Лекция 13

Теорема 1 (Фальшивое разложение определителя по i-ой строке).

$$\sum_{i=1}^{n} a_{ij} A_{kj} = 0 \ npu \ k \neq i.$$

Доказательство. Рассмотрим матрицу B, полученную из A заменой k-ой строки на i-ю. В матрице B две одинаковые строки, следовательно, $\det B = 0$. Разложим определитель матрицы B по k-ой строке. Получим

$$0 = \det B = \sum_{j=1}^{n} b_{kj} B_{kj} = a_{ij} A_{kj}.$$

Аналогично получается следующая теорема.

Теорема 2 (Фальшивое разложение определителя по j-му столбцу).

$$\sum_{i=1}^{n} a_{ij} A_{ik} = 0 \ npu \ k \neq j.$$

Определение 1. Присоединенная матрица — это матрица \widehat{A} являющаяся **транспонированной** матрицей из алгебраических дополнений.

$$\widehat{a}_{ij} = A_{ji}$$
.

Замечание 1. Будьте внимательны, в литературе чаще присоединенной называется не транспонированная матрица из алгебраических дополнений. Мы же назвали присоединенной уже транспонированную матрицу. (Это вопрос терминологии и не очень важно, но не запутайтесь!)

Теорема 3.

$$A\widehat{A} = (\det A)E.$$

Доказательство. Пусть $A\widehat{A} = D$. Тогда

$$d_{ii} = \sum_{j=1}^{n} a_{ij} \hat{a}_{ji} = \sum_{j=1}^{n} a_{ij} A_{ij} = \det A.$$

$$d_{ik} = \sum_{j=1}^{n} a_{ij} \hat{a}_{jk} = \sum_{j=1}^{n} a_{ij} A_{kj} = 0.$$

Если $\det A \neq 0$, то разделив предыдущее равенство на $\det A$, получаем следующее утверждение.

Теорема 4 (Явная формула для обратной матрицы). *Матрица* A^{-1} *существует тогда и только тогда, когда* det $A \neq 0$. B этом случае

$$A^{-1} = \frac{1}{\det A} \widehat{A}.$$

Рассмотрим квадратную СЛУ

$$\begin{cases} a_{11}x_1 + \ldots + a_{1n}x_n = b_1; \\ \vdots \\ a_{n1}x_1 + \ldots + a_{nn}x_n = b_n. \end{cases}$$

Пусть A – матрица коэффициентов (не расширенная) этой СЛУ. Рассмотрим квадратные матрицы

 A_1,\dots,A_n , где матрица A_i получена из A заменой i-го столбца на столбец свободных членов $\begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}$

Теорема 5 (Теорема Крамера). Данная СЛУ определена тогда и только тогда, когда $\det A \neq 0$. В этом случае решение находится по формуле $x_i = \frac{\det A_i}{\det A}$.

Доказательство. Пусть A — матрица коэффициентов системы и B — столбец правых частей. Мы знаем, что система определена тогда и только тогда, когда ранг матрицы коэффициентов A равен рангу расширенной матрицы коэффициентов (A|B) и равен количеству неизвестных. Так как матрица A квадратная, ее ранг равен количеству неизвестных тогда и только тогда, когда он равен размеру этой матрицы, то есть $\det A \neq 0$. С другой стороны, если $\det A \neq 0$, то $\operatorname{rk} A = n$ и тогда

$$n = \operatorname{rk} A \le \operatorname{rk} (A|B) \le n.$$

Отсюда ранги A и (A|B) равны и совпадают с n, то есть выполнены все условия определенности системы.

