Теорема 1. Пусть дана точная последовательность R-модулей:

$$0 \longrightarrow A \xrightarrow{\alpha} B \xrightarrow{\beta} C \longrightarrow 0.$$

Tогда для любого R-модуля M последовательность

$$0 \longrightarrow \operatorname{Hom}_R(M,A) \xrightarrow{p} \operatorname{Hom}_R(M,B) \xrightarrow{q} \operatorname{Hom}_R(M,C)$$

точна.

Доказательство. 1. Точность в $\text{Hom}_R(M,A)$: Докажем, что p — вложение.

Пусть $\varphi \in \operatorname{Hom}_R(M,A)$ и $p(\varphi)=0$. Это означает, что $\alpha \circ \varphi=0$. Поскольку α — вложение (так как исходная последовательность точна в A), то из $\alpha(\varphi(m))=0$ для всех $m \in M$ следует, что $\varphi(m)=0$ для всех $m \in M$. Следовательно, $\varphi=0$. Значит, $\operatorname{Ker} p=0$, и p — вложение.

- **2. Точность в** $\operatorname{Hom}_R(M,B)$: Докажем, что $\operatorname{Im} p = \operatorname{Ker} q$.
- (\subseteq) Пусть $\varphi\in \mathrm{Hom}_R(M,A),\ q\circ p(\varphi)=\beta\circ\alpha\circ\varphi=0$ так как $\beta\circ\alpha=0.$ Следовательно, $p(\varphi)\in\mathrm{Ker}\,q.$
- (\supseteq) Пусть теперь $\psi \in \operatorname{Hom}_R(M,B), q(\psi) = 0$, то есть $\beta \circ \psi = 0$. Это означает, что для любого $m \in M$ выполняется $\beta(\psi(m)) = 0$, откуда $\psi(m) \in \operatorname{Ker} \beta$. Из точности исходной последовательности $\operatorname{Ker} \beta = \operatorname{Im} \alpha$, поэтому $\psi(m) \in \operatorname{Im} \alpha$. Значит, для каждого $m \in M$ существует элемент $a_m \in A$ такой, что $\psi(m) = \alpha(a_m)$.

Определим отображение $\varphi: M \to A$ по правилу $\varphi(m) = a_m$. Покажем, что φ является R-гомоморфизмом.

і) Поскольку $\psi(m_1) = \alpha(\varphi(m_1))$ и $\psi(m_2) = \alpha(\varphi(m_2))$, то

$$\psi(m_1 + m_2) = \psi(m_1) + \psi(m_2) = \alpha(\varphi(m_1)) + \alpha(\varphi(m_2)) = \alpha(\varphi(m_1) + \varphi(m_2)).$$

Но также $\psi(m_1+m_2)=\alpha(\varphi(m_1+m_2))$. Так как α — мономорфизм, то

$$\varphi(m_1 + m_2) = \varphi(m_1) + \varphi(m_2).$$

Аналогично для умножения на скаляр.

іі) Для любого $r \in R$ и $m \in M$:

$$\psi(rm) = \alpha(\varphi(rm)), \quad r\psi(m) = r\alpha(\varphi(m)) = \alpha(r\varphi(m)),$$

откуда $\varphi(rm) = r\varphi(m)$.

Следовательно, $\varphi \in \operatorname{Hom}_R(M,A)$ и $\alpha \circ \varphi = \psi$, то есть $\psi \in \operatorname{Im} p$. Таким образом, $\operatorname{Ker} q \subseteq \operatorname{Im} p$.

Итого, $\operatorname{Im} p = \operatorname{Ker} q$, и последовательность точна в $\operatorname{Hom}_R(M,B)$.

Таким образом, доказано, что последовательность

$$0 \longrightarrow \operatorname{Hom}_R(M,A) \xrightarrow{p} \operatorname{Hom}_R(M,B) \xrightarrow{q} \operatorname{Hom}_R(M,C)$$

точна.

Рассмотрим точную последовательность \mathbb{Z} -модулей:

$$0 \longrightarrow \mathbb{Z} \xrightarrow{\cdot 2} \mathbb{Z} \longrightarrow \mathbb{Z}_2 \longrightarrow 0,$$

где отображение $\cdot 2$ задаётся правилом $x\mapsto 2x,$ а проекция $\mathbb{Z}\to\mathbb{Z}_2$ — взятием остатка по модулю 2.

