Определение 1. Пусть R — коммутативное кольцо с единицей. Подмножество $U \subset R$ называется *мультипликативно замкнутым*, если $1 \in U$ и для любых $f,g \in U$ выполнено $fg \in U$.

Определение 2. Пусть M-R-модуль, $U\subset R$ мультипликативно замкнуто. Тогда локализация $M[U^{-1}]=U^{-1}M$ – это множество классов эквивалентности пар $\{(m,u)\}_{/\sim}$, где $(m,u)\sim (m',u')\iff \exists v\in U: v(mu'-m'u)=0$. Данную пары мы будем записывать в виде дроби $\frac{m}{u}$. При этом на множестве таких пар можно ввести сложение и как с дробями и умножение на элемент R (умножаем числитель). Получится R-модуль.

Если взять в качестве модуля M само кольцо, то $R[U^{-1}]$ наделяется естественной структурой кольца. При этом $R \hookrightarrow R[U^{-1}], r \mapsto \frac{r}{1}$.

Пример 1. Пусть X - аффинное алгебраическое многообразие, $p \in X$, R = F[X] (ограничение многочленов на нули системы) и $U = \{f \in R : f(p) \neq 0\}$ – мультипликативно замкнутое множество.

Для простоты считаем $X = \mathbb{A}^1$, R = F[x] - кольцо многочленов от одной переменной. Возьмём p = 0. Тогда $U \subset R$ - многочлены, не делящиеся на x.

$$R[U^{-1}] = \left\{ \frac{f}{g} \mid g(0) \neq 0 \right\}.$$

Пример 2. (Должен признать, что на лекции этот пример был рассказан совершенно не верно.) Пусть $X:\{xy=0\}$ — пара координатных осей. Пусть R=F[X] — алгебра регулярных функций. Тогда R=F[x,y]/(xy). В самом деле, по определению F[X]=F[x,y]/I(X), где I(X) состоит из всех многочленов обращающихся на X в ноль. При этом ясно, что $(xy)\subseteq I$. С другой стороны, любой многочлен f(x,y) имеет вид f(x,y)=c+xg(x)+yh(y)+xyl(x,y). Если $f\notin (x,y)$, то $c+xg(x)+yh(y)\neq 0$. Тогда

$$f|_X = (c + xg(x) + yh(y))|_X.$$

Легко видеть, что этот многочлен не нулевой как функция на X. (Считаем поле бесконечным, чтобы ненулевой многочлен от одной переменной не мог давать нулевую функцию.) Итак, I(X) = (xy).

Теперь положим $p=(1,0)\in X.$ $U=\{f\in F[X]|f(p)\neq 0\}.$ Тогда $R[U^{-1}]=\{\frac{f}{u}\mid f\in F[X], u\in U\}/\sim.$ Как мы уже видели, $f=c+x\bar{g}(x)+yh(y)=g(x)+yh(y).$ Аналогично, u=l(x)+ys(y), при этом $l(1)\neq 0$. Имеем

$$\frac{f}{u} \sim \frac{f'}{u'} \Leftrightarrow \exists v : v(fu' - f'u) = 0.$$

При этом

$$fu' - f'u = (g(x) + yh(y))(l'(x) + ys'(y)) - (g'(x) + yh'(y))(l(x) + ys(y)).$$

Положим q' = q, h' = 0, l' = l, s' = 0. Тогда

$$fu' - f'u = (g(x) + yh(y))l(x) - g(x)(l(x) + ys(y)) = yh(y)l(x) - g(x)ys(y).$$

Заметим, что $x \in U$. При этом x(fu'-f'u) = xy(h(y)l(x)-g(x)s(y)) = 0. Значит,

$$\frac{f}{u} \sim \frac{f'}{u'} = \frac{g(x)}{l(x)}.$$

Получаем, что $R[U^{-1}] = F[x][(U \cap F[x])^{-1}]$, то есть локализация в F[X] точке на одной из осей "ничего не знает"о второй оси, а ведёт себя так, как будто жтой второй оси не было. Это отражает тот факт, что локализация зависит только от поведения функции в окрестности данной точки.

Важный частный случай.

Пусть P- простой идеал в $R,\ R\setminus P=U$ – мультипликативно замнкуто, так как:

$$(ab \in P \implies a \in P \lor b \in P) \implies (a, b \notin P \implies ab \notin P)$$

 $R[U^{-1}]$ в этом случае обозначается также R_P – локализация по P

Пусть $\varphi\colon M\to N$ - гомоморфизм R-модулей и U - мультипликативно замкнуто в R. Тогда $M[U^{-1}],N[U^{-1}]$ - это $R[U^{-1}]$ над M,N. Определим отображение $\varphi[U^{-1}]\colon M[U^{-1}]\to N[U^{-1}]$ следующим образом: $\frac{m}{n}\mapsto \frac{\varphi(m)}{n}$

Упражнение 1. $\varphi[U^{-1}]$ - гомоморфизм $R[U^{-1}]$ – модулей

Предложение 1. а) $I \triangleleft R[U^{-1}] \implies I = (I \cap R)R[U^{-1}]$ (имется в виду идеал в кольце $R[U^{-1}]$). Поэтому $I \mapsto I \cap R$ - вложение множества идеалов в $R[U^{-1}]$ в множество идеалов в R (идеал восстанавливается по формуле выше). Оно сохраняет включение и переводит простые идеалы в простые.

b) То, что $J \triangleleft R$ имеет вид $I \cap R$, где $I = JR[U^{-1}]$ равносильно условию $(ru \in J \iff r \in I \ \forall u \in U)$

Замечание 1. В частности, $I\mapsto I\cap R$ - биекция между простыми идеалами в $R[U^{-1}]$ и простыми иделами в R, не пересекающимимся с U. Действительно, $J=I\cap R$, если $J\cap U\neq\emptyset$, то $u\in J$ $u=1\cdot u\implies 1\in J$ противоречие. Если же $J\cap U=\emptyset$, то по определению простого идеала имеем: $ru\in J\iff r\in J$ или $u\in J\implies r\in J\implies J=I\cap R$. Докажем, что I – простой. Если это не так, то найдутся $\frac{r_1}{u_1}$ и $\frac{r_2}{u_2}$, не лежащие в I такие, что $\frac{r_1r_2}{u_1u_2}\in I$. Но тогда выполнено $r_1,r_2\notin J$, $r_1r_2\in J$. Противоречие с простотой J.

