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Abstract

The primary focus of this work is the design and implementation of efficient differential

elimination algorithms. Such algorithms use a finite number of differentiations and elimi-

nations to simplify over-determined systems of ordinary and partial differential equations

(ode and pde) to a more tractable form. They can be used in exact solution methods for

ode and pde systems, as a preprocessor for numerical solution of these systems, and for

reduction of nonlinear pde to linear pde.

Differential elimination algorithms have been implemented to date in a number of sym-

bolic languages, and although these algorithms are finite in theory, in practice, their com-

plexity puts many interesting problems out of reach.

We enlarge the class of problems which can be completed, by which we mean simplified to

a form satisfying certain theoretical properties (canonical form in the linear case, and a form

that yields an existence and uniqueness theorem in the nonlinear case). Additionally we

provide means of obtaining partial information (in some cases the most relevant information)

for many problems that cannot be completed.

Differential elimination relies heavily on other algorithms, such as computation of multi-

variate polynomial greatest common divisors (gcds). As a result, significant contributions

have also been made in this area. These include enhanced versions of known algorithms for

computing multivariate polynomial gcds for both dense (many terms for the given degree)

and sparse (few terms for the given degree) polynomials.

The differential elimination algorithms have been implemented in the symbolic mathe-

matics language Maple, and one in the compiled language C. We demonstrate their effec-

tiveness on problems from symmetry analysis. The gcd algorithms have been implemented

in Maple, and we provide a detailed asymptotic comparison of these algorithms with Maple’s

primary gcd algorithm, and a well known algorithm for dense polynomial problems.
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Chapter 1

Introduction

The primary research area of this dissertation is symbolic computation, specifically sym-

bolic simplification of over-determined systems of ordinary differential equations (ode) and

partial differential equations (pde), otherwise known as differential elimination. The idea

here is to transform these systems into forms from which their solutions may be more easily

determined or certain properties of these systems may be more easily obtained. There are

many applications for which differential elimination plays a key role. Two prominent ex-

amples include computation of symbolic solutions for ode, and transformation of nonlinear

pde into linear pde.

Our introduction is informal, presenting examples to introduce concepts described rigor-

ously later in the Thesis. Note, for brevity we will simply refer to pde, noting the information

here applies to ode equally. In addition, unless stated otherwise, when we refer to a system

or a polynomial system we mean a system of pde.

Differential elimination algorithms apply a finite number of differentiations and elimi-

nations to the equations in a system of pde to transform them to a more desirable form.

Before discussing these algorithms in detail, it is necessary to lay some foundations for the

area.

We begin with a discussion of functions and derivatives, describing the notation used

throughout the dissertation, and the class of problems we consider (namely polynomially

nonlinear pde systems). We discuss rankings of functions and derivatives, which just like

1



CHAPTER 1. INTRODUCTION 2

the ordering of unknowns (columns) in Gaussian elimination, is fundamental to the pro-

cess of differential elimination. We describe differential reduction, which is the process of

reducing (simplifying) one pde with respect to another. We discuss another process that

is fundamental to differential elimination, which is the computation of integrability condi-

tions (consistency conditions). Such conditions can be viewed as a differential analog of

S-polynomials from Gröbner basis computations. Nonlinear problems naturally lead to case

splitting (for example, ux(ux − 1) = 0 implies that either ux = 0 or ux = 1), so this is

described as well. These concepts are described in greater detail by Reid et al. [50], [54] and

Rust et al. [59], [58].

An important application area for differential elimination algorithms is determination of

symmetries of ode and pde systems (see Chapter 5). These symmetries, or transformations

leaving invariant a system of ode or pde are not known a priori, and have to be determined.

The symmetries for a pde system with independent variables x = (x1, x2, ..., xn), and de-

pendent variables u = (u1, u2, ..., um) are given by the transformations X(x, u), U(x, u)

in

(x, u) 7→ (x̂, û) = (X(x, u), U(x, u))

such that the equations of the system remain the same.

Symmetry analysis has proved to be important in the exact analysis of differential equa-

tions (e.g. determination of exact solutions, mappings from intractable to tractable equa-

tions, equivalence properties, integrability properties, see Olver [47] and Bluman and Kumei

[3]).

Given a differential equation, determination of the symmetries requires the analysis of

an associated system of pde (the symmetry determining system) for the linearized trans-

formation (x̂, û) = (X(x, u), U(x, u)) = (x + ξ(x, u)ε + O(ε2), u + η(x, u)ε + O(ε2)). Most

importantly for us, this associated system is usually over-determined, and in the applications

in this thesis can even contain hundreds of pde. This is an ideal application for differential

elimination algorithms.

Consider the following example.

Example 1 Consider the ode uxx = u2. The over-determined system of pde for the

infinitesimal symmetries (x, u) 7→ (x̂, û) = (x + ξ(x, u)ε + O(ε2), u + η(x, u)ε + O(ε2)) can
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be algorithmically obtained from the ode and is given by:

ξuu = 0, −3u2ξu + 2ηux − ξxx = 0,

ηuu − 2ξux = 0, −2ηu − 2u2ξx + u2ηu + ηxx = 0. (1.1)

The simplified form produced by differential elimination algorithms (such as the RifSimp and

DiffElim algorithms, Mansfield’s algorithm [37, 38], and Boulier’s algorithm [6]) subject to

the ranking η≺ ξ ≺ ηu ≺ ξu ≺ ηx ≺ ξx ≺ ... is:

ηx = 0, ξx = − η

2u
, ηu =

η

u
, ξu = 0 .

Note that each equation in the output form is isolated for the highest ranked derivative. In

fact, for the linear case, the output form is canonical (just like reduced Gaussian form).

This result was obtained from the original system (1.1) using only differentiation and elim-

ination. The number of arbitrary constants in the solution (the initial data), which is also

the dimension of the symmetry group of the ode, can be algorithmically determined from

the simplified form.

Not only can the dimension of the solution be determined (which is two), but also the

structure constants of the Lie algebra of the symmetry group, and the formal power series

solution for the symmetries to any finite order (Reid et al. [52, 50]). While this example

can easily be completed by hand, the algorithms for determining the dimension and struc-

ture of unknown symmetry groups of differential equations are guaranteed to determine this

information in a finite number of steps, regardless of the complexity of the determining

system.

A brief example-based introduction to differential elimination is given in this chapter,

and many other examples introducing these concepts can be found in Appendix A, including

nonlinear examples in §A.8,§A.9. Those looking for more formal or more detailed treatments

should consult Boulier et al. [6], or Rust et al. [58, 60].

1.1 Functions and Derivatives

In this dissertation we restrict to systems which are polynomially nonlinear in the indepen-

dent variables, the dependent variables, and all derivatives in the system. We’d like to note
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that use of differential extensions can extend the applicability of the results to systems that

are not polynomially nonlinear in the independent variables (e.g. for a system containing

ex, we could replace this with f(x) and append the differential equation fx = f to the sys-

tem). In some cases we utilize results that apply to much more general classes of problems,

such as results from Rust [58] (see §2.2) that apply to problems that are analytic in the

derivatives and independent variables, applying them to the polynomial class we consider.

The equations of these systems are called differential polynomials, and belong to a differ-

ential polynomial ring, which can simply be viewed as a polynomial ring over all variables

and derivatives of the system combined with a finite number of commuting differentiation

operations (i.e. with respect to each independent variable).

The most basic step in the theory of differential elimination algorithms is to replace

differential equations by algebraic ones, by regarding derivatives as formal variables. For

example, the differential equations on the left below, are replaced by the formal expressions

on the right

∂Ψ(x, y)

∂x
− yΨ(x, y) = 0 ↔ ux − yu = 0,

∂Ψ(x, y)

∂y
− Ψ(x, y) = 0 ↔ uy − u = 0,

where ux is then treated as an indeterminate, rather than the derivative of a function with

respect to x. The differentiations of the formal expressions are carried out using the formal

commuting total derivatives

Dx := ∂x + ux∂u + uxx∂ux + ..., Dy := ∂y + uy∂u + uxy∂ux + ... . (1.2)

From the two equations (1.2) and this definition we have

Dy(ux − yu) − Dx(uy − u) = −yuy − u + ux 7−→ − y (u) − u + (yu) = −u,

where we have used the symbol 7−→ to represent the substitution from ux−yu = 0, uy−u = 0

for ux, uy (or the reduction with respect to ux − yu = 0, uy − u = 0).

Consider a polynomially nonlinear qth order differential system with n independent vari-

ables x = (x1, x2, ..., xn) and m dependent variables (Ψ1(x), Ψ2(x), ..., Ψm(x)). Extending

the correspondence above to the general case, the formal indeterminate ul corresponds to

Ψl(x), ul
xj

corresponds to ∂Ψl(x)
∂xj

, etc. We will use the notation u = D0u = (u1, u2, ..., um),
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Du = (u1
x1

, ..., u1
xn

, ..., um
x1

, ..., um
xn

), D2u = (u1
x1x1

, ...), etc. Consequently, under this corre-

spondence, polynomially nonlinear pde with rational coefficients in Ψl(x), ..., Ψm(x) corre-

spond to differential polynomials in the ring Q[x, u, Du, D2u, ..., Dqu].

1.2 Rankings of Derivatives

Differential elimination, like Gaussian elimination, requires a ranking (or ordering of the

derivatives) in the system, although for Gaussian elimination the ranking of the unknowns

is usually implied by the column order.

This concept is best illustrated by a simple example for the solution of a constant coef-

ficient linear algebraic system with n unknowns x = (x1, x2, ..., xn). In order to successfully

simplify this system, the first step (after selecting an equation) is to choose which of the

unknowns to isolate. If the unknowns were ranked in a certain order, say x1 � x2 � ... � xn,

then it would be a simple matter to select from the unknowns present in the equation, the

one of greatest rank, which for the example ranking corresponds to the unknown with the

smallest subscript.

One of the requirements of a ranking for a linear system is that it is a total ordering.

So for any two distinct unknowns in the system, it is always possible to rank one of them

higher than the other.

In extending this concept to differential elimination, additional considerations arise.

Instead of having to rank a finite set of unknowns, we must now rank a set of unknown

functions, and all possible derivatives of those functions that appear in the course of a

computation. Since the derivatives that appear are not known a priori, it is generally

accepted that the ranking must be a total ordering for all possible derivatives of the unknown

functions (though alternative concepts are discussed in Rust [58]).

Application of a ranking that is a total ordering to an individual differential equation

allows one to select the highest ranked unknown function or derivative in that equation,

which we call the leading derivative of that equation.

The first additional requirement is positivity. Essentially this means that any non-

vanishing derivative of one of the unknown functions or derivatives must always be ranked

higher than the function or derivative itself (e.g. u≺ux ≺uxx ≺ ...). Failure to satisfy
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positivity would allow an equation such as ux − u = 0 to have ux ≺u, and would allow the

solved form of this equation to be u = ux. Successive substitution of this relation into u

would give u 7−→ux 7−→uxx 7−→ ..., a non-terminating process.

The second additional requirement is invariance under differentiation. This means that

once the leading derivative ũ of an equation e has been identified, then after differentiation

of the equation ∂xi
e, the leading derivative will be given by ∂xi

ũ.

A more formal treatment of this subject, and the classification of all rankings of deriva-

tives is given in Rust et al. [58, 59] (also see Carrà Ferro and Sit [12]). We summarize the

axioms a ranking must satisfy in the following definition.

Definition 1 (Ranking)

We define the relation � to be a ranking on a set S ⊆ {u, Du, D2u, ...} if

• � is a reflexive, transitive relation on S

• � is a total order of S, that is for a, b ∈ S exactly one of the following three conditions

hold: a≺ b, or b≺ a, or a = b

• � is positive, that is for any a, ∂xi
a ∈ S and all 1 ≤ i ≤ n we have a≺ ∂xi

a.

• � is invariant under differentiation, that is for any a, b, ∂xi
a, ∂xi

b ∈ S and all 1 ≤ i ≤ n,

a≺ b ⇒ ∂xi
a≺ ∂xi

b.

Where a≺ b is defined in the expected way, namely a≺ b ⇒ a� b, a 6= b.

Two admissible rankings for Example 1, with independent variables x, u and dependent

variables ξ(x, u), η(x, u), are given by

ξ ≺ η ≺ ξu ≺ ηu ≺ ξx ≺ ηx ≺ ξuu ≺ ηuu ≺ ξux ≺ ηux ≺ ξxx ≺ ηxx ≺ ...,

η≺ ′ ηu ≺ ′ ηuu ≺ ′...≺ ′ ηx ≺ ′ ηxu ≺ ′ ηxuu ≺ ′...≺ ′ ξ ≺ ′ ξu ≺ ′ ξuu ≺ ′...,

but an infinite number of rankings are possible for this system.

In the class of admissible rankings, we find it convenient to differentiate between sequen-

tial and non-sequential rankings. Put simply, a sequential ranking is any ranking for which

there are only a finite number of derivatives that are of lower rank than any fixed derivative.
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In our example rankings above, ≺ is a sequential ranking, while ≺ ′ is not. To see why ≺ ′

is non-sequential, it suffices to simply choose ξ as our fixed derivative, then observe that η

and its infinitely many derivatives are all of lower rank. An important application of non-

sequential rankings (Mansfield [37]) is the extraction of a differential equation depending on

fewer variables from a system.

1.3 Reduction of PDE with respect to other PDE

It is always possible to isolate a linear pde with respect to its leading derivative, bringing

the pde into solved form. The solved form can then be used to eliminate that derivative,

and all derivatives of it, from the remainder of the system. This is most closely related

to the standard algorithm for polynomial division over the ring Q[x1, x2, ..., xk] (see §2.3
of Cox, Little and O’Shea [18]). This process is called reduction, and we will denote it

by the symbol 7−→ . In the event that we want to refer to a reduction with respect to a

specific equation, then for the equation e we will denote this by
e7−→ . In addition, we say an

equation (derivative) can be reduced with respect to a leading linear equation e with leading

derivative ũ if it contains (equals) ũ or any derivative of ũ.

Example 2 Given the ranking � and the solved form equation e1 := ut = v where v≺ut,

the expression uxt can be reduced with respect to e1 as uxt = (ut)x 7−→ (v)x = vx so we write

uxt
e17−→ vx,

and we say uxt reduces to vx with respect to e1.

The extension to reduction of an expression with respect to an ordered system of solved

form equations is the straightforward one (and uses a similar notation), but for later illus-

tration we will restrict the process to be done in an ordered way (to guarantee uniqueness

of the resulting reduced expression). Pseudocode for the ordered reduction process is given

by the following:

OrderedReduce(Expr, Sys, �)

Input: An expression to reduce Expr, an ordered system of solved

form equations Sys = [s1, s2, ..., sN ], and the ranking �.
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Output: The expression reduced with respect to the ordered system.

NoRed := ∅ (derivatives that cannot be reduced by Sys)

while derivs(Expr) \ NoRed 6= ∅ do

der := selectmax(derivs(Expr) \ NoRed, �)

for k from 1 to N do

if isderiv(der, lhs(sk)) then

dexpr := diffto(sk, der)

Expr := substitute(dexpr, Expr)

break

else if der = lhs(sk) then

Expr := substitute(sk, Expr)

break

end if

end loop

if k > N then

NoRed := NoRed ∪ {der}
end if

end while

return Expr

end

In this algorithm derivs returns a set of all unknowns and derivatives appearing in the

input, isderiv indicates if a derivative is the derivative of another with respect to some set

of differentiations, selectmax selects the maximal derivative or unknown with respect to

the input ranking �, diffto differentiates the input equation until the left hand side of the

equation is equal to the input derivative, and finally substitute replaces all occurrences

of the derivative or unknown on the left hand side of the input equation into the input

expression.

The fact that the order in which the equations occur in the reducing system is important

is illustrated by the following simple example:

Example 3 Given the ranking � and the solved form system consisting of the two equations

e1 := uxt = ux, and e2 := uxy = uy, then ordered reduction of the expression utxy by the
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system S1 = [e1, e2] gives

utxy
S17−→ uy (specifically utxy

e17−→ uxy
e27−→ uy).

Ordered reduction of the same expression by the system S2 = [e2, e1] gives

utxy
S27−→ uty (specifically utxy

e27−→ uty).

1.4 Integrability Conditions

For differential systems, there is another consideration in addition to the systematic elimi-

nation of derivatives from the system, and it involves the discovery of additional (implicit)

conditions on the differential system, making them explicit. These are called integrability

conditions and they result from commutativity of partial differentiation, and the fact that

it is possible to isolate two derivatives of the same dependent variable in a system while

neither one is a derivative of the other.

Example 4 Consider the system of equations from Example 3, namely e1 := uxt = ux, and

e2 := uxy = uy, under the ranking u≺ux ≺uy ≺ut ≺uxx ≺uxy ≺ ... . It is straightforward to

see that this system is in solved form with respect to the described ranking.

By equality of mixed partial derivatives, the relation

0 = uxyt − uxty = (uxy)t − (uxt)y

must also be satisfied. Consequently, reduction with respect to the system implies

(uxy)t − (uxt)y 7−→ (uy)t − (ux)y = uyt − uxy 7−→uyt − uy.

In the differential elimination process, if an integrability condition does not reduce to

zero with respect to the current system, it is appended to the system as a new equation.

Thus in example 4, the new equation, e3 := uyt = uy is appended to the system. Each new

integrability condition that cannot be reduced to zero with respect to the current system

uncovers a new constraint on the pde system, reducing the apparent arbitrariness of its

solution (e.g. in the above example the particular values of uyt and uy at a point (x0, y0, t0)

in a formal power series solution can no longer be chosen independently, see §1.6).
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From an extension of this argument, it can be proven that (for linear systems) this is

a finite process, as continuing to restrict the solution space must terminate at some point.

The proof for this is closely related to Dickson’s lemma (see Rust [58], Riquier [55], Boulier

et al. [6], and Mansfield [37]).

For r equations, solved for derivatives of the same dependent variable, the number of

integrability conditions to be checked by equality of mixed partials is O(r2). Elaborate and

efficient algorithms for avoiding redundant integrability conditions are discussed in Reid

[50], Rust [58], Boulier [5], Riquier [55], and Gerdt [21], and an enhancement and practical

implementation of such criteria is presented in this dissertation.

