Лекция 18

Обозначим $(0, 1, 0, ...) \in R[x]$ через x.

Пемма 1. x^n – это последовательность, в которой на n-ом месте стоит единица, а остальные элементы – нули.

$$x^n = x^{n-1} \cdot x = (0, 0, \dots, 0, 1, 0 \dots) \cdot (0, 1, 0, \dots).$$

При этом при $(a_0, a_1, a_2, \ldots) \cdot (b_0, b_1, b_2, \ldots) = (c_0, c_1, c_2, \ldots)$, выполнено $c_k = \sum_{j=0}^k a_j b_{k-j}$. У нас не равно 0 только a_1 и b_{n-1} . Таким образом, единственное c_i не равное нулю – это $c_n = 1$.

Таким образом, многочлен $f = (a_0, a_1, \dots, a_n, 0, 0, \dots)$ может быть записан как

$$f(x) = a_0 + a_1 x + \ldots + a_n x^n.$$

Определение 1. Степень deg f многочлена $f \neq (0, 0, ...)$ равна максимальному n такому, что $a_n \neq 0$.

Теорема 1. 1) deg $(f + g) \le \max(\deg f, \deg g)$;

2) Если R – целостное кольцо, то $\deg(fg) = \deg f + \deg g$.

Доказательство. Пусть $f = (a_0, a_1, \dots, a_m, 0, 0, \dots), g = (b_0, b_1, \dots, b_n, 0, 0, \dots).$ Тогда

$$f + g = (a_0 + b_0, a_1 + b_1, \ldots).$$

При $j > \max(m, n)$ элемент с номером j будет нулевой.

Пусть $fg=(c_0,c_1,\ldots)$. Тогда $c_k=\sum_{j=0}^k a_j b_{k-j}$. Если k>m+n, то $c_k=0$. При этом $c_{m+n}=a_mb_n\neq 0$, так как R целостное. Значит, $\deg(fg)=m+n$.

Замечание 1. Если кольцо R не является целостным, то второй пункт теоремы не верен. Например, в кольце $\mathbb{Z}_4[x]$ выполнено $\deg(2x+1)=1$, но $(2x+1)^2=1$ и $\deg 1=0$.

Задача 1. Найдите обратимый многочлен положительной степени в $\mathbb{Z}_6[x]$.

Следствие 1. Кольцо многочленов над целостным кольцом целостное.

Доказательство. Если fg=0, то это противоречит $\deg fg=\deg f+\deg g$.

Наша цель – доказать следующую теорему.

Теорема 2 (основная теорема алгебры). Любой многочлен $f \in \mathbb{C}[x]$ положительной степени имеет комплексный корень, то есть число $z_0 \in \mathbb{C}$ такое, что $f(z_0) = 0$.

Для доказательства нам понадобятся следующие понятия из матанализа над С.

Определение 2. Пусть $z_0 \in \mathbb{C}$. Тогда ε -окрестность точки z_0 – это

$$U_{\varepsilon}(z_0) = \{ z \in \mathbb{C} : |z - z_0| < \varepsilon \}.$$

Определение 3. Пусть $z_1, z_2, \ldots, z_n, \ldots$ – последовательность комплексных чисел. Будем говорить, что она имеет предел $w \in \mathbb{C}$, при $n \to \infty$, если для любого $\varepsilon > 0 \in \mathbb{R}$ существует $N \in \mathbb{N}$ такое, что для любого n > N выполнено $z_n \in U_{\varepsilon}(w)$.

Лемма 2. Пусть
$$z_j = x_j + iy_j$$
 u $w = u + iv$. Тогда $\lim_{n \to \infty} z_n = w \Leftrightarrow \begin{cases} \lim_{n \to \infty} x_n = u; \\ \lim_{n \to \infty} y_n = v. \end{cases}$

Доказательство.

 $\lim_{n \to \infty} z_n = w \Leftrightarrow \lim_{n \to \infty} |z_n - w| = 0 \Leftrightarrow \lim_{n \to \infty} \sqrt{(x_i - u)^2 + (y_i - v)^2} = 0 \Leftrightarrow$

$$\Leftrightarrow \lim_{n \to \infty} (x_i - u)^2 + (y_i - v)^2 = 0 \Leftrightarrow \begin{cases} \lim_{n \to \infty} x_n = u; \\ \lim_{n \to \infty} y_n = v. \end{cases}$$

Следствие 2. Пусть $\lim_{n\to\infty} z_n = w$ u $\lim_{n\to\infty} z_n' = w'$. Тогда $\lim_{n\to\infty} (z_n + z_n') = w + w'$ u $\lim_{n\to\infty} (z_n z_n') = ww'$.