Применим $\operatorname{Hom}(\mathbb{Z}_2,-)$ к этой последовательности:

$$0 \longrightarrow \operatorname{Hom}(\mathbb{Z}_2,\mathbb{Z}) \longrightarrow \operatorname{Hom}(\mathbb{Z}_2,\mathbb{Z}) \longrightarrow \operatorname{Hom}(\mathbb{Z}_2,\mathbb{Z}_2) \longrightarrow 0.$$

 $\operatorname{Hom}(\mathbb{Z}_2,\mathbb{Z})=0$, так как любой гомоморфизм из \mathbb{Z}_2 в \mathbb{Z} должен отправлять элементы порядка 2 в элементы порядка, делящего 2, но в \mathbb{Z} таких элементов нет, кроме 0.

 $\operatorname{Hom}(\mathbb{Z}_2,\mathbb{Z}_2)\cong\mathbb{Z}_2$, так как есть два гомоморфизма: нулевой и тождественный. Таким образом, получаем последовательность:

$$0 \longrightarrow 0 \longrightarrow 0 \longrightarrow \mathbb{Z}_2 \longrightarrow 0$$
,

которая **не является точной** в последнем члене, так как отображение $0 \to \mathbb{Z}_2$ не сюръективно.

Это показывает, что функтор $\operatorname{Hom}(M,-)$ не всегда сохраняет точность справа.

Теорема 2. Пусть дана точная последовательность R-модулей:

$$A \xrightarrow{\alpha} B \xrightarrow{\beta} C \longrightarrow 0.$$

Tогда для любого R-модуля N индуцированная последовательность

$$0 \longrightarrow \operatorname{Hom}_R(C, N) \xrightarrow{p} \operatorname{Hom}_R(B, N) \xrightarrow{q} \operatorname{Hom}_R(A, N)$$

точна.

Задача 1. Докажите предыдущую теорему.

Каждый гомоморфизм $\varphi:R\to M$ однозначно определяется образом единицы:

$$\varphi: R \to M, \quad 1 \mapsto m.$$

Таким образом, $\operatorname{Hom}_R(R,M) \cong M$.

Определение 1. Для множества A определим csobodhwä R-модуль <math>c basicon A:

$$R^A = \bigoplus_{a \in A} R_a,$$

где $R_a \cong R$ — копия кольца R, соответствующая элементу $a \in A$.

Отображение $R^A \to M$ — это отображение, задаваемое образами базисных элементов (образы единиц в каждой копии R_a).

Имеем точную последовательность:

$$0 \longrightarrow G \longrightarrow R^A \longrightarrow M \longrightarrow 0.$$

где G — подмодуль соотношений на образах базисных элементов.

Определение 2. Модуль M называется конечно порождённым, если существует конечное множество A, такое что $R^A \to M$ сюръективно, то есть M является фактором свободного модуля конечного ранга.

Определение 3. Пусть M и N-R-модули. Тогда их mензорное nроизведение $M\otimes_R N$ — это R-модуль, вида $\{m\otimes n|\ m\in M, n\in N, m, n$ — образующие $\}$ с соотношениями:

 $(am+a'm')\otimes(bn+b'n')=ab\,m\otimes n+a'b\,m'\otimes n+ab'\,m\otimes n'+a'b'\,n'\otimes m',$ где $a,a',b,b'\in R.$

В частности, для любого $r \in R$ выполняются равенства:

$$rm \otimes n = m \otimes rn = r(m \otimes n).$$

Лемма 1. $R \otimes_R M = M$.

Доказательство. Отображение $r\otimes m\mapsto rm$ является изоморфизмом R-модулей. Действительно, $a\cdot (1\otimes m)=a\otimes m=1\otimes am$, что согласуется с действием кольца R на M.

Лемма 2. Для любых гомоморфизмов R-модулей $\alpha: M' \to M, \ \beta: N' \to N$ существует единственный гомоморфизм

$$\alpha \otimes \beta : M' \otimes_R N' \longrightarrow M \otimes_R N,$$

такой что $(\alpha \otimes \beta)(m' \otimes n') = \alpha(m') \otimes \beta(n')$.

Доказательство. Отображение $(m',n')\mapsto \alpha(m')\otimes\beta(n')$ билинейно, так как α , β — гомоморфизмы. Остальное — упражнение.