Пусть теперь $\det A \neq 0$. Тогда матрица A обратима. Изначальная СЛУ в матричном сиде имеет вид AX = B, где X – столбец решения. Умножая слева на A^{-1} , получаем $X = A^{-1}B$. Рассмотрим матрицу $A^{-1}A_i$. Каждый столбец умножается на A^{-1} отдельно. Поэтому в матрице

Рассмотрим матрицу $A^{-1}A_i$. Каждый столбец умножается на A^{-1} отдельно. Поэтому в матрице $A^{-1}A_i$ все столбцы, кроме i-го – это столбцы единичной матрицы, а i-ый – это столбец X. Получаем, что

$$\frac{\det A_i}{\det A} = \det(A_i A^{-1}) = \begin{vmatrix} 1 & 0 & \dots & x_1 & \dots & 0 \\ 0 & 1 & \dots & x_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & x_i & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & x_n & \dots & 1 \end{vmatrix} = x_i.$$

3амечание 2. Кажется, что на лекции теорема была доказана только в случае $\det A \neq 0$. В конспекте восполнен этот пробел.

Пример 1.

$$\begin{cases} x_1 + 2x_2 = 5; \\ 2x_1 + 3x_2 = 8. \end{cases}$$

Имеем:

$$\det A = \begin{vmatrix} 1 & 2 \\ 2 & 3 \end{vmatrix} = -1, \ \det A_1 = \begin{vmatrix} 5 & 2 \\ 8 & 3 \end{vmatrix} = -1, \ \det A_2 = \begin{vmatrix} 1 & 5 \\ 2 & 8 \end{vmatrix} = -2.$$

Отсюда СЛУ определена и

$$x_1 = \frac{-1}{-1} = 1, \ x_2 = \frac{-2}{-1} = 2.$$

Напомним, что $k \times k$ -минор (минор порядка k) матрицы A – это определитель подматрицы, стоящей на пересечении некоторых k строк и некоторых k столбцов матрицы A. Если эти строки имели номера i_1, \ldots, i_k , а столбцы – j_1, \ldots, j_k , то будем обозначать этот минор $M_{i_1, \ldots, i_k}^{j_1, \ldots, j_k}$.

Теорема 6 (Теорема о ранге матрицы). *Пусть* $A \in \operatorname{Mat}_{m,n}$. *Ранг матрицы* A равен максимальному порядку ненулевого минора этой матрицы.

Доказательство. Для того, чтобы доказать заявленное равенство, докажем неравенства в одну и другую сторону. Сперва докажем, что ранг не меньше, чем порядок любого ненулевого минора данной матрицы. Пусть в A есть ненулевой минор порядка k, и пусть это $M^{j_1,\ldots,j_k}_{i_1,\ldots,i_k}$. Так как определитель этой $k\times k$ -матрицы не равен нулю, ее строки ЛНЗ. Однако строки данной матрицы – это строки A_{i_1},\ldots,A_{i_k} , в которых убраны некоторые координаты (с одинаковыми номерами). Следовательно, строки A_{i_1},\ldots,A_{i_k} ЛНЗ, то есть $\mathrm{rk}\,A\ge k$.

Пусть теперь $\mathrm{rk}\,A=k$. Докажем, что в A найдется ненулевой минор порядка k. Выберем базисные строки A_{i_1},\ldots,A_{i_k} и рассмотрим подматрицу P размера $k\times n$ в матрице A, состоящую из этих строк. Так как строки P ЛНЗ, $\mathrm{rk}\,P=k$. Выберем базисные столбцы матрицы P. Это столбцы c номерами j_1,\ldots,j_k и они ЛНЗ. Следовательно, матрица, состоящая из этих базисных столбцов имеет ранг k, а значит, определитель этой матрицы не 0. Но это в точности подматрица матрицы A, стоящая на пересечении строк i_1,\ldots,i_k и столбцов j_1,\ldots,j_k .

Пример 2. Mampuu $\begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix}$ имеет ранг 2. Mинор на пересечении строк 1 и 2 и стобцов 2

u 3. Не равен нулю. A все 4 минора 3×3 равны нулю.