Alternative methods exist for accounting for the differential consequences of a system.

One important example is use of an involutive division approach, which provides additional

flexibility in how the (equivalent of) integrability conditions are to be computed. These

approaches originated in the multipliers and non-multipliers of Riquier [55] and Janet [31].

More recently they have been used by Pommaret [49], considerably abstracted and general-

ized by Gerdt [20], and used by Chen and Gao [14].

1.5 The Linear Case

The information in the prior sections is sufficient construct a differential elimination algo-

rithm for linear problems that provides output equivalent to the results returned from the

majority of the currently available differential elimination implementations. We call the

output form completed form, which can be thought of as a differential Gröbner basis. Note

that the completed form goes by many names, including differential Gröbner basis form

(Mansfield [37]), a regular differential chain (Boulier et al. [6]), autoreduced completed form

(i.e. the Gröbner basis is autoreduced), rif ’-form (Rust, Reid, and Wittkopf [58, 54]), and

standard form (Reid [50]). Example 1 provides an illustration of the expected output form.

The first algorithm, LinearReduce, performs reduction of the system to remove depen-

dencies between the leading derivatives of each equation. When a system is such that none

of the leading derivatives of the equations are derivatives of (or equal to) each other, we say

the system is in leading reduced form. Note that the Reduce routine does not necessarily

need to be an ordered reduction (hence the use of Reduce rather than OrderedReduce).
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Algorithm 1 (LinearReduce)

Input: A linear system of pde F , and a ranking �.

Output: The input system of pde in leading reduced form.

1 S := ∅
2 repeat

3 Select φ from F
4 F := F \ {φ}
5 R := {f ∈ S | leading derivative of f can be reduced by φ}
6 F := Reduce(F ∪R, φ)

7 S := (S \ R) ∪ {φ}
8 until F = ∅ or S is inconsistent

9 output S

Although the pde output from LinearReduce are linearly independent, additional linear

relations may result from the integrability conditions §1.4, and this is handled by the Lin-

earReduceComplete algorithm below. Note that the IntCond routine simply computes all

integrability conditions for the input system S as they are defined in §1.4.

Algorithm 2 (LinearReduceComplete)

Input: A linear system of pde F , and a ranking �.

Output: The input system of pde in completed form.

1 repeat

2 S := LinearReduce(S,�)

3 I := Reduce(IntCond(S),S)

4 S := S ∪ I
5 until I = ∅ or S is inconsistent

6 output S

A comment should be made that the above is not a complete implementation, but

rather can contain derivatives in S that are reducible with respect to leading derivatives of

other pde in S. This is analogous to use of Gaussian elimination to obtain a row-echelon

form instead of a reduced row-echelon form (or in Gröbner basis terminology the system

is not autoreduced). In addition, a direct implementation of the above would be brutally

inefficient, as there is no process by which to check which computations have already been
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performed. For example, the same integrability conditions need not be recomputed, and

the reduction process can be made more efficient.

For linear differential systems, the above algorithm yields a method to tell whether a

given differential equation is in the differential ideal generated by the system (see Carrà

Ferro [11], Mansfield [37], and Boulier et al. [6]). In other words, it solves the differential

ideal membership problem in the linear case.

1.6 Initial Data and Existence/Uniqueness

Once a system is in completed form §1.5, it is possible to algorithmically determine the data

(initial values) required for the existence of a unique formal power series solution. This is

called the initial data for the system, and consists of the values for all derivatives of all

dependent variables in the system that cannot be eliminated by any equations in the system

under the current ranking.

Example 5 Consider the system ξ = ξ(x, u) and η = η(x, u),

ξxx = ξ, ξu = ξ, ηx = ξ.

This system can be readily verified to be in completed form with respect to any ranking for

which η≺ ξx. The initial data can be obtained as

ξ(x0, u0) = c1, ξx(x0, u0) = c2, η(x0, u) = f3(u),

where c1, c2, and f3(u) are the arbitrary constants and arbitrary function that must be

specified to construct a unique formal power series solution at (x0, u0).

Algorithms for describing initial data go back to Riquier [55] and Janet [31]. Efficient

versions are given in Reid [50] (also see Schwarz [62]), and versions for nonlinear systems in

the presence of constraints are described in Reid et al. [54] and Rust [58].

For a leading linear system a (local) existence and uniqueness theorem for the problem

follows from the canonical form output. To be useful in applications, algorithms in the

nonlinear case should have an associated existence and uniqueness theorem that can be

algorithmically extracted from their output.
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1.7 Case Splitting and Leading Linear Coefficient Pivots

Though the discussion so far has focused on linear pde systems, the process (with a number

of modifications) can also be applied to nonlinear pde systems. Once a ranking is imposed,

we can determine the leading derivative of a pde (§1.2), but for nonlinear systems, there

are three possibilities:

1. The equation is linear in the leading derivative, and the coefficient of the leading

derivative is independent of the dependent variables and/or derivatives of the problem

(but may depend upon the independent variables).

2. The equation is linear in the leading derivative, and the coefficient of the leading

derivative depends upon the dependent variables and/or the derivatives of the problem.

3. The equation is nonlinear in the leading derivative.

As a few examples to clarify the above, consider the following equations in u(x, y) under

the ranking u≺uy ≺ux ≺uyy ≺ ...

uxx + uy = 0,

xuxx + uxuy + u4 = 0,

uuxx + uy = 0,

uxuy + 1 = 0,

u2
x + u2

y − 1 = 0.

The first two equations fall into case 1, the third and fourth equations fall into case 2, and

the fifth and final equation falls into case 3.

For the first two cases, the pde is said to be leading linear, while for the last it is said

to be leading nonlinear. The first case is covered in the preceding discussion, and the last

case is to be discussed in §1.8, so for now we concentrate on the second.

Since the coefficient of the leading derivative (called the separant of the equation, and

denoted Sep�(eqn)) contains dependent variables, it could be identically zero for all solutions

of the differential system. Solving the equation for that leading derivative would implicitly

introduce a division by zero. Alternatively the leading linear coefficient could be non-zero
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for all solutions of the system, or instead be identically zero for some solutions, and non-zero

for others.

Since we do not know in advance which case the leading linear coefficient belongs to,

we consider two disjoint cases corresponding to setting the coefficient to zero (appending

another equation to the system), and restricting the coefficient to be non-zero (appending

a new entity called an inequation to the system). This introduces a case splitting in the

reduction process. Each of the cases is considered in turn, and the full set of solutions of

the system is the union of the two cases.

Treatment of the separant in this way introduces a pivot into the computation.

Example 6 Consider the system vxx = 1, (vx − 1)vyy = vy under a ranking with vx ≺ vyy.

The second equation is linear in its leading derivative vyy, with a coefficient depending upon

vx. We pivot on its leading linear coefficient p = vx−1, splitting into two cases corresponding

to p = 0 and p 6= 0.

The p = 0 case results in a new equation vx = 1, which reduces the first equation in the

system to 0 = 1. This is an example of an inconsistent case, as indicated by the inconsistent

equation that appears when we follow that case.

The p 6= 0 case results in the leading linear system vxx = 1, vyy = vy/(vx − 1), vx 6= 1

with the inclusion of the inequation vx 6= 1.

Any non-zero case introduces an inequation into the computation. The relationship

enforced by this inequation must also be satisfied for all solutions of the system. Given that

the final system is in rif ’-form, we can validate the case by performing a reduction of the

inequations (the pivots) with respect to the resulting system for that case, resulting in a

(possibly) simpler set of conditions, or perhaps an unsatisfied condition that marks this as

an inconsistent case.

The repeated application of this process results in a binary tree of cases for the given

system.
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1.8 Leading Nonlinear Equations

Though most differential elimination packages produce similar output for linear pde sys-

tems, many different approaches are used for polynomially nonlinear pde systems, and most

available packages produce a different output (completed) form with different properties. As

a result, the names used by each package for their completed form are different (see §1.5).
We are primarily concerned with properties of the solutions of pde systems, specifically

existence and uniqueness results. This is related to packages that concern themselves with

the radical of a differential ideal (see Boulier et al. [6] for an approach which gives output

yielding a membership test for the radical of a differential ideal).

Definition 2 Radical of an ideal: Given an ideal I, the polynomial p is said to be in the

radical of the ideal if for some k ∈ N we have pk ∈ I.

Though this definition is stated for an algebraic ideal, it also applies to differential ideals

in the obvious way. For example, the differential expression uxx + u is in the radical of a

differential ideal if (uxx + u)k is in the differential ideal for some k ∈ N.

One approach (the approach used in obtaining rif ’-form) simplifies this process by han-

dling the differential consequences of a nonlinear equation separately from the equation

itself. This is done in such a way so that the nonlinear pde can be considered as purely

algebraic constraints, and as such, treated with any of the many methods available for

simplifying and enforcing these algebraic constraints.

This separation is accomplished through spawning, which is simply the process of differ-

entiating a leading nonlinear pde with respect to each independent variable in the system.

The newly differentiated equations will be linear in their leading derivatives (unless the lead-

ing derivative reduces), though the coefficient of the leading linear equation always contains

dependent variables, and as a result a pivot may be introduced.

Example 7 Consider the nonlinear pde Ψ = u2
xx−xuxx−uy

2 = 0. Spawning this equation

(differentiation with respect to both x and y) gives the following two equations:

DxΨ = (2uxx − x)uxxx − uxx − 2uxyuy = 0,

DyΨ = (2uxx − x)uxxy − 2uyyuy = 0,
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both having the leading linear coefficient 2uxx − x. In solving these new equations for uxxx

and uxxy respectively, we would introduce the coefficient as a pivot.

With these new equations, a calculation can account for the differential consequences of

the nonlinear part of the system through case splitting.

The (now) algebraic system of leading nonlinear equations can then be treated using

Gröbner basis or decomposition methods, and elimination of nonlinear terms in the rest of

the system (the leading linear part) can be performed using the result.

Other algorithms (for example Boulier et al. [6]) utilize a different approach that involves

further splitting on the leading nonlinear equations. The coefficient of the highest degree of

the leading derivative in an equation eqn is called the initial of the equation, and denoted

Init�(eqn). Inclusion of the initial into the list of pivots allows treatment of the equation as

an equation in the leading derivative alone, with all other derivatives treated as parameters

of the equation.

1.9 Algebraic Algorithms

This section includes an overview of the application of algorithms based on algebraic theory

(such as Gröbner Basis methods, Characteristic Set methods, and Triangular Decomposition

methods) to differential elimination.

Examples of these algorithms include Mansfield’s DiffGrob2 algorithm [38], Boulier’s

Rosenfeld-Gröbner algorithm [6] available in Maple V.5 and higher, and our DiffElim al-

gorithm discussed later in this dissertation. In each case, a great deal of additional work

has been done on the algorithms discussed here, and variations of the core algorithms are

frequently in use, so this should only be viewed as a brief and simplified description of the

concepts. For example, extensions of the Rosenfeld-Gröbner algorithm include Hubert’s

work on a factorization free approach [27], and the work of Boulier, Lemaire and Maza on

a change of ranking for a completed system [7] (related to the Gröbner Walk algorithm of

Faugère, Gianni, Lazard and Mora for the polynomial case). For a more detailed description,

please consult the relevant references.

These algorithms are primarily based on pseudo-reduction, which is essentially reduction
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with respect to the leading derivative of the equation only, treating all other derivatives in

the equation parametrically. Rather than presenting an algorithm for pseudo-reduction, we

will simply state that it is similar to fraction free polynomial division providing references

[6, 37] and give an example.

Example 8 The pseudo-reduction of u2
xx +1 with respect to S = uuxx −ux is accomplished

in two steps:

u2
xx + 1 ≈ u(u2

xx + 1) = (uuxx)uxx + u
S7−→ uxuxx + u,

uxuxx + u ≈ u(uxuxx + u) = (uuxx)ux + u2 S7−→ ux
2 + u2.

The above example was specifically chosen, as the process of pseudo-reduction has in-

troduced a new solution (namely u = 0) to the pair of equations (where we also note that

u = 0 cannot be a solution of the original equation u2
xx + 1 = 0). To compensate for this

difficulty, any multipliers used in the pseudo-reduction must be tracked as pivots (c.f. §1.7).

One core step of these algorithms is to bring the input system into autoreduced form.

This is a form where all equations of the system are pseudo-reduced with respect to one

another. An algorithm for accomplishing this task is given below (where Sep�() and Init�()

are described in §1.7 and §1.8 respectively).

Algorithm 3 (AutoReduce)

Input: A polynomially nonlinear system of pde F , a ranking �, and a set of polynomial

inequations Λ.

Output: The input system of pde in autoreduced form, and the updated inequations.

1 S := ∅
2 repeat

3 Select φ from F
4 F := F \ {φ}
5 Λ := Λ ∪ {Sep�(φ), Init�(φ)}
6 R := {f ∈ S | leading term of f can be pseudo-reduced by φ}
7 F := PseudoReduce(F ∪R, φ)

8 S := PseudoReduce(S \ R, φ) ∪ {φ}
9 until F = ∅ or S is inconsistent

10 if S is consistent
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11 F := S, S := ∅
12 repeat

13 Select φ from F with smallest leading derivative

14 F := F \ {φ}
15 S := S ∪ PseudoReduce({φ},S)

16 until F = ∅
17 end if

18 output S, Λ

In comparison to Algorithm 1 in §1.5, the additional steps 10-17 are the equivalent of a

back-substitution (in linear terms, these steps convert S from row-echelon form to reduced

row-echelon form).

The output system is algebraically independent, but integrability conditions (c.f. §1.4)
can yield additional algebraic relations.

Example 9 Consider the following system of 2 pde in u(x, y) under a ranking that ranks

first by total differential order, then by ux � uy:

uxxy = u2
y, uxyy = ux.

It is easy to see that this system is in autoreduced form, as the leading derivatives (uxxy and

uxyy) are not derivatives of one another. Taking the integrability condition between these

two pde gives the relation

2uyyuy − uxx = 0.

Continuing by applying autoreduction and taking all integrability conditions (ignoring the

one inconsistent case that arises) gives the reduced form of this system as

ux = 0, uy = 0.

The integrability conditions are treated by the AutoReduction Completion algorithm

below.

Algorithm 4 (AutoReduction Completion)

Input: A polynomially nonlinear system of pde S, a ranking �, and a set of polynomial

inequations Λ.
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Output: The input system of pde in autoreduced differentially completed form, and the

updated inequations.

1 repeat

2 (S, Λ) := AutoReduce(S, Λ,�)

3 I := PseudoReduce(IntCond(S),S)

4 S := S ∪ I
5 until I = ∅ or S is inconsistent

6 output S, Λ

A weakness of the presented approach is that the result obtained at the end of the

computation could be inconsistent, even when solutions exist for the system.

What the algorithm does provide is the so-called generic case for a system of pde, which

can be understood as the system defining the general solution of a pde system disregarding

any singular solutions.

The implementations of these algorithms provide ways to deal with these limitations,

either manually or automatically.

1.10 Geometric Algorithms

This section provides a brief discussion of the geometric approach to differential elimination.

Examples of application of the geometric approach include the work of Bocharov and

Bronstein [4], implementation of the Cartan-Kuranishi approach by Seiler [64], and our

RifSimp algorithm [54], though many aspects of RifSimp’s recent development have become

more algebraic.

To begin, we need the concept of a Jet Variety, which associates a certain set of points

(the Jet Variety) to a given set of pde in a certain space (the Jet Space).

Definition 3 (Jet Variety) Let R = (R1, R2, ....RN ) be a system of pde in indepen-

dent variables x = (x1, x2, ..., xn) and dependent variables u = (u1, u2, ..., um). Let zk =

(u, Du, ..., Dku) represent all jet variables up to order k. The Jet variety of the system of

pde, R(x, u, Du, ..., Dku) = R(x, zk) = 0 is defined as

R = {(x, zk) ∈ Jk : R(x, zk) = 0},
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where Jk is the kth order Jet space (i.e. the space formed by treatment of all independent

variables, dependent variables and derivatives up to order k as co-ordinates of a formal

Euclidean space).

Also key to geometric approaches are the concepts of prolongation and projection.

Definition 4 (Prolongation and Projection) Using the same notation as Definition 3

under the conditions of Definition 6, a single prolongation of the jet variety is defined as

DR = {q ∈ Jk+1 : R(q) = 0, DR(q) = 0}.

A single projection of the jet variety is defined as

πR = {q ∈ Jk−1 : R(q, Dku) = 0}.

The definitions for the prolongation and projection of the system R follow directly (the latter

requiring an implementation of some form of algorithmic elimination).

We define the solution variety S as all points on the extended graphs of solutions of the

pde system R. Clearly S ⊆ R, and when S = R, the system is said to be locally solvable.

A core method for the geometric approach to differential elimination is the Cartan-

Kuranishi approach.

Approach 1 (Cartan-Kuranishi)

Input: system of PDE R

Output: R, where R is locally solvable or inconsistent

repeat

while Sym(R) is not involutive do

R := DR

end while

while R 6= (π ◦ D)R do

R := (π ◦ D)R

end while

until Sym(R) is involutive

return R
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In the above approach, there are concepts that have not been discussed, and these are the

symbol of a pde system, denoted Sym(R), and the property of involutivity of the symbol.

A full description of these concepts is quite involved (see Seiler [64], and Reid, Lin, and

Wittkopf [51]), so we briefly discuss some of the finer points, and some considerations for

the Cartan-Kuranishi approach.

Definition 5 (Symbol) The symbol of an order r system of pde (R = 0) is the Jacobian

matrix of R with respect to the highest order derivatives, or

Sym(R) :=
∂R

∂(Dru)
.

So the symbol is the matrix of the coefficients of the highest order derivatives of the linearized

pde system.

What may not be obvious from the definition of the Cartan-Kuranishi approach is that

differentiation (i.e. the DR) is not algebraic differentiation, but rather geometric differ-

entiation. The key distinction is that geometric differentiation has no difficulties when

multiplicities are present in the algebraic formulation of the pde system, while algebraic

differentiation does.

