Лекция 7

Пример 1. Докажем, что $D_n = \langle a, b \mid a^2, b^2, (ab)^n \rangle$.

Ясно, что D_n порождается двумя симметриями с минимальным углом между ними. Их композиция – это поворот на $\frac{2\pi}{n}$. Если обозначить эти симметриии а и b, то ясно, что $a^2 = b^2 = (ab)^n = e$. То есть для $\varphi \colon \langle x_1, x_2 \rangle \to D_n$, $x_1 \mapsto a, x_2 \mapsto b$ ядро содержит $N(x_1^2, x_2^2, (x_1x_2)^n)$. Наша цель – доказать, что $\ker \varphi = N(x_1^2, x_2^2, (x_1x_2)^n)$. Если это не так, то по следствию ?? имеем:

$$G \cong \langle x_1, x_2 \rangle / \text{Ker } \varphi \cong (\langle x_1, x_2 \rangle / N(x_1^2, x_2^2, (x_1 x_2)^n)) / (\text{Ker } \varphi / N(x_1^2, x_2^2, (x_1 x_2)^n)).$$

Тогда порядок группы G будет строго меньше, чем $H = \langle a,b \mid a^2,b^2,(ab)^n \rangle = \langle x_1,x_2 \rangle/N(x_1^2,x_2^2,(x_1x_2)^n)$. Докажем, что в H не более 2n элементов. Легко видеть, что любой элемент H может быть записан либо в виде конечного слова $abab\dots$, либо в виде $baba\dots$ Действительно, $a^{-1}=a$, $b^{-1}=b$, значит, любое слово от $a,b,a^{-1},b^{-1}-b$ это слово от a b. При этом если есть сочетание b0, то его можно сократить. Поскольку $(ab)^n=e$ 0, среди слов $abab\dots$ различными являются слова длины b1, b2, b3, b4, b6, b7, b8, b8, b9, b

$$b = (ab)^{n}b = (ab)^{n-1}a;$$

$$ba = (ab)^{n}ba = (ab)^{n-1};$$

$$\vdots$$

$$(ba)^{n-1}b = (ab)^{n}(ba)^{n-1}b = a.$$

Таким образом, все слова вида baba . . . представляются словами вида abab Значит, $|H| \leq 2n$. Отсюда следует, что $D_n = H$.

Проблема равенства слов. Пусть S — некоторое множество. И пусть даны два конечных слова от букв $s_i \in S$ и s_i^{-1} . Возникает вопрос: эквивалентны ли эти два слова, то есть дают ли они один и тот же элемент свободной группы $\mathfrak{F}(S)$? Этот вопрос называется проблеммой равенства слов.

Один из способов решить проблему равенства слов – это определить некий канонический вид, к которому можно привести каждое слово, причем этот вид должен быть единственным. Если этот подход будет реализован, то для проверки эквивалентности двух слов нужно оба слова привести к каноническому виду и сравнить результаты.

Напомним, что слова называются эквивалентными, если от одного до другого можно добраться следующими элементарными преобразованиями: можно сокращать подряд идущие пары символов типа xx^{-1} или $x^{-1}x$, а также можно приписывать в любое место слова пары символов xx^{-1} или $x^{-1}x$. Преобразования первого типа назовем сокращениями, а второго – приписываниями. Любое слово можно сокращениями привести к несократимому виду, то есть к виду, в котором нет подряд идущих сочетаний вида xx^{-1} и $x^{-1}x$.

Теорема 1. B каждом классе эквивалентности есть только одно несократимое слово.

Доказательство. Пусть есть два различных несократимых слова u и v, которые эквивалентны. Рассмотрим цепочку элементарных преобразований, переводящих u в v. Пусть в этой цепочке есть сокращение, идущее после приписывания. Докажем, что эту пару можно заменить либо на пару сокращение, а затем приписывание, либо убрать.

В самом деле если ни один из сокращенных символов не совпадает с только что приписанными, то можно поменять эти две операции. Остается случай, когда было приписывание xx^{-1} , а затем сокращение, использующее один или оба из приписанных символов. Но тогда в результате этих двух операций слово не поменялось и можно эту пару убрать. Назовем такую замену одной пары другой (или убирание пары) перестройкой.