Доказательство. По условию $x_n \to u, \ y_n \to v, \ x_n' \to u', \ y_n' \to v'.$ Тогда, $z_n + z_n' = (x_n + x_n') + i(y_n + y_n')$. Но $x_n + x_n' \to u + u', \ y_n + y_n' \to v + v'.$ Значит, $z_n + z_n' \to w + w'.$

Аналогично, $z_nz_n'=(x_n+iy_n)(x_n'+iy_n')=(x_nx_n'-y_ny_n')+i(x_ny_n'+x_n'y_n)$. Но $(x_nx_n'-y_ny_n')\to uu'-vv'$, $(x_ny_n'+x_n'y_n)\to uv'+u'v$. Отсюда

$$z_n z_n' \to (uu' - vv') + i(uv' + u'v) = ww'.$$

Определение 4. Пусть $f\colon\mathbb{C}\to\mathbb{C}$ – функция. Тогда $\lim_{z\to 0}f(z)=c\in\mathbb{C},$ если для каждого $\varepsilon>0\in\mathbb{R}$ найдется $\delta>0\in\mathbb{R}$ такое, что при $z\in U_{\delta}(w)$ выполнено $f(z)\in U_{\varepsilon}(c).$

Совершенно аналогично утверждениям для последовательностей доказываются следующие утверждения.

Лемма 3. Пусть
$$c=a+ib$$
. Тогда $\lim_{z\to w}f(z)=c\Leftrightarrow \begin{cases} \lim\limits_{z\to w}\mathrm{Re}(f(z))=a; \\ \lim\limits_{z\to w}\mathrm{Im}(f(z))=b. \end{cases}$

3амечание 2. В предыдущей лемме безусловно нужно определить предел для функции $h\colon \mathbb{C} \to \mathbb{R}$. Определим это понятие так: $\lim h(z) = y$, если для любого $\varepsilon > 0$ существует $\delta > 0$ такое, что при $z \in U_{\delta}(w)$ выполнено $|h(z) - y| < \varepsilon$.

Следствие 3. $\Pi y cmb \lim_{z \to w} f(z) = c \ u \lim_{z \to w} g(z) = d.$ $Tor \partial a \lim_{z \to w} (f(z) + g(z)) = c + d \ u \lim_{z \to w} (f(z)g(z)) = cd.$

Определение 5. Функция $f \colon \mathbb{C} \to \mathbb{C}$ называется непрерывной в точке w, если $\lim_{z \to \infty} f(z) = f(w)$.

Из доказанного выше следует следующая лемма.

Лемма 4. Сумма и произведение непрерывных функций – это непрерывная функция.

Следствие 4. Многочлен $f(z) \in \mathbb{C}[z]$ задает непрерывную функцию $\mathbb{C} \to \mathbb{C}$.

Определение 6. Подмножество $L\subset\mathbb{C}$ называется *открытым*, если для любого $z\in L$ существует $\varepsilon>0\in\mathbb{R}$ такой, что $U_{\varepsilon}(z)\subset L$. Подмножество $S\subset\mathbb{C}$ называется замкнутым, если $\mathbb{C}\setminus S$ открыто.

Пемма 5. Пусть S замкнуто. Тогда если $z_i \in S$ при всех i и существует предел $\lim_{n \to \infty} z_n = w$, то $w \in S$.

Доказательство. Предположим $w \notin S$. Тогда найдется $\varepsilon > 0 \in \mathbb{R}$ такой, что $U_{\varepsilon}(w) \cap S = \emptyset$. Однако начиная с некторого номера $z_n \in U_{\varepsilon}(w)$. Противоречие.

Определение 7. Подмножество $K \subset \mathbb{C}$ называется <u>компактом</u>, если K замкнуто и ограничено, то есть существует $N \in \mathbb{R}$ такое, что $K \subset \{z : |z| < N\}$.

Лемма 6. Из любой последовательности в компакте К можно выбрать сходящуюся подпоследовательность.

Доказательство. Пусть есть последовательность $z_n=x_n+iy_n\in K$. Тогда последовательность x_n ограничена, а значит, можно найти такую подпоследовательность в z_n , что x_n для нее сходятся. Можно считать, что это верно для всей $\{z_n\}$. Аналогично, последовательность y_n ограничена, а значит, мы можем перейти к подпоследовательности, в которой $\{y_n\}$ сходится. Так как последовательности $\{x_n\}$ и $\{y_n\}$ для этой подпоследовательности имеют предел, то и сама подпоследовательность имеет предел. В силу замкнутости K, предел лежит в K.