Example 10 Given a pde in u(x, y), R1 = (u2
x +uyy)

2, the algebraic derivative of R1 with

respect to x is 2(u2
x + uyy)(2uxxux + uxyy) and we note that the leading coefficient of the

new pde vanishes on the solutions of R1 (as R1 implies u2
x + uyy = 0). Conversely, the

geometric derivative of R1 with respect to x is 2uxxux + uxyy, and the leading coefficient

(either 2ux or 1) does not strictly vanish on solutions of R1.

It turns out that one can detect this problem from certain properties of the symbol of a

pde system, specifically the so-called constant rank conditions.

Definition 6 (constant rank conditions) Let R(x, zq) be a qth order pde system with

independent and dependent variables as in Definition 3. Then R = 0 is said to be of constant

rank at a point (x0, z
q
0) ∈ R ⊆ Jq if there exist nonzero constants α,β such that

rank(
∂R

∂(Dqu)
) = α, rank(

∂R

∂zk
) = rank(

∂R

∂(x, zk)
) = β

for all (x, zq) in some neighborhood of (x0, z
q
0).
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We note that the equality of the ranks in the second condition is needed to guarantee that

there are no functional relationships between the independent variables of the system.

If these constant rank conditions are satisfied, then utilization of algebraic differentiation

in place of geometric differentiation is guaranteed to work.

Discussion of the involutivity of the symbol (see Pommaret [48] and Seiler [64]) is some-

what complex, and involves a number of concepts that are beyond the scope of this disserta-

tion, but a (gross) over-simplification of the concept of involutivity is that it is a geometric

form of the concept of integrability conditions (c.f. §1.4).

In conclusion, we note that the Cartan-Kuranishi approach, though elegant, has a num-

ber of considerations for its application as an algorithm and implementation. The constant

rank condition may result in case splitting (requiring restrictions to ensure constant rank).

Additionally, as mentioned in Schü, Seiler, and Calmet [61], there is no general algorithm

available for determination of the rank of the differential system, as it must be computed on

the solutions of the system. So for implementation, one must restrict to a class of problems

for which this is possible, for example leading linear systems, or polynomially nonlinear

systems via Gröbner basis techniques. In the latter case, the high dimension of higher order

Jet spaces makes efficient use of this approach challenging.

1.11 Discussion

Many aspects of the methods of differential elimination have a long history. In 1894 Tresse

[68] showed informally that by ordering derivatives, and taking integrability conditions,

systems of pde could be brought to a certain form, from which the number of parameters

in their solutions could be determined.

Tresse gave what can be regarded as a sketch of one of the first proofs of what is now

called Dickson’s Lemma, and the barest of outlines of Gröbner Basis Theory can be discerned

in his work. Tresse [68] also gave a system of invariants which determined necessary and

sufficient conditions for two second-order ode of form uxx = f(x, u, ux) to be equivalent via

an analytic change of variables. A by-product of Tresse’s classification is that the maximal

dimension of the symmetry group of such ode is 8, and that this value is obtained if and

only if the ode is equivalent by change of variables to a linear ode (also see [63] for an
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alternative approach).

In many respects the work of Tresse was not rigorous, and Riquier and Janet put this

work on a surer footing [55, 31], although apart from linear systems, with rational func-

tion coefficients, these works cannot be regarded as algorithmic by the strictest modern

standards.

The descendant of Tresse’s method is Cartan’s powerful geometric method for determin-

ing when two differential systems are equivalent [13, 47]. The classification of second order

ode using this method was carried out by Kamran and Hsu [26]. Included in this area is

the work Goldschmidt [22], Pommaret [48], and Olver [47].

On the algebraic side, Ritt [56] initiated the field of differential algebra (differential rings,

fields, and ideals), followed by Rosenfeld [57] and later Kolchin [36] who developed the theory

extensively. This in combination with the major advance of Buchberger’s algorithm [9, 2]

for systematic construction of a Gröbner basis, and Wu’s work on characteristic sets [76, 77],

form the foundations of the algebraic approaches to pde systems.

Symbolic languages, such as Maple, Reduce, and Mathematica (to name but a few) play

a key role, as they provide a stable and well-tested framework in which exact symbolic

computations can be performed. Algorithms have been implemented in Maple by Mansfield

[37, 38], Boulier, Lazard, Ollivier and Petitot [6], Reid, Wittkopf and Boulton [54], in Reduce

by Wolf [75], Hartley and Tucker [23], Gerdt [21], and Schwarz [62], and in Axiom by Seiler

[64, 65]. A fairly comprehensive (though dated) review of available packages can be found

in Hereman [24].

Many of these algorithms and implementations result from different approaches (geo-

metric, algebraic), are most applicable to different classes of problems (linear, quasi-linear,

nonlinear), and also provide an existence-uniqueness theorem for their output. The primary

motivation for the development of different approaches is the degree of difficulty in bringing

these systems into completed form. Despite the advances resulting from these algorithms,

serious obstacles exist to their more widespread application. Though these algorithms the-

oretically terminate with the desired output, very often application of these algorithms to

many interesting physical problems either take an unreasonable time to complete, or require

more memory than is available.
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1.12 Outline

Although differential elimination algorithms are in theory finite, in practice their poor com-

plexity and tendency to explode in memory put many interesting physical problems far out

of reach.

The main accomplishments described in this dissertation are to present algorithms and

implementations that, though they do not remove these difficulties, greatly enlarge the class

of problems that can be successfully simplified, and for those problems for which complete

simplification is still out of reach, provide approaches that obtain partial information from

calculations.

A brief description of the various components of this dissertation follows.

The RifSimp Algorithm

The theoretical aspects of the RifSimp algorithm are described extensively in Rust [58],

and reviewed briefly in this dissertation. We have efficiently implemented the polynomial

case algorithm, which has been part of the Maple language since Maple 6, and is capable of

simplifying systems of polynomially nonlinear ode and pde for a wide variety of rankings

(orderings of derivatives, see §1.2).

The implementation is a highly flexible one, and its documentation (included in Ap-

pendix A), in addition to describing the myriad of options available, also seeks to educate

the user to the concepts of differential elimination, and in how best to use the RifSimp

package.

Despite considerable efforts, however, RifSimp still suffers from time and memory issues,

and aspects of the algorithm are still under development, as evidenced by the following.

Avoiding Redundant Integrability Conditions

The theoretical development of the polynomial RifSimp algorithm (the poly rif ’ algorithm)

found in Rust [58] is applicable to all polynomially nonlinear problems under sequential

rankings. As an example to which Rust’s methods do not apply, consider the application

of differential elimination to an ode system of 2 equations in x(t), y(t). The most common
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method for obtaining the symbolic solution requires the elimination of one of x(t) or y(t) thus

obtaining an ode in the other dependent variable only (reducing the problem to finding the

solution of a single ode). This generally requires a non-sequential ranking (e.g. the ranking

x ≺ xt ≺ xtt ≺ ... ≺ y ≺ yt ≺ ytt ≺ ... could be used to eliminate y(t) and obtain an ode

in x(t) only).

The primary obstacle to the extension of poly rif ’ to a broader class of rankings, includ-

ing non-sequential rankings, centers around the process of identifying redundant differential

consequences (§1.4) of the differential system before computing them. We use the term

redundancy criteria to describe the process of removing these potentially computationally

expensive conditions.

We provide an extension of the work of Rust [58], and a modification of RifSimp that

reduces this set of conditions to be a smaller set of conditions, and finite for any admissible

ranking. We also provide an efficient implementation of this redundancy criteria for all

cases, improving on the work of Reid in [50]. In addition, methods are provided to yield

a finite terminating generalization of RifSimp to the non-sequential ranking case (Rust’s

theory only guarantees termination in the sequential ranking case).

The MaxDim Algorithm

Gröbner bases and differential elimination methods both show a great deal of promise when

dealing with systems of algebraic and differential equations respectively. Unfortunately, the

complexity of these calculations often makes their all-or-nothing approach infeasible. For

systems of even moderate difficulty, the process of differential elimination sometimes causes

both the number and the size of the equations of a system to grow exponentially in the

course of a calculation, exhausting the resources of the machine, and causing the entire

calculation to fail.

For some problems, only the cases containing the solutions with the greatest generality

are needed. More precisely, the cases of interest are those having the greatest number

of degrees of freedom with respect to the initial data (§1.6) needed to uniquely specify a

formal power series solution of that system. One example of this, from the area of symmetry

analysis, is searching for linearizations of pde.

For this class of problems, our MaxDim algorithm (Reid and Wittkopf [53]) can be used
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(in combination with an automatic case splitting algorithm) to search only for those most

general cases. We note that in the examples we present, RifSimp is used, though any other

automatic case splitting algorithm can be modified for use with MaxDim.

We show that the MaxDim algorithm can be used to determine the size and structure

of maximal dimension symmetry groups for problems where performing the full differential

elimination process will surely fail. The ease of this method, compared to the full deter-

mination of the size and structure of all symmetry groups, is illustrated in the applications

chapter (Chapter 5).

The CDiffElim Environment

As mentioned in the discussion of MaxDim, for many systems of differential equations the

current approaches are infeasible. One of the causes of these difficulties can be identified as

inefficiencies in the programming environment itself, where these are not necessarily general

inefficiencies, but rather inefficiencies from the point of view of utilizing the environment

for differential elimination.

The approach taken here is to design a new environment, CDiffElim, which supports

more efficient versions of the core operations needed by differential elimination algorithms.

We have developed a C implementation which allows storage of the system, and related

information needed for the algorithms, in a more compact way than is currently available

in general-purpose computer algebra systems. The core operations required for differential

elimination are coded in a way tailored to differential elimination problems. For example,

ordered arrays are used to store equations processed by the algorithms. These ordered arrays

are designed around the rankings of derivatives used in differential elimination algorithms,

and allow efficient storage and fast determination of quantities needed by the algorithms.

To test the performance and establish the feasibility of the CDiffElim environment, an

experimental algorithm, the DiffElim algorithm, has been written in that environment. We

show significant improvements in time and memory consumption through implementation

of a differential elimination algorithm in CDiffElim, rather than in a general purpose envi-

ronment.

A long description of this work has also been published in Wittkopf and Reid [74].
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Applications

We then provide a brief description of Lie symmetry analysis, and Lie symmetry classifica-

tion problems, two areas in which the use of automated differential elimination is essential.

Using RifSimp, DiffElim and MaxDim we study the symmetries of nonlinear reaction

diffusion systems, nonlinear Schrödinger systems, nonlinear telegraph systems, and the

d’Alembert-Hamilton system.

Polynomial Greatest Common Divisors

One common problem observed in differential elimination algorithms (or in complex sym-

bolic computations in general) is the problem of intermediate expression swell. This occurs

when the size of the problem increases dramatically in the course of a computation before

completion, and can even occur when both the input and output are quite small.

This becomes a significant barrier in differential elimination when the input systems are

nonlinear, or contain independent variables or unknown constants in their coefficients. For

many of these problems, simplification related to the removal of common factors in these

coefficients consumes a large portion of the computation time.

To that end, the design and implementation of Brown’s dense modular gcd algorithm

[8], and Zippel’s sparse modular gcd algorithm [78] have been studied, and significant

enhancements to both algorithms have been made. Included in this work is a detailed

asymptotic analysis of Brown’s algorithm, the EEZ-GCD algorithm of Wang [71], and our

modified Brown and Zippel algorithms, DIVBRO and LINZIP respectively.

The modified algorithms have been implemented both in Maple and in CDiffElim.

Applications & Benchmarks

To round out the treatment of differential elimination we provide a set of benchmarks.

All benchmark problems considered in this dissertation involve the study of the symme-

tries of the equation class

µut + ∇2u + F (x, u, u∗) = 0, (1.3)
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where x = (x1, x2, ..., xn) ∈ IRn, ∇2 is the n-space Laplacian, µ is a constant and u is an

m-component complex field with conjugate u∗.

Special cases of (1.3) include the Laplace and Poisson equations, vector nonlinear Schrödinger

(vnls) systems, and coupled nonlinear Reaction-Diffusion systems to name but a few.



Chapter 2

The RifSimp Algorithm and

Redundancy Criteria

In this chapter we present the theoretical development of the version of the RifSimp al-

gorithm for differential polynomial systems that is currently implemented in Maple 7 and

later.

We start with a bit of history. The RifSimp algorithm began its long and prosperous life

as the standard form algorithm of Reid [50] in 1991. Firmly rooted in a modified version

of the Riquier theory [55] it was restricted to handling linear systems of pde. At that

time, the author of this dissertation was involved with the efficient implementation of the

algorithm, which was first made available as the standard form package, written in Maple

4.3, and also released in the early 90’s. Interest in systems of nonlinear pde, however, was

on the rise, so in collaboration, Reid, Wittkopf and Boulton developed the rif algorithm [54]

and implementation, first made available in 1996 for Maple V.2. The work that followed,

including the work of Rust [58], and a joint work of Rust, Reid and Wittkopf [60] in the

late 90’s, put the work on an even more solid theoretical footing, thus paving the way for

acceptance as part of core Maple 6 in 2000, which puts us now firmly in the present tense.

We begin with a review and discussion of the material presented by Rust [58], with

particular focus on the results related to removal of redundant integrability conditions (re-

dundancy criteria). We then present an extension of the results for the linear case to

application in the nonlinear case, with the same bound on the number of conditions as was

29
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given for the linear case in [58], a significant decrease in the number of conditions that need

be considered.

We also provide an efficient algorithmic realization of the new redundancy criteria, which

can also be efficiently used in the linear case, and show that with these modifications, the

existence-uniqueness results of [58] still apply. Analogously to S-polynomial criteria for

Gröbner basis methods, integrability condition redundancy criteria enable the avoidance of

many unnecessary computations. They are vital for a successful implementation.

The chapter closes with two adaptations of Rust’s poly rif ’ algorithm, one to systems

under a sequential ranking, and the other to systems with a general ranking (i.e. non-

sequential), which greatly increases the utility of RifSimp for many applications. These

modified algorithms, together with the integrability condition redundancy criteria, provide

the building blocks for efficient implementation of the RifSimp algorithm for both the se-

quential and non-sequential case.

The style of presentation differs from that in [58], as we are interested in the application

of RifSimp, so the theorems and proofs are developed in a way to ease implementation.

2.1 Notation and Preliminaries

We adopt the following notations of Rust [58]. We let n be the positive integer representing

the number of dependent variables u = (u1, ..., un), and m the non-negative integer repre-

senting the number of independent variables x = (x1, ..., xm) in a system of pde. We use

∆ for the set of all dependent variables and their derivatives, and use ∆̃ for {x} ∪ ∆ which

includes the independent variables.

We define S as a finite set of polynomial functions on ∆̃ over Q (or C), and � is a fixed

ranking. We use hd�(f) for f ∈ S to denote the leading (highest) derivative of f with

respect to �. We also use the notation ∆(S) to represent all δ ∈ ∆ that are present in the

set of functions S, and define ∆̃(S) in a similar fashion.

The set of functions M consists of all leading linear functions in S (i.e. those which

can be written as �-monic rational polynomial functions on M). The set of functions

N consists of the remaining (leading nonlinear) functions of S. Thus S is partitioned into

leading linear and leading nonlinear parts as M∪N respectively. The notation L�(S) := M
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and N�(S) := N is also used. Λ is a finite set of polynomial functions on ∆̃, which represents

the inequations that must be satisfied (equations of the form f 6= 0).

Differentiation is denoted by a vector of m non-negative integer values that correspond

to the independent variables as

Dα = D(α1,...,αm) = Dα1
x1

...Dαm
xm

.

So for a system with three independent variables, differentiation by x1 would be denoted

by D(1,0,0), and differentiation by x1, x1, x2 would be denoted by D(2,1,0). In addition, δi
α is

used as a shorthand notation for Dαui.

The set of principal derivatives of M consists of the set of derivatives that may be

obtained as derivatives of the leading derivative of an element of M, or more formally

Prin�M := {δ ∈ ∆ | ∃f ∈ M and α ∈ Nm with δ = Dαhd�(f)}.

The parametric derivatives of M, denoted by Par�M, are simply all non-principal deriva-

tives

Par�M := ∆ \ Prin�M.

For a field F, we view the initial data for M as a map a : {x}∪Par�M → F. For x0 ∈ Fm,

we say that a is a specification of initial data at x0 if a(x) = x0.

We define a one-step reduction of a function g on ∆̃ with respect to Dαf for f ∈ M as

the process of substituting hd�(Dαf) − f for hd�(Dαf) wherever it appears in g, and we

write

red�(g, (α, f))

to represent this. For example, the reduction of uxx with respect to ux − vz for a system of

pde in u(x, y, z), v(x, y, z) and a ranking consistent with vz ≺ux would be denoted by

red�(uxx, ((1, 0, 0), ux − vz)) = vxz.

We use the notation g 7−→h, to represent the existence of some sequence of one step

reductions using the functions in M that takes g to h. When we wish to represent a more

specific set of reductions, we use the notation g
µ7−→h, where µ = (α1, f1), ..., (αr, fr) is a

sequence of r one-step reductions. Note that this is a slight departure from our use of 7−→
in Chapter 1, as we also used 7−→ in place of red�. We define a complete reduction as the
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process of performing all possible reductions on an expression g with respect to M, and

denote this by cred�(f,M). We note that this is not necessarily unique.

We will also require additional notation not from [58] as follows. We define

Dαβ := D(α1+β1,...,αm+βm), Dα/β := D(α1−β1,...,αm−βm)

the second of which is only well-defined if αi − βi is nonnegative for all i. We also define

lcm(α, β) := (max(α1, β1), ..., max(αm, βm)),

gcd(α, β) := (min(α1, β1), ..., min(αm, βm))

where this notation is also extended to differentiation as lcm(Dα, Dβ), gcd(Dα, Dβ) and

to derivatives as lcm(δα, δβ), gcd(δα, δβ) in the expected way.

