 \neq 0$. Однако для поля, в котором 2 = 0 она (и все дальнейшее) тоже верна, только в этом случае надо понимать кососимметричность по-другому, а именно, что функция от матрицы с двумя одинаковыми строками равна нулю. (Это единственное место, где мы воспользовались тем, что $2 \neq 0$.) Для того, чтобы теорема была доказана в этом случае, нужно доказать, что определитель матрицы с двумя одинаковыми строками равен нулю даже в случае 2 = 0. Далее не будем упоминать условие $2 \neq 0$

Задача 1. Докажите, что если в поле F выполняется 2=0 и в матрице A выполнено $A_i=A_j$, то $\det A=0$.

Указание: Рассмотрите определение определителя и разбейте слагаемые на пары равных. Тогда итоговый определитель будет равен 2x = 0x = 0 для некоторого x.

Напомним, что строки матрицы AB – это линейная комбинация строк B с коэффициентами из строк A.

То есть если
$$A_i=(\lambda_1,\ldots,\lambda_n),\,AB=C,\,$$
 то $C_i=\sum_{j=1}^n\lambda_jB_j$

Теорема 2. $Tor\partial a$

$$\det AB = \det A \det B.$$

Доказательство. Фиксируем матрицу B и рассмотрим функцию Φ_B : $\mathrm{Mat}_{n,n} \to F$, $\Phi_B(A) = \det(AB)$. Тогда Φ_B – это полилинейная кососимметричная функция от строк A. Действительно, пусть

$$X = \begin{pmatrix} A_1 \\ \vdots \\ A'_i \\ \vdots \\ A_n \end{pmatrix}, Y = \begin{pmatrix} A_1 \\ \vdots \\ A''_i \\ \vdots \\ A_n \end{pmatrix}, A = \begin{pmatrix} A_1 \\ \vdots \\ A'_i + A''_i \\ \vdots \\ A_n \end{pmatrix}, P = XB, Q = YB, C = AB.$$

Тогда при $j \neq i, P_j = Q_j = C_j$ и $C_i = P_i + Q_i$. Значит,

$$\Phi_B(A) = \det C = \det P + \det Q = \Phi_B(X) + \Phi_B(Y).$$

Второе равентсво для полилинейности и кососимметричность проверяются аналогично.

Имеем
$$\det AB = \Phi_B(A) = (\det A)\Phi_B(E) = \det A \det B$$
.

Следствие 1.

$$\det A^{-1} = \frac{1}{\det A}.$$

Теорема 3. Пусть M – квадратная матрица $n \times n$ имеет вид

$$M = \begin{pmatrix} A & 0 \\ X & B \end{pmatrix},$$

 $\textit{ede } A \in \operatorname{Mat}_{k,k}, \ X \in \operatorname{Mat}_{n-k,k}, \ B \in \operatorname{Mat}_{n-k,n-k}, \ 0 \in \operatorname{Mat}_{k,n-k}. \ \textit{Torda} \ \det M = \det A \det B.$

Доказательство. Фиксируем матрицы X и B. Тогда $\det M$ – функция $\Psi(A)$. Эта функция полилинейна и кососимметрична (даже по всем строкам M, но и по строкам A в частности). Значит, $\Psi(A)=\Psi(E)\det A$. При этом $\Psi(E)=\begin{vmatrix}E&0\\X&B\end{vmatrix}=\Phi(B)$. Эта функция полилинейна и кососимметрична по столбцам B. Значит, $\Phi(B)=\Phi(E)\det(B)$. Но

$$\Phi(E) = \begin{vmatrix} E & 0 \\ X & E \end{vmatrix} = 1$$
 (определитель нижнетреугольной матрицы).

Следовательно, $\det M = \Psi(A) = \Psi(E) \det A = \Phi(B) \det A = \det A \cdot \det B \cdot \Phi(E) = \det A \det B$.

Выберем k строк i_1, \ldots, i_k и k столбцов j_1, \ldots, j_k в матрице A. Удалим все остальные строки и столбцы. Останется квадратная матрица $k \times k$, находящаяся на пересечении выбранных строк и столбцов. Определитель этой матрицы мы будем называть $k \times k$ -минором исходной матрицы A. (Конечно же у данной матрицы много различных $k \times k$ -миноров.)

Обозначим $(n-1) \times (n-1)$ -минор, стоящий на пересечении всех строк, кроме i-ой и всех столбцов, кроме j-го через M_{ij} .

Определение 1. Алгебраическое дополнение к элементу a_{ij} – это число

$$A_{ij} = (-1)^{i+j} M_{ij}$$
.

Теорема 4 (Разложение определителя по *i*-ой строке).

$$\det A = \sum_{i=1}^{n} a_{ij} A_{ij}.$$

Доказательство. Разложим i-ю строку в сумму n строк:

$$(a_{i1},\ldots,a_{in})=(a_{i1},0,\ldots,0)+(0,a_{i2},0,\ldots,0)+\ldots+(0,\ldots,0,a_{in}).$$

Тогда определитель есть сумма n слагаемых. Рассмотрим j-е из них V_j . Поменяем в нем i-ю строку с i-1-й, затем i-1-ю с i-2-й и т.д. Совершим при этом i-1 транспозицию строк и поставим i-ю строку на 1 место. Аналогично, совершив j-1 транспозицию столбцов, поставим j столбец на 1 место.

Получим матрицу

$$U_j = \begin{pmatrix} a_{ij} & 0 & \dots & 0 \\ * & & & \\ \vdots & & B & \\ * & & & \end{pmatrix},$$

где матрица B получена из A вычеркиванием i-ой строки и j-го столбца. То есть $\det B = M_{ij}$. По теореме об определителе с углом нулей $\det U_j = a_{ij}M_{ij}$. При этом при переходе от V_j к U_j мы поменяли знак определителя (i-1)+(j-1) раз. То есть $V_j = (-1)^{(i-1)+(j-1)}a_{ij}M_{ij} = a_{ij}A_{ij}$. Получаем $\det A = \sum_{j=1}^n V_j = \sum_{j=1}^n a_{ij}A_{ij}$.

Аналогично доказывается (или формально выводится из предыдущей с помощью транспонирования) слудующая теорема.

Теорема 5 (Разложение определителя по j-му столбцу).

$$\det A = \sum_{i=1}^{n} a_{ij} A_{ij}.$$

Пример 1.

$$\begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix} = -4 \begin{vmatrix} 2 & 3 \\ 8 & 9 \end{vmatrix} + 5 \begin{vmatrix} 1 & 3 \\ 7 & 9 \end{vmatrix} - 6 \begin{vmatrix} 1 & 2 \\ 7 & 8 \end{vmatrix}.$$