ЛЕКЦИЯ 14

КОЛЬЦА

 $R\Pi O\Pi$

ХАРАКТЕРИСТИКА ПОЛЯ

КОЛЬЦА

ОПРЕДЕЛЕНИЕ 1. Пусть K — непустое множество, на котором заданы две бинарные операции + (сложение) и \cdot (умножение), удовлетворяющие следующим свойствам:

- (1) (K, +) абелева группа;
- $(2)\;(K,\cdot)$ полугруппа;
- (3) операции умножения и сложения связаны дистрибутивными законами

$$(a+b)c = ac + bc$$
 и $c(a+b) = ca + cb$

для всех $a, b, c \in K$.

Тогда $(K, +, \cdot)$ называется кольцом.

Структура (K,+) называется аддитивной группой кольца, а (K,\cdot) — его мультипликативной полугруппой.

Если (K,\cdot) — моноид, то говорят, что $(K,+,\cdot)$ — кольцо с единицей.

Единичный элемент кольца принято обозначать обычной единицей 1.

Существование единицы часто вносится в определение кольца, но мы не будет делать этого по умолчанию.

В нашем случае определение введено так, чтобы умножение сразу было ассоциативным. Однако бывает, что рассматривают неассоциативные кольца, в которых ассоциативность по умножению не выполняется.

Подмножество L кольца K называется $no\partial кольцом$, если

$$x, y \in L \Longrightarrow x - y \in L, xy \in L,$$

то есть если L — подгруппа аддитивной группы кольца и подполугруппа мультипликативной полугруппы кольца.

Ясно, что пересечение любого семейства подколец в K является подкольцом, поэтому имеет смысл говорить о подкольце $\langle T \rangle \subset K$, порожденном подмножеством $T \subset K$.

Кольцо K называется коммутативным, если

$$xy = yx$$

для всех $x, y \in X$.

ПРИМЕР 1. Самым простым и первом примером кольца (с единицей) является кольцо целых чисел \mathbb{Z} . Оно является коммутативным.

Аналогично, коммутативными кольцами с единицей являются рациональные числа \mathbb{Q} и действительные числа \mathbb{R} , причем

$$\mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$$
.

ПРИМЕР 2. Если R — коммутативное ассоциативное кольцо с единицей (например, целые, рациональные или дейтвительные числа), то R[x] — кольцо многочленов над R от одной переменной, $R[x_1, x_2, \ldots, x_n]$ — кольцо многочленов над R от многих (коммутирующих переменных). Также можно рассмотреть кольцо многочленов от n некоммутирующих переменных x_1, \ldots, x_n . Чтобы не путать его с обычным кольцом многочленов, будем обозначать его через $R\langle x_1, x_2, \ldots, x_n \rangle$.

ПРИМЕР 3. Примером кольца, благодаря которому кольца именно так именуются, является кольцо вычетов по модулю $n-\mathbb{Z}_n$. Данное кольцо состоит из остатков $\{0,1,2,\ldots,n-1\}$ от деления на n, операции сложения и умножения проводятся по модулю n.

Очевидно, что данное кольцо коммутативно, единицей служит остаток 1.

ПРИМЕР 4. Если R — это некоторое ассоциативное кольцо с единицей (для примера можно рассмотреть целые, рациональные или действительные числа), $n \geqslant 1$, то $\mathbf{M}_n(R)$ — кольцо матриц над R. При n=1 оно совпадает с кольцом R, при $n\geqslant 2$ оно обязательно некоммутативно (например, $E_{12}E_{21}\neq E_{21}E_{12}$) и содержит необратимые ненулевые элементы.

ПРИМЕР 5. Для любого ассоциативного кольца R с единицей можно рассмотреть кольцо формальных степенных рядов R[[x]] от одной переменной (также по аналогии вводится кольцо

$$R[[x_1,\ldots,x_n]]$$

формальных степенных рядов от многих переменных). Каждый элемент этого кольца — формальный ряд

$$\sum_{i=0}^{\infty} r_i x^i.$$

Два ряда

$$\sum_{i=0}^{\infty} r_i x^i$$
 и $\sum_{j=0}^{\infty} s_j x^j$

складываются почленно, а при умножении дают ряд

$$\sum_{n=0}^{\infty} u_n x^n,$$

где

$$u_n = \sum_{k=0}^n r_k s_{n-k}.$$

ПРИМЕР 6. Можно рассмотреть кольцо функций \mathbb{R}^X из некоторого множества X в (например) действительные числа (а можно и в любое другое кольцо). Функции можно поточечно умножать и складывать. Кольцо получится коммутативным. Единицей в нем является константа 1.