The material in the following sections, though it is generally stated in terms of polynomi-

ally nonlinear systems, is equally applicable to linear systems (these are simply a sub-case),

so all results apply to linear systems as well.

2.2 Key Results from Rust [58]

In this section, we review key results of Rust [58] which we will either use or extend in the

development that follows.

Note that the presentation here is focused on implementation of the theory, and as a

result does not include results that are less relevant to implementation or definitions that

are not of the constructive variety.

The first set of results is taken from the development for leading linear systems in [58],

and as such, apply to systems with an arbitrary ranking �.

The following definition provides a formal description of what we loosely refer to as

simply an integrability condition in §1.4.

Definition 7 (Minimal Integrability Condition (5.3.1 of [58])) Take f, f ′ ∈ M. Let

their highest derivatives be δi
α and δi′

α′ , respectively. Let β be the lcm of α and α′. Then if

i = i′, we define the minimal integrability condition of f and f ′ to be

ic�(f, f ′) := Dβ/αf − Dβ/α′f ′.
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If i 6= i′, then ic�(f, f ′) is said to be undefined.

The combination of integrability conditions and the following corollary provide enough

information to detect if a system is a Riquier Basis. It turns out that for linear problems

this is almost the same as rif ’ -form (which is the output of the RifSimp algorithm), the

only difference being that rif ’ -form requires the removal of equations that reduce to zero

with respect to the rest of the system (a Reduced Riquier Basis).

It is important to note that in the linear case, for finite M, the maximal number of

integrability conditions is #M(#M+1)
2 = O(#M2).

Corollary 1 (Riquier Basis Integrability Conditions (5.3.1 of [58])) Suppose that

ic�(f, f ′) 7−→ 0 for all f, f ′ ∈ M with ic�(f, f ′) well-defined. Then M is a Riquier basis.

The lemma below is used as an important part of the proof of the following theorem,

which concerns dependencies between integrability conditions.

Lemma 1 (Derivative One-Step Reduction Lemma (5.3.2 of [58])) Take α ∈ Nm,

f ∈ M, i ∈ Nn and g an analytic function of ∆̃. Let δ1 be the highest derivative of Dαf .

Let δ0 be given by δ1 = Diδ0, if this is well-defined. Then:

red�(Dig, (α, f)) = Dired�(g, (α, f)) + red�(
∂g

∂δ1
, (α, f))DiDαf − red�(

∂g

∂δ0
, (α, f))Dαf.

If δ0 is not well-defined, then the last term is omitted in the above formula.

Theorem 1 (Riquier Basis Integrability Condition Expansion Theorem (5.3.1 of

[58]))

Suppose that for each pair f, f ′ ∈ M2 with ic�(f, f ′) well-defined there exists an expansion

of ic�(f, f ′) of the form

ic�(f, f ′) =
∑

(b,b′)∈Bf,f ′

Dαf,f ′,b,b′
ic�(b, b′)

where Bf,f ′ is a subset of M2 such that for each (b, b′) ∈ Bf,f ′ , ic�(b, b′) 7−→ 0 and

Dαf,f ′,b,b′
lcm(hd�(b),hd�(b′))� lcm(hd�(f),hd�(f ′)). Then M is a Riquier basis.
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The combination of these provides the following corollary, which presents Rust’s redun-

dancy criteria for integrability conditions.

Corollary 2 (Rust’s Riquier Basis Reduced Integrability Conditions 5.3.2 of [58])

Let B be a subset of M2 such that ic�(b, b′) = 0 for all (b, b′) ∈ B and for f, f ′ ∈ M with

ic�(f, f ′) well-defined, there exists b ∈ M such that

1. (f, b), (b, f ′) ∈ B and

2. hd�(b) divides lcm(hd�(f),hd�(f ′)).

Then M is a Riquier basis.

This criteria, though it can identify many redundant integrability conditions, does not

translate well into an implementation that can be used with an algorithm like RifSimp, which

requires the ability to incrementally determine new integrability conditions, as evidenced

by the following example.

Example 11 Consider the following system of equations in u(x, y) under a ranking ≺ that

ranks first by total differential order, then by differential order in x:

{e1, e2, e3, e4, e5} := {uxxxx = v1, uxxxy = v2, uxxyy = v3, uxyyy = v4, uyyyy = v5},

where the vi contain only lower ranked u derivatives than the ones explicitly given. The full

set of integrability conditions required by Corollary 1 is given by:

Dye1 − Dxe2, Dye2 − Dxe3, Dye3 − Dxe4, Dye4 − Dxe5,

Dyye1 − Dxxe3, Dyye2 − Dxxe4, Dyye3 − Dxxe5,

Dyyye1 − Dxxxe4, Dyyye2 − Dxxxe5,

Dyyyye1 − Dxxxxe5,

where they are listed so that each row represents an increase in differential order.

This can be depicted by the following staircase diagram:

where the diagram represents differentiations with respect to x (horizontal axis), and y (ver-

tical axis), and we have plotted the leading derivative of each equation as an empty circle

(labelled), and integrability conditions as filled circles at the lcm of the leading derivatives.
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Figure 2.1: Integrability condition staircase diagram

It is straightforward to show that the first row of conditions (corresponding to the minimal

staircase, which are each drawn with a pair of arrows originating from the equations used

for them) is sufficient in this case. The other conditions shown with crosses through them

are redundant.

Application of Corollary 2 to the first condition in the second row would proceed as

follows. Consider the condition ic�(e1, e3) = Dyye1 − Dxxe3. Using the corollary, this

condition can be shown to be redundant with b = e2, as hd�(e2) = uxxxy which divides

lcm(hd�(e1),hd�(e3)) = uxxxyy, so (e1, e2) and (e2, e3) must remain in the reduced set.

The remaining two conditions in the second row can be removed in the same manner.

A problem then occurs when attempting to remove any of the conditions in the third

and fourth rows. Consider the condition ic�(e1, e4) = Dyyye1 − Dxxxe3. There is no b that

satisfies the conditions of Corollary 2, so this redundant condition must be retained. Similar

comments apply to the remaining two conditions, as they cannot be removed by Corollary 2

either.

So in this case, the minimal set consists of four of the ten conditions, but we are only

able to remove three, forcing the inclusion of three redundant integrability conditions.

It should be noted that if we instead began with removal of the highest order condition, and

worked our way downward (in differential order) it would be possible to remove all redundant
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conditions, but the application of these criteria is not transparent or easy to apply to general

systems.

So it was possible to utilize the criteria to reduce the conditions in this case to the

minimal set, but only if they were considered in the right order. The implementation issue

here involves the application of these criteria to a system as it is changing (through the

course of the algorithm). For example, suppose we initially have e1, e2, e4 and e5 from the

example, but e3 was encountered in a later iteration. The problem is that the conditions

used to reject the higher order integrability conditions involving e3 are themselves rejected.

This forces us either to inefficiently regenerate all conditions every time the system changes

to eliminate redundant conditions or to simply compute, at much greater cost, the higher

order redundant conditions.

We can consider the integrability condition removal criteria from Corollary 2 to be a

second-order correction, or in other words it removes conditions that are redundant when

considering all pairs of conditions we are computing. In order to remove all redundant

conditions, we need also consider higher order corrections. For example, a condition between

f and f ′ could be redundant as a result of conditions (f, b), (b, c), (c, f ′), which we could call

a third-order correction. Direct application of this type of approach (use of higher order

corrections) is not recommended, due to efficiency considerations.

This next set of results is taken from the nonlinear development in [58], and are thus

restricted to systems with a sequential ranking �. Also note that for linear systems, a

Riquier basis and a rif ’-form are equivalent.

Definition 8 (Special Consequence and Relative Riquier Basis (6.3.1 of [58]))

Let U be a non-empty open subset of F∆̃ on which M∪N is analytic. For η an analytic

function of F∆̃, we say that η is a special consequence of N if η admits an expansion of the

form

η =
k∑

i=1

higi

with g1, ..., gk ∈ N and h1, ..., hk analytic functions on U that depend on {x}∪Par�M only.

We say that M is a Riquier basis relative to N on U if for all α, α′ ∈ Nm and f, f ′ ∈ M
with hd�(Dαf) = hd�(Dα′f ′), the integrability condition Dαf − Dα′f ′ can be reduced to a

special consequence of N .
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The heart of this definition, the Relative Riquier Basis, can be thought of as an extension

of a differential ideal to a system of pde partitioned into its leading linear and leading

nonlinear parts. All integrability conditions of the leading linear part M can be reduced to

an expression that can be written as a sum of the elements of the leading nonlinear part N
with coefficients in {x} ∪ Par�M (or we could say that it can be reduced to an element of

the analytic ideal of functions on U generated by N ). The definition is stated for analytic

functions, which is far more general than we need (polynomials). For N = ∅ the definition

becomes the same as that of a Riquier Basis.

Example 12 (Special Consequence)

For a system

M = {uxx = u, vx = v}, N = {u2
x − xu2 = 0, u3 − uv + v2 = 0}

the following expression is a special consequence

u3
x

x
− uxv +

uxv2

u
=

ux

x

(

u2
x − xu2

)

+
ux

u

(

u3 − uv + v2
)

as it can be written as a sum of the elements of N with coefficients depending only on

{x} ∪ Par�M = {x, u, ux, v}.

The following theorem is quite similar, as it also has an easily interpreted analog for

differential ideals.

Theorem 2 (Nonlinear Complete Reduction Theorem (6.3.1 of [58]))

Suppose that M is a Riquier basis relative to N and g is an analytic function on U , polyno-

mial in Prin�M. Then the difference between any two complete reductions of g is a special

consequence of N . In particular, any two complete reductions of g agree on the algebraic

solutions to N .

For the following theorem, let redmod�(g,M) denote a particular choice of complete

reduction of g with respect to N .

Theorem 3 (Relative Riquier Basis Theorem (6.3.2 of [58])) Let M be a Riquier

basis relative to N such that each f ∈ M is polynomial in the principal derivatives. Fix
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x0 ∈ Fm. Let a be a specification of initial data for M at x0 ∈ Fm with a ∈ U . Then there

exists a unique solution u(x) ∈ F[[x−x0]]n to M such that Dαui(x0) = a(redmod�(δi
α,M))

for all α ∈ Nm and i ∈ Nn.

The above is a powerful extension to the existence and uniqueness theorems for rif ’ -form.

Lemma 2 (Nonlinear Sum Lemma (6.3.3 of [58])) Suppose that

1. The functions h,k are analytic on U and polynomial in Prin(M).

2. Both h 7−→ ηh and k 7−→ ηk, with ηh, ηk special consequences of N .

3. For all α, α′ ∈ Nm and f, f ′ ∈ M with hd�(Dαf) = hd�(Dα′f ′)� δ there exists a

special consequence η of N such that Dαf − Dα′f ′ 7−→ η, where δ denotes the highest

principal derivative that occurs in k.

Then there exists a special consequence η′ of N such that h + k 7−→ η′.

We note here that no part of the proof of the above lemma requires that the ranking be

sequential, so it holds equally well in the general ranking case, though its usefulness is

somewhat limited as the number of conditions that must hold is potentially infinite (as for

a non-sequential ranking, there can be an infinite number of derivatives less than δ).

We will take advantage of this flexibility in our development.

Lemma 3 (Nonlinear Derivative Lemma (6.3.4 of [58])) Let g be an analytic func-

tion on U , polynomial in Prin�(M), such that g 7−→ ηg for some special consequence ηg of

N . Fix i ∈ Nm. Let δ = maxη∈N (hd�(η)) and let δ′ be the highest principal derivative that

occurs in g. Suppose that for all α, α′ ∈ Nm and f, f ′ ∈ M with hd�(Dαf) = hd�(Dα′f ′)

such that hd�(Dαf)≺Diδ
′ or hd�(Dαf)�Diδ, we have that Dαf − Dα′f ′ reduces to a

special consequence of N . Suppose further that Diη reduces to a special consequence of N
for all η ∈ N . Then there exists a special consequence η′ of N such that Dig 7−→ η′.

As with the previous theorem, the above lemma requires a sequential ranking to obtain

a finite number of conditions to check, but it is a vital lemma, as it provides a completeness

result for reduced relative Riquier bases.
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The following theorem outlines the requirements for (M,N ) to be in rif ’-form.

Theorem 4 (Nonlinear Integrability Condition Expansion Theorem (6.3.3 of

[58])) Suppose that for each pair f, f ′ ∈ M2 with ic�(f, f ′) well-defined there exists an

expansion of ic�(f, f ′) of the form

ic�(f, f ′) =
∑

(b,b′)∈Bf,f ′

Dαf,f ′,b,b′
ic�(b, b′)

Here Bf,f ′ ⊆ M2 such that for each (b, b′) ∈ Bf,f ′ , there exists a special consequence ηb,b′

of N with IC(b, b′) 7−→ ηb,b′, and Dαf,f ′,b,b′
lcm(hd�(b),hd�(b′))� lcm(hd�(f),hd�(f ′)).

We define ηmax = maxi∈Nm,η∈N (Dihd�(η)). Suppose also that for all (f, f ′) ∈ M2 with

ic�(f, f ′) well-defined and α, α′ ∈ Nm such that hd�(Dαf) = hd�(Dα′f ′)� ηmax, Dαf −
Dα′f ′ reduces to a special consequence of N . Finally, suppose that Diη reduces to a special

consequence of N for all η ∈ N . Then (M,N ) is in rif ’-form.

The above theorem exactly describes the integrability conditions that must hold for the

system to be in rif ’-form. Unfortunately, the conditions on the linear part of the system

must hold out to the highest ranked single differentiation of the highest ranked leading

derivative in N (labelled ηmax). We have now lost the desirable behavior that we need only

consider O(#M2) integrability conditions, as evidenced by the following example.

Example 13 Consider the following system of equations in u(x, y) under a (sequential)

ranking � that ranks first by differential order, then by differential order in x:

M := {l1, l2} = {uxy = v1, uyy = v2}, N := {n1} = {f(uxxxx, ...)},

where the vi and f contain only lower ranked u derivatives than the ones explicitly given.

The full set of integrability conditions required by Corollary 4 is given by

Dyf1 − Dxf2, Dxyf1 − Dxxf2, Dyyf1 − Dxyf2,

Dxxyf1 − Dxxxf2, Dxyyf1 − Dxxyf2, Dyyyf1 − Dxyyf2.

This can be depicted by the following staircase diagram:

where for the most part the diagram can be interpreted as in Example 11. The labelled ηmax
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Figure 2.2: Nonlinear integrability condition staircase diagram

generates a boundary, up to and including which all integrability conditions must be checked.

The shaded region shows the wedge of integrability conditions that must be checked for the

single pair of pde, l1,l2 from M. Note that in the linear case, the pair l1,l2 would only

require that one integrability condition must be checked (instead of the 6 required here).

Now consider nonlinear problems in more than 2 independent variables. The wedge

described in the example extends to all m independent variables of the problem, so the

condition count may be exponential in m.

The following is the existence and uniqueness result for a system in rif ’-form.

Theorem 5 (Nonlinear Existence and Uniqueness Theorem (6.4.1 of [58])) Let S
be a finite set of analytic functions of ∆̃. Let M denote L�(S) and N denote N�(S). Let

U be an open subset of {x} ∪ Par�M. Suppose that S is in rif ’-form on U , and that α is

a specification of initial data for M that lies in U . Suppose further that α(g) = 0 for all

g ∈ N . Let u(x) ∈ F[[x − x0]]n be the solution to M that corresponds to α via Theorem 3.

Then u(x) is a solution to S.

And now we present the core algorithms from Rust [58] required to obtain a rif ’-form

for systems of differential polynomial equations.
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The first algorithm to be described is the riq-autoreduce algorithm (pp. 82 of Rust [58]).

Note, in [58] it is referred to as the autoreduce algorithm, but has been renamed to prevent

confusion with the autoreduce algorithm in Mansfield’s DiffGrob package [37]. We note here

that an autoreduced Riquier basis is in fact a reduced Riquier basis or a standard form [50].

Although the algorithm is stated in terms of analytic functions, it only performs reductions

related to the leading linear part of the system.

Algorithm 5 (riq-autoreduce)

Input: Two finite sets F ,Λ of analytic functions of ∆̃ (the system and pivots respectively).

Output: Two finite sets F ′,Λ′ such that F ′ is autoreduced, and equivalent to F subject to

Λ′. In addition, Λ′ \ Λ is analytic.

1 repeat

2 repeat

3 M := {f ∈ F | f is �-monic }
4 Fprev := F
5 for f ∈ F do

6 F := (F \ {f}) ∪ {cred�(f,M\ {f})}
7 end for

8 until F = Fprev

9 if ∃f ∈ L�(F) not monic then

10 choose such an f

11 F := (F \ {f}) ∪ { f
hc�(f)}

12 Λ := Λ ∪ {hc�(f)}
13 end if

14 until F = Fprev

15 if 0 ∈ F then

16 F := F \ {0}
17 end if

18 output (F , Λ)

The proof of termination is given in [58] and in essence relies on Dickson’s lemma. It is not

provided here.
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The next algorithm is the poly Janet algorithm (pp. 83 of Rust [58]). Note that this

algorithm is not the same as the Janet Basis algorithm of Schwarz [63]. This algorithm is

all that is needed if the input set of functions is (and remains) leading linear in ∆. The

algorithm is slightly modified from the one in [58], as we are only interested in the case

where the set of functions F is polynomial in ∆̃.

Algorithm 6 (poly Janet)

Input: A finite set of functions F polynomial in ∆̃.

Output: The triple (F ′, Λ,flag), where flag indicates if the output is a reduced Riquier basis,

inconsistent, or unsuccessful (i.e. leading nonlinear relations are present). The set F ′ is

equivalent to F subject to Λ.

