Лекция 1

Определение 1. Пусть G – некоторое множество. n-арной операцией на множестве G называется отображение

$$G \times \ldots \times G \to G$$

из n-ой декартовой степени множества G в множество G.

Рассмотрим бинарную операцию * на множестве G:

$$G \times G \to G$$
, $(g_1, g_2) \to g_1 * g_2$.

Определение 2. Непустое множество G с фиксированной бинарной операцией * называется $\it группоидом$.

Рассмотрим следующие условия (аксиомы) на операцию *.

- А1. Ассоциативность. Для любых элементов $a, b, c \in G$ выполнено (a*b)*c = a*(b*c).
- А2. Существование нейтрального элемента. Существует такой элемент $e \in G$, что для любого $g \in G$ выполняется eg = ge = g.
- А3. Существование обратного элемента. Для каждого элемента $g \in G$ существует элемент $g^{-1} \in G$ такой, что $g * g^{-1} = g^{-1} * g = e$.
 - А4. Коммутативность. Для любых элементов $a, b \in G$ выполнено a * b = b * a.

Накладывая на операцию * различные множества условий, мы будем получать различные алгебраические структуры.

Определение 3. Если * удовлетворяет условию A1, то G называется *полугруппой*.

Если * удовлетворяет условиям A1 и A2, то G называется моноидом.

Если * удовлетворяет условиям A1 и A2 и A3, то G называется группой.

Условие А4 добавляет к названию структуры слово абелев (или, что то же самое, коммутативный). Так условия А1 и А4 задают абелеву (коммутативную) полугруппу, условия А1, А2 и А4 задают абелев (коммутативный) моноид, условия А1, А2, А3 и А4 задают абелеву (коммутативную) группу.

Обозначение 1. Если не очевидно, какая операция на множестве G имеется в виду, то будем использовать обозначение (G,*) для множества G с операцией *.

Зачастую вместо слова "операция" используют слово "умножение". Суть от этого не меняется и имеется в виду некоторая операция в группе. При этом на письме так же как и в случае обычного умножения чисел знак умножения можно опускать. Нейтральный элемент группы в этом случае зачастую называют "единицей группы". Такие обозначения называются мультипликативными.

Если заранее известно, что группа абелева, то часто используют *аддитивные* обозначения. Операция называется сложением и обозначается знаком "+", нейтральный элемент называется нулем, а обратный элемент называется "противоположным элементом".

Соберем эти обозначения в таблице.

мультипликативные	аддитивные
обозначения	обозначения
произвольная	абелева
группа	группа
умножение ·	сложение +
единица е	ноль 0
обратный	противоположный
элемент g^{-1}	элемент $-g$
	обозначения произвольная группа умножение · единица е обратный

Определение 4. Порядок группы G – это количество элементов в этой группе. (То есть мощьность множества G.) Порядок группы G обозначается |G|.

Определение 5. Подмножество H группы (G,*) называется nodepynnoй, если (H,*) является группой.

Подмножество S группы (G,*) называется замкнутым относительно операции *, если для любых $a,b \in S$ выполнено $a*b \in S$. Подмножество S группы (G,*) называется замкнутым относительно взятия обратного, если для любого $s \in S$ элемент s^{-1} также принадлежит S.

Предложение 1. Непустое подмножество H группы (G,*) является подгруппой тогда и только тогда, когда оно замкнуто относительно операции и замкнуто относительно взятия обратного.

Доказательство. Если (H,*) – группа, то операция * корректно определена на H. Значит, H замкнуто относительно операции *. Пусть e – нейтральный элемент группы G, а s – нейтральный элемент группы H. Получаем s*s=s. В группе G есть обратный к s элемент s^{-1} . Умножая на него слева предыдущее равенство, получаем s=e. То есть единицы у групп G и H совпадают. Для каждго $g \in H$ есть обратный элемент g^{-1} в группе G и есть обратный элемент обратный элемент g^{\vee} в группе G и есть обратный элемент обратный элемент g^{\vee} в группе G. Поскольку для группы G0 выполнена аксиома G1, получаем G1 выполнена аксиома G3, то G3 замкнуто относительно взятия обратного.