Многие свойства колец являются переформулировкой свойств групп и вообще множеств с одной ассоциативной операцией.

Например,

$$a^{m+n} = a^m a^n, \quad (a^m)^n = a^{mn}$$

для всех неотрицательных целых m, n и любого элемента a нашего кольца.

Отметим пару важных свойств колец.

(1) Для всех $a \in R$ выполнено

$$a \cdot 0 = 0 \cdot a = 0.$$

Действительно,

$$a+0=a$$

откуда

$$a(a+0) = a \cdot a.$$

Раскроем скобки:

$$a \cdot a + a \cdot 0 = a \cdot a.$$

Значит, $a \cdot 0$ — это нейтральный элемент по сложению, то есть ноль.

(2) В кольце, в котором есть больше одного элемента, $0 \neq 1$. Действительно, пусть 0 = 1. Тогда

$$a = a \cdot 1 = a \cdot 0 = 0$$

для всех $a \in R$, то есть кольцо состоит только из нулевого элемента.

(3) Выполнено

$$(-a)\cdot b = a\cdot (-b) = -ab$$

для всех $a, b \in R$. Действительно,

$$0 = a \cdot 0 = a(b - b) = ab + a(-b) \Longrightarrow a(-b) = -ab.$$

ГОМОМОРФИЗМЫ КОЛЕЦ

ОПРЕДЕЛЕНИЕ 2. Пусть $(R, +, \times)$ и (R', \oplus, \otimes) — кольца. Отображение $f: R \to R'$ называется гомоморфизмом, если оно сохраняет все операции, то есть если

$$f(a+b) = f(a) \oplus f(b),$$

$$f(a \times b) = f(a) \otimes f(b).$$

При этом, конечно,

$$f(0) = 0', \quad f(na) = nf(a)$$
 при $n \in \mathbb{Z}$.

Ядром гомоморфизма называется множество

$$\ker f = \{ a \in K \mid f(a) = 0' \}.$$

Ясно, что $\ker f$ — подкольцо в R.

Как и в случае групп, гомоморфизм

$$f: R \to R'$$

называется:

- мономорфизмом, если $\ker f = 0$;
- эпиморфизмом, если его образ совпадает с R';
- изоморфизмом, если f мономорфизм и эпиморфизм.

Факт изоморфизма колец записывают как $R \cong R'$.

Если рассматривать только кольца с единицей, то в определение гомоморфизма $f:R\to R'$ логично внести условие

$$f(1) = 1'$$
.

ТИПЫ КОЛЕЦ

ОПРЕДЕЛЕНИЕ 3. Если ab = 0 при $a \neq 0$ и $b \neq 0$ в кольце R, то a называется левым, а b - npaвым делителем нуля (в коммутативных кольцах говорят просто о делителях нуля).

Сам ноль — это тривиальный делитель нуля. Если в кольце нет нетривиальных делителей нуля, то R называется кольцом без делителей нуля.

Коммутативное кольцо с единицей $1 \neq 0$ без делителей нуля называют *целостным кольцом* (или *областью целостности*).

Теорема 1. Нетривиальное коммутативное кольцо R c единицей является целостным тогда и только тогда, когда в нем выполнен закон сокращения

$$ab = ac, \ a \neq 0 \Longrightarrow b = c$$

для всех $a, b, c \in R$.

Доказательство. В самом деле, если в R имеет место закон сокращения, то из $ab=0=a\cdot 0$ следует a=0 или b=0.

Обратно, если R — область целостности, то

$$ab = ac$$
, $a \neq 0 \Longrightarrow a(b - c) = 0 \Longrightarrow b - c = 0 \Longrightarrow b = c$.

В кольце R с единицей естественно рассматривать множество обратимых элементов.

Элемент a называется обратимым, если существует элемент a^{-1} , для которого $a^{-1}a = aa^{-1} = 1$.

Точнее, следовало бы говорить об элементах, обратимых справа или слева (ab=1 или ba=1), но в коммутативных кольцах, а также в кольцах без делителей нуля эти понятия совпадают.

Действительно, из

$$ab = 1$$

следует

$$aba = a$$
,

откуда

$$a(ba - 1) = 0 \Longrightarrow ba = 1,$$

если $a \neq 0$. Но мы знаем, что $a \neq 0$, так как ab = 1.

Нам известно, например, что в кольце матриц $M_n(\mathbb{R})$ обратимые элементы — это в точности матрицы с отличным от нуля определителем.

Обратимый элемент a не может быть делителем нуля:

$$ab = 0 \Longrightarrow a^{-1}(ab) = 0 \Longrightarrow b = 0.$$

Имеет место

Теорема 2. Все обратимые элементы кольца R с единицей составляют группу $U(R) = R^*$ по умножению.