1 Λ = ∅
2 repeat

3 Fprev = F
4 (F , Λ) := riq-autoreduce(F , Λ)

5 for each integrability condition ic�(f, f ′) do

6 if cred�(ic�(f, f ′),L�(F)) 6= 0 then

7 F := F ∪ {cred�(ic�(f, f ′),L�(F))}
8 end if

9 end for

10 until F = Fprev

11 for f ∈ F do

12 f := numerator(f)

13 end for

14 if ∃f 6= 0 ∈ F | f independent of ∆ or f has empty domain then

15 output (F , Λ, inconsistent)

16 else if L�(F) 6= F then

17 output (F , Λ, unsuccessful)

18 else

19 output (F , Λ, reduced Riquier basis)

20 end if

The proof of termination for this algorithm also relies on Dickson’s lemma (see [58] for more
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detail). We also note that the poly Janet algorithm terminates for a non-sequential ranking,

but fails whenever a leading nonlinear equation is encountered.

The next algorithm is a modification of poly Janet to handle leading nonlinear equations,

and that version of the algorithm is called poly modJanet (pp. 101 of Rust [58]).

Algorithm 7 (poly modJanet)

Description: This algorithm is identical to poly Janet, except that it does not return with

flag=unsuccessful (so the failure check on lines 16 and 17 is removed), and lines 5-9 are

modified to account for the additional integrability conditions required by Rust’s Theorem

6.3.3 of [58] (Theorem 4) and demonstrated in Example 13.

And the final algorithm for this section, the poly rif ’ algorithm (pp. 101 of Rust [58]),

is only applicable for sequential rankings, and provides a rif ’ -form. We note that a minor

correction has been applied to line 7 of the algorithm from [58].

Algorithm 8 (poly rif ’)

Input: Two finite sets of functions S,Λ polynomial in ∆̃.

Output: A triple (F ′, Λ′,flag) such that F is equivalent to S subject to Λ′ and F is either

a reduced Riquier basis, inconsistent, or a rif ’-form, as indicated by flag.

1 repeat

2 (S, Λ,flag) := poly modJanet(S, Λ)

3 if flag 6= unsuccessful then

4 output (S, Λ,flag)

5 end if

6 J :=
⋃m

j=1 DjN�(S)

7 J := J \ S
8 S := S ∪ J

9 until J = ∅
10 output (S, Λ, rif ’-form)

The results and algorithms in this section will be utilized or extended in the development

that follows.
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2.3 All-Pairs Integrability Conditions for Polynomially Non-

linear Systems

One of the key requirements for the creation of an efficient algorithm for the polynomially

nonlinear case is the ability to remove the redundant integrability conditions that appear at

each stage of the algorithm, and that must be checked at the end of the algorithm to verify

that we have a rif ’ -form. This is vital for practical implementation.

In the work of Rust [58] it was proven that for the linear case it is possible to reduce

the number of integrability conditions to O(#M2) (the all-pairs integrability conditions).

For the nonlinear case, however, the number of integrability conditions can be significantly

greater (see Example 13 in §2.2), and if a non-sequential ranking is in use, then no results

have been proven.

In this section we build on the work in [58], proving that for the polynomial case and

an arbitrary ranking, it is possible to reduce the number of integrability conditions to the

O(#M2) all-pairs integrability conditions.

This development now diverges from the development of [58]. The stronger results for

the more restrictive problem are made possible by the following Lemma.

Lemma 4 Let N be a lexicographic Gröbner Basis under the pure lexicographic ordering

� that agrees with � for all δ, δ′ ∈ ∆(N ) (we denote this the compatible lex ordering).

Then for any η which is a special consequence of N (which implies η is in the ideal of N , or

η ∈ Id(N )) there exist hi such that η can be represented as η =
∑

higi with hd�(gi)�hd�(η)

and hd�(hi)�hd�(η) for all i ∈ φ where φ ⊆ {1, ..., #N}.

Proof For this proof we require Definition 5.37 and Theorem 5.35 (vii) of Becker &

Weispfenning [2], which states that if N is a Gröbner Basis, then every 0 6= η ∈ Id(N ) is

top-reducible modulo N . We use lt�(η) to denote the leading term of η with respect to

the lex ordering �.

We proceed by induction on the chain of top-reductions required to reduce η to zero

modulo N . We construct a vector of multipliers h1, ..., hs ∈ ∆̃ that correspond to the

multiples of g1, ..., gs ∈ N that are used in the reduction process. At any step we want to

prove that:



CHAPTER 2. THE RIFSIMP ALGORITHM AND REDUNDANCY CRITERIA 45

1. The current ηi is in the ideal

2. ηi satisfies hd�(ηi)�hd�(η)

3. hj = 0 for all gj such that hd�(gj)�hd�(η), and hd�(hj)�hd�(η) for all gj such that

hd�(gj)�hd�(η).

4. At any iteration of the reduction, we have η = ηi +
∑

hjgj .

For our base case we have η0 = η ∈ Id(N ), hd�(η0) = hd�(η), h1, ..., hs = 0, ..., 0,

so none of the multipliers contain δ�hd�(η), and we have not used any gj ∈ N . Also

η = η0 +
∑

(0)gj , so the hypotheses hold.

Now we assume this is true for ηi at some step, and apply a top-reduction. In order for

a top-reduction to be possible, it must be the case that lt�(g) divides lt�(ηi) for some

g ∈ N . We choose any such g, say gk.

Our first observation is that hd�(lt�(gk))�hd�(η) which holds from the division prop-

erty and the inductive hypothesis hd�(lt�(ηi))�hd�(η).

Now since we have a lexicographic Gröbner basis that uses the compatible lex ordering,

we have the property hd�(lt�(g)) = hd�(g) for all g ∈ N , so in particular we have

hd�(gk)�hd�(η).

If we now set c := lt�(ηi)/lt�(gk) (which is a monomial in ∆(N ) as lt�(gk) divides

lt�(ηi)), we can also see from the inductive hypothesis that hd�(c)�hd�(η). If we now

update η as ηi+1 := ηi − cgk, and set hk := hk + c, we can observe the following.

1. ηi+1 ∈ Id(N ) from the properties of ideals and the fact that ηi,gk ∈ Id(N ).

2. ηi+1 satisfies hd�(ηi+1)�hd�(η) as it can be expressed as a combination of ηi, c, gk,

and from the inductive hypothesis we have hd�(ηi)�hd�(η), and we observed that

hd�(c)�hd�(η), hd�(gk)�hd�(η) earlier.

3. The only multiplier that changed is hk, through addition of c, and hd�(gk)�hd�(η),

and hd�(c)�hd�(η), so this hypothesis continues to hold.

4. Only η and the h change during the step, so we let h represent the h values before the

step, and h̃ the values after the step. Proceeding from the inductive hypothesis we
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have

η = ηi +
∑

hkgk

= ηi − cgj +
∑

k 6=j

hkgk + hkgj + cgj

= ηi − cgj +
∑

k 6=j

hkgk + (hk + c)gj

= ηi+1 +
∑

k 6=j

h̃kgk + h̃jgj

= ηi+1 +
∑

h̃kgk

as required.

So by induction the lemma is proved. 2

The above Lemma allows us to state a stronger version of the nonlinear derivative Lemma

6.3.4 of [58] (Lemma 3) that avoids the restriction involving the maximal leading derivative

for all g ∈ N .

Theorem 6 Let N be a lexicographic Gröbner basis as described in Lemma 4. Let g be a

polynomial function of ∆̃ such that g reduces to a special consequence of N . Suppose that

ic�(f, f ′) reduces to a special consequence of N for all f, f ′ ∈ M for which it is well-defined.

Further suppose that Diηj reduces to a special consequence of N for all ηj ∈ N and i ∈ Nn.

Then there exists a special consequence ηg,i of N such that for all complete reductions µ,

Dig
µ7−→ ηg,i for all i ∈ Nn.

Proof We proceed by transfinite induction on ∆ based on the rank of the leading

derivative appearing in Dig. Clearly this is true for g = 0, so we assume it is true for all

functions with leading derivative lower in rank than δ, and consider hd�(Dig) = δ. Two

cases arise:

First we consider the case where g is a special consequence of N , or g =
∑

hjηj where

ηj ∈ N and the hj are nonzero polynomial functions in ∆̃. By the Leibniz rule, we have

Dig =
∑

ηjDihj +
∑

hjDiηj ,

for some ηj , 1 ≤ j ≤ r. We note that the first sum above is easily shown to reduce to

a special consequence of N , as any reduction by M will leave the ηj unchanged. For the
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second sum, by assumption we know that Diηj reduces to a special consequence of N , so

through straightforward application of Lemma 2 (which holds for general rankings) we know

that the sum reduces to a special consequence of N as long as Dαf − Dα′f ′ reduces to a

special consequence for all hd�(Dαf) = hd�(Dα′f ′)�maxj(hd�(ηj)).

Application of Lemma 4 tells us that maxj(hd�(ηj))� δ for 1 ≤ j ≤ r, so we require the

reduction of Dαf − Dα′f ′ to a special consequence of N for hd�(Dαf) = hd�(Dα′f ′)� δ.

Now note that Dαf − Dα′f ′ = Dσic�(f, f ′) for some σ, and hd�(Dαf − Dα′f ′) is

lower in the ranking than δ. Since by assumption we have that ic�(f, f ′) reduces to a

special consequence of N for all f, f ′ ∈ M, then by the inductive hypothesis we have

Dαf − Dα′f ′ 7−→ ηf,f ′ for some special consequence ηf,f ′ , and the case is complete.

We now consider the case where g 7−→ ηg, g 6= ηg. This is proven by induction on the

length of the minimal chain required to reduce g to a special consequence of N . For the base

case of the induction we use the case above, and consider g′, g′ 6= g where g 7−→ g′ 7−→ ηg.

By the inductive hypothesis, we may assume that Dig
′ 7−→ ηg′,i for some special consequence

ηg′,i. Now we consider red�(Dig, (α, f)), which from Lemma 1 must have the form

red�(Dig, (α, f)) = Dig
′ + hDiDαf + kDαf,

where h,k are polynomial functions of ∆̃ with leading terms that are of lower or equal rank

as hd�(g). It can be shown that either hd�(Dig
′)≺hd�(Dig) or hd�(DiDαf)≺hd�(Dig),

so since hd�(Dαf)≺hd�(Dig) we can apply Lemma 2 twice giving red�(Dig, (α, f)) 7−→ η′

as required.

Further, application of a similar argument as the base case allows us to weaken the

conditions for Dαf − Dα′f ′ to those stated in this theorem, specifically that ic�(f, f ′)

reduces to a special consequence of N . Application of Theorem 2 tells us that since Dig

reduces to a special consequence for some complete reduction, then it reduces to a special

consequence for any complete reduction.

Now through application of the inductive hypothesis for this case we have that Dig 7−→ ηg,i

for hd�(Dig) = δ, which by transfinite induction tells us that Dig 7−→ ηg,i in general, as

required. 2

The following theorem is related to Theorem 6.3.3 of [58] (Theorem 4), applied to poly-

nomial systems with the nonlinear part in lexicographic Gröbner basis form.
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Theorem 7 Let N be a lexicographic Gröbner basis as described in Lemma 4, and suppose

that for each pair (f, f ′) ∈ M2 with ic�(f, f ′) well-defined there exists an expansion of the

form

ic�(f, f ′) =
∑

(b,b′)∈B(f,f ′)

Dαf,f ′,b,b′
ic�(b, b′).

Here Bf,f ′ is a subset of M2 such that for each (b, b′) ∈ Bf,f ′ , there exists a special conse-

quence ηb,b′ of N with ic�(b, b′) 7−→ ηb,b′ and Dαf,f ′,b,b′
lcm(b, b′)� lcm(f, f ′). Finally sup-

pose that Diη reduces to a special consequence of N for all η ∈ N . Then (M,N ) is in

rif ’-form.

Proof The proof of this theorem is identical to that of Theorem 6.3.3 of [58] (Theorem

4), with Theorem 6 used in place of Lemma 6.3.4 (Lemma 3). We omit repetition of this

proof for brevity.

We note here that the requirements of this theorem more closely resemble Theorem 5.3.1

of [58] (Theorem 1) for linear systems than the nonlinear version in Theorem 6.3.3 of [58]

(Theorem 4), as the only integrability conditions required are those in B, and the ranking

is not restricted to a sequential one.

This leads to the following straightforward Corollary that is related to Corollary 5.3.1

of [58] (Corollary 1) but also applies to nonlinear systems.

Corollary 3 Let N be a lexicographic Gröbner basis as described in Lemma 4, and suppose

that for each pair (f, f ′) ∈ M2 with ic�(f, f ′) well-defined there exists a special consequence

ηf,f ′ of N with ic�(f, f ′) 7−→ ηf,f ′ . Finally suppose that Diη reduces to a special consequence

of N for all η ∈ N . Then (M,N ) is in rif ’-form.

Proof This corollary holds trivially setting B to all pairs (f, f ′) ∈ M2 with ic�(f, f ′)

well-defined.

A constructive realization of Theorem 7 is developed in the following section.

Since the new result in the polynomially nonlinear case also provides a rif ’ -form, the

nonlinear existence and uniqueness theorem (Theorem 6.4.1 of [58] or Theorem 5) applies

directly.
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2.4 Algorithmic Determination of Redundant Integrability

Conditions

As discussed in Rust [58] and Reid et al. [50, 52], many of the all-pairs integrability condi-

tions between solved-form equations are redundant.

An implementable reduced set of integrability conditions for the linear case was also

presented in Rust [58] as Corollary 5.3.2 (Corollary 2) that uses Theorem 1 as a departure

point. It is closely related to Buchberger’s second criterion for redundant S-polynomials in

Gröbner basis computations. Unfortunately, as described in Example 11 and the following

commentary, the approach does not lend itself well to incremental algorithms.

In this section we develop an algorithm that can be used to compute a near minimal set

of integrability conditions for polynomially nonlinear systems under general rankings that

lends itself well to an incremental implementation.

As a basic outline of what follows, we will begin by introduction of a formal set of

dependent variables vdi

i , one for each function fi in M. We will then write the all-pairs

integrability conditions of Corollaries 1 and 3 in terms of these new formal variables, and

construct an algorithm that provides a much smaller set of integrability conditions using

Theorem 7 to prove its correctness.

Definition 9 (Syzygy Set and Associated Derivative) For each fi ∈ M (M is �-

monic) where hd�(fi) = δdi
αi

we define a new formal dependent variable vdi

i by Dαi
vdi

i := fi,

where we note the subscript i allows identification of the function fi from M, and the αi

and di identify the leading derivative δdi
αi

of fi.

For all pairs fi, fj ∈ M with a well-defined integrability condition, we define βij :=

lcm(αi, αj), and define sij := Dβij/αi
Dαi

vdi

i − Dβij/αj
Dαj

v
dj

j or by abuse sij := Dβij
vdi

i −
Dβij

v
dj

j . The syzygy set S is then defined as the set of all sij obtained in this way.

Here we note that for fi, fj to have a well-defined integrability condition it is necessary

that the leading derivatives involve the same dependent variable δdi (i.e. di = dj). We define

the associated derivative of each function sij ∈ S as Ds := δdi

βij
.

Since the vi are simply formal notation, it should be understood that any reduction
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operations require replacement of the formal variables by their corresponding functions

before application of the reduction process.

The functions in the syzygy set are linear in the formal variables Dαi
vdi

i , and all have

exactly two terms. Conceptually, the syzygy set can be thought of as a representation of

the all-pairs integrability conditions that must be satisfied for M to be a Riquier basis

(Corollary 1) or for M ∪ N to be a rif ’-form (Corollary 3). This fact is established in

Lemma 5 below.

Lemma 5 If all elements s ∈ S from Definition 9 satisfy s 7−→ η for some special conse-

quence η ∈ N , then we have ic�(f, f ′) 7−→ ηf,f ′ for some special consequence ηf,f ′ ∈ N for

all f, f ′ ∈ M for which ic�(f, f ′) is well defined.

Proof Consider an arbitrary element of sij ∈ S. By Definition 9 we have

sij = Dβij
vi − Dβij

vj

= Dβij/αi
fi − Dβij/αj

fj

= ic�(fi, fj),

where in the second step above we applied the unique definitions of vi, vj , and in the final

step we applied the definition of the integrability condition. So since sij = ic�(fi, fj), we

have that sij 7−→ ηij implies ic�(fi, fj) 7−→ ηij for each sij .

Now since sij is arbitrary, and there is an s ∈ S for every well-defined integrability con-

dition, we have that all integrability conditions of Corollary 3 reduce to special consequences

of N as required. 2

The syzygy set provides us a model for the integrability conditions of the functions M
that is easier to work with than M itself (both from a conceptual point of view, and for

algorithm design). As long as we prove that operations we perform with the syzygy system

obey Theorem 7 for M, then we can be sure that the results carry over to the M functions.

In the following we will treat the syzygy set as a system of differential equations in

the formal variables, and devise an algorithm that removes redundant all-pairs integrability

conditions for M. We first need to define a ranking on S.



CHAPTER 2. THE RIFSIMP ALGORITHM AND REDUNDANCY CRITERIA 51

Definition 10 (Compatible Ranking) Let P be any fixed permutation of N#M. We

define a compatible ranking �′ for the syzygy set S based on the ranking � on M and P as

follows.

For any two derivatives in the syzygy set, Dαvk
i , Dβvl

j we have

1 δk
α � δl

β ⇒ Dαvk
i �′ Dβvl

j

2 δk
α � δl

β ⇒ Dαvk
i �′ Dβvl

j

3 if i occurs before j in P then Dαvk
i �Dβvl

j

4 if i occurs after j in P then Dαvk
i �′ Dβvl

j

It is easy to see that if the application of the ranking �′ to Dαvk
i , Dβvl

j reaches step

3, then we must have α = β and k = l, as otherwise the ranking � would not be a total

ordering. At which point, for Dαvk
i 6= Dβvl

j we must have i 6= j, from which it is clear that

�′ is a total ordering on the derivatives of the formal variables vi occurring in S.

The following will assist greatly in the proof of the redundancy criteria:

Lemma 6 Consider three functions sjk, sjl, skl from the syzygy set S involving the three

formal variables v
dj

j , vdk

k , vdl

l defined from fj , fk, fl ∈ M, and note that it must be the case

that dj = dk = dl = d. Further suppose that Dβjk
vd
j �′ Dβjk

vd
k and Dβjl

vd
j �′ Dβjl

vd
l . Assume

that there exists α such that Dβjk
= DαDβjl

.