Пусть теперь подмножество H замкнуто относительно операции и взятия обратного. Так как H замкнуто относительно операции, (H,*) – группоид. Поскольку ассоциативность выполнена в G, то она выполнена и в H. Подмножество не пусто. Возьмем элемент $h \in H$. Так как H замкнуто относительно взятия обратного, $h^{-1} \in H$. Пользуясь замкнутостью H относительно операции, получаем $h*h^{-1} = e \in H$. Таким образом, в H выполнена аксиома A2. Поскольку H замкнуто относительно взятия обратного, в H выполнена и аксиома A3.

Примеры групп.

1а) Числовые аддитивные группы:

$$(\mathbb{Z}, +), (\mathbb{Q}, +), (\mathbb{R}, +), (\mathbb{C}, +).$$

Нейтральный элемент 0, обратный к элементу x – это -x. Выполнение аксиом следуют из свойств сложения чисел. Все данные группы бесконечны и коммутативны.

1б) Числовые мультипликативные группы:

$$\mathbb{Q}^{\times} = (\mathbb{Q} \setminus \{0\}, \cdot), \mathbb{R}^{\times} = (\mathbb{R} \setminus \{0\}, \cdot), \mathbb{C}^{\times} = (\mathbb{C} \setminus \{0\}, \cdot).$$

Нейтральный элемент 1, обратный к элементу x – это $\frac{1}{x}$. Выполнение аксиом следуют из свойств умножения чисел. Данные группы бесконечны и коммутативны.

Обобщение примера 16) Пусть R – кольцо с единицей. Обозначим множество обратимых элементов через R^{\times} . Рассмотрим группу обратимых элементов (R^{\times}, \cdot). Нейтральный элемент – единица кольца. Обратные элементы существуют так как R^{\times} состоит из обратимых элементов. Если R – коммутативное кольцо, то R^{\times} – коммутативная группа.

Задача 1. Приведите пример некоммутативного кольца R такого, что R^{\times} – коммутативная группа порядка больше 1.

- 2) Группы перестановок.
- а) Множество S_n всех перестановок n элементов с операцией композиции \circ является группой. Докажем это. Нейтральный элемент этой группы это тождественная перестановка, обратный элемент обратная перестановка. Ассоциативность следует из следующей важной леммы.

Лемма 1. Пусть есть четыре множества: X, Y, Z u W. И пусть фиксированы отображения между этими множествами $\varphi \colon X \to Y, \ \psi \colon Y \to Z \ u \ \zeta \colon Z \to W$. Тогда $(\zeta \circ \psi) \circ \varphi = \zeta \circ (\psi \circ \varphi)$.

Доказательство. Возьмем элемент $x \in X$. Тогда

$$(\zeta \circ \psi) \circ \varphi(x) = (\zeta \circ \psi)(\varphi(x)) = (\zeta(\psi(\varphi(x))).$$

С другой стороны

$$\zeta \circ (\psi \circ \varphi)(x) = \zeta(\psi \circ \varphi)(x) = (\zeta(\psi(\varphi(x))).$$

Применяя данную лемму к случаю $X = Y = Z = W = \{1, 2, ..., n\}$ получаем ассоциативность S_n . Порядок группы S_n равен n!. При n > 3 группа S_n не коммутативна.

- б) Множество A_n четных перестановок из S_n с операцией композиции образует *груп- пу четных перестановок*. Докажем, что A_n подгруппа S_n . Это следует из того, что произведение четных перестановок четная перестановка и обратная к четной перестановке четная. Группа A_n не коммутативна при $n \ge 4$.
- в) Группа Клейна V_4 . Рассмотрим множество перестановок (в виде произведения независимых циклов) {id, (1,2)(3,4), (1,3)(2,4), (1,4)(2,3)}. Несложно проверить, что это множество замкнуто относительно композиции и что каждая перестановка из этого множества обратна самой себе. Получаем, что данные перестановки образуют подгруппу в S_4 , которая обозначается V_4 . Эта группа коммутативна.
- г) (Обобщение примера 6а) Пусть X некоторое множество (возможно бесконечное). Рассмотрим множество S(X) биекций $X \to X$ с операцией композиции. Если $|X| < \infty$, то получаем группу перестановок. В общем случае получаем группу симметий множества X. Нейтральный элемент тождественное преобразование. Обратный обратное преобразование. Ассоциативность следует из леммы 1.
 - 3) Матричные группы. Пусть К поле.
- а) $GL_n(\mathbb{K})$ множество невырожденных матриц $n \times n$ с элементами из \mathbb{K} . Легко видеть, что это множество замкнуто относительно умножения матриц. Умножение матриц ассоциативно, единичная матрица нейтральный элемент и все невырожденные матрицы обратимы (обратная также невырождена). Следовательно, $(GL(\mathbb{K}), \cdot)$ группа.
- б) $SL_n(\mathbb{K})$ множество $n \times n$ матриц с определителем 1 с элементами из \mathbb{K} . Это подмножество в $GL(\mathbb{K})$ замкнуто относительно умножения и взятия обратного. Следовательно, это подгруппа.
- в) $O_n(\mathbb{K})$ множество ортогональных матриц $n \times n$ с элементами из \mathbb{K} . Это подмножество в $GL(\mathbb{K})$ замкнуто относительно умножения и взятия обратного. Следовательно, это подгруппа.

