ЛЕКЦИЯ 18

РАСШИРЕНИЯ ПОЛЕЙ

СУЩЕСТВОВАНИЕ ПОЛЯ РАЗ-ЛОЖЕНИЯ МНОГОЧЛЕНА

СУЩЕСТВОВАНИЕ ПОЛЯ ИЗ p^n ЭЛЕМЕНТОВ

РАСШИРЕНИЯ ПОЛЕЙ

ОПРЕДЕЛЕНИЕ 1. Поле L называется расширением поля K, если K является подполем в L. Расширение L поля K называется конечным, если $\dim_K L < \infty$. Число $\dim_K L <$ в этом случае называется степенью расширения L.

Элемент $x \in L$ называется алгебраическим над K, если он удовлетворяет некоторому нетривиальному алгебраическому уравнению с коэффициентами из K, и mpancuendenmhum в противном случае. Расширение L поля K называется алгебраическим, если всякий его элемент алгебраичен над K.

ТЕОРЕМА 1. Любое конечное расширение поля является алгебраическим.

Доказательство. Действительно, если L — конечное расширение поля K, то L_K — конечномерно. Рассмотрим произвольный элемент $g \in L$. Все степени элемента g не могут быть линейно независимы, поэтому существует некоторая линейная комбинация

этих степеней

$$\alpha_0 + \alpha_1 g + \alpha_2 g^2 + \dots + \alpha_n g^n = 0.$$

Это означает алгебраичность элемента g.

УПРАЖНЕНИЕ 1. Является ли алгебраическим расширением \mathbb{R} над \mathbb{Q} ?

ЗАМЕЧАНИЕ 1. Напомним, что если K — поле, K[x] — кольцо многочленов, $f(x) \in K[x]$ — произвольный многочлен степени n, то факторкольцо L = K[x]/(f(x)) является полем тогда и только тогда, когда многочлен f(x) неприводим над K. В этом случае L является конечным расширением поля K степени n ($npo-cmoe\ pacuupehue$).

ТЕОРЕМА 2 (О БАШНЕ ПОЛЕЙ). Если L — конечное расширение поля K, а M — конечное расширение поля L, то M — конечное расширение поля K, причем

$$\dim_K M = \dim_K L \cdot \dim_L M.$$

 $Ecnu\ L$ — расширение поля $K,\ M$ — расширение поля $L,\ a\ M$ — конечное расширение поля $K,\ mo$ расширения L над K и M над L — конечны.

Доказательство. Пусть базис M над $L-f_1,\ldots,f_k,$ базис L над $K-e_1,\ldots,e_m.$ Покажем, что базис M над $K-\{f_ie_j\mid i=1,\ldots,k,j=1,\ldots,m\}.$

То, что данное множество порождает все M над K, очевидно.

Докажем линейную независимость. Пусть

$$\sum_{i,j} \alpha_{ij} f_i e_j = 0,$$

где $\alpha_{ij} \in K$.

Тогда

$$\sum_{i} (\alpha_{i,1}e_1 + \dots + \alpha_{i,m}e_m)f_i = 0.$$

Так как f_1, \ldots, f_k — базис M над L, то все коэффициенты при f_1, \ldots, f_k равны нулю, но каждый коэффициент — это линейная комбинация элементов базиса L над K, то все $\alpha_{i,j}$ равны нулю, что и требовалось.

Пусть расширение M над K конечно, а одно из расширений L над K или M над L бесконечно. Это означает, что один из базисов f_1, \ldots поля M над полем L или e_1, \ldots поля L над K бесконечен.

Точно так же, как выше, мы тогда можем показать, что элементы вида $f_i e_j$ линейно независимы.

Однако их число бесконечно, а по условию поле M над K — конечно. \square

ТЕОРЕМА 3. Если поле L порождается над K конечным числом алгебраических элементов u_1, \ldots, u_n , то оно является конечным расширением поля K.

Доказательство. Для начала заметим, что достаточно доказать утверждение при условии, что мы добавляем только одну переменную, так как добавление n переменных эквивалентно последовательному добавлению по одной переменной к все более расширяющимся полям.

Если мы рассматриваем поле K(u), и оно является бесконечным расширением поля K, то существует сколько угодно линейно независимых над K дробей вида $f_i(u)/g_i(u)$. Линейная независимость дробей

$$f_1(u)/g_1(u),\ldots,f_n(u)/g_n(u)$$

равносильна линейной независимости многочленов

$$h(u)f_1(u)/g_1(u), \ldots, h(u)f_n(u)/g_n(u),$$

где

$$h(u) = HOK(g_1(u), \ldots, g_n(u)),$$

что для любого n не может выполняться. Противоречие. \square

ТЕОРЕМА 4. Пусть L — какое-либо расширение поля K. Совокупность \overline{K} всех элементов поля L, алгебраических над K, является подполем, алгебраически замкнутым в L (в том смысле, что любой элемент поля L, алгебраический над \overline{K} , принадлежит \overline{K}).

 $\underline{\mathcal{A}}$ оказательство. Во-первых, мы хотим доказать, что \overline{K} является полем.