Then there exists ρ such that βjk = ρβkl, and Dβkl
vd
k, Dβkl

vd
l are of strictly lower rank

than Dβjk
vd
j under any compatible ranking �′ from Definition 10.

Proof To begin we write out the functions from the syzygy set explicitly

sjk = Dβjk
vd
j − Dβjk

vd
k,

sjl = Dβjl
vd
j − Dβjl

vd
l ,

skl = Dβkl
vd
k − Dβkl

vd
l .

Now consider the origin of the β in the above syzygy functions. We have

βjk = lcm(αj , αk), βjl = lcm(αj , αl), βkl = lcm(αk, αl).
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If we define

γjkl = gcd(αj , αk, αl), γjk = gcd(αj , αk)/γjkl, γj = αj/(γjkγjlγjkl),

γjl = gcd(αj , αl)/γjkl, γk = αk/(γjkγklγjkl),

γkl = gcd(αk, αl)/γjkl, γl = αl/(γjlγklγjkl),

then it is easy to show that

αj = γjγjkγjlγjkl, βjk = γjγkγjkγjlγklγjkl,

αk = γkγjkγklγjkl, βjl = γjγlγjkγjlγklγjkl,

αl = γlγjkγjlγjkl, βkl = γkγlγjkγjlγklγjkl.

Now by hypothesis, βjk = αβjl, which expressed in terms of the γ’s yields γjγkγjkγjlγklγjkl =

αγjγlγjkγjlγklγjkl and simplifies to γk = αγl after removal of common factors. By means

of their construction, gcd(γk, γl) = 1, so we must have γk = α and γl = 1. Making the

notational simplification σ = γjkγjlγklγjkl we can rewrite the functions from the syzygy set

as

sjk = Dγjασvd
j − Dγjασvd

k,

sjl = Dγjσvd
j − Dγjσvd

l ,

skl = Dασvd
k − Dασvd

l .

It is clear from the above that ρ exists and ρ = γj .

Now there are two possibilities for the leading term of the skl function.

Case 1: hd�′(skl) = Dασvd
k

By assumption (from the leading term of sjk), we know Dγjασvd
j �′ Dγjασvd

k (where the

inequality is strict as j 6= k). By positivity of the ranking, we have Dγjασvd
k �′ Dασvd

k, so by

transitivity the conclusion holds.

Case 2: hd�′(skl) = Dασvd
l

By assumption (from the leading term of sjl), we know that Dγjσvd
j �′ Dγjσvd

l (where the

inequality is strict as j 6= l). This implies Dγjασvd
j �′ Dγjασvd

l by invariance of the rank-

ing under differentiation. By positivity of the ranking, we have Dγjασvd
l �′ Dασvd

l , so by

transitivity the conclusion holds.
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So we have hd�′(sjk) is strictly higher in rank than hd�′(skl), and the theorem is proved.

2

Now the foundation has been laid to algorithmically remove redundant integrability

conditions from the all-pairs integrability conditions described in Theorems 1 and 7.

Algorithm 9 (Syzygy Simplify)

Input: A syzygy system S with #S elements

Output: A syzygy system B such that all elements s ∈ S can be written as a linear combi-

nation of derivatives of b ∈ B.

1 Rank all elements s ∈ S in order of increasing rank based on hd�′(s), breaking ties by

the rank of the non-leading derivative in s. We label these si, 1 ≤ i ≤ #S.

2 Set B = ∅, S ′ = ∅

3 Loop i from 1 to #S

3.1 If there exists a function s′ ∈ S ′ such that hd�′(si) = Dαhd�′(s′) for some α

then reject si, and goto 3.4.

3.2 If there exist functions s′, s′′ ∈ S ′ such that si = Dα′s′ − Dα′′s′′ for

β = lcm(hd�′(s′),hd�′(s′′)), α′ = β/hd�′(s′), α′′ = β/hd�′(s′′)

then reject si and goto 3.4.

3.3 B = B ∪ {si}

3.4 S ′ = S ′ ∪ {si}

4 return B

The rejection criteria in step 3.1 of the algorithm closely resembles application of reduc-

tion to the syzygy system, while the criteria in step 3.2 removes integrability conditions of

the syzygy system itself.

Theorem 8 (Redundancy Criteria) Given that the input S to Algorithm 9 is constructed

as described in Definition 9, then the integrability conditions corresponding to the output B

form a generating set of the set of integrability conditions S required for Theorems 1 and 7.
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Proof To prove that Algorithm 9 produces a generating set of integrability conditions as

described by Theorems 1 and 7 we proceed by induction on the subsystem formed at each

step, demonstrating that every rejected function can be represented as a linear combination

of derivatives of the current B of the required form.

One key observation required here is the fact that the S are sorted in strictly increasing

order with respect to �′, which also means that they are sorted in increasing order (though

not strict) of their associated derivative in ∆.

This initial case is clearly satisfied, as S ′ is empty, so s1 is accepted. We now assume

this is true for all s1, ..., si−1, and consider si in the current step. There are three cases.

Case 1: si is rejected based on the criteria of step 3.1.

We write out si as si = Dβjk
vd
j − Dβjk

vd
k, and assume without loss of generality that

hd�′(si) = Dβjk
vd
j . Then s′ must have the form s′ = Dβjl

vd
j − Dβjl

vd
l where hd�′(s′) =

Dβjl
vd
j for some l, and Dβjk

vd
j = DαDβjl

vd
j . Now consider t = Dβkl

vd
k − Dβkl

vd
l and apply

Lemma 6 with α, sjk = si, sjl = s′, and skl = t which gives us hd�′(si) is of greater rank

than hd�′(t). So by the ranking above, and by the inductive hypothesis we know there exist

expansions of the form required for Theorems 1 and 7 for s′, t in terms of B.

Now to show that the expansion for si of the correct form, we simply observe that from

the hypothesis of the theorem that βjk = αβjl, and the application of Lemma 6 gives us

a ρ such that βjk = ρβkl, resulting in the expansion sjk = Dαsjl − Dρskl. Now by the

definition of compatible ranking (Definition 10) the associated derivatives for sjk,Dαsjl,

and Dρskl are equal, so the rank inequality for Theorem 1 holds with equality, and we have

lcm(hd�(fj),hd�(fl)) = Dαlcm(hd�(fk),hd�(fl)) = Dρlcm(hd�(fj),hd�(fl)).

Finally, since s′, t ∈ S ′ we know that they are either in B or can be obtained as linear

combinations of derivatives of elements of B. In the latter case, the inductive hypothesis

states that each element of S ′ can be constructed from derivatives of elements of B satisfying

Theorems 1 and 7. This implies, by invariance of the ranking under differentiation and

transitivity, that the rank of the associated derivatives of the elements of B are also equal

or lower in rank than lcm(hd�(fj),hd�(fl)), which completes this case.

Case 2: si is rejected based on the criteria of step 3.2.

We write out si as si = Dβkl
vd
k − Dβkl

vd
l . Now from step 3.2 there must exist s′, s′′ ∈ S ′
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such that s′ = Dβjk
vd
j − Dβjk

vd
k and s′′ = Dβjl

vd
j − Dβjl

vd
l for some j. Using the α′,α′′, and

β defined in that step, we obtain

Dα′′s′′ − Dα′s′ = Dα′′(Dβjl
vd
j − Dβjl

vd
l ) − Dα′(Dβjk

vd
j − Dβjk

vd
k)

= Dα′′βjl
vd
j − Dα′′βjl

vd
l − Dα′βjk

vd
j + Dα′βjk

vd
k

= Dα′βjk
vd
k − Dα′′βjl

vd
l

= Dβvd
k − Dβvd

l

where the last line is obtained from the definition of β, as β = α′βjk = α′′βjl. Now by the

requirement that the resulting function is the same as s, we have β = βkl. In terms of the

associated functions in M we have lcm(hd�(fk),hd�(fl)) = Dα′lcm(hd�(fj),hd�(fk)) =

Dα′′lcm(hd�(fj),hd�(fl)) so the non-strict inequality surely holds, and there is a correct

representation for si in terms of functions in S ′.

The completion of this case is accomplished through a similar argument as Case 1, from

which we conclude that there is an expansion of the required form even for s, s′ 6∈ B, which

completes this case.

Case 3: si is accepted

This case follows trivially.

So from the syzygy set S we have constructed a subset B of conditions satisfying Theo-

rems 1 and 7, as required. 2

And finally the following obvious Lemma.

Lemma 7 Let N be a lexicographic Gröbner basis as described in Lemma 4, and suppose

that for every b ∈ B, for B constructed via Algorithm 9 from S defined for M, the corre-

sponding integrability condition reduces to a special consequence ηb of N . Further, suppose

that Diη reduces to a special consequence of N for all η ∈ N . Then (M,N ) is in rif ’-form.

Proof The proof follows trivially from Theorem 7, the definition of S, and application of

Theorem 8. 2

We now revisit Example 11 from §2.2, applying the new algorithm for removal of redun-

dant integrability conditions.
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Example 14 Consider example 11. Using Algorithm 9 with any permutation P used to

define �′ gives us exactly the four non-redundant integrability conditions identified for that

example, namely Dye1 − Dxe2, Dye2 − Dxe3, Dye3 − Dxe4, and Dye4 − Dxe5.

So we have obtained a significant improvement over the criteria of Corollary 2 (as we

need not concern ourselves with the order of removal), and devised an algorithm to apply

it. Note that this development holds for polynomially nonlinear systems with an arbitrary

ranking, i.e. we are not restricted to use of a sequential ranking in the nonlinear case.

In addition, these criteria have flexibility in the choice of the permutation used for the

syzygy ranking �′, which we can utilize to create an even more efficient implementation.

The process in Algorithm 9, and the permutation for the compatible ranking �′ can be

further simplified by a partitioning of the syzygy system based on the dependent variable

from the fi ∈ M from which the syzygys are defined. It is straightforward to see that this

is valid, as there are no well-defined integrability conditions that have leading derivatives

of different dependent variables. A separate permutation can then be obtained for each

dependent variable, which does not affect the required conditions on the compatible ranking.

With this simplification, the nature of the freedom afforded us by the partition becomes

clearer. Quite simply, the permutation imposes a ranking on the functions in M. The

nature of the algorithm will act to eliminate as many integrability conditions as possible

involving the highest ranked function. So, for example, one could rank the most complex

expression in M, say f̄ , as the highest rank, thus ensuring as few as possible integrability

conditions involve f̄ and it’s derivatives.

Finally we close this section with the following conjecture, which has been experimentally

verified to hold for all problems in the benchmark set [72]:

Conjecture 1 (Incremental Conjecture) The Syzygy Simplify algorithm (Algorithm 9)

can be efficiently utilized to remove redundant integrability conditions of a system as it is

being reduced under the following conditions:

1. The syzygy equations for integrability conditions that have already been taken are re-

tained.

2. Leading linear equations are never removed from M, except through reduction of their
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leading derivative by a leading linear equation with a leading derivative of lower order.

In the event that the conditions above are satisfied, then the additional conditions required

as a result of the addition of a new leading linear equation to the system can be accounted

for by appending the new syzygy conditions to the set already known, and re-running the

algorithm.

2.5 Termination for the Sequential Ranking Case

In this section we provide the modifications of the poly rif ’ algorithm (Algorithm 8) and the

poly modJanet algorithm (Algorithm 7) to use the new integrability condition redundancy

criteria. We then demonstrate the problem with the use of these algorithms with a non-

sequential ranking, namely non-termination. Finally we prove that for a sequential ranking,

the modified algorithms do terminate.

First we present the modified algorithms.

Algorithm 10 (poly rif ICs’)

Input: Two finite sets of functions S,Λ polynomial in ∆̃.

Output: A triple (S ′, Λ′,flag) such that S ′ is equivalent to S subject to Λ′ and S ′ is either

a reduced Riquier basis, inconsistent, or a rif ’-form, as indicated by flag.

1 S ′ := S, Λ′ := Λ

2 repeat

3 (S ′, Λ′,flag) := poly JanetICs(S ′, Λ′)

4 N := N�(S ′)

5 N := Gröbner lex(N )

6 S ′ := (S ′ \ N�(S ′)) ∪N
7 if flag 6= unsuccessful then

8 output (S ′, Λ′,flag)

9 end if

10 J :=
⋃m

j=1 DjN
11 J := Gröbner reduce(cred�(J,L�(S ′)),N )

12 S ′ := S ′ ∪ J
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13 until J = ∅
14 output (S ′, Λ′, rif ’-form)

In addition, the poly modJanet algorithm (Algorithm 7) used by poly rif ’ must be mod-

ified to remove the redundant integrability conditions, but the only change is to replace

the integrability conditions considered on line 5 of the algorithm by the modified set of

integrability conditions from Algorithm 9, so for brevity we simply state this and label the

modified algorithm poly JanetICs.

Now consider application of poly rif ICs’ to a specific system under a non-sequential

ranking �. We note that a related example appears in Rust’s work (pp. 91 of [58]) though

our restriction that N is in Gröbner basis form removes the problem for that example.

Example 15 Consider the system in u(x) and v(x)

uxx = u

0 = v(ux
2 − u2)

under the non-sequential ranking that ranks u and all of its derivatives higher than v and

all of its derivatives (i.e. v≺ vx ≺ vxx ≺ ...≺u≺ux ≺uxx ≺ ... ).

In steps 10-11 of the algorithm, we obtain a new differential relation

(v(ux
2 − u2))x = vx(ux

2 − u2) + v(ux
2 − u2)x

= vx(ux
2 − u2) + 2vux(uxx − u)

7−→ vx(ux
2 − u2)

where the last step holds by virtue of the linear relation uxx = u, so the algorithm does not

terminate at this time.

Since there is only one leading linear relation, the call to poly JanetICs in step 2 of the

algorithm has no effect on the system.

Now consider the algebraic s-polynomial between two equations of the form

α(ux
2 − u2) , β(ux

2 − u2)

with α, β such that gcd(α, β) = 1 and the leading derivatives of α, β are of lower rank than

ux. It is straightforward to see that this s-polynomial is identically zero.
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This means that in step 5 of the algorithm, no new algebraic relations are introduced.

It is easy to verify that in steps 10-11 of the algorithm, a new relation is introduced, and

it is of the form

vxx(ux
2 − u2),

so the algorithm does not terminate at this time.

In fact the algorithm introduces a new relation of the form vxn(ux
2 − u2) in the nth

iteration, so this problem never terminates.

The key to this example is the non-sequential ranking used for the given system. The

poly rif ICs’ algorithm terminates in a finite number of steps as long as the ranking is

sequential, as will be shown in this section. Non-sequential rankings are considered in the

following section.

Theorem 9 Algorithm 10 terminates with either a rif ’-form or an inconsistent system in

a finite number of steps for any system under a sequential ranking �.

The proof of this theorem is quite similar to the proof of termination for the rif ’ algorithm

in [58] and relies heavily on Dickson’s Lemma. It is provided here for completeness.

Proof Clearly if the algorithm terminates, then the output will be either inconsistent, or

will be a rif ’ -form (see Lemma 7). Further, the output system S ′ will be equivalent to the

input system S subject to the output pivots Λ′. What remains to be shown is that the

algorithm always terminates.

To prove termination, we show that L�(S ′) and N�(S ′) eventually stabilize. We let

(S ′
i, Λ

′
i, ∆̃i) represent (S ′, Λ′, ∆̃) after the ith iteration of the loop from 2-13. Application of

Dickson’s Lemma to L�(S ′) tells us that it must eventually stabilize, so we set L�(S ′) = L
for all i ≥ i0.

Now consider the set of parametric derivatives, all of whose first derivative are principal,

{δ ∈ Par�(L) | Djδ ∈ Prin�(L) ∀ j ∈ Nm}.

This set must be finite by the fact that L is finite. Set δ0 to be the maximum in this set with

respect to �, and note that the set ∆∗ := {δ | δ� δ0} is finite for any sequential ranking �.
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Now N�(S ′
i) is a set of polynomials in {x} ∪ ∆∗ for all i ≥ i0, so it only depends upon a

finite number of indeterminates.

The Ascending Chain Condition (Theorem 5.2.7 of Cox, Little and O’Shea [18]) tells

us that any ascending chain of ideals in a finite number of indeterminates must eventually

stabilize, so in particular, the chain of ideals

〈N�(S ′
i0)〉 ⊂ 〈N�(S ′

i0+1)〉 ⊂ 〈N�(S ′
i0+2)〉 ⊂ ...

must eventually stabilize.

Now since on line 11 of the algorithm we are reducing with respect to a Gröbner basis

of the ideal 〈N�(S ′)〉, J is either empty, or enlarges the ideal, so by the Ascending Chain

Condition N�(S ′) is eventually stable for all i ≥ i1.

So since both L�(S ′
i) and N�(S ′

i) are stable for all i ≥ max(i0, i1), then the algorithm

must terminate, and the theorem is proved. 2

We also have an existence uniqueness theorem for the output of Algorithm 10, as Theo-

rem 5 (Theorem 6.4.1 of [58]) applies with U defined as the open subset of {x}∪Par�(L�(S ′))

such that for a ∈ U , a(λ) 6= 0 for all λ ∈ Λ′.

The poly rif ICs algorithm does not always provide a rif ’ -form that describes all solu-

tions to the input system.

Example 16 Consider the following simple system in u(x),

u(ux − 1) = 0.

The output of the poly rif ICs algorithm for this system is

S ′ = {ux = 1}, Λ′ = {u 6= 0}.

But defining u(x) = 0 is also a solution of the input system for u, and is inconsistent

with the output rif ’-form.

This difficulty can be remedied by performing a case splitting strategy whenever non-

trivial pivots are introduced. One can define a case splitting version of Algorithm 10 in a

similar manner as Rust [58].

Consider steps 11-12 of the riq-autoreduce algorithm, which read
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11 F := (F \ {f}) ∪ { f
hc�(f)}

12 Λ := Λ ∪ {hc�(f)}.

These are the only steps of 10 in which a nontrivial pivot can be introduced (i.e. an

assumption on the form of the system).