Эти группы конечны тогда и только тогда, когда поле К конечно.

- 4) Группы преобразований векторного пространства. (Подгруппы в группе S(V), где V векторное пространство.)
 - а) Группа обратимых линейных преобразований V.

- б) Группа ортогональных линейных преобразований V.
- в) Группа обратимых аффинных преобразований V.
- Γ) Группа движений V.

Во всех этих группах нейтральный элемент — тождественное преобразование, а обратный элемент — обратное преобразование. Эти группы конечны тогда и только тогда, когда поле, над которым V — векторное пространство конечно и размерность V конечна.

д) Группа диэдра D_n . Рассмотрим правильный n-угольник. Группа диэдра D_n – это группа всех движений плоскости, сохраняющих этот n-угольник.

Упражнение 1. а) Докажите, что в группе D_n ровно 2n элементов. Среди них n поворотов и n осевых симметрий. Все оси симметрий проходят через центр n- угольника. Если n четно, то половина симметрий проходит через 2 вершины, а половина – через две серидины противоположных сторон. Если же n нечетно, то все симметрии проходят через одну вершину и середину противоположной стороны.

- б) Найдите, как устроена операция в группе D_n , то есть чему равна композиция двух поворотов, двух симметрий и поворота с симметрией.
- 5) Группа вычетов (остатков) по модулю n: (\mathbb{Z}_n , +). Сложение происходит по модулю n. Нейтральный элемент 0, обратный к элементу x это n-x. Выполнение аксиом следуют из свойств остатков. Данная группа коммутативна и имеет порядок n.
- 6) Группа комплексных корней из единицы n-ой степени. Пусть μ_n множество всех комплексных корней степени n из 1. Тогда (μ_n, \cdot) абелева группа порядка n. Докажем это. Для того, чтобы доказать, что μ_n группа мы воспользуемся, тем, что это подмножество в известной нам группе \mathbb{C}^{\times} . Нам надо лишь проверить, что μ_n замкнуто относительно умножения и взятия обратного. Пусть $a, b \in \mu_n$, то есть $a^n = b^n = 1$. Тогда $(ab)^n = a^nb^n = 1$, значит, $ab \in \mu_n$. Мы доказали, что μ_n замкнуто относительно умножения. С другой стороны $(a^{-1})^n = (a^n)^{-1} = 1^{-1} = 1$, следовательно, μ_n замкнуто относительно взятия обратного. То, что группа μ_n абелева следует из того, что она является подгруппой в абелевой группе \mathbb{C}^{\times} .

Единица этой группы – это 1, обратный к элементу x – это $\frac{1}{x}$.

7) Группа кватернионов Q_8 . Рассмотрим множество из 8 элементов:

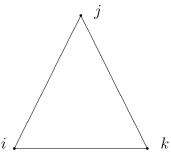
$$\{1, -1, i, -i, j, -j, k, -k\}.$$

Умножение устроено следующим образом: знаки умножаются отдельно,

$$i^2 = j^2 = k^2 = -1,$$

$$ij = k, \ ji = -k, \ ik = -j, \ ki = j, \ jk = i, \ kj = -i.$$

Для того, чтобы запомнить правило умножения элементов i, j и k удобно изобразить их в вершинах треугольника.



