Лекция 14

Определение 1. Пусть G – непустое множество с одной бинарной операцией $(x,y)\mapsto x*y$. Тогда Gназывается группой, если выполнены следующие три аксиомы.

- для любых $x, y, z \in G$ выполнено (x * y) * z = x * (y * z)
- существует $e \in G$ такой, что $\forall x \in G$ выполнено e * x = x * e = x. (нейтральный элемент); для каждого $g \in G$ существует $g^{-1} \in G$ такой, что $g * g^{-1} = g^{-1} * g = e$ (обратный элемент).

Если из контекста не понятно, какая операция имеется в виду, то используют обозначение (G, *).

Определение 2. Группа *G* называется <u>абелевой</u> (коммутативной) группой, если

• для любых $x, y \in G$ выполнено x * y = y * x(коммутативность).

Замечание 1. Если просто задано множество с одной бинарной операцией, то оно называется группоидом. Если данная операция ассоциативна (удовлетворяет только первой аксиоме), то данное множество называется полугруппой. Если же у полугруппы есть нейтральный элемент, то она называется моноидом.

Примеры групп.

- (1) Числовые группы (все они абелевы)
 - по сложению $(\mathbb{Z}, +), (\mathbb{Q}, +), (\mathbb{R}, +).$
 - по умножению $\mathbb{Q}^{\times} = (\mathbb{Q} \setminus 0, \cdot), \mathbb{R}^{\times} = (\mathbb{R} \setminus 0, \cdot), (\{1, -1\}, \cdot).$
- (2) векторы по сложению (все они абелевы) $(\mathbb{R}^n,+)$, $(\mathrm{Mat}_{mn}(\mathbb{R}),+)$, $(\mathbb{Q}^n,+)$, $(\mathrm{Mat}_{mn}(\mathbb{Q}),+)$, $(\mathbb{Z}^n,+), (\operatorname{Mat}_{mn}(\mathbb{Z}),+).$
- (3) Группа вычетов (остатков) по модулю $n: (\mathbb{Z}_n, +)$. (Это абелева группа.)
- (4) Симметрические группы (S_n, \circ) . (при $n \geq 3$ не абелевы)
- (5) Невырожденные матрицы по умножению (при $n \ge 2$ не абелевы)

$$GL_n(\mathbb{R}) = (\{A \in Mat_{nn}(\mathbb{R}) | \det A \neq 0\}, \cdot),$$

$$GL_n(\mathbb{Q}) = (\{A \in Mat_{nn}(\mathbb{Q}) | \det A \neq 0\}, \cdot).$$

- (6) Группы преобразований (почти всегда не абелевы)
 - $(S(X), \circ)$ группа биекций $X \to X$ для некоторого фиксированного множества X.
 - группа движений плоскости ($\operatorname{Iso}(\mathbb{R}^2), \circ$).

Множества с операциями, не являющиеся группами.

- \bullet $(\mathbb{N},+)$ (нет нейтрального элемента, это полугруппа)
- $(\mathbb{N} \cup \{0\}, +)$ (не к любому элементу есть обратный, это моноид)
- (не к любому элементу есть обратный, это моноид)
- (не к любому элементу есть обратный, это моноид) • $(\mathrm{Mat}_{nn}(\mathbb{R}),\cdot)$
- $(\mathbb{Z} \setminus \{3, -3\}, +)$ (не корректно определена операция, даже не группоид)
- $(\mathbb{Z}, *)$, где x * y = x + 2y(операция не ассоциативна, это группоид, но не полугруппа)

Мультипликативная и аддитивная терминологии

Во многих примерах операция – это умножение. На самом деле это вопрос терминологии. Любую операцию в любой группе можно назвать умножением и писать $xy = x \cdot y$ вместо x * y. Нейтральный элемент группы будем также называть единицей группы (обозначается e). Такая терминология и обозначения называются мультипликативными.

В других примерах операция – это сложение. Однако обычно с операцией сложения получается абелева группа. Операцию в произвольной абелевой группе принято называть сложением. При этом нейтральный элемент называется нулем группы (обозначается 0), а обратный элемент к х – противоположным (обозначается -x). Такая терминология и обозначения называются аддитивными.

Заметим, что абелева группа является частным случаем произвольной группы. Поэтому к ней применимы обе терминологии. Это не должно вызывать путаницы, надо лишь научиться переводить выражения с одного языка на другой.