Лемма 3. $Ec \Lambda u M = \bigoplus_{i \in I} M_i, mo$

$$M \otimes_R N \cong \bigoplus_{i \in I} (M_i \otimes_R N).$$

 \mathcal{A} оказательство. Рассмотрим естественные вложения $\iota_i:M_i\hookrightarrow M$ и проекции $\pi_i:M\to M_i$. По предыдущему свойству получаем гомоморфизмы $\iota_i\otimes \mathrm{id}_N:M_i\otimes_R N\to M\otimes_R N$. По свойству прямой суммы существует единственный гомоморфизм

$$\Phi: \bigoplus_{i} (M_i \otimes_R N) \longrightarrow M \otimes_R N,$$

такой что $\Phi|_{M_i\otimes N}=\iota_i\otimes \mathrm{id}.$

Обратно, любой элемент $m\otimes n\in M\otimes N$ можно записать как конечную сумму $\sum_i m_i\otimes n$, где $m_i\in M_i$. Это задаёт обратный гомоморфизм Ψ , и легко проверить, что Φ и Ψ взаимно обратны.

Лемма 4. Существует естественный изоморфизм

$$M \otimes_R N \cong N \otimes_R M, \quad m \otimes n \mapsto n \otimes m.$$

Доказательство. Отображение $(m,n)\mapsto n\otimes m$ билинейно из $M\times N$ в $N\otimes_R M$, следовательно, индуцирует гомоморфизм $\tau:M\otimes_R N\to N\otimes_R M$. Аналогично получаем $\tau^{-1}:N\otimes_R M\to M\otimes_R N$, и $\tau\circ\tau^{-1}=\mathrm{id},\,\tau^{-1}\circ\tau=\mathrm{id}$. Значит, $\tau-$ изоморфизм.

Лемма 5. Если последовательность

$$M' \xrightarrow{f} M \xrightarrow{g} M'' \longrightarrow 0$$

точна, то последовательность

$$M' \otimes_R N \xrightarrow{f \otimes \mathrm{id}} M \otimes_R N \xrightarrow{g \otimes \mathrm{id}} M'' \otimes_R N \longrightarrow 0$$

также точна.

Доказательство. 1. Поскольку g сюръективен, для любого $m'' \in M''$ существует $m \in M$ с g(m) = m''. Тогда $(g \otimes \mathrm{id})(m \otimes n) = m'' \otimes n$, так что $g \otimes \mathrm{id}$ сюръективен. (В образе лежат все разложимые тензоры.)

- **2.** Покажем, что $\operatorname{Im}(f \otimes \operatorname{id}) = \operatorname{Ker}(g \otimes \operatorname{id})$.
- Так как $g \circ f = 0$, то $(g \otimes \mathrm{id}) \circ (f \otimes \mathrm{id}) = (g \circ f) \otimes \mathrm{id} = 0$, значит $\mathrm{Im}(f \otimes \mathrm{id}) \subseteq \mathrm{Ker}(g \otimes \mathrm{id})$.
- Доказательство включения в другую сторону не совсем элементарно. Однако мы его пропустим. (См. , например, предложение 2.18 в книге Аты-Макдональда.)

Рассмотрим точную последовательность Z-модулей:

$$0 \longrightarrow \mathbb{Z} \xrightarrow{\cdot 2} \mathbb{Z} \longrightarrow \mathbb{Z}_2 \longrightarrow 0.$$

Применим функтор $-\otimes_{\mathbb{Z}} \mathbb{Z}_2$:

 $\mathbb{Z}\otimes_{\mathbb{Z}}\mathbb{Z}_2\cong\mathbb{Z}_2$, так как $\mathbb{Z}\otimes_{\mathbb{Z}}M\cong M$ для любого \mathbb{Z} -модуля M. Рассмотрим последовательность после применения тензорного произведения:

$$0 \longrightarrow \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}_2 \xrightarrow{\cdot 2 \otimes \mathrm{id}} \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}_2 \longrightarrow \mathbb{Z}_2 \otimes_{\mathbb{Z}} \mathbb{Z}_2 \longrightarrow 0.$$

Подставляя изоморфизмы, получаем:

$$0 \longrightarrow \mathbb{Z}_2 \xrightarrow{0} \mathbb{Z}_2 \longrightarrow \mathbb{Z}_2 \longrightarrow 0,$$

так как умножение на 2 в \mathbb{Z}_2 даёт нулевое отображение $(2 \equiv 0 \pmod 2)$). Последовательность

$$0 \longrightarrow \mathbb{Z}_2 \xrightarrow{0} \mathbb{Z}_2 \longrightarrow \mathbb{Z}_2 \longrightarrow 0$$

не является точной, потому что отображение $0 \to \mathbb{Z}_2$ не инъективно (если рассматривать начало), а также ядро второго отображения — всё \mathbb{Z}_2 , но образ первого — ноль, так что $\operatorname{Ker} \neq \operatorname{Im}$.