Теперь, если мы хотим умножить два элемента, то, если направление движение от первого ко второму по часовой стрелке, получаем третий элемент, а если против часовой стрелки, то минус третий.

Легко видеть, что 1 – нейтральный элемент, и каждый элемент обратим. В самом деле, элементы 1 и -1 являются обратными к самим себе. А для любого другого элемента x выполнено $x^{-1} = -x$. Для того, чтобы утверждать, что Q_8 – группа, необходимо проверить ассоциативность. Сделаем это на следующей лекции.

Лекция 2

Конечную группу можно задавать с помощью таблицы Кэли (таблицы умножения). Таблица умножения — это квадратная таблица, строки и столбцы которой соответствуют элементам группы. А на пересечении строки и столбца стоит произведение элемента, соответствующего строке, и элемента, соответствующего столбцу.

Пример 1. Построим таблицу сложения для группы $(\mathbb{Z}_3, +) = \{0, 1\}$

Ясно, что таблица Кэли симметрична (относительно главной диагонали) тогда и только тогда, когда группа коммутативна.

Определение 6. Пусть (G,*) и (H,\circ) – две группы. Отображение $\varphi\colon G\to H$ называется гомоморфизмом, если $\varphi(g_1*g_2)=\varphi(g_1)\circ\varphi(g_2)$.

На самом деле, чтобы определить гомоморфизм нам не нужно, чтобы G и H были группами. Достаточно, чтобы на них были заданы некие операции (т.е., чтобы они были группоидами).

Докажем следующие элементарные свойства гомоморфизма.

Лемма 2. Пусть $\varphi: (G, *) \to (H, \circ)$ – гомоморфизм. Обозначим через e_G и e_H единицы группы G и H соответственно. Тогда

- 1) $\varphi(e_G) = e_H$.
- $(2) \varphi(g^{-1}) = \varphi(g)^{-1}$. (В левой части обратный берется в группе G, а в правой в H.)

Доказательство. 1) Поскольку e_G – единица группы G. Тогда $e_G*e_G=e_G$, а значит, $\varphi(e_G)\circ\varphi(e_G)=\varphi(e_G*e_G)=\varphi(e_G)$.

В группе H есть обратный к $\varphi(e_G)$ элемент. Умножим на него обе части. Получим

$$\varphi(e_G) = e_H$$
.

2)
$$e_H = \varphi(e_G) = \varphi(g * g^{-1}) = \varphi(g) \circ \varphi(g^{-1})$$
. Следовательно, $\varphi(g^{-1}) = \varphi(g)^{-1}$.

Задача 2. Пусть (G,*) и (H,\circ) – моноиды с единицами e_G и e_H соответственно. И пусть $\psi\colon G\to H$ – отображение такое, что $\psi(g_1*g_2)=\psi(g_1)\circ\psi(g_2)$. Может ли так быть, что $\psi(e_G)\neq\psi(e_H)$?

Определение 7. Биективный гомоморфизм $\varphi \colon G \to H$ называется *изоморфизмом*, а группы G и H при наличии изоморфизма между ними называются *изоморфными*.

Изоморфные группы имеют одинаковую алгебраическую структуру. Более строго любой алгебраический факт (то есть формулирующийся только в терминах операции) верный в одной из них, верен и в другой. Поэтому в дальнейшем мы будем отождествлять изоморфные группы и будем изучать группы с точностью до изоморфизма.

Теорема 1. Отношение изоморфности – это отношение эквивалентности.

Доказательство. Нужно проверить, что отношение изоморфности удовлетворяет свойствам рефлексивности, симметричности и транзитивности. В самом деле. Тождественное преобразование задает изоморфизм любой группы с собой. Рефлексивность доказана. Если $\varphi \colon G \to H$ – изоморфизм, то в частности это биекция. Тогда существует обратное отображение φ^{-1} . Оно также является гомоморфизмом. В самом деле, пусть $a,b\in H$, в силу сюръективности φ , имеем $a=\varphi(u),\ b=\varphi(v)$ для некоторых $u,v\in G$. Тогда $\varphi^{-1}(ab)=\varphi^{-1}(\varphi(u)\varphi(v))=\varphi^{-1}(\varphi(uv))=uv=\varphi^{-1}(a)\varphi^{-1}(b)$. Таким образом, φ^{-1} – изоморфизм. Симметричность доказана. Докажем, что композиция двух изоморфизмов – изоморфизм. Пусть $\varphi \colon G \to H$ и $\psi \colon H \to F$ – два гомоморфизма. Тогда

$$\psi \circ \varphi(g_1g_2) = \psi(\varphi(g_1g_2)) = \psi(\varphi(g_1)\varphi(g_2)) = \psi(\varphi(g_1))\psi(\varphi(g_2)) = \psi \circ \varphi(g_1)\psi \circ \varphi(g_2).$$