Для цепочки элементарных преобразований рассмотрим сумму позиций, на которых стоят сокращения. (То есть в цепочке "сокращение, приписывание, приписывание, сокращение, сокращение"сокращения стоят на 1, 4 и 5 местах и сумма равна 10.) При перестройке данная сумма уменьшается. Следовательно, не возможно бесконечное число перестроек и за конечное число перестроек мы достигнем цепочки, в которой сначала идут несколько сокращений, а затем несколько приписываний. Однако слово u несократимо. Значит, цепочка не могла начинаться с сокращений. Тогда она состоит только из приписываний. Но это противоречит несократимости слова v.

Замечание 1. Можно поставить аналогичный вопрос равенства слов не только в свободной группе, но и в группе с соотношениями. В этом случае слова эквивалентны не только, когда они различаются цепочкой сокращений и приписываний, но также можно вставлять в любое место или убирать любые элементы из $N(r_1, \ldots, r_k)$, где r_i — соотношения. Оказывается, что проблема равенства слов может стать гораздо сложнее, более того она не всегда резрешима. Более точно, существует конечно порожденная группа с конечным числом соотношений, в которой проблема равенства слов алгоритмически не разрешима.

Напомним, что прямым произведением групп K и H мы называли множество пар $(k,h) \mid k \in K, h \in H$ с покомпонентным умножением. Назовем такое прямое произведение *внешним*.

Определение 1. Пусть K и H – нормальные подгруппы в группе G такие, что $K \cap H = \{e\}$ и G порождается подгруппами K и H. Тогда G называется внутренним прямым произведением подгрупп H и K.

Лемма 1. 1) Внешнее прямое произведение групп K и H является внутренним прямым произведением подгрупп $K \times \{e\}$ и $\{e\} \times H$.

2) Пусть K и H – подгруппы в G. M пусть группа G – это внутреннее прямое произведение подгрупп K и H. Тогда G изоморфно внешнему прямому произведению $K \times H$.

Доказательство. 1) Рассмотрим подгруппы $K \times \{e\} = \{(k,e)|k \in K\}$ и $\{e\} \times H = \{(e,h)|h \in H\}$ во внешнем прямом произведении $K \times H$. (Проверку, что это подгруппы оставляю читателю.) Тогда

$$(a,b)(k,e)(a,b)^{-1} = (a,b)(k,e)(a^{-1},b^{-1}) = (aka^{-1},beb^{-1}) = (aka^{-1},e) \in K \times \{e\}.$$

Значит, подгруппа $K \times \{e\}$ нормальна в $K \times H$. Аналогично, подгруппа $\{e\} \times H$ нормальна в $K \times H$. Пересечение этих подгрупп — это единственный элемент (e,e), являющийся нейтральным элементом группы. Кроме того, любой элемент (k,h) есть произведение элементов (k,e) и (e,h), то есть эти подгруппы порождают $K \times H$. Таким образом, группа $K \times H$ является внутренним прямым произведением подгрупп $K \times \{e\}$ и $\{e\} \times H$.

2) Так как группа G порождена подгруппами K и H и подгруппа H нормальна, то по лемме 2 из лекции 5 любой элемент $g \in G$ представляется в виде g = kh. Значит

отображение

$$\varphi \colon K \times H \to G, \qquad \varphi(k,h) = kh$$

сюръективно. Докажем, что φ – изоморфизм групп.

Предположим, что $k_1h_1=k_2h_2$. Тогда, умножая слева на k_2^{-1} , а справа – на h_1^{-1} , получаем $k_2^{-1}k_1=h_2h_1^{-1}\in K\cap H$. Следовательно, $k_2^{-1}k_1=h_2h_1^{-1}=e$, то есть $k_1=k_2$ и $h_1=h_2$. Итак, представление g=kh единственно. Это означает инъективность φ .