Доказательство предложения 1. a) $I \cap R \subset I$, следовательно

$$(I \cap R)R[U^{-1}] \subset I$$
.

С другой стороны если $\frac{r}{u}\in I$, то $r=\frac{r}{u}u\in I$. Следовательно, $r\in I\cap R$. Так как $\frac{1}{u}\in R[U^{-1}]$, получаем $\frac{r}{u}\in (I\cap R)R[U^{-1}]$. Итак, $I=(I\cap R)R[U^{-1}]$.

Пересечение сохраняет включение; в силу того, что идеал I может быть восстановлен сохраняются строгие включения.

Если I простой, то $R[U^{-1}]/I$ – область целостности. Так как

$$R/I \cap R \subset R[U^{-1}]/I$$
,

получаем $R/I\cap R$ – область целостности. Следовательно, $I\cap R$ - простой. **b**): \Longrightarrow

Пусть
$$J=I\cap R$$
, тогда $JR[U^{-1}]=I$ по предыдущему пункту. Тогда
$$ru\in J\iff ru\in JR[U^{-1}]\iff r\in JR[U^{-1}]\cap R=J.$$

 \iff Покажем, что $J=JR[U^{-1}]\cap R$. Для этого рассмотрим $r=\frac{j}{u}\in JR[U^{-1}]\cap R$. По определению $v\cdot(j-ur)=0, v\in U$. Имеем: $vur\in J\implies r\in J$. Включение в обратную сторону очевидно.

Предложение 2. Локализация нётерова кольца также является нётеровым кольцом.

Доказательство. Пусть $I \triangleleft R[U^{-1}]$, тогда $I \cap R = (a_1, \dots, a_n)$ — конечнопорождённый идеал в R (в силу нётеровости). Следовательно,

$$I = (I \cap R) \cdot R[U^{-1}] = (a_1, \dots, a_n) \cdot R[U^{-1}].$$

Пусть M, N-R-модули. Тогда гомоморфизм R-модулей $\operatorname{Hom}_R(M,N)$ есть R-модуль с операциями:

$$(\varphi + \psi)(m) := \varphi(m) + \psi(m), \quad (r \cdot \varphi)(m) := r \cdot \varphi(m) = \varphi(rm).$$

Лемма 1. $\operatorname{Hom}_R(R,N) \cong N$.

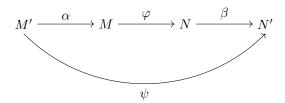
Доказательство. Рассмотрим отображение $\Phi: \operatorname{Hom}_R(R,N) \to N, \ \Phi(\varphi) = \varphi(1).$ Оно биективно и R-линейно: $\varphi \mapsto n$, где $n = \varphi(1)$, и обратное $-n \mapsto \varphi_n: r \mapsto rn$.

Упражнение 2. Доказать, что Φ из предыдущей леммы - изоморфизм.

Лемма 2. Пусть $\alpha: M' \to M, \ \beta: N \to N'$ — гомоморфизмы R-модулей. Тогда отображение

$$\operatorname{Hom}_R(M,N) \to \operatorname{Hom}_R(M',N'), \quad \varphi \mapsto \beta \circ \varphi \circ \alpha$$

является гомоморфизмом R-модулей.



Доказать лемму выше.

$$\operatorname{Hom}_R\left(\bigoplus_i M_i, N\right) \cong \prod_i \operatorname{Hom}_R(M_i, N).$$

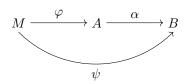
Доказательство. Задать гомоморфизм $\varphi \colon \bigoplus_i M_i \to N$ равносильно заданию всех гомоморфизмов $\varphi_i \colon M_i \to N$, которые получаются композицией вложения M_i в $\bigoplus_i M_i$ и φ .

Пусть $0 \to A \xrightarrow{\alpha} B \xrightarrow{\beta} C$ — точная последовательность R-модулей (Im $\alpha = {\rm Ker}\,\beta$). Тогда для любого R-модуля M последовательность

$$0 \to \operatorname{Hom}_R(M,A) \to \operatorname{Hom}_R(M,B) \to \operatorname{Hom}_R(M,C)$$

точна. То есть $\operatorname{Hom}_R(M,\cdot)$ — точный слева функтор.

Доказательство. Проверка точности в члене $\operatorname{Hom}_R(M,A)$. Надо доказать, что отображение $\operatorname{Hom}_R(M,A) \to \operatorname{Hom}_R(M,B)$ является вложением. Напомним, как оно строится. Оно переводит φ в $\alpha \circ \varphi$:



Если $\varphi \neq 0$, то найдётся $m \in M$ такой, что $\varphi(m) \neq 0$. Поскольку α – вложение, получаем $\alpha(\varphi(m)) \neq 0$. Значит, $\alpha \circ \varphi 0$. Таким образом отображение $\operatorname{Hom}_R(M,A) \to \operatorname{Hom}_R(M,B)$ инъективно.

Задача 1. Проверить точность в члене $\operatorname{Hom}_R(M,B)$.