Теорема 3. Непрерывная функция $h \colon \mathbb{C} \to \mathbb{R}$ достигает на компакте K минимального значения.

 Доказательство. Пусть $M=\inf_{z\in K}h(z)$. Тогда существует последовательность $z_n\in K$ такая, что $\lim h(z_n) = M$. Выберем из этой последовательности сходящуюся подпоследовательность. Так как функция непрерывна, ее значение в предельной точке этой подпоследовательности равно M.

Лемма 7 (о возрастании модуля). Пусть $f(z) \in \mathbb{C}[z]$ – многочлен положительной степени. Тогда $\lim_{|z| \to \infty} |f(z)| = \infty$. То есть для каждого $C \in \mathbb{R}$ существует $D \in \mathbb{R}$ такое, что при |z| > D выполнено |f(z)| > C.

Доказательство. Заметим, что $|z| \to \infty \Leftrightarrow \frac{1}{z} \to 0$.

$$f(z) = a_0 + a_1 z + \dots + a_n z^n = z^n \left(\frac{a_0}{z^n} + \frac{a_1}{z^{n-1}} + \dots + \frac{a_{n-1}}{z} + a_n \right).$$

Тогда

$$|f(z)| = |z^n| \cdot \left| \frac{a_0}{z^n} + \frac{a_1}{z^{n-1}} + \dots + \frac{a_{n-1}}{z} + a_n \right|.$$

 $|f(z)| = |z^n| \cdot \left| \frac{a_0}{z^n} + \frac{a_1}{z^{n-1}} + \ldots + \frac{a_{n-1}}{z} + a_n \right|.$ Но при $|z| \to \infty$ выполнено $\frac{a_0}{z^n} + \frac{a_1}{z^{n-1}} + \ldots + \frac{a_{n-1}}{z} \to 0$. Значит, существует такое $P \in \mathbb{R}$, что при |z| > P выполнено

$$\left| \frac{a_0}{z^n} + \frac{a_1}{z^{n-1}} + \ldots + \frac{a_{n-1}}{z} \right| < \frac{|a_n|}{2}.$$

Для модулей комплексных чисел выполнено неравенство треугольника (модуль – длина вектора):

$$|z_1| - |z_2| \le |z_1 + z_2| \le |z_1| + |z_2|.$$

Отсюда

$$\left| \frac{a_0}{z^n} + \frac{a_1}{z^{n-1}} + \ldots + \frac{a_{n-1}}{z} + a_n \right| \ge |a_n| - \left| \frac{a_0}{z^n} + \frac{a_1}{z^{n-1}} + \ldots + \frac{a_{n-1}}{z} \right| > |a_n| - \frac{|a_n|}{2} > \frac{|a_n|}{2}.$$

Тогда $|f(z)|>|z^n|\cdot \frac{|a_n|}{2}>D^n\frac{|a_n|}{2}.$ Если D таково, что $D^n\frac{|a_n|}{2}>C$, то |f(z)|>C.

Лемма 8 (Лемма Даламбера). Пусть $z_0 \in \mathbb{C}$, $f(z) \in \mathbb{C}$, $\deg f(z) > 0$ и пусть $f(z_0) \neq 0$. Тогда для любого $\varepsilon > 0 \in \mathbb{R}$ существует $z \in U_{\varepsilon}(z_0)$ такое, что $|f(z)| < |f(z_0)|$.

Эту лемму мы докажем на следующей лекции. А пока что мы докажем основную терему алгебры, используя данную лемму.

Теорема 4 (Основная теорема алгебры). Любой многочлен $f \in \mathbb{C}[z]$ положительной степени имеет комплексный корень, то есть число $w \in \mathbb{C}$ такое, что f(w) = 0.

Доказательство. По лемме о возрастании модуля существует $D \in \mathbb{R}$ такое, что при |z| > D выполнено |f(z)| > |f(0)|. Рассмотрим круг $K = \{|z| \le 2D\}$. Это замкнутое и ограниченное множество, то есть компакт. Значит, существует точка $w \in K$ в которой достигается минимум функции |f(z)|. Заметим, что w не лежит на границе K, так как на границе данная функция больше, чем в точке $0 \in K$. Значит, существует $\varepsilon > 0 \in \mathbb{R}$ такой, что $U_{\varepsilon}(w) \subset K$. Если f(w) = 0, то корень найден. Допустим, что $f(w) \neq 0$. Тогда по лемме Даламбера существует $w' \in U_{\varepsilon}(w)$ такое, что |f(w')| < |f(w)|. Но $w' \in K$. Получаем противоречие с выбором w.