ЛЕКЦИЯ 22

КОЛИЧЕСТВО НЕПРИВОДИ-МЫХ ПРЕДСТАВЛЕНИЙ

РАЗМЕРНОСТИ НЕПРИВОДИ-МЫХ ПРЕДСТАВЛЕНИЙ

ПРИМЕРЫ КЛАССИФИКАЦИИ НЕПРИВОДИМЫХ ПРЕДСТАВ-ЛЕНИЙ

КОЛИЧЕСТВО НЕПРИВОДИМЫХ ПРЕДСТАВЛЕНИЙ

ЛЕММА 1. Пусть Γ — центральная функция на конечной группе $G, \varphi : G \to \operatorname{GL}(V)$ — неприводимое комлексное представление с характером χ_{φ} .

Тогда для линейного оператора

$$\varphi_{\Gamma} = \sum_{h \in G} \overline{\Gamma}(h) \varphi(h) : V \to V$$

имеет место $\varphi_{\Gamma} = \lambda E$, где

$$\lambda = \frac{|G|}{\chi_{\varphi}(e)} (\chi_{\varphi}, \Gamma)_G.$$

 \mathcal{A} оказательство. Так как Γ — центральная функция, то

$$\varphi(g)\varphi_{\Gamma}\varphi(g)^{-1} = \sum_{h \in G} \overline{\Gamma}(h)\varphi(g)\varphi(h)\varphi(g^{-1}) =$$

$$= \sum_{h \in G} \overline{\Gamma}(ghg^{-1})\varphi(ghg^{-1}) =$$

$$= \sum_{t \in G} \overline{\Gamma}(t)\varphi(t) = \varphi_{\Gamma}.$$

Итак, $\varphi_{\Gamma}\varphi(g)=\varphi(g)\varphi_{\Gamma}$ для всех $g\in G$. Лемма Шура, примененная к случаю $\sigma=\varphi_{\Gamma}$, показывает, что $\varphi_{\Gamma}=\lambda E$.

Вычисляя след операторов, стоящих в обеих частях этого равенства, находим

$$\lambda \chi_{\varphi}(e) = \lambda \dim V = \operatorname{tr} \lambda E = \operatorname{tr} \varphi_{\Gamma} =$$

$$= \sum_{h \in G} \overline{\Gamma}(h) \operatorname{tr} \varphi(h) =$$

$$= |G| \left(\frac{1}{|G|} \sum_{h \in G} \chi_{\varphi}(h) \overline{\Gamma(h)} \right) = |G|(\chi_{\varphi}, \Gamma)_{G}.$$

ПРЕДЛОЖЕНИЕ 1. Характеры χ_1, \ldots, χ_s всех попарно неэквивалентных неприводимых комплексных представлений конечной группы G образуют ортонормированный базис пространства всех центральных функций из G в \mathbb{C} .

Доказательство. Как мы уже знаем, система характеров

$$\chi_1,\ldots,\chi_s$$

ортонормирована, и ее можно включить в ортонормированный базис пространства центральных функций $X_{\mathbb{C}}(G)$. Пусть Γ — произвольная центральная функция, ортогональная ко всем χ_i :

$$(\chi_i, \Gamma)_G = 0.$$

Тогда по предыдущей лемме линейный оператор $\varphi_{\Gamma}^{(i)}$, отвечающий представлению $\varphi^{(i)}$ с характером χ_i , равен нулю.

По теореме Машке всякое комплексное представление φ можно разложить в прямую сумму

$$\varphi = m_1 \varphi^{(1)} + \dots + m_s \varphi^{(s)}$$

неприводимых представлений с некоторыми кратностями m_1, \ldots, m_s . В соответствии для этим разложением для оператора φ_{Γ} , определенного соотношением

$$\varphi_{\Gamma} = \sum_{h \in G} \overline{\Gamma}(h) \varphi(h),$$

имеем

$$\varphi_{\Gamma} = m_1 \varphi_{\Gamma}^{(1)} + \dots + m_s \varphi_{\Gamma}^{(s)} = 0.$$

В частности, это относится к линейному оператору ρ_{Γ} , где ρ — регулярное представление.

Но в таком случае будем иметь (обозначая временно единичный элемент группы G символом 1, чтобы избежать сочетания e_e)

$$0 = \rho_{\Gamma}(e_1) = \sum_{h \in G} \overline{\Gamma}(h)\rho(h)e_1 = \sum_{h \in G} \overline{\Gamma}(h)e_h \Rightarrow \overline{\Gamma}(h) = 0.$$

Это верно при любом $h \in G$, поэтому $\overline{\Gamma} = 0$ и, следовательно, $\Gamma = 0$.