Осталось проверить, что φ – гомоморфизм. Пусть теперь $k_1, k_2 \in K$ и $h_1, h_2 \in H$. Докажем, что $h_1k_2h_1^{-1}k_2^{-1}=e$. В самом деле так как K – нормальная подгруппа, $h_1k_2h_1^{-1}=\widehat{k}\in K$, с другой стороны, так как H – нормальна подгруппа, $k_2h_1^{-1}k_2^{-1}=\widehat{h}\in H$. Тогда

$$h_1k_2h_1^{-1}k_2^{-1} = h_1\hat{h} = \hat{k}k_2^{-1} \in K \cap H = \{e\}.$$

Итак, $h_1k_2h_1^{-1}k_2^{-1}=e$. Значит, $h_1k_2=k_2h_1$. Но тогда

$$\varphi(k_1, h_1)\varphi(k_2, h_2) = k_1h_1k_2h_2 = k_1k_2h_1h_2 = \varphi(k_1k_2, h_1h_2).$$

В дальнейшем мы не будем различать внутренниее и внешнее прямые произведения и будем использовать единый термин "прямое произведение".

Теорема 2 (Теорема о факторизации прямого произведения). Пусть G_1, \ldots, G_k - группы. В каждой группе G_i фиксируем нормальную подгруппу H_i . Тогда $H_1 \times \ldots \times H_k$ является нормальной подгруппой $G_1 \times \ldots \times G_k$ и

$$(G_1 \times \ldots \times G_k)/(H_1 \times \ldots \times H_k) \cong G_1/H_1 \times \ldots \times G_k/H_k.$$

Доказательство. Рассмотрим отображение

$$\varphi \colon G_1 \times \ldots \times G_k \to G_1/H_1 \times \ldots \times G_k/H_k,$$

 $\varphi \colon (g_1, \ldots, g_k) \mapsto (g_1H_1, \ldots, g_kH_k).$

Легко видеть, что φ — это сюръективный гомоморфизм, ядро которого совпадает с $H_1 \times \ldots \times H_k$. Это доказывает оба утверждения.

Замечание 2. Так же как в случае абелевой группы мы используем аддитивные обозначения, если группы A и B абелевы, то прямое произведение групп A и B мы будем называть npsmoù суммой и обозначать $A \oplus B$.

Теорема 3 (Китайская теорема об остатках.). Пусть m u n – натуральные числа. Тогда следующие условия эквивалентны:

- 1) $HO_{A}(m, n) = 1;$
- 2) $\mathbb{Z}_{mn} \cong \mathbb{Z}_m \oplus \mathbb{Z}_n$.

Доказательство. $1 \Rightarrow 2$. Рассмотрим

$$\varphi \colon \mathbb{Z}_{mn} \to \mathbb{Z}_m \oplus \mathbb{Z}_n, \qquad \varphi(u) = (u \mod m, u \mod n).$$

Докажем, что φ – изоморфизм. Из определения видно, что φ переводит сложение в сложение, то есть является гомоморфизмом.

Пусть $u \in \text{Ker } \varphi$. Тогда u делится и на m, и на n. Значит, так как m и n взаимно просты, u делится на mn. То есть u равен нулю по модулю mn. Следовательно, $\text{Ker } \varphi = \{0\}$, а значит, гомоморфизм φ инъективен. Но поскольку $|\mathbb{Z}_{mn}| = |\mathbb{Z}_m \oplus \mathbb{Z}_n|$ из инъективности φ следует его биективность. Итак, φ – изоморфизм.

 $2 \Rightarrow 1$. Пусть НОД(m,n) = d > 1. Тогда для любого элемента $(a,b) \in \mathbb{Z}_m \oplus \mathbb{Z}_n$ выполнено

выполнено $\frac{mn}{d}(a,b) = \text{HOK}(m,n)(a,b) = (0,0).$ Значит, любой элемент в $\mathbb{Z}_m \oplus \mathbb{Z}_n$ имеет порядок не больше $\frac{mn}{d}$, то есть нет элемента из $\mathbb{Z}_m \oplus \mathbb{Z}_n$, порядок которого равен mn. Значит, группа $\mathbb{Z}_m \oplus \mathbb{Z}_n$ не циклическая и не изоморфна \mathbb{Z}_{mn} .