Существуют естественные отображения:

$$A \longrightarrow A \otimes_R B \longleftarrow B$$
,

задаваемые правилами $a\mapsto a\otimes 1,\,b\mapsto 1\otimes b.$ Эти отображения являются гомоморфизмами R-алгебр, если $A,\,B-R$ -алгебры (R-модуль + кольцо).

Для любых гомоморфизмов R-алгебр $\alpha:A\to C,\ \beta:B\to C$ существует единственный гомоморфизм

$$\alpha \otimes \beta : A \otimes_B B \longrightarrow C$$
,

такой что $(\alpha \otimes \beta)(a \otimes b) = \alpha(a) \cdot \beta(b)$.

Лемма 6. Пусть R- коммутативное кольцо, $U\subseteq R-$ мультипликативная система, M-R-модуль. Тогда имеет место естественный изоморфизм

$$R[U^{-1}] \otimes_R M \cong M[U^{-1}],$$

задаваемый отображением

$$\frac{r}{u} \otimes m \longmapsto \frac{rm}{u}$$
.

Доказательство. По свойству тензорного произведения существует единственный гомоморфизм

$$\Phi: R[U^{-1}] \otimes_R M \longrightarrow M[U^{-1}], \quad \Phi\left(\frac{r}{u} \otimes m\right) = \frac{rm}{u}.$$

Построим обратное отображение $\Psi: M[U^{-1}] \to R[U^{-1}] \otimes_R M$, задаваемое формулой

$$\Psi\left(\frac{m}{u}\right) = \frac{1}{u} \otimes m.$$

1.
$$(\Phi \circ \Psi) \left(\frac{m}{n}\right) = \Phi \left(\frac{1}{n} \otimes m\right) = \frac{1 \cdot m}{n} = \frac{m}{n}$$

Проверим, что
$$\Phi$$
 и Ψ взаимно обратны:
1. $(\Phi \circ \Psi) \left(\frac{m}{u}\right) = \Phi \left(\frac{1}{u} \otimes m\right) = \frac{1 \cdot m}{u} = \frac{m}{u}$.
2. $(\Psi \circ \Phi) \left(\frac{r}{u} \otimes m\right) = \Psi \left(\frac{rm}{u}\right) = \frac{1}{u} \otimes rm = \frac{r}{u} \otimes m$.
3начит, Φ — изоморфизм.

Корректность определения Ψ : Пусть $\frac{m}{u}=\frac{m'}{u'}$ в $M[U^{-1}]$. Тогда существует $v\in U$ такое, что (mu'-um')v=0, то есть mu'v=um'v. Тогда:

$$\frac{1}{vuu'}u'm = \frac{1}{vuu'}um'.$$

Но

$$\frac{1}{vuu'}u'm = \frac{1}{u}\otimes m, \quad \frac{1}{vuu'}um' = \frac{1}{u'}\otimes m'.$$

Следовательно,

$$\frac{1}{u}\otimes m=\frac{1}{u'}\otimes m',$$

и отображение корректно определен

Отображение $\Psi:M[U^{-1}]\to R[U^{-1}]\otimes_R M$, заданное как $\Psi\left(\frac{m}{u}\right)=\frac{1}{u}\otimes m$, является обратным к Φ , и оно также является R-гомоморфизмом, так как

$$\Psi\left(r\cdot\frac{m}{u}\right)=\Psi\left(\frac{rm}{u}\right)=\frac{1}{u}\otimes rm=\frac{r}{u}\otimes m=r\cdot\left(\frac{1}{u}\otimes m\right)=r\cdot\Psi\left(\frac{m}{u}\right).$$

Таким образом, доказано, что $R[U^{-1}] \otimes_R M \cong M[U^{-1}].$