Лекция 14

Задача интерполяции. Задача интерполяции заключается в том, чтобы найти функцию f(x)(обычно не любую, а из какого-то заданного класса "хороших" функций) такую, что в n различных точках x_1, \ldots, x_n она принимает заданные значения y_1, \ldots, y_n .

Теорема 1. Для любых различных x_1, \ldots, x_n и любых y_1, \ldots, y_n существует единственный многочлен f(x) степени не более n-1, такой что $f(x_i)=y_i$ для всех i.

Доказательство. Будем искать этот многочлен с неопределенными коэффициентами:

$$f(x) = c_0 + c_1 x + c_2 x^2 + \ldots + c_{n-1} x^{n-1}.$$

Тогда условие $f(x_i) = y_i$ дает линейное уравнение на c_0, \dots, c_{n-1} . Получаем квадратную СЛУ с матрицей $V(x_1,\ldots,x_n)$. Так как все x_i различны, определитель не ноль и система определена.

Интерполяционный многочлен Лагранжа. Многочлен, решающий задачу интерполяции, можно выписать явно.

$$f(x) = \sum_{i=1}^{n} \left(\frac{\prod\limits_{j \neq i} x - x_j}{\prod\limits_{j \neq i} x_i - x_j} y_i \right).$$

Это действительно многочлен, так как знаменатели – константы, не равные нулю. Числители – многочлены степени n-1. Сумма многочленов степени n-1 – это многочлен степени не более n-1. Если мы подставим в этот многочлен x_k , то все слагаемые, кроме k-го обратятся в ноль. А k-е слагаемое становится равно y_k .

Данная формула называется интерполяционной формулой Лагранжа.

Определение 1. Пусть G – непустое множество с одной бинарной операцией $(x,y)\mapsto x*y$. Тогда Gназывается группой, если выполнены следующие три аксиомы.

- для любых $x, y, z \in G$ выполнено (x * y) * z = x * (y * z)(ассоциативность);
- (нейтральный элемент);
- существует $e \in G$ такой, что $\forall x \in G$ выполнено e * x = x * e = x. (нейтральный элемент); для каждого $g \in G$ существует $g^{-1} \in G$ такой, что $g * g^{-1} = g^{-1} * g = e$ (обратный элемент).

Если из контекста не понятно, какая операция имеется в виду, то используют обозначение (G, *).

Определение 2. Группа G называется <u>абелевой</u> (коммутативной) группой, если

• для любых $x,y \in G$ выполнено x*y=y*x(коммутативность).

Замечание 1. Если просто задано множество с одной бинарной операцией, то оно называется группоидом. Если данная операция ассоциативна (удовлетворяет только первой аксиоме), то данное множество называется полугруппой. Если же у полугруппы есть нейтральный элемент, то она называется моноидом.

Примеры групп.

- (1) Числовые группы (все они абелевы)
 - по сложению $(\mathbb{Z}, +), (\mathbb{Q}, +), (\mathbb{R}, +).$
 - по умножению $\mathbb{Q}^{\times}=(\mathbb{Q}\setminus 0,\cdot),\,\mathbb{R}^{\times}=(\mathbb{R}\setminus 0,\cdot),\,(\{1,-1\},\cdot).$
- (2) векторы по сложению (все они абелевы) $(\mathbb{R}^n,+)$, $(\mathrm{Mat}_{mn}(\mathbb{R}),+)$, $(\mathbb{Q}^n,+)$, $(\mathrm{Mat}_{mn}(\mathbb{Q}),+)$, $(\mathbb{Z}^n,+), (\operatorname{Mat}_{mn}(\mathbb{Z}),+).$
- (3) Группа вычетов (остатков) по модулю $n: (\mathbb{Z}_n, +)$. (Это абелева группа.)
- (4) Симметрические группы (S_n, \circ) . (при $n \ge 3$ не абелевы)
- (5) Невырожденные матрицы по умножению (при $n \ge 2$ не абелевы)

$$\operatorname{GL}_n(\mathbb{R}) = (\{A \in \operatorname{Mat}_{nn}(\mathbb{R}) | \det A \neq 0\}, \cdot),$$

- $\operatorname{GL}_n(\mathbb{Q}) = (\{A \in \operatorname{Mat}_{nn}(\mathbb{Q}) | \det A \neq 0\}, \cdot).$
- (6) Группы преобразований (почти всегда не абелевы)
 - $(S(X), \circ)$ группа биекций $X \to X$ для некоторого фиксированного множества X.
 - группа движений плоскости ($\operatorname{Iso}(\mathbb{R}^2), \circ$).

Множества с операциями, не являющиеся группами.

- (нет нейтрального элемента, это полугруппа)
- $(\mathbb{N} \cup \{0\}, +)$ (не к любому элементу есть обратный, это моноид)
- (не к любому элементу есть обратный, это моноид)
- $(\mathrm{Mat}_{nn}(\mathbb{R}),\cdot)$ (не к любому элементу есть обратный, это моноид)
- $(\mathbb{Z} \setminus \{3, -3\}, +)$ (не корректно определена операция, даже не группоид)
- $(\mathbb{Z}, *)$, где x * y = x + 2y(операция не ассоциативна, это группоид, но не полугруппа)

Мультипликативная и аддитивная терминологии

Во многих примерах операция – это умножение. На самом деле это вопрос терминологии. Любую операцию в любой группе можно назвать умножением и писать $xy = x \cdot y$ вместо x * y. Нейтральный элемент группы будем также называть единицей группы (обозначается e). Такая терминология и обозначения называются мультипликативными.