ТЕОРЕМА 1. Число неприводимых попарно неэквивалентных комплексных представлений конечной группы G равно числу ее классов сопряженных элементов.

Доказательство. Число классов сопряженности группы G можно интерпретировать как размерность пространства $X_{\mathbb{C}}(G)$ всех центральных функций на группе G. Так как характеры различных неприводимых представлений образуют базис этого пространства, то их ровно искомое число.

РАЗМЕРНОСТИ НЕПРИВОДИМЫХ ПРЕДСТАВЛЕНИЙ

ТЕОРЕМА 2. Каждое неприводимое представление φ_i входит в разложение регулярного представления ρ с кратностью, равной его размерности n_i . Порядок |G| и размерности n_1, \ldots, n_r всех ее неприводимых представлений связаны соотношением

$$\sum_{i=1}^{r} n_i^2 = |G|.$$

Доказательство. Для доказательства рассмотрим более подробно регулярное представление, введенное в пролой лекции.

Обозначим его через

$$(\rho, \langle e_g \mid g \in G \rangle_{\mathbb{C}}).$$

Обозначим через R_h матрицу линейного оператора $\rho(h)$ в данном базисе $\{e_g \mid g \in G\}$.

Так как $\rho(h)e_g=e_{hg}$, то все диагональные элементы матрицы R_h при $h\neq e$ равны нулю и $\operatorname{tr} R_h=0$. Таким образом,

$$\chi_{\rho}(e) = |G|, \quad \chi_{\rho}(h) = 0$$
 при $h \neq e$.

Пусть теперь (φ, V) — произвольное неприводимое представление группы G над \mathbb{C} . Как мы помним, кратность вхождения φ в ρ равна скалярному произведению $(\chi_{\varphi}, \chi_{\rho})_G$:

$$(\chi_{\varphi}, \chi_{\rho})_{G} = \frac{1}{|G|} \sum_{h \in G} \chi_{\rho}(h) \overline{\chi_{\varphi}(h)} =$$

$$= \frac{1}{|G|} \chi_{\rho}(e) \overline{\chi_{\varphi}(h)} = \frac{1}{|G|} |G| \overline{\chi_{\varphi}(e)} = \dim V.$$

Таким образом, мы видим, что каждое неприводимое представление входит в регулярное с кратностью, равное своей размерности.

По предыдущей теореме имеется r попарно неэквивалентных неприводимых представлений

$$\varphi_1,\ldots,\varphi_r$$

(r-число классов сопряженности группы G), которым соответствуют характеры

$$\chi_1,\ldots,\chi_r$$

размерностей

$$n_1,\ldots,n_r$$
.

Таким образом, мы доказали, что

$$\rho = n_1 \varphi_1 + \dots + n_r \varphi_r,$$

откуда

$$\chi_{\rho} = n_1 \chi_1 + \dots + n_r \chi_r.$$

В частности,

$$|G| = \chi_{\rho}(e) = n_1 \chi_1(e) + \dots + n_r \chi_r(e) = n_1^2 + \dots + n_r^2.$$

ПРИМЕРЫ

ПРИМЕР 1. Найдем все неприводимые комплексные представления группы диэдра \mathbf{D}_n .

Для начала найдем все одномерные представления.

Коммутант группы \mathbf{D}_n — это подгруппа, порожденная поворотом a для нечетного n, и подгруппа, порожденная поворотом a^2 , — для четного n.

Таким образом, для нечетных n фактор-группа по коммутанту изоморфна \mathbb{Z}_2 , поэтому одномерных представлений ровно два: единичное (все элементы \mathbf{D}_n отображаются в единицу) и такое, что повороты отображаются в единицу, а отражения — в -1.

Для четных n фактор-группа по коммутанту изоморфна группе \mathbf{V}_4 . Таким образом, имеется четыре одномерных представления:

- единичное;
- такое, что все повороты переходят в 1, а отражения в -1;
- такое, что все четные повороты переходят в 1, нечетные в -1 отражения вида $a^{2k}b$ в 1, отражения вида $a^{2k+1}b$ в -1;
- такое, что все четные повороты переходят в 1, нечетные в -1 отражения вида $a^{2k+1}b$ в 1, отражения вида $a^{2k}b$ в -1.

Теперь построим двухмерное неприводимое представление группы \mathbf{D}_n .

Поворот a переведем в матрицу

$$\begin{pmatrix} \xi_1 & 0 \\ 0 & \xi_1^{-1} \end{pmatrix},$$

где ξ_1 — это некоторый корень из единицы n-й степени (не равный 1 или -1).