То есть $\psi \circ \varphi$ – гомоморфизм. С другой стороны, $\psi \circ \varphi$ – биекция. Значит, $\psi \circ \varphi$ – изоморфизм. Транзитивность доказана.

Из этого предложения следует, что все группы распадаются на непересекающиеся классы изоморфности.

Пример 2. Рассмотрим две группы: $(\mathbb{R}, +)$ и $(\mathbb{R}_{>0}, \cdot)$. Вторая группа состоит из всех положительных вещественных чисел с операцией умножения. Рассмотрим отображение $\varphi \colon \mathbb{R} \to \mathbb{R}_{>0}$, $\varphi(x) = 2^x$. Легко видеть, что φ – изоморфизм.

Пример 3. Группа \mathbb{Z}_n изоморфна группе μ_n . Один из возможных автоморфизмов переводит $k \in \mathbb{Z}_n$ в $\cos \frac{2\pi k}{n} + i \sin \frac{2\pi k}{n}$. То, что φ – гомоморфизм обеспечивается тем, что при умножении комплексных чисел их аргументы складываются.

Пример 4. Группа $GL_n(\mathbb{C})$ изоморфна группе невырожденных линейных преобразований векторного пространства \mathbb{C}^n с операцией композиции. Чтобы получить изоморфизм между этими группами нужно выбрать некоторый базис в \mathbb{C}^n и отобразить линейное преобразование в его матрицу в этом базисе.

На самом деле изоморфизм (биективное соответствие, переводящее умножение одной группы в умножение другой) можно задать в случае, когда про одну из структур не известно, группа это или нет. Тогда вторая структура будет автоматически группой.

Теорема 2. Пусть G – группа, а H – группоид. И пусть φ : $G \to H$ – биекция и гомоморфизм (то есть $\varphi(g_1g_2) = \varphi(g_1)\varphi(g_2)$. (Можно сказать, что φ – изоморфизм группоидов.) Тогда H – также группа и φ – изоморфизм групп.

Доказательство. Докажем, что H – группа. Проверим ассоциативность. Пусть $h_1, h_2, h_3 \in H$. Обозначим $g_i = \varphi^{-1}(h_i), i = 1, 2, 3$. Тогда

$$h_1(h_2h_3) = \varphi(g_1)(\varphi(g_2)\varphi(g_3)) = \varphi(g_1)\varphi(g_2g_3) =$$

= $\varphi(g_1(g_2g_3)) = \varphi((g_1g_2)g_3) = \varphi(g_1g_2)\varphi(g_3) = (\varphi(g_1)\varphi(g_2))\varphi(g_3) = (h_1h_2)h_3.$

Проверим, что $l = \varphi(e)$ – нейтральный элемент. Действительно, пусть $h = \varphi(g)$. Тогда $hl = \varphi(g)\varphi(e) = \varphi(ge) = \varphi(g) = h$ и $lh = \varphi(e)\varphi(g) = \varphi(eg) = \varphi(g) = h$.

Теперь проверим наличие обратного к элементу $h = \varphi(g)$. Докажем, что это $f = \varphi(g^{-1})$. Действительно, $hf = \varphi(g)\varphi(g^{-1}) = \varphi(e) = l$ и $fh = \varphi(g^{-1})\varphi(g) = \varphi(e) = l$.

Итак, мы проверили, что H – группа. Таким образом φ – биективный гомоморфизм групп, то есть изоморфизм.

Теперь мы готовы доказать, что Q_8 – группа.