Доказательство. В самом деле, так как множество U(R) содержит единицу, из $a \in U(R)$ следует $a^{-1} \in U(R)$, ассоциативность по умножению выполнена автоматически, то нам нужно только убедиться в замкнутости множества U(R) по умножению, то есть проверить, что произведение ab двух обратимых элементов обратимо.

Но это очевидно, так как

$$(ab)^{-1} = b^{-1}a^{-1}.$$

ПРИМЕР 7. В кольце целых чисел \mathbb{Z} обратимы только ± 1 .

В кольцах многочленов обратимыми могут быть только константы, так как у многочленов при умножении складываются степени. Соответственно, обратимыми элементами являются обратимые константы кольца R.

В кольце вычетов \mathbb{Z}_n обратимыми являются все остатки, взаимно простые с n. Таким образом, в данном кольце каждый элемент либо обратим, либо является делителем нуля.

Доказательство. Действительно, пусть имеется $k \in \{0, 1, \dots, n-1\}$ и мы хотим найти к нему обратный элемент. Это означает, что мы хотим найти такое $m \in \{0, 1, \dots, n-1\}$, что $km \equiv 1 \mod n$, а более подробно — найти такие два числа m и $q \in \mathbb{Z}$, что

$$km + nq = 1.$$

Как мы уже замечали в первых лекциях, это возможно тогда и только тогда, когда числа k и n взаимно просты.

В кольце рядов R[[x]] обратимыми являются те и только те ряды, у которых обратим коэффициент при нулевой степени.

Доказательство. Пусть у ряда

$$z = \sum_{i=0}^{\infty} r_i x^i$$

 r_0 необратим, но у него существует обратный ряд

$$z' = \sum_{j=0}^{\infty} s_j x^j.$$

Тогда, с одной стороны, и произведение должно быть равно ряду 1, с другой стороны, у произведения таких рядов коэффициент при нулевой степени x равен r_0s_0 , т.е. r_0 обратим.

Напротив, пусть у ряда

$$z = \sum_{i=0}^{\infty} r_i x^i$$

коэффициент r_0 обратим. Будем искать обратный ряд в общем виде

$$z' = \sum_{j=0}^{\infty} s_j x^j.$$

Тогда мы получим систему уравнений:

$$\begin{cases}
1 &= r_0 s_0, \\
0 &= r_0 s_1 + r_1 s_0, \\
0 &= r_0 s_2 + r_1 s_1 + r_2 s_0, \\
\dots &= \dots, \\
0 &= r_0 s_n + r_1 s_{n-1} + \dots + r_{n-1} s_1 + r_n s_0, \\
\dots &= \dots.
\end{cases}$$

Мы видим, что $s_0=r_0^{-1}$ (существует и однозначно определено), $s_1=(-r_1s_0)r_0^{-1}$ (также существует и однозначно определено), $s_2=(-r_1s_1-r_2s_0)r_0^{-1},\ldots,\,s_n=(-r_1s_{n-1}-\cdots-r_ns_0)r_0^{-1},\ldots$

Таким образом, каждый коэффициент s_i однозначно определяется по коэффициентам r_j и предыдущим коэффициентам s_0,\ldots,s_{i-1} . Значит, ряд z был обратим.

В кольце функций обратимыми являются функциями, у которых все значения обратимы.

ПОЛЯ

ОПРЕДЕЛЕНИЕ 4. Ассоциативное кольцо с единицей называется кольцом с делением или телом, если любой ненулевой элемент в нем обратим.

Тело с коммутативным умножением называется *полем*.

Выражение ab^{-1} в случае поля записывают просто: $\frac{a}{b}$ или a/b. Можно легко вывести из аксиом, что действия с дробями подчиняются следующим правилам:

$$\frac{a}{b} = \frac{c}{d} \iff ad = bc, \quad b, d \neq 0,$$

$$\frac{a}{b} + \frac{c}{d} = \frac{ac + bd}{bd}, \quad b, d \neq 0,$$

$$-\frac{a}{b} = \frac{-a}{b} = \frac{a}{-b}, \quad b \neq 0,$$

$$\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}, \quad b, d \neq 0,$$

$$\left(\frac{a}{b}\right)^{-1} = \frac{b}{a}, \quad a, b \neq 0.$$

 $\ensuremath{\mathit{\Piodnonem}}\ F$ поля K называется подкольцо $F\subset K$, само являющееся полем.

Например, поле рациональных чисел \mathbb{Q} — подполе поля действительных чисел \mathbb{R} .