В других примерах операция – это сложение. Однако обычно с операцией сложения получается абелева группа. Операцию в произвольной абелевой группе принято называть сложением. При этом нейтральный элемент называется нулем группы (обозначается 0), а обратный элемент к х – противоположным (обозначается -x). Такая терминология и обозначения называются аддитивными.

Заметим, что абелева группа является частным случаем произвольной группы. Поэтому к ней применимы обе терминологии. Это не должно вызывать путаницы, надо лишь научиться переводить выражения с одного языка на другой.

Простейшие следствия из аксиом

- ullet Нейтральный элемент в группе единственный. Допустим противное: пусть e и e' нейтральные элементы группы G. Тогда e = ee' = e'.
- ullet Обратный элемент к данному элементу единственный. Допустим противное: пусть h и h' обратные элементы к элементу q группы G. Тогда h = h(qh') = (hq)h' = h'.
- Если xy = xz, (или yx = zx), то y = z. Умножим обе части равенства на x^{-1} слева (справа). Если gh = e, то $g = h^{-1}$ и $h = g^{-1}$. Имеем $gh = e = gg^{-1}$, значит, $h = g^{-1}$. Второе аналогично. $(g^{-1})^{-1} = g$. В самом деле $gg^{-1} = e$, отсюда $(g^{-1})^{-1} = g$.

- Выполнена обобщенная ассоциативность. (Доказательство было ранее.)
- $(xy)^{-1} = y^{-1}x^{-1}$. Перемножим

$$xyy^{-1}x^{-1} = xex^{-1} = xx^{-1} = e.$$

Определение 3. Пусть $g \in G, k \in \mathbb{Z}$. Определим

$$g^k = \begin{cases} gg \dots g & (k \text{ раз}), \text{ если } k > 0; \\ e, \text{ если } k = 0; \\ g^{-1}g^{-1}\dots g^{-1} & (-k \text{ раз}), \text{ если } k < 0. \end{cases}$$

Лемма 1. $g^a g^b = g^{a+b} \ u \ (g^a)^b = g^{ab}$.

Упражнение 1. Докажите эту лемму.

Определение 4. Порядком элемента $g \in G$ называется минимальное натуральное k такое, что $g^k = e$. Если же такого числа k не существует, то говорят, что порядок равен ∞ . Обозначается порядок элемента g через $\operatorname{ord}(g)$.

Пример 1. ord(e) = 1;

Порядок любого ненулевого числа в группе $(\mathbb{Z},+)$ равен ∞ ; Порядок -1 в группе ($\mathbb{Q} \setminus \{0\}, \cdot$) равен 2.

Лемма 2. Порядок подстановки $\sigma \in S_n$ равен наименьшему общему кратному длин циклов в разложении σ в произведение независимых циклов.

Доказательство. Пусть разложение σ в произведение независимых циклов имеет вид $\sigma = \xi_1 \circ \ldots \circ \xi_m$, где ξ_i – цикл длины l_i . Тогда, так как независимые циклы коммутируют выполнено

$$\sigma^k = \xi_1^k \circ \ldots \circ \xi_m^k.$$

При этом подстановки ξ_1^k,\dots,ξ_m^k переставляют не пересекающиеся множества элементов. Из этого следует, что $\xi_1^k \circ \dots \circ \xi_m^k = \mathrm{id}$ тогда и только тогда, когда для каждого j выполнено $\xi_j^k = \mathrm{id}$. Но цикл

в степени равен тождественной подстановке тогда и только тогда, когда данная степень делится на длину данного цикла. Получаем $\sigma^k = \mathrm{id}$ тогда и только тогда, когда $l_j \mid k$ для всех j. Наименьшее такое k равно $\mathrm{HOK}(l_1,\ldots,l_m)$.

Определение 5. Пусть G – группа с операцией *. Подмножество $H \subseteq G$ называется nodгруппой, если H является группой относительно той же операции *.

Пример 2. Множество $(2\mathbb{Z},+)$ четных целых чисел образует подгруппу в группе $(\mathbb{Z},+)$.

Теорема 2. Пусть H – подмножество группы G. Тогда H – подгруппа G тогда и только тогда, когда выполнены следующие условия:

- (1) $H \neq \emptyset$;
- (2) H замкнуто относительно операции, то есть если $h_1, h_2 \in H$, то $h_1h_2 \in H$;
- (3) H замкнуто относительно взятия обратного, то есть если $h \in H$, то $h^{-1} \in H$.

Доказательство. Докажем достаточность. Пусть условия выполнены. Тогда из условий 1 и 2 H — непустое множество с бинарной операцией (той же, что и в G, а значит, ассоциативной). По условию 1 найдется $h \in H$. По условию 3 элемент h^{-1} лежит в H. По условию 2 имеем $hh^{-1} = e \in H$, то есть в H есть нейтральный элемент. По условию 3 каждый элемент имеет обратный.