Предложение 2. Q_8 – группа

Доказательство. Рассмотрим следующее множество из 8 комплексных матриц, которое мы обозначим \overline{Q}_8 .

$$\left\{\pm\begin{pmatrix}1&0\\0&1\end{pmatrix},\ \pm\begin{pmatrix}i&0\\0&-i\end{pmatrix},\ \pm\begin{pmatrix}0&1\\-1&0\end{pmatrix},\ \pm\begin{pmatrix}0&i\\i&0\end{pmatrix}\right\}.$$

Здесь і – это мнимая единица (комплексное число).

Рассмотрим биекцию φ между Q_8 и \overline{Q}_8 .

$$\pm 1 \mapsto \pm \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \ i \mapsto \pm \begin{pmatrix} \mathbf{i} & 0 \\ 0 & -\mathbf{i} \end{pmatrix}, \ j \mapsto \pm \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \ k \mapsto \pm \begin{pmatrix} 0 & \mathbf{i} \\ \mathbf{i} & 0 \end{pmatrix}.$$

Легко убедиться, что φ переводит умножение в Q_8 в матричное умножение. Следовательно, (\overline{Q}_8, \cdot) – это замкнутое относительно умножения и взятия обратной матрицы подмножество в $GL_2(\mathbb{C})$. Значит, \overline{Q}_8 – подгруппа. Тогда, по теореме 2, Q_8 – группа, изоморфная \overline{Q}_8 .

Особый интерес представляют гомоморфизмы и изоморфизмы из группы в себя.

Определение 8. Гомоморфизм $\varphi \colon G \to G$ называется эндоморфизмом. Изомомрфизм $\varphi \colon G \to G$ называется автоморфизмом.

Легко видеть, что композиция двух эндоморфизмов – это эндоморфизм, а композиция двух автоморфизмов – автоморфизм. Множество эндоморфизмов группы G с операцией композиции образует моноид $\operatorname{End}(G)$ с нейтральным элементом id. Множество автоморфизмов группы G с операцией композиции образует группу $\operatorname{Aut}(G)$.

Пусть g – элемент группы G. Рассмотрим отображение $\varphi_g \colon G \to G$, определенное по правилу $\varphi_g(h) = ghg^{-1}$.

Лемма 3. Отображение φ_g является автоморфизмом группы G.

Доказательство. Проверим, что φ_q – гомоморфизм:

$$\varphi_g(hf) = ghfg^{-1} = ghg^{-1}gfg^{-1} = \varphi_g(h)\varphi_g(f).$$

То, что φ_g – биекция следует из того, что существует обратное отображение. А именно, обратное к φ_g отображение – это $\varphi_{g^{-1}}$.

Автоморфизм называются внутренним, если он имеет вид φ_g для некоторого $g \in G$.

Предложение 3. Множество внутренних автоморфизмов с операцией композиции образует подгруппу Inn(G) в Aut(G).

Доказательство. Докажем равенство $\varphi_g \circ \varphi_h = \varphi_{gh}$. Для этого применим этот гомоморфизм к элементу $s \in G$:

$$\varphi_g \circ \varphi_h(s) = \varphi_g(\varphi_h(s)) = \varphi_g(hsh^{-1}) = ghsh^{-1}g^{-1} = (gh)s(gh)^{-1} = \varphi_{gh}(s).$$

Из доказанного равенства следует замкнутость ${\rm Inn}(G)$ относительно композиции. Кроме того ${\rm id}=\varphi_e\in {\rm Inn}(G)$. Осталось проверить, что ${\rm Inn}(G)$ замкнуто относительно взятия обратного. Для этого заметим, что $\varphi_g\circ\varphi_{g^{-1}}=\varphi_e={\rm id}$.

Лекция 3

Предложение 4. Простые следствия из аксиом.

- 1) (Обобщенная ассоциативность) Пусть (G, *) полугруппа. И пусть $g_1, \ldots, g_k \in G$. Тогда как бы ни были расставлены скобки в выражении $g_1 * g_2 * \ldots * g_k$ результат будет одинаковым.
 - 2) В моноиде есть единственная единица.
 - 3) В группе для каждого элемента есть единственный обратный.
- 4) Пусть (G, *) группа. Пусть $a, b \in G$. Тогда если a*b = e, то $b = a^{-1}$. Аналогично если b*a = e, то $b = a^{-1}$.
 - 5) Пусть (G,*) группа, $a,b \in G$. Тогда $(a*b)^{-1} = b^{-1}*a^{-1}$.
 - 6) Пусть (G,*) группа, $g \in G$. Тогда $(g^{-1})^{-1} = g$.