Простейшие следствия из аксиом

- ullet Нейтральный элемент в группе единственный. Допустим противное: пусть e и e' нейтральные элементы группы G. Тогда e = ee' = e'.
- \bullet Обратный элемент к данному элементу единственный. Допустим противное: пусть h и h' обратные элементы к элементу g группы G. Тогда h = h(gh') = (hg)h' = h'.

- Если xy=xz, (или yx=zx), то y=z. Умножим обе части равенства на x^{-1} слева (справа). Если gh=e, то $g=h^{-1}$ и $h=g^{-1}$. Имеем $gh=e=gg^{-1}$, значит, $h=g^{-1}$. Второе аналогично. $(g^{-1})^{-1}=g$. В самом деле $gg^{-1}=e$, отсюда $(g^{-1})^{-1}=g$.

- Выполнена обобщенная ассоциативность. (Доказательство было ранее.)
- $(xy)^{-1} = y^{-1}x^{-1}$. Перемножим

$$xyy^{-1}x^{-1} = xex^{-1} = xx^{-1} = e.$$

Определение 3. Пусть $q \in G$, $k \in \mathbb{Z}$. Определим

$$g^k = \begin{cases} gg \dots g & (k \text{ раз}), \text{ если } k > 0; \\ e, \text{ если } k = 0; \\ g^{-1}g^{-1}\dots g^{-1} & (-k \text{ раз}), \text{ если } k < 0. \end{cases}$$

Лемма 1. $g^a g^b = g^{a+b} \ u (g^a)^b = g^{ab}$.

Упражнение 1. Докажите эту лемму.

Определение 4. Порядком элемента $q \in G$ называется минимальное натуральное k такое, что $q^k = e$. Если же такого числа k не существует, то говорят, что порядок равен ∞ . Обозначается порядок элемента g через $\operatorname{ord}(g)$.

Упражнение 2. ord(e) = 1;

Порядок любого ненулевого числа в группе $(\mathbb{Z}, +)$ равен ∞ ;

Порядок -1 в группе ($\mathbb{Q} \setminus \{0\}, \cdot$) равен 2.

Лемма 2. Порядок подстановки $\sigma \in S_n$ равен наименьшему общему кратному длин циклов в разложении σ в произведение независимых циклов.

Доказательство. Пусть разложение σ в произведение независимых циклов имеет вид $\sigma = \xi_1 \circ \dots \circ \xi_m$, где ξ_i – цикл длины l_i . Тогда, так как независимые циклы коммутируют выполнено

$$\sigma^k = \xi_1^k \circ \ldots \circ \xi_m^k.$$

При этом подстановки ξ_1^k,\dots,ξ_m^k переставляют не пересекающиеся множества элементов. Из этого следует, что $\xi_1^k \circ \dots \circ \xi_m^k = \mathrm{id}$ тогда и только тогда, когда для каждого j выполнено $\xi_j^k = \mathrm{id}$. Но цикл в степени равен тождественной подстановке тогда и только тогда, когда данная степень делится на длину данного цикла. Получаем $\sigma^k = \mathrm{id}$ тогда и только тогда, когда $l_j \mid k$ для всех j. Наименьшее такое k равно $HOK(l_1, \ldots, l_m)$.

Определение 5. Пусть G – группа с операцией *. Подмножество $H \subseteq G$ называется nodгруппой, если H является группой относительно той же операции *.

Пример 1. Множество $(2\mathbb{Z},+)$ четных целых чисел образует подгруппу в группе $(\mathbb{Z},+)$.

Лемма 3. Любая подгруппа содержит нейтральный элемент группы.

 \mathcal{A} оказательство. Пусть H – подгруппа G и e – нейтральный элемент G. Тогда в H есть нейтральный элемент e'. Получаем ee' = e' = e'e'. Отсюда e = e'.

Лемма 4. Пусть H – подгруппа группы G. Рассмотрим $h \in H$ и пусть h^{-1} – обратный κ h g G. Тогда $h^{-1} \in H$.

Доказательство. Так как H – группа, существует обратный элемент $h' \in H$. Тогда $hh' = hh^{-1} = e$. Отсюда $h' = h^{-1}$.

Теорема 1. Пусть H – подмножество группы G. Тогда H – подгруппа G тогда u только тогда. когда выполнены следующие условия:

- (1) $H \neq \emptyset$;
- (2) H замкнуто относительно операции, то есть если $h_1, h_2 \in H$, то $h_1h_2 \in H$;
- (3) H замкнуто относительно взятия обратного, то есть если $h \in H$, то $h^{-1} \in H$.