Для этого требуется показать, что сумма, разность, произведение и частное двух алгебраических над K — алгебраические над K.

Возьмем эти два алгебраических над K элемента: $a,b\in\overline{K}$ и рассмотрим поле K(a,b). По предыдущей теореме оно конечно над K, по теореме 1 оно алгебраическое над K, то есть все его элементы (в том числе, a+b,a-b,ab и a/b) — алгебраические над K. Значит, \overline{K} — поле.

Далее нам нужно доказать, что любой элемент $a \in L$, алгебраический над \overline{K} , является алгебраическим над исходным полем K.

Пусть a является корнем многочлена

$$f(x) = \alpha_0 + \alpha_1 x + \dots + \alpha_n x^n, \qquad \alpha_0, \dots, \alpha_n \in \overline{K}.$$

Рассмотрим тогда поле $K_1 := K(\alpha_0, \ldots, \alpha_n)$, которое по предыдущей теореме является конечным расширением поля K. По условию элемент a — алгебраический над K_1 , то есть расширение $K_1(a)$ — конечное над K_1 , откуда оно является конечным расширением поля K, а по теореме 1 — алгебраическим. Таким образом, a — алгебраический над K, что и требовалось.

СЛЕДСТВИЕ 1. Поле $\overline{\mathbb{Q}}$ алгебраических чисел (всех комплексных чисел, являющихся корнями многочленов с рациональными коэффициентами) алгебраически замкнуто.

ПОЛЕ РАЗЛОЖЕНИЯ МНОГОЧЛЕНА

Определение L поля K называется полем разложения многочлена $f \in K[x]$ (не обязательно неприводимого), если f разлагается в L[x] на линейные множители и поле L порождается над K его корнями.

Гомоморфизмы (в частности, изоморфизмы) расширений поля K, тождественные на K, называются гомоморфизмами (изоморфизмами) над K.

ТЕОРЕМА 5. Поле разложения любого многочлена $f \in K[x]$ существует.

 \mathcal{A} оказательство. Разложим многочлен f(x) на неприводимые множители над полем K. Рассмотрим один из неприводимых множителей — h(x).

Рассмотрим поле $K_1 = K[x]/(h(x))$. Как мы знаем, это поле является расширением поля K, в котором у многочлена h(x) появляется (хотя бы один) корень. Таким образом, многочлен f(x) над полем K_1 разложится на большее число неприводимых сомножителей.

Последовательными расширениями мы можем добиться того, чтобы все сомножители стали линейными.

ТЕОРЕМА 6. Для любого простого p и натурального n существует поле из p^n элементов.

 \mathcal{A} оказательство. Рассмотрим поле L разложения многочлена $x^{p^n}-x$ над полем \mathbb{Z}_p .

У данного многочлена нет кратных корней (так как его производная равна -1 и взаимно проста с самим многочленом), поэтому все корни многочлена $x^{p^n} - x$, лежащие в L, различны.

Количество таких корней равно ровно $q = p^n$.

Докажем, что множество этих корней образует поле.

Действительно, если $a^q = a$ и $b^q = b$, то $(ab)^q = ab$, $(a/b)^q = a/b$, поэтому данное множество замкнуто относительно умножения и деления на ненулевые элементы.

Если $a^q=a$ и $b^q=b$, то $(a+b)^q=(a+b)^{p^n}=a^q+b^q=a+b$, то есть множество корней замкнуто относительно сложения и (аналогично) вычитания.

Таким образом, мы нашли искомое поле из p^n элементов.

РАСШИРЕНИЕ ГОМОМОРФИЗМА

ПРЕДЛОЖЕНИЕ 1. Пусть $K(\alpha)$ — расширение поля K, полученное присоединением корня α неприводимого многочлена $h \in K[x]$, и φ — гомоморфизм поля K в некоторое поле \mathbb{F} . Гомоморфизм φ продолжается до гомоморфизма $\widetilde{\varphi}: K(\alpha) \to \mathbb{F}$ ровно столькими способами, сколько различных корней имеет в \mathbb{F} многочлен $\varphi(h)$, полученный из h применением κ его коэффициентам гомоморфизма φ .

 \mathcal{A} оказательство. Искомое продолжение $\widetilde{\varphi}$, если оно существует, задается формулой

$$\widetilde{\varphi}(a_0 + a_1 \alpha + \dots + a_m \alpha^m) =$$

$$= \varphi(a_0) + \varphi(a_1)\beta + \dots + \varphi(a_m)\beta^m, \quad (a_0, a_1, \dots, a_m \in K),$$

где $\beta = \widetilde{\varphi}(\alpha)$ — некоторый элемент поля \mathbb{F} .

Применяя эту формулу к равенству $h(\alpha)=0$, получаем, что $\varphi(h)(\beta)=0$.

Обратно, если $\beta \in \mathbb{F}$ — корень многочлена $\varphi(h)$, то данная формула корректно определяет гомоморфизм $\widetilde{\varphi}: K(\alpha) \to \mathbb{F}$.