Рассмотрим несколько примеров полей, помимо полей \mathbb{Q} и \mathbb{R} . ПРИМЕР 8. Рассмотрим кольцо вычетов \mathbb{Z}_n и поймем, при каких условиях на число n оно является полем.

Мы уже доказывали, что элемент $k \in \{0, 1, \dots, n-1\}$ обратим в кольце \mathbb{Z}_n тогда и только тогда, когда он взаимно прост с числом n.

Таким образом, кольцо \mathbb{Z}_n является полем в том и только том случае, когда все числа $k \in \{1, 2, \dots, n-1\}$ взаимно просты с числом n.

Это, очевидно, выполняется тогда и только тогда, когда n простое.

Таким образом, для любого простого числа p кольцо вычетов \mathbb{Z}_p является полем.

ПРИМЕР 9. Мы, таким образом, научились сразу строить поля из двух и трех элементов.

Попробуем построить поле из четырех элементов.

Для этого надо построить таблицы сложения и умножения в этом поле и доказать все аксиомы.

Для начала мы знаем, что в нашем поле \mathbb{F}_4 (если оно существует) должны быть 0 и 1, поэтому остаются элементы a и b. Заметим, что $a+1\neq 1$ и $a+1\neq a$, поэтому либо a+1=0, либо a+1=b.

Рассмотрим сначала случай, когда a+1=0. Тогда

- $-b+a=0 \Longrightarrow b=1$, что невозможно;
- -b+a=b или b+a=a также навозможно.

Значит, b + a = 1, то есть b = 1 + 1, b + 1 = a, так как никаких других вариантов не остается. Отсюда получается, что таблица сложения (и умножения) в данном поле совпадает с таблицей для кольца вычетов \mathbb{Z}_4 , которое полем не является.

Таким образом, должен выполняться второй вариант

$$a + 1 = b$$
.

Значит, мы имеем дело с четырьмя элементами

$$0, 1, a, a + 1.$$

Если 1+1=a, то мы снова придем к кольцу \mathbb{Z}_4 , поэтому (так как другие суммы невозможны)

$$1 + 1 = 0$$
.

Это означает, что

$$a + a = a(1+1) = 0,$$

то есть все элементы, сложенные с собой, дают ноль.

Таким образом, таблица сложения построена:

+	0	1	a	a+1
0	0	1	a	a+1
1	1	0	a+1	\overline{a}
\overline{a}	a	a+1	0	1
a+1	a+1	a	1	0

Построим теперь таблицу умножения, исходя из того, то знаем, как умножать 0 и 1 на все остальные элементы.

Остается узнать, как возвести в квадрат элементы a и a+1 и как перемножить a и a+1.

Ясно, что нам достаточно определить a^2 , так как остальные произведения посчитаются благодаря дистрибутивности.

Может быть либо $a^2 = 1$, либо $a^2 = a + 1$.

Если $a^2=1$, то $(a+1)^2=a^2+a+a+1=1+1=0$, что невозможно, поэтому $a^2=a+1$.

Вот таблица умножения:

X	0	1	a	a+1
0	0	0	0	0
1	0	1	a	a+1
\overline{a}	0	a	a+1	1
a+1	0	a+1	1	a

Остается доказать, что полученная структура является полем.

Законы коммутативности сложения и умножения очевидны из симметричности таблички.

Наличие нуля и единицы тоже видно из таблицы.

По сложению все элементы противоположны сами себе, по умножению — 1 обратная сама себе, а a и a+1 взаимно обратны.

Требуют проверки ассоциативность сложения и умножения и дистрибутивность.

Проверяются непосредственно.

ПРИМЕР 10. Рассмотрим подмножество в поле \mathbb{R} , состоящее из чисел вида

$$a + b\sqrt{2}, \quad a, b \in \mathbb{Q}.$$

Обозначим такое подмножество через $\mathbb{Q}[\sqrt{2}]$ и докажем, что оно является полем.

Действительно, если мы сложим два элемента описанного вида, то получим также элемент описанного вида:

$$(a_1 + b_1\sqrt{2}) + (a_2 + b_2\sqrt{2}) = (a_1 + a_2) + (b_1 + b_2)\sqrt{2}.$$

Понятно, что 0 представляется как $0+0\sqrt{2}$, противоположный к $a+b\sqrt{2}$ элемент имеет вид $(-a)+(-b)\sqrt{2}$.

Если перемножить два элемента из $\mathbb{Q}[\sqrt{2}]$, то получим

$$(a_1 + b_1\sqrt{2})(a_2 + b_2\sqrt{2}) = (a_1a_2 + 2b_1b_2) + (a_1b_2 + a_2b_1)\sqrt{2},$$

то есть произведение элементов из множества $\mathbb{Q}[\sqrt{2}]$ лежит там же.