Доказательство. 1) Докажем это утверждение индукцией по k.

Eаза undykuuu k = 3. В этом случае обобщенная ассоциативность совпадает с ассоциативностью, то есть с аксиомой A1.

Шаг индукции. Предположим, что для k < n данное утверждение уже доказано. Докажем его для k = n. Среди всех расстановок скобок есть стандартная (при ней действия выполняются слева-направо):

$$(\dots(g_1*g_2)*g_3)*\dots*g_{n-1})*g_n=g.$$

Достаточно доказать, что результат, который получается при произвольной расстановке скобок, совпадает с g. Фиксируем некоторую расстановку скобок. Для этой расстановки скобок есть последнее действие, которое дает операцию от двух скобок. Длиной скобки назовем количество g_i , входящих в нее. Обозначим длину правой скобки через s.

Случай 1 s=1. Наша расстановка скобок имеет вид $(...)*g_n$. По предположению индукции в левой скобке можно расставить скобки произвольным образом. В том числе стандартным образом. Но тогда в целом мы получим стандартную расстановку скобок. Значит, результат при нашей расстановке скобок совпадает с результатом при стандартной расстановке скобок.

Случай 2 s>2. Последнее действие при нашей фиксированной расстановке скобок имеет вид (a)*(b). Длина скобки b меньше n. По предположению индукции можно считать, что в скобке b расстановка скобок стандартная. Таким образом, стандартная расстановка скобок в скобке b дает $b=d*g_n$. То есть $g=a*(d*g_n)=(a*d)*g_n$. По случаю 1 мы получаем, что в g можно расставить скобки стандартным образом.

- 2) Предположим, что в моноиде (G,*) есть две единицы: e и s. Рассмотрим e*s. Поскольку e единица, получаем e*s=s. С другой стороны так как s единица, то e*s=e. Таким образом, e=s.
- 3) Пусть (G, *) группа. Предположим, что $g \in G$ элемент, у которого есть хотя бы два обратных: f и h. Тогда f = f * (g * h) = (f * g) * h = h.
- 4) Пусть a*b=e. Рассмотрим операцию элемента a^{-1} и левой части и приравняем к операции элемента a^{-1} и правой части. (Домножим на a^{-1} слева.) Получим $a^{-1}*a*b=a^{-1}*e$. То есть $b=a^{-1}$.

Если b * a = e, то аналогично домножая слева на a^{-1} , получаем $b = a^{-1}$.

5) Обозначим $b^{-1}*a^{-1}=c$. Рассмотрим $(a*b)*c=(a*b)*(b^{-1}*a^{-1})=a*(b*b^{-1})*a^{-1}=a*e*a^{-1}=e$. Значит, $c=(a*b)^{-1}$.

6)
$$q^{-1} * q = e$$
, значит $q = (q^{-1})^{-1}$.

Теорема 3. 1) $Aut(\mathbb{Z}) \cong \mathbb{Z}_2$,

2) Aut(\mathbb{Z}_n) $\cong \mathbb{Z}_n^{\times}$.

Замечание 1. Напомним, что \mathbb{Z}_n^{\times} – это группа обратимых по умножению элементов кольца вычетов \mathbb{Z}_n . Группа \mathbb{Z}_n^{\times} состоит из вычетов взаимно простых с n. В частности, $|\mathbb{Z}_n^{\times}| = \varphi(n)$, где $\varphi(\cdot)$ – функция Эйлера.

Доказательство теоремы 3. 1) Пусть ψ – автоморфизм \mathbb{Z} . Тогда $\psi(0)=0$. Пусть $\psi(1)=k$. Тогда

$$\psi(2) = \psi(1+1) = \psi(1) + \psi(1) = 2k,$$

$$\psi(3) = \psi(1+1+1) = \psi(1) + \psi(1) + \psi(1) = 3k,$$

и т.д. Аналогично $\psi(-1)=-k,\,\psi(-2)=\psi((-1)+(-1))=-2k.$ Получаем

$$\psi(m) = mk$$
.

