Линейные функции.

1. а) Пусть $A = (a_{ij}) \in M_n(\mathbb{R})$. Показать, что отображение

$$f: X \mapsto \operatorname{tr} AX$$

является линейной функцией. Найти ее координатную запись в стандартном базисе пространства матриц $M_n(\mathbb{R})$.

- б) Показать, что для любой линейной функции f на пространстве матриц $M_n(\mathbb{R})$ найдется такая матрица $A \in M_n(\mathbb{R})$, что $f(X) = \operatorname{tr} AX$ для всех $X \in M_n(\mathbb{R})$.
 - **2.** В базисе (e_1, e_2, e_3) пространства \mathbb{R}^3 задана линейная функция

$$f(x_1, x_2, x_3) = 2x_1 - x_2 + 3x_3.$$

Найти координатную запись этой функции в базисе $(e_1 + e_2, e_2 + e_3, e_3 + e_1)$.

- **3.** В пространстве \mathbb{R}^3 задан базис (e_1, e_2, e_3) :
- a) $(e_1 = (1,0,0), e_2 = (1,1,0), e_3 = (1,1,1));$
- 6) $(e_1 = (2,7,3), e_2 = (3,9,4), e_3 = (1,5,3));$

Найти сопряженный с ним базис (f^1, f^2, f^3) .

- **4.** В пространстве $V = \mathbb{R}^3$ задан базис $\mathcal{E} = (e_1, e_2, e_3)$ и в базисе \mathcal{E} записаны три линейные функции f^1, f^2, f^3 :
 - a) $(e_1 = (1, 1, 0), e_2 = (1, 0, 1), e_3 = (0, 0, 1));$
 - $f^{1}(x) = x_{1} + 2x_{2} + 3x_{3}, f^{2}(x) = 2x_{1} + 3x_{2} + x_{3}, f^{3}(x) = 3x_{1} + 2x_{2} + x_{3};$
 - 6) $(e_1 = (1, 1, 1), e_2 = (1, 1, 0), e_3 = (1, 0, 0));$
 - $f^{1}(x) = x_{1} + x_{2} + x_{3}, f^{2}(x) = x_{1} + x_{2}, f^{3}(x) = x_{1}.$

Образуют ли функции f^1, f^2, f^3 базис в V^* ? Если да, найти такие векторы $\tilde{e}_1, \tilde{e}_2, \tilde{e}_3 \in \mathbb{R}^3$, что $(\tilde{e}_1, \tilde{e}_2, \tilde{e}_3)$ образует базис, для которого (f^1, f^2, f^3) является сопряженным базисом. (Т.о., e_1, e_2, e_3 даны в стандартном базисе и нужно найти координаты векторов $\tilde{e}_1, \tilde{e}_2, \tilde{e}_3$ в стандартном базисе).