We can define a case splitting version of the algorithm as follows. Just prior to step 11,

consider the form of hc�(f). If it does not depend upon ∆ then we can proceed as before,

otherwise we must split into two cases:

1 Assume hc�(f) 6= 0, then we have as before.

2 Assume hc�(f) = 0. Then step 11 becomes F := (F\{f})∪{hc�(f), f−hc�(f)hd�(f)},
and step 12 is not performed.

Application of this version of the algorithm results in a binary tree of rif ’ -forms. Proof

of termination of this algorithm follows from termination of the poly rif ICs’ algorithm and

results related to Dickson’s Lemma (see [58] pp. 104 for details).

2.6 Termination for the General Ranking Case

As shown in Example 15, the poly rif ICs’ algorithm does not terminate in general for

non-sequential rankings. In this section we will explore the problem more fully. We will

provide a modification of the algorithm that does terminate for general rankings, at the cost

of introducing a greater number of pivots. Finally we conclude the section with what we

expect to be a less expensive but unproven modification of the algorithm that will be more

fully investigated in future work.

One of the primary causes of the failure of the arbitrary ranking version of the algorithm

to achieve termination can be understood from the proof of termination for the sequential

ranking case. The gist of it is this:

Once the highest ranked derivative in the leading nonlinear equations has stabilized, then

only a fixed number of indeterminates can appear in those leading nonlinear equations.

This is a direct consequence of the sequential ranking (by definition). This is not the

case for non-sequential rankings though, as can be seen in Example 15. In that example, u
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and all derivatives were of greater rank than v and any of its derivatives. In each iteration

of the algorithm, a higher derivative of v was introduced, which was always of lower rank

than u, so the number of indeterminates in the leading nonlinear equations grew in each

iteration, even though the set of leading derivatives of the leading nonlinear equations was

stable.

The first strategy that comes to mind is to change the way in which the nonlinear

equations are handled, so that the introduction of a new relation, not in the ideal, restricts

the nonlinear system with respect to the nonlinear leaders, even when that new relation

contains new indeterminates. This suggests the use of triangular forms, which is in fact what

we will apply here. A discussion of the use of triangular forms in differential elimination

can be found in Hubert [28, 29].

Definition 11 (Triangular Form and Leading Coefficient) Let T be a list of non-

constant polynomials t1, ..., ts over a finite set of unknowns ∆t ⊂ ∆̃ with a fixed ranking

�. This list of polynomials is called a Triangular Form if

hd�(t1)≺hd�(t2)≺ ...≺hd�(ts).

We define the Leading Coefficient of any polynomial p in ∆t with respect to an unknown

l ∈ ∆t as the leading coefficient of p viewed as a polynomial in l alone, and we write

lc�(p, l).

In order to obtain a triangular form, we must introduce pseudo-reduction (§1.9) into the

rif algorithm, which is simply an extension of single variable polynomial division to the use

of triangular forms. The ideas are implicit in the following algorithm.

Algorithm 11 (PseudoReduce)

Input: A polynomial p in ∆t, and a list of polynomials T in ∆t that are in triangular form

with respect to the ranking �.

Output: pr, the pseudo-reduction of p with respect to T .

1 pr := p

2 for i from 1 to #T loop

3 l := hd�(Ti)
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4 d := degree(Ti, l)

5 while degree(pr, l) >= d do

6 pr := lc�(Ti, l)pr − lc�(pr, l)l
(degree(pr,l)−d)Ti

7 end while

8 end for

9 output pr

There is one property of pseudo-reduction which is of particular interest to us in the

context of use with rif ’ -form algorithms.

Lemma 8 Let T be a triangular form over the unknowns ∆ and let p be a new polynomial in

those unknowns. Let pr be the pseudo-reduction of p with respect to T obtained by Algorithm

11. Then one of the following two conditions hold:

1. hd�(pr) 6= hd�(ti) ∀ ti ∈ T , or

2. degree(pr,hd�(pr)) < degree(ti,hd�(pr)) for the polynomial ti ∈ T for which hd�(ti) =

hd�(pr).

Proof If hd�(pr) 6= hd�(ti) ∀ ti ∈ T then the lemma is trivially true, so we assume there

exists some ti ∈ T for which hd�(ti) = hd�(pr).

Now consider the loop in steps 5-7 of the algorithm. Division of the polynomial pr by

ti will proceed until degree(pr,hd�(ti)) < degree(ti,hd�(ti)), decreasing the degree by at

least 1 in each iteration of the loop, so clearly this is true after completion of that loop.

Further, the remaining iterations of the outer loop (steps 2-8) only involve division of

pr by elements of tj ∈ T with hd�(tj)≺hd�(ti), so clearly degree(lc�(tj),hc�(ti)) =

degree(tj ,hc�(ti)) = 0, so the degree of pr in hd�(pr) can never increase, and the lemma

is proved. 2

Now we introduce the concept of an extended characteristic set (additional information

on this topic can be found in Wang [70], Chou [15] or Mishra [42]).
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Definition 12 (Extended Characteristic Set and Pivots) Let N be a finite nonempty

set of polynomials in Q[∆t], and let Id(N ) be the ideal generated by N . A triangular form

T (Definition 11), is called an extended characteristic set of N if either of the two following

properties are satisfied:

1 T consists of a single polynomial in Q ∩ Id(N ), or

2 T = 〈t1, .., ts〉 with hd�(ts) ∈ ∆t such that

ti ∈ Id(N ), ∀ i = 1..s

PseudoReduce(nj , T ) = 0, ∀ j = 1..#N

In the second case, we call

Λ = {lc�(ti,hd�(ti)) | ti ∈ T }

the pivots of T .

Now we present a small modification of the algorithm from §5.5 of Mishra [42] (which can

be shown to be equivalent to the CharSet algorithm described in Wang [70]) for computation

of an extended characteristic set from a set of polynomials. Note that the modification is to

simply include the complete set of all polynomials computed in the algorithm in addition

to the extended characteristic set.

Algorithm 12 (ExtCharSet)

Input: A set of polynomials N .

Output: T , an extended characteristic set of N , the extended set of polynomials N , and

the set of pivots Λ.

1 T := ∅, R := ∅
2 repeat

3 N := N ∪ R, N ′ := N , T := ∅, R := ∅
4 while N ′ 6= ∅ loop

5 Choose f ∈ N ′ with the lowest leader to the lowest degree

6 N ′ := N ′ \ {g ∈ N ′ | hd�(g) = hd�(f) and g is not reduced with respect to f}
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7 T := T ∪ {f}
8 end while

9 for all f ∈ N \ T loop

10 if r := PseudoReduce(f, T ) 6= 0 then

11 R := R ∪ {r}
12 end if

13 end for

14 until R = ∅
15 Λ := {lc�(ti,hd�(ti)) | ti ∈ T }
16 return (T ,N , Λ)

Our intent is to replace our use of Gröbner basis and Gröbner reduction methods in the

poly rif ICs’ algorithm (Algorithm 10) by use of extended characteristic sets and pseudo-

reduction. It will be shown that this modification of the algorithm can still utilize the

reduced integrability conditions developed in Section 2.4, and can be proven to terminate

for the arbitrary ranking case.

One small modification is required in the definition of special consequence (Definition

8), to account for the pivots introduced by the extended characteristic set algorithm. This

concept introduces a new form, which we call a rif”-form, and we describe this below.

Definition 13 (Special Consequence II) Let U be a non-empty open subset of F∆̃ on

which M ∪ N is analytic. For η an analytic function of F∆̃, we say that η is a special

consequence of N if η admits an expansion of the form

λη =
k∑

i=1

higi

with g1, ..., gk ∈ N and h1, ..., hk analytic functions on U that depend on {x}∪Par�M only.

Here λ is a product of analytic functions that are non-zero on U .

Clearly in the above definition, the λ corresponds to some power product of the piv-

ots introduced in the extended characteristic set algorithm. All other development in the

preceding sections holds in the same manner as for the original definition of special conse-

quence, with replacement of special consequence by the new definition, and replacement of

rif ’ -form by rif”-form.
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This is only true, however, until we reach the development that is concerned with the

form of the polynomially nonlinear equations. For that treatment we require the following

lemma (which is a modification of Lemma 4 for extended characteristic sets).

Lemma 9 Let T be the extended characteristic set constructed by application of Algorithm

12 to N under the ranking �. Then for any η which is a special consequence of N there

exist hi, λ such that η can be represented as λη =
∑

hiti with hd�(ti)�hd�(η) and

hd�(hi)�hd�(η) for all i ∈ φ where φ ⊆ {1, ..., #T }, and hd�(λ)�hd�(η). Here λ is

a power product of functions from Λ.

Proof The proof follows fairly straightforwardly from the properties of extended charac-

teristic sets, and the use of Algorithm 11.

If we label P (T ) as the set of all polynomials that are pseudo-reducible by T , it is easy

to see that Id(N ) ⊆ Id(P (T )) (this follows from the fact that N ⊆ Id(P (T ))). So any

polynomial in Id(N ) pseudo-reduces to zero with respect to T .

Now application of Algorithm 11 to η never introduces higher ranked derivatives than

those already present in η, as for any division to occur, the corresponding indeterminate

must occur in η. In addition, the multiplier in the pseudo-reduction can only involve inde-

terminates of rank lower or equal to the one being eliminated, so higher derivatives cannot

occur in λ either. As a result, Algorithm 11 constructs the very form we require, so the

lemma is proved. 2

Again, the remaining development continues to hold, with the algorithm for the rif”-

form given as follows.

Algorithm 13 (poly rif ICs”)

Input: Two finite sets of functions S,Λ polynomial in ∆̃.

Output: A triple (S ′, Λ′,flag) such that S ′ is equivalent to S subject to Λ′ and S ′ is either

a reduced Riquier basis, inconsistent, or a rif”-form, as indicated by flag.

1 S ′ := S, Λ′ := Λ, N := ∅
2 repeat

3 S ′ := S ′ ∪N
4 (S ′, Λ′,flag) := poly JanetICs(S ′, Λ′)



CHAPTER 2. THE RIFSIMP ALGORITHM AND REDUNDANCY CRITERIA 67

5 N := N�(S ′)

6 M := S ′ \ N�(S ′)

7 (T ,N , Λ′′) := ExtCharSet(N )

8 if flag 6= unsuccessful then

9 output (M∪ T , Λ′ ∪ Λ′′,flag)

10 else if T 6= ∅ and hd�(T ) = ∅ then

11 output (M∪ T , Λ′ ∪ Λ′′, inconsistent)

12 end if

13 J :=
⋃m

j=1 DjN
14 J := cred�(J,M)

15 N := N ∪ J

16 J := PseudoReduce(J, T )

17 until J = ∅
18 output (M∪ T , Λ′ ∪ Λ′′, rif”-form)

This modification of the algorithm requires a few additional comments.

First we note that the computation splits the system into leading nonlinear (N ), and

leading linear (M) parts in steps 5 and 6, providing a clearer description of how each part

is used. Next we note that the characteristic set is computed from the nonlinear equations

for each step, so if new equations are introduced into N that make a prior pivot from Λ′′

unnecessary, then this is accounted for by the algorithm. Additionally, any leading linear

relations that arise in the computation naturally become part of the linear system in the

following step. Finally, on line 10, the extended characteristic set is checked to see if it

consists of a polynomial containing no dependent variables, and if so, the computation is

flagged as inconsistent.

Clearly upon completion of the algorithm, we will have a rif”-form, as all derivatives

of the leading nonlinear equations must be special consequences (by Definition 13) of T ,

and the linear part of the algorithm remains the same, so what remains to show is that the

algorithm always terminates independently of the ranking. To do so, the following theorem

is essential.
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Theorem 10 Let T , N ′ be the extended characteristic set and extended system returned by

Algorithm 12. Let g 6= 0 be a polynomial reduced with respect to T . Then

ExtCharSet(N ′ ∪ {g}) < T .

Where in the above the symbol < is used to denote that the smaller set is more restrictive

than the larger one, specifically that the degrees of the leaders of each set are equal up

to a leader that has different degree, and the lesser set is lower, or that the degrees of

corresponding leaders are all equal, but the lesser set contains an additional relation that is

not present in the larger set.

The above theorem follows directly from proposition 5.5.1 of Mishra [42], based on the

observation that T is the minimal ascending chain of N ′.

In simple terms, this theorem tells us that addition of a new polynomial to N that does

not pseudo-reduce with respect to T either lowers the degree with respect to the leading

indeterminates, or adds a relation with a new leading indeterminate. As we will see, this is

the key to the proof of termination of the poly rif ICs” algorithm.

Theorem 11 Algorithm 13 terminates for arbitrary rankings.

Proof The linear portion of the proof is identical to that of Theorem 9, and using the same

argument, we can easily show that eventually the leaders of the leading nonlinear equations

must stabilize. It is repeated here for completeness.

To prove termination, we show that M and T eventually stabilize. We let (Mi, Ti, ∆̃i)

represent (M, T , ∆̃) after the ith iteration of the loop from 2-17. Application of Dickson’s

Lemma to M tells us that it must eventually stabilize, so we set Ms = Mi for all i ≥ i0.

Now consider the set of parametric derivatives, all of whose first derivative are principal,

∆∗ = {δ ∈ Par�(Ms) | Djδ ∈ Prin�(Ms) ∀ j ∈ Nm}.

This set must be finite by the fact that Ms is finite. We also note that this set must contain

the complete set of leaders of the nonlinear equations N , as otherwise the differentiation in

step 13 would introduce new leading linear equations.

Now consider what it means for the algorithm to fail to terminate. This would mean that

new relations would need to be present in J at every step. This introduces two possibilities.
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The first is that the new relation introduces a new leading derivative. This can only

occur a finite number of times, specifically until all derivatives in ∆∗ have been introduced,

so this can only account for a finite number of steps. So consider the system at some step

after all of the derivatives that arise from J have been considered.

The characteristic set will consist of equations with leaders from ∆t, each having finite

degree. If we now consider the introduction of a new relation in J , we see in step 16 of the

algorithm that the new relation must be pseudo-reduced with respect to T , so by Theorem

10 the addition of the new relation to N in the following iteration will result in a smaller

characteristic set.

Under the assumption that the number of unknowns remains static, this means that the

new relation will introduce a degree drop in one of the leaders when a new characteristic

set is formed.

Since the degrees of the leaders are finite, this can only occur a finite number of times,

so the algorithm must terminate, as required. 2

Consider the effect of applying this algorithm to Example 15. The extended character-

istic set T computed at the end of the first iteration is

u2
x = u2, v 6= 0,

which immediately reduces the new relation vx(u2
x−u2) to zero, so the algorithm terminates

on the first step returning

uxx = u, u2
x = u2, v 6= 0.

This completes the analysis of the poly rif ICs” algorithm for the arbitrary ranking case,

but a few observations need to be made.

The approach used was akin to swatting a fly with a sledgehammer. Far too much

machinery had to be developed, and far too many changes needed to be made to achieve

termination for the arbitrary ranking case.

It is believed by the author that a much simpler modification of Algorithm 10 can be

used to assure termination for the arbitrary ranking case:
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Conjecture 2 (Wittkopf Conjecture) Consider Algorithm 10 with the following mod-

ification. Between steps 5 and 6 of the algorithm, introduce processing that performs the

following two tasks:

1 If ∃ g1, g2 ∈ N such that hd�(g1) = hd�(g2) = hd�(gcd(g1, g2)), then introduce the

smaller cofactor into the pivots Λ, gcd(g1, g2) into N , and recompute the lexicographic

Gröbner basis in step 5.

2 If ∃ g1 ∈ N such that hd�(content(g1,hd�(g1)) 6= ∅ then introduce content(g1,hd�(g1))

into the pivots Λ, g1/content(g1,hd�(g1)) into N , and recompute the lexicographic

Gröbner basis in step 5.

Then the modified algorithm produces a rif ’-form for arbitrary rankings in a finite number

of steps.

Consider the poly rif ICs’ algorithm applied with either one of the two modifications

described above on the system of Example 15. It is easy to verify that in both cases the

algorithm completes in a finite number of steps.

The analysis and proof of the algorithm obtained from Conjecture 2 is beyond the scope

of this development, and will be considered in a later work, though this modification is the

one in use by the RifSimp implementation, and has been successfully used on hundreds of

problems. It should be noted that the current versions of the rif and DiffElim implementa-

tions utilize this conjecture, so this must be considered when viewing the timings obtained

in the benchmarks chapter (7).



Chapter 3

The rifsimp Implementation and

MaxDim Algorithm

3.1 Introduction to the rifsimp Implementation

The rifsimp command (§A.2) is a Maple implementation of the RifSimp algorithm for per-

forming automated differential elimination on nonlinear systems of ode or pde. The core

concepts behind the RifSimp algorithm are discussed in Chapters 1 and 2, but in this chapter

we describe some of the more detailed aspects of its implementation.

Input: A system of ode/pde (Sys) and a ranking �d

Output: A tree structure containing all cases

rifsimp(Sys, �d)

UnC := ’=’ from Sys (unclassified equations)

Sol := ∅ (solved form equations)

NLin := ∅ (leading nonlinear equations or equations with a nontrivial pivot)

Piv := ’6=’ from Sys (all pivots currently in effect)

Case := [] (current branch on binary case tree)

return do rifsimp(UnC, Sol, Nlin, Piv, Case, �d)

end rifsimp

71
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do rifsimp(UnC, Sol, NLin, Piv, Case, �d)

while UnC 6= ∅ and Nlin not reduced do

neq := select eqn from UnC that can be solved without introducing a

new pivot (any eqn that require new pivots are placed in NLin)

if neq is not null then

neq := solve neq for highest ranked derivative

Sol := self reduce Sol ∪ {neq}
Piv := reduce Piv with respect to Sol

if pivots are violated then

return [Case, ’system is inconsistent’]

end if

UnC := UnC ∪ {integrability conditions on Sol}
UnC := reduce UnC with respect to Sol

else

neq := select eqn from NLin with pivot

if neq is not null then

piv := pivot for neq

return do rifsimp(UnC ∪ {neq}, Sol, NLin, Piv ∪ {piv 6= 0},
[Case,piv 6= 0], �d)

⋃

do rifsimp(UnC ∪ {neq, piv=0}, Sol, NLin, [Case, piv = 0], �d)

else

NLin := nonlinear elimination on NLin

Sol, Piv := nonlinear elimination on Sol, Piv with respect to NLin

(with usual checking for inconsistency)

UnC := {new spawn conditions on NLin}
UnC := reduce UnC with respect to Sol,NLin

end if

end if

end while

return ([Case, Sol, NLin, Piv])

end do rifsimp
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The result will be a set of disjoint cases for the system, split on the pivots, and each

case may have a linear component (Sol), a nonlinear component (NLin), and inequations

(Piv), along with a description of the assumptions made for that case (Case). Note that the

Case output is provided for information only, as the reduced form of the assumptions will

be present in Sol, NLin and Piv.