Однако при $k \neq \pm 1$ гомоморфизм ψ не будет сюръективен. При k = 1 и k = -1 получаем тождественное отображение и отображение $\{x \mapsto -x\}$. Легко видеть, что эти два автоморфизма с операцией композиции образуют группу, изоморфную \mathbb{Z}_2 .

2) Аналогично случаю 1 любой гомоморфизм $\psi \colon \mathbb{Z}_n \to \mathbb{Z}_n$ имеет вид

$$\psi_k \colon m \mapsto km$$
.

Если k не обратим, то в образе ψ_k не лежит 1, а значит, ψ_k не сюръективно. Если же k обратим, то для любого вычета l имеем $\psi_k(k^{-1}l) = l$. Следовательно, ψ_k сюръективно, а значит, так как множество \mathbb{Z}_n конечно, гомоморфизм ψ_k – биекция.

Итак, $\operatorname{Aut}(\mathbb{Z}_n)$ состоит из ψ_k для $k \in \mathbb{Z}_n^{\times}$. Докажем, что отображение

$$\zeta \colon \operatorname{Aut}(\mathbb{Z}_n) \to \mathbb{Z}_n^{\times}, \qquad \zeta(\psi_k) = k$$

является изоморфизмом. Это очевидно биекция, осталось проверить, что ζ – гомоморфизм. Это следует из равенства $\psi_k \circ \psi_m = \psi_{km}$, которое легко проверить.

Определение 9. Пусть $\varphi\colon G\to H$ – гомоморфизм групп. Ядром гомоморфизма φ называется множество

$$\operatorname{Ker} \varphi = \{ g \in G \mid \varphi(g) = e \} \subseteq G.$$

Образом гомоморфизма φ называется множество

$$\operatorname{Im} \varphi = \{ \varphi(g) \mid g \in G \} \subseteq H.$$

Поскольку $\varphi(e) = e$, нейтральный элемент всегда лежит в ядре.

Теорема 4. (Критерий интективности гомоморфизма) Гомоморфизм $\varphi \colon G \to H$ интективен тогда и только тогда, когда $\operatorname{Ker} \varphi = \{e\}.$

Доказательство. Пусть $\ker \varphi \neq \{e\}$. Тогда существует $g \neq e, g \in \ker \varphi$. То есть $\varphi(g) = e = \varphi(e)$. Следовательно, гомоморфизм φ не инъективен.

Допустим, гомоморфизм φ не инъективен. Тогда $\varphi(g_1) = \varphi(g_2)$ для некоторых $g_1 \neq g_2 \in G$. Значит, $\varphi(g_1g_2^{-1}) = \varphi(g_1)\varphi(g_2)^{-1} = e$. То есть $g_1g_2^{-1} \in \operatorname{Ker} \varphi$, но $g_1g_2^{-1} \neq e$. Значит, $\operatorname{Ker} \varphi \neq \{e\}$.

Определение 10. Пусть g – элемент группы G, а n – целое число. Определим n-ю степень элемента g следующим образом. Если n положительное, то $g^n = g \cdot \ldots \cdot g$ – произведение n элементов g. Если n отрицательное, то $g^n = (g^{-1})^n$. Нулевая степень любого элемента равна нейтральному элементу e.

Упражнение 2. Выполнены следующие свойства степеней элемента группы:

- $1) g^m g^n = g^{m+n},$
- $2) (g^m)^n = g^{mn}$

У казание. Рассмотреть все случаи знаков m и n.

Определение 11. Пусть g – элемент группы G. Порядок g – это минимальное натуральное число n такое, что $g^n = e$. Если такого числа не существует, то порядок элемента g равен бесконечности. Порядок элемента g обозначается $\operatorname{ord}(g)$.

Определение 12. Группа G называется $uu\kappa nuveckou$, если найдется элемент $g \in G$ такой, что каждый элемент G имеет вид q^k для некоторого целого числа k.

Элемент g называется nopocedarowum элементом группы G, при этом группа G обозначается $\langle q \rangle$.

3амечание 2. В предыдущем определении не требуется, чтобы все степени g были различны.

Пример 5. а) Группа \mathbb{Z} является циклической. В самом деле, $\mathbb{Z} = \langle 1 \rangle$. б) Аналогично $\mathbb{Z}_n = \langle 1 \rangle$.