Отражение b переведем в матрицу

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
.

Тогда полученное отображение

$$\varphi: \mathbf{D}_n \to \operatorname{GL}_2(\mathbb{C})$$

является представлением, так как все соотношения на элементы a и b выполняются для образов этих элементов.

Заметим, что мы получили не одно представление, а целый класс представлений:

- если n нечетно, то мы таким способом получим (n-1)/2 не эквивалентных друг другу неприводимых двухмерных представлений (так как для двух не равных друг другу и не обратных друг другу корней n-й степени из единицы ξ_1 , ξ_2 следы соответствующих матриц различны $\xi_1 + 1/\xi_1 \neq \xi_2 + 1/\xi_2$);
- если n четно, то получим (n-2)/2 не экививалентных друг другу неприводимых двухмерных представлений (так как представления, для которых $\xi = 1$ или -1, приводимы).

Сумма квадратов размерностей всех найденных представлений равна порядку группы: для четного n=2k мы имеем 4 одномерных представления и k-2 двухмерных; для нечетного n=2k+1 мы имеем два одмерных представления и k двухмерных.

Значит, мы нашли все неприводимые представления группы \mathbf{D}_n .

ПРИМЕР 2. Теперь найдем все неприводимые представления группы подстановок S_4 .

Как мы уже знаем (так как коммутант \mathbf{S}_4 — это подгруппа \mathbf{A}_4 индекса два), что у группы \mathbf{S}_4 ровно два одномерных представления: единичное и представление "знак" (четные подставновки переходят в единицу, а нечетные — в -1.

У группы \mathbf{S}_4 пять классов сопряженных элементов, поэтому у данной группы ест три неприводимых представления размерности, большей одного. С другой стороны, размерности n_1, n_2, n_3 этих представлений удовлетворяют соотношению

$$n_1^2 + n_2^2 + n_3^2 = 22.$$

Ясно, что мы должны найти два трехмерных и одно двухмерное представление.

Двухмерное представление можно построить из следующего общего соображения.

Представим себе, что есть группа G, а у нее имеется нормальная подгруппа H.

Рассмотрим фактор-группу $G_1 = G/H$.

Любое неприводимое представление группы G_1 естественным образом достраивается до неприводимого

представления группы G той же размерности: весь смежный класс gH в представлении группы G переходит туда же, куда в исходном представлении группы G' переходил этот же класс как элемент.

Таким образом, у группы S_4 есть представление, продолженное из ее факторгруппы

$$\mathbf{S}_4/\mathbf{V}_4\cong\mathbf{S}_3.$$

У группы \mathbf{S}_3 есть два одномерных представления (которые нам уже не нужны, так как мы их рассмотрели выше), а также одно двухмерное представление (описанное в предыдущем примере, так как $\mathbf{S}_3 \cong \mathbf{D}_3$).

Это представление и будет продолжено до двухмерного представления группы \mathbf{S}_4 .

Чтобы найти первое из трехмерных представлений \mathbf{S}_4 , вспомним, что \mathbf{S}_4 — это группа всех движений правильного тетраэдра.

Так как тетраэдр — трехмерная фигура, то движения записываются трехмерными матрицами, откуда следует, что мы получаем трехмерное представление группы \mathbf{S}_4 .

Остается только показать, что данное представление неприводимо.

Действительно, если бы оно было приводимо, то было бы и вполне приводимо, то есть разложилось бы на два представления: двухмерное и одномерное. Это означает, что у представления существовала бы собственная прямая.

Однако у поворота вокруг оси, проходящей через вершину A тетраэдра ABCD, перпендикулярно плоскости BCD, инвариантна только эта ось, а у поворота вокруг оси, проходящей через B перпендикулярно плоскости ACD, единственная собственная прямая — это именно такая ось. Данные прямые не совпадают, откуда следует, что представление неприводимо.

Второе трехмерное неприводимое представление можно получить из того, что S_4 изоморфно группе собственных движений куба. Данное представление неприводимо и тех же самых соображений, что и в предыдущем случае, при этом оно не может быть эквивалентно предыдущему представлению, так как все матрицы, ему соответствующие, обязательно имеют определитель 1 (так как являются собственными движениями), а при движениях тетраэдра возника-

ют отражения, являющиеся несобственными движениями и имеющими определитель -1.

УПРАЖНЕНИЕ 1. Пусть даны две конечные группы G_1 и G_2 , для которых известны все их неприводимые представления. Как найти все неприводимые представления группы $G_1 \times G_2$?