Самое основное — это для каждого ненулевого элемента

$$x = a + b\sqrt{2} \in \mathbb{Q}[\sqrt{2}]$$

найти обратный элемент.

Рассмотрим

$$y = \frac{a - b\sqrt{2}}{a^2 - 2b^2}.$$

Посчитаем

$$(a+b\sqrt{2})\cdot \frac{a-b\sqrt{2}}{a^2-2b^2} = \frac{a^2-b^2\sqrt{2}^2}{a^2-2b^2} = 1,$$

в случае, когда элемент y определен. Нам необходимо, чтобы

$$a^2 - 2b^2 \neq 0,$$

однако существование таких $a, b \neq 0$. что $a^2 - 2b^2 = 0$, означало бы, что число 2 являлось бы полным квадратом рационального числа, что не так.

Таким образом, $\mathbb{Q}[\sqrt{2}]$ — поле, строго содержащее поле рациональных чисел.

ОПРЕДЕЛЕНИЕ 5. Поле K, строго содержащее подполе F, называется pacuupehuem поля F.

Поля K и K' называются uзоморфнымu, если они изоморфны как кольца. По определению

$$f(0) = 0'$$
 и $f(1) = 1'$

для любого изоморфизма f.

Не имеет смысла говорить о гомоморфизмы полей, так как

$$\ker f \neq 0 \Longrightarrow \exists a \neq 0 \ f(a) = 0 \Longrightarrow$$
$$\Longrightarrow f(1) = f(aa^{-1}) = f(a)f(a^{-1}) = 0 \cdot f(a^{-1}) = 0 \Longrightarrow$$
$$\Longrightarrow \forall b \ f(b) = f(1 \cdot b) = f(1) \cdot f(b) = 0 \Longrightarrow \ker f = K.$$

Получается, что любой ненулевой гомоморфизм полей является вложением одного поля в другое, поэтому гомоморфизмы между полями не слишком интересны.

Напротив, автоморфизмы полей связаны с самыми глубокими свойствами полей и являются мощным инструментом для изучения этих свойств врамках так называемой теории Галуа.

ХАРАКТЕРИСТИКА ПОЛЯ

В поле всегда есть единица, не равная нулю. В аддитивной группе поля единица порождает циклическую подгруппу $\langle 1 \rangle = \{1, 1+1, 1+1+1, \ldots\}$. Если данная группа конечна и содержит n элементов, то говорят, что характеристика поля равна n. Если циклическая группа $\langle 1 \rangle$ бесконечна, то говорят, что характеристика поля — нулевая.

Замечание 1. Если у поля \mathbb{F} характеристика равна n>0, то n — простое число.

Доказательство. Действительно, если n=mk, то в поле $\mathbb F$ сумма m единиц (не равная нулю), умноженная на сумму k единиц (не равную нулю) равна нулю. Значит, в поле имеются делители нуля, что невозможно. Таким образом, положительная характеристика всегда является простым числом.

Если единица в поле имеет порядок p или бесконечный порядок, то такой же порядок имеет и любой ненулевой элемент:

$$a + a + \cdots + a + a = a \cdot 1 + a \cdot 1 + \cdots + a \cdot 1 = a(1 + 1 + \cdots + 1).$$

Лемма 1. Если поле \mathbb{F} имеет характеристику 0, то в него естественно вложено подполе \mathbb{Q} рациональных чисел. Если поле \mathbb{F} имеет характеристику p, то в него естественно вложено подполе \mathbb{Z}_p .

Доказательство. Действительно, пусть характеристика поля \mathbb{F} равна нулю. Тогда целые числа можно вложить в поле \mathbb{F} следующим образом: если n>0, то $n=1+1+\cdots+1$ (сумма n единиц), отображаем ее в сумму того же числа единиц; ноль отображаем в ноль, а противополжное к n- в противоположное к его образу.

Такое отображение, очевидно, будет гомоморфизмом. Если бы какой-то ненулевой элемент принадлежал ядру этого гомоморфизма, то сумма конечного числа единиц была бы равно нулю в поле \mathbb{F} , что невозможно. Значит, это вложение.

Таким образом, можно считать, что целые числа лежат в поле \mathbb{F} . Рациональные числа тогда лежат в нем как отношения целых к натуральным.

Если у поля \mathbb{F} характеристика равна p, то то же самое отображение имеет ядро — все целые числа, кратные p. Таким образом, образ \mathbb{Z} — это \mathbb{Z}_p , которое является полем.