Доказательство. Необходимость первых двух условий очевидна. Необходимость третьего условия следует из предыдущей леммы. Докажем достаточность. Пусть условия выполнены. Тогда из условий 1 и 2 H — непустое множество с бинарной операцией (той же, что и в G, а значит, ассоциативной). По условию 1 найдется $h \in H$. По условию 3, $h^{-1} \in H$. По условию 2, $hh^{-1} = e \in H$, то есть в H есть нейтральный элемент. По условию 3 каждый элемент имеет обратный.

Пример 2. С помощью данной теоремы можно доказать, что следующие подмножества являются подгруппами.

- $(\mathbb{Z},+) \subset (\mathbb{Q},+) \subset (\mathbb{R},+)$;
- $A_n \subset S_n$, где A_n множество четных подстановок длины n;
- $B_n \subset \operatorname{GL}_n$, где B_n множество невырожденных верхнетреугольных матриц;
- $D_n \subset \operatorname{GL}_n$, где D_n множество невырожденных диагональных матриц;
- $SL_n \subset GL_n$, где SL_n множество матриц $n \times n$ с определителем 1;
- пересечение любого количества подгрупп является подгруппой.

Докажем, например, что A_n – подгруппа в S_n . Используя теорему надо проверить свойства непустоты, замкнутости относительно композиции и замкнутости относительно взятия обратного. Непустота следует из того, что тождественная подстановка является четной, а значит, лежит в A_n . Произведение четных подстановок является четной и обратная к четной подстановке является четной.

Упражнение 3. Докажите остальные пункты.

Определение 6. Пусть H – подгруппа группы G. Левый смежный класс элемента $g \in G$ по подгруппе H – это подмножество

$$gH = \{gh \mid h \in H\}.$$

Пемма 5. Левые смежные классы gH и g'H либо не пересекаются, либо совпадают.

Доказательство. Пусть два смежных класса gH и g'H пересекаются. Докажем, что они совпадают. Пусть f — общий элемент этих смежных классов, то есть f = gh = g'h' для некоторых $h, h' \in H$. Тогда $g' = ghh'^{-1}$. Получаем

$$g'H = \{g'\widehat{h} \mid \widehat{h} \in H\} = \{ghh'^{-1}\widehat{h} \mid \widehat{h} \in H\}.$$

При этом когда \hat{h} пробегает всю группу H, элемент $hh'^{-1}\hat{h}$ также пробегает всю группу H. Это следует из того, что отображение $H\to H$, $\hat{h}\mapsto hh'^{-1}\hat{h}$ является биекцией (проверьте это!). Следовательно, g'H=gH.

Пример 3. Рассмотрим подгруппу $H=(3\mathbb{Z},+)$ в группе $G=(\mathbb{Z},+)$. Левые смежные классы имеют вид $m+3\mathbb{Z}$. Смежные классы $0+3\mathbb{Z}$ и $3+3\mathbb{Z}$ совпадают (они состоят из чисел, делящихся на 3). Аналогично, смежные классы $1+3\mathbb{Z}$ и $7+3\mathbb{Z}$ совпадают. При этом смежные классы $0+3\mathbb{Z}$ и $1+3\mathbb{Z}$ не пересекаются.

Определение 7. *Индексом* подгруппы H в группе G называется мощность множества (различных) левых смежных классов. Обозначается индекс через [G:H].

Определение 8. Порядком группы G называется мощность множества ее элементов |G|. Если количество элементов в группе G конечно, то группа называется конечной, а иначе – бесконечной.

Лемма 6. Пусть H – конечная подгруппа группы G. Тогда |qH| = |H| для любого $q \in G$.

Доказательство. Установим биекцию $\varphi \colon H \to gH$, $\varphi(h) = gh$. Докажем, что φ – биекция. В самом деле, если $gh_1 = gh_2$, то $h_1 = h_2$ (нужно домножить на g^{-1} слева). Это доказывает инъективность φ . Сюръективность φ следует из определения: любой элемент gH имеет вид gh и потому лежит в образе φ .

3амечание 2. Вообще говоря, утверждение данной леммы верно (с тем же доказательством) и для бесконечной подгруппы H.

Теорема 2 (Теорема Лагранжа). Пусть G – конечная группа. Тогда $|G| = |H| \cdot [G:H]$.

Доказательство. Так как любой элемент g группы G лежит в своем левом смежном классе gH (это следует из того, что $e \in H$) и различные левые смежные классы не пересекаются, левые смежные классы образуют разбиение G на непересекающиеся подмножества. При этом в каждом подмножестве |H| элементов. Количество этих подмножеств равно [G:H]. Значит, общее количество элементов в G равно произведению количества подмножеств на мощность каждого подмножества.