3амечание 3. Не верно, что на пересечении любых k ЛНЗ строк и k ЛНЗ столбцов стоит матрица с ненулевым определителем. Например, если взять ненулевую строку и ненулевой столбец, на их пересечении может стоять ноль (в единичной матрице, например).

Задача 1. Докажите, что если взять базисные строки и базисные столбцы, то матрица на их пересечении будет иметь ненулевой определитель.

Определение 2. Минор $(k+1) \times (k+1)$ называется *окаймляющим* минором для данного минора $k \times k$, если соответствующая подматрица получена добавлением 1 строки и 1 столбца к подматрице минора $k \times k$.

Теорема 7 (Теорема об окаймляющих минорах). Если данный минор $k \times k$ матрицы A не равен нулю, а все его окаймляющие миноры равны нулю, то $\mathrm{rk}\,A = k$.

Доказательство. По теореме о ранге матрицы гк $A \geq k$. Допустим, что гк $A \geq k+1$. Пусть данный нам ненулевой минор стоит на пересечении строк i_1,\ldots,i_k и столбцов j_1,\ldots,j_k . Тогда существует строка с номером $i_{k+1} \notin \{i_1,\ldots,i_k\}$ такая, что система строк с номерами i_1,\ldots,i_k,i_{k+1} ЛНЗ. Рассмотрим матрицу P размера $(k+1)\times n$, состоящую из этих строк. Ранг этой матрицы k+1. Тогда столбцы $P^{(j_1)},\ldots,P^{(j_k)}$ ЛНЗ так как даже если убрать строчку i_{k+1} , то они будут ЛНЗ. Дополним столбцы $P^{(j_1)},\ldots,P^{(j_k)}$ до база системы столбцов P некоторым столбцом $P^{(j_{k+1})}$. Матрица, состоящая из столбцов $P^{(j_1)},\ldots,P^{(j_k)},P^{(j_{k+1})}$ имеет ненулевой определитель. Но это подматрица $(k+1)\times(k+1)$ в A, что противоречит условию.

Теорема 8 (Определитель Вандермонда).

$$\begin{vmatrix} 1 & x_1 & \dots & x_1^{n-1} \\ 1 & x_2 & \dots & x_2^{n-1} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & x_n & \dots & x_n^{n-1} \end{vmatrix} = \prod_{1 \le j < i \le n} (x_i - x_j).$$

Доказательство. Обозначим данный определитель через $V(x_1, \dots, x_n)$ и докажем теорему индукцией по n.

База. n = 2.

$$V(x_1, x_2) = \begin{vmatrix} 1 & x_1 \\ 1 & x_2 \end{vmatrix} = x_2 - x_1.$$

Шаг. Вычтем каждый столбец, умноженный на x_1 из следующего (сначала вычетаем n-1-ый из n-го, затем n-2-ой из n-1-го и т.д.)

$$\begin{vmatrix} 1 & x_1 & \dots & x_1^{n-1} \\ 1 & x_2 & \dots & x_2^{n-1} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & x_n & \dots & x_n^{n-1} \end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 & \dots & 0 \\ 1 & x_2 - x_1 & x_2(x_2 - x_1) & \dots & x_2^{n-2}(x_2 - x_1) \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & x_n - x_1 & x_n(x_n - x_1) & \dots & x_n^{n-2}(x_n - x_1) \end{vmatrix} =$$

$$= \begin{vmatrix} x_2 - x_1 & x_2(x_2 - x_1) & \dots & x_2^{n-2}(x_2 - x_1) \\ \vdots & \vdots & \vdots & \vdots \\ x_n - x_1 & x_n(x_n - x_1) & \dots & x_n^{n-2}(x_n - x_1) \end{vmatrix} = (x_2 - x_1) \dots (x_n - x_1) V(x_2, \dots, x_n).$$

По предположению индукции

$$V(x_2, ..., x_n) = \prod_{2 \le j < i \le n} (x_i - x_j).$$

Отсюда следует доказываемое утверждение.