There are many aspects of rifsimp that are not addressed by the brief pseudocode de-

scription above. Most of these are modifications that improve the general efficiency of the

algorithm, while others provide greater detail on how certain computations are performed.

These aspects are described in the following sections.

3.2 Implementation Details

The pseudocode describes rifsimp as processing a single equation at a time. It was found

in practice that this approach was somewhat inefficient (particularly for large systems with

hundreds of equations), so the actual implementation selects a subset of the unclassified

equations to add to the solved form list all at once. This subset is currently selected as

a portion of the unclassified system that is of smaller complexity (currently based on the

length of the equations) relative to the rest of the unclassified equations, limited by the

number of equations already in solved form. For example, if the solved form list already

contained one hundred equations, then rifsimp would only add a single equation at a time,

as the number of new integrability conditions required for the resulting new solved equation

could be large. If instead the solved form list was empty, then rifsimp would feel free to add

more equations all at once, if the relative complexity of these equations does not differ by a

factor of 2 or greater. This behavior can be modified using the ezcriteria option of rifsimp

described in §A.6.

The implementation has been designed to be incremental in nature, remembering which

integrability conditions (§1.4) have already been taken, and which nonlinear equations have

already been spawned (§1.8). This makes a large difference in the practical implementation

of the algorithm.

The default ranking ranks first by the differential order of derivatives, then by the

individual differentiations, then by dependent variable name. Constants are ranked lower
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than dependent variables. Specification of a ranking for rifsimp can be a very involved

process for systems with many dependent and independent variables. There are a number

of shortcuts that can be used to specify the solving order of the dependent variables of the

problem (see vars in §A.5), and order of preference for differentiation (see indep in §A.5),

as well as the full specification available through the ranking argument (§A.6). A detailed

description of available rankings and their specification with examples can be found in §A.7.

3.3 One-term Equations and Polynomial Decomposition

One strategy that has provided significant efficiency gains for the algorithm is a specialized

treatment of one-term equations (equations of the form indeterminate = 0) combined with

polynomial decomposition methods. This is best described through an example.

Example 17 Consider the equation fxx = 0, where f = f(x, y). This equation tells us that

fx, fxy, fxyy, ... are all constant with respect to x (or that f could be written as f(x, y) =

f0(y) + xf1(y)). If in addition, the system contained an equation in f(x, y), g(y):

fx + gy + xfxy = 0

then the fact that fx, fxy, and gy are independent of x allows us to decompose this equation

into the two simpler equations

fx + gy = 0, fxy = 0.

Though this result can be obtained through a combination of differential elimination

and integrability conditions, it can involve significant computation, and is more efficiently

accomplished using decomposition techniques.

In general, any one-term equation introduced in a computation can have the effect

of decomposing equations, so whenever additional one-term equations are discovered, all

equations of the system are checked for decomposition.



CHAPTER 3. THE RIFSIMP IMPLEMENTATION AND MAXDIM ALGORITHM 75

3.4 More Leading Nonlinear Equations

Nonlinear differential equations present in the system can be treated algebraically by virtue

of the spawning (§1.8) that is performed on them. This spawning accounts for all differential

consequences of the nonlinear equations, allowing them to be treated simply as algebraic

equations.

This allows use of many already existing algorithms for handling nonlinear algebraic

equations, such as Gröbner Bases, Ritt-Wu decomposition, and resultant based elimination

techniques.

The rifsimp implementation initially used Gröbner Bases techniques by default, as this

allowed reduction of the nonlinear equations to a canonical form without performing addi-

tional case splitting. It was observed that often the direct use of Gröbner basis methods is

highly inefficient for the nonlinear subsystems occurring during the differential elimination

process. As a result, other nonlinear system strategies have been employed.

The current default strategy treats the polynomially nonlinear equations by isolating for

the highest power of the leading derivative present in the equation. This approach often

avoids system blow-up as a result of the many S-polynomials that may be required through

a pure Gröbner treatment, as the isolated equations have fewer compatibility conditions

with other nonlinear equations of the system. On the down side, this approach may require

additional case splitting on the coefficient of the highest power of the leading derivative in

each nonlinear equation. This coefficient is a new type of pivot called the initial (§1.8) of

the equation. Before termination of each case, a Gröbner basis is formed over all nonlinear

equations to be sure all additional relations in the now algebraic system are accounted for.

This is somewhat more efficient than Gröbner bases on the subsystems occurring during the

computation of a case as all nonlinear relations are available, not just a subset.

The original Gröbner basis strategy can still be used with the rifsimp implementation

through use of the grobonly and initial options (§A.9).

Specification of a ranking for the Gröbner basis computation is quite involved, as it com-

bines the ranking imposed on the derivatives (§1.2,§A.7), and a term ordering on monomials

that are products of these derivatives. A high level description of the nonlinear rankings

available for use in rifsimp can be found in §A.9.
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Further, rifsimp also provides the factoring option (§A.8) to allow case splitting on the

factored form of nonlinear equations. Given that splitting is already being performed on

the initial and the leading linear coefficient of all derivatives of each nonlinear equation, the

only remaining factorization will be one where all factors contain the leading derivative of

the equation. Splitting on these factors has the effect of lowering the algebraic degree of

the leading derivative for each of the split cases, which naturally results in a simplification

for each case, at the cost of the additional case splitting. The default setting for factoring

in rifsimp is one in which factoring will have no effect unless the leading derivative of the

equation is not present in the factor. As discussed above, this will have no effect unless

initial is off.

One additional consideration when working with leading nonlinear equations in com-

bination with inequations is the possibility that all solutions of the nonlinear system are

excluded by the inequations (a so-called empty case). Though the differential consequences

of the leading nonlinear equations are taken care of through spawning, no such mechanism

is in place for the inequations of the system. The primary difficulty with this is illustrated

by the following:

Example 18 Consider the following ode and two inequations in f(x), u(x):

fx = u2(u − 1), 3u − 2 6= 0, ux 6= 0

The combination of these equations imply that

u 6= 0, fxx 6= 0, fx 6= 0, f 6= 0

because

ux 6= 0 ⇒ u 6= 0

and

fx = u2(u − 1) ⇒ fxx = uux(3u − 2)

Since all product terms in uux(3u− 2) are nonzero, then fxx 6= 0. Also fx 6= 0, f 6= 0 follow

directly from fxx 6= 0 using the same method as for u 6= 0 above.

The key fact is that new differential equations are obtained through differentiation of

existing equations (pivots do not need to be considered), while obtaining new inequations
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requires integration of products of inequations considered relative to the equations of the

system. In summary, inequations are much more difficult to find.

Modulo this difficulty, rifsimp has the checkempty option (§A.9) that determines when a

case is empty, and discards it as an inconsistent case. This is done through application of a

total degree Gröbner basis algorithm to the union of the nonlinear equations n1 = 0, n2 =

0, ..., nm = 0, and the equation sP − 1 = 0, where s is a new variable, and P = p1p2...pn

is the product of the inequations for the case. This is called the quotient of the ideals

I = 〈n1, n2, ..., nm〉, J = 〈P 〉, and is denoted I : J (see Becker and Weispfenning [2] or Cox,

Little and O’Shea [18]). It is well known that this case is empty if 1 is in this ideal, and this

can always be discovered through the described Gröbner basis computation in finite time.

Note that this test is purely algebraic, so does not deal with the type of problem described

in Example 18.

3.5 Case Splitting Strategy

The rifsimp implementation proceeds by performing as much elimination as possible without

introducing new pivots. In other words, it performs computations using the leading linear

part of the system, using only pivots that are already known (either from the input, or

from a prior case splitting). Once no further computations can be performed, the nonlinear

equations are examined for possible splitting. Note that nonlinear equations refers to both

leading linear equations with nontrivial pivots and leading nonlinear equations.

One type of splitting not previously discussed is a factorization based splitting that

is closely related to the leading linear coefficient of the equations. Specification of the

faclimit=n option (§A.8) allows rifsimp to pivot on the leading derivative of an equation,

instead of the coefficient of that leading derivative (thus reversing the expected order), but

only if that derivative occurs as a factor in the user specified number of equations n.

Example 19 For the system

ux(fxx + fx
2f) = 0, ux(fx

5 − f3fx + f4) = 0

where u is ranked strictly higher than f , the leading derivative of both equations is ux. By
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default, rifsimp would split this system into the three disjoint cases

fxx + fx
2f 6= 0, ux = 0

fxx + fx
2f = 0, fx

5 − f3fx + f4 6= 0, ux = 0

fxx + fx
2f = 0, fx

5 − f3fx + f4 = 0.

Specification of faclimit=2 allows rifsimp to pivot on ux giving the cases

ux 6= 0, fxx + fx
2f = 0, fx

5 − f3fx + f4 = 0

ux = 0,

as ux occurs as a factor in two equations.

The general structure of the case splitting strategy can be described as follows:

1. If faclimit has been specified, check for any leading derivative factor pivots. If these

occur, pick the one with the lowest ranked leading derivative.

2. Check for any leading linear coefficient pivots. If these occur, select based on the current

criteria (see below).

3. Check for any initial pivots (coefficients of the highest degree of the nonlinearly occurring

leading derivative of each equation). If these occur, pick the one with the lowest ranked

leading derivative.

4. If factoring has been specified, check for any factorization of the leading nonlinear

equations. If these occur, split on the smallest of these factors based on the Maple

length.

There are a number of options for specification of the criteria described in step 2 above.

These include smalleq, smallpiv, lowrank, mindim, [smalleq,vars], and [lowrank,vars], and

they are described in detail in §A.8. The default is smalleq, which tells rifsimp to choose

the pivot from the equation that is smallest in length in any variables.
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3.6 Case Restriction and the MaxDim Algorithm

For some applications (most notably Lie Symmetry classification problems as described in

§5.2), it is helpful, and more efficient, to restrict the computation only to cases of interest.

rifsimp has the capability of restricting computation to only cases having at least a specified

initial data dimension for the linear part of the system for specified variables (see mindim in

§A.8). This option is capable of handling multiple criteria, specification of different types of

infinite dimensional data, etc., but the most common use is as a specification for the finite

dimension in the specified dependent variables (called the mindim variables).

Example 20 Consider the simple pde system for η(x, u) given by

ηxxxu = ηxuu, ηxxu = η.

The rif ’-form of this system is

ηxx = ηu, ηuu = η.

From this, the initial data can be computed as

η(x0, u0) = c1, ηx(x0, u0) = c2,

ηu(x0, u0) = c3, ηxu(x0, u0) = c4,

so the initial data is 4 dimensional.

In the above example, the initial data was computed on the completed rif ’-form of the

system, but it is possible to obtain an upper bound for the dimension of the initial data

for a partially completed computation by considering the initial data of the current solved-

form equations. This directly results from the fact that addition of new equations to the

solved-form list can only decrease the number of free parameters.

Checking the initial data upper bound within the algorithm allows rifsimp to determine

cases that should be ignored more rapidly than computing all cases, then rejecting any cases

where the initial data is too small. This can be quite significant, as often the cases having

fewer free parameters are harder to compute as they are more complex than the higher

dimensional cases.
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Example 21 As a simple example, consider the Lie point symmetry classification problem

for the ode y′′ = f(y′) for y = y(x). The Lie point symmetry determining system for

this problem is a single equation which is linear in the infinitesimals ξ(x, y), η(x, y) with

coefficients that are polynomials of y′, f(y′) (where y′ is now to be viewed as an independent

variable).

ηxx + 2y′ηxy + y′
2
ηyy − y′ξxx − 2y′

2
ξxy − y′

3
ξyy

−fy′ηx + (f − y′fy′)ηy + (y′fy′ − 2f)ξx + (y′
2
fy′ − 3y′f)ξy = 0

If we request that rifsimp find all cases where the initial data is 8 dimensional or higher in ξ,

η, we obtain a single case with the restriction that fy′y′y′y′ = 0. If we first find all cases for

this problem, then select the case with the largest initial data, we still get the 8 dimensional

case, but the run also computes the smaller dimensional cases requiring more than 25 times

as long to complete.

The MaxDim algorithm [53] (the maxdimsystems implementation is described in §A.10),

is an extension of this idea to an algorithm that, given the system and the dependent

variables of interest, uses rifsimp to compute all cases of maximal finite dimension, or all

infinite dimensional cases for problems in which these exist.

A verbocode description of MaxDim is given as follows:

1 Set the maximal dimension d to ∞.

2 Call rifsimp which traverses the binary tree, stopping on any branch k when the upper

bound for the initial data dk drops below d. After a finite number of steps, either some

branches complete, and output rif ’-forms will have been found, or none will have been

found.

3 If branches have completed, the algorithm terminates, returning the rif ’-forms with d

free parameters in their formal series solutions, and a list of all failed branches with

the values dk < d, representing the upper bounds on the dimension of initial data for

the branch.

4 If no branches have completed, the maximal dimension d is set to the maximal value

found on the rejected branches, and the algorithm restarts at step 2.
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It should be possible to use any differential elimination algorithm in place of rifsimp

above, as long as the algorithm has been modified to compute the initial data incrementally,

and reject cases where it is below the desired bound.

3.7 Additional Algorithms and Tools

The Rif package in Maple also has implementations of algorithms to compute the initial

data and Taylor series of an ode or pde system that is in rif ’-form, and for visualization of

the structure of a multiple case rifsimp result.

The initialdata command (§1.6, §A.11) is the implementation of an algorithm that can

efficiently compute initial data of pde systems with a large number of dependent variables.

The concepts used in this algorithm are clearly described in Reid [50], though the algorithm

differs from the one described there.

The rtaylor command (§A.12) can compute Taylor series expansions of a large system

of pde simultaneously, and is described in Reid [50].

The caseplot command (§A.13) is a stunning visual tool that can be used to display the

underlying structure of a computation with many cases in rif ’-form. It can provide visual

information on the initial data of the individual cases, and on the splittings performed in

obtaining each case. Examples of the use of caseplot can be found in §5.3.1, §5.3.2, and

§5.3.3



Chapter 4

Fast Differential Elimination in C

In this chapter we introduce the CDiffElim environment, written in C, and the DiffElim

algorithm written in CDiffElim for differential elimination of pde systems.

This environment has strategies for addressing difficulties encountered in differential

elimination algorithms, such as exhaustion of computer memory due to intermediate ex-

pression swell, and failure to complete due to the massive number of calculations involved.

These strategies include low-level memory management strategies and data representations

that are tailored for efficient differential elimination algorithms. These strategies, which are

coded in a low-level C implementation, seem much more difficult to implement in high-level

general-purpose computer algebra systems.

The rifsimp implementation, described in the previous chapter, is a mature package that

allows a convenient and detailed analysis of over-determined differential systems.

The primary motivation behind the design and implementation of the CDiffElim envi-

ronment and DiffElim algorithm was to address several difficulties encountered when using

the rifsimp implementation, specifically memory blow-up and speed issues. As the rifsimp

implementation evolved, more and more complicated strategies were implemented, which

resulted in significant changes to its core algorithms. This resulted in a code that performs

very well for many problems, but is difficult to change and adapt for other problems.

These issues motivated the long-term project that evolved into the CDiffElim environ-

ment. The first step of the project was to design compact data structures needed to efficiently

82
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implement basic operations of differential elimination. Once the design and implementation

of these data structures was in place, the basic algorithms were built. This was followed by

the implementation of some of the more general algorithms (such as reduction, differential

reduction, square-free factorization, etc.).

Once these elements were all in place, the next phase in the CDiffElim project was to

implement the DiffElim algorithm using these components.

Advantages of the CDiffElim environment over a general-purpose computer algebra sys-

tem include the following:

• As is shown in the benchmarks in Chapter 7, a careful implementation in C can

offer significant reduction in the time (as much as a factor of 100) and memory us-

age required to simplify large and/or complex differential systems over an equivalent

algorithm written in a general-purpose computer algebra system.

• The algorithms and data structures can be optimized for efficiency when working with

differential elimination problems. In contrast, an efficient implementation of equations

with ordered terms within Maple is not currently available.

• The general structure of the high-level algorithms should be kept simple and flexible,

so that changes can be made easily.

Disadvantages of a low-level stand-alone implementation compared with an implementation

in a general-purpose computer algebra system are by no means insignificant, and include

more difficult bug fixing, and lack of access to the large number of packages and general

advances available in a general-purpose computer algebra system.

4.1 The CDiffElim Implementation

The CDiffElim environment uses a number of well known algorithms (not restricted to

symbolic algebra) to enhance the speed of symbolic computations. One of these, for example,

is the binary buddy memory management system, which is a system that allocates large

blocks of data using malloc, then parcels out the memory for each allocation based on a

binary storage structure (see Knuth [34]). It was found that use of this memory management
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scheme gave a speed increase of a factor of 2 (for a Linux libc5 system) over use of the raw

malloc and free functions in the C standard library, which are generally implemented using

system calls.

At present, the CDiffElim environment is only capable of working with polynomial sys-

tems in the dependent and independent variables. In many cases, it is possible to represent

functions of the independent variables such as sin x, ln x, and ex using differential exten-

sions, (i.e. using differential equations to define these functions as noted in §1.1), so this

limitation is not as severe as it might initially seem.

In this section we present some of the core data structures being used in the CDiffElim

implementation, and briefly discuss some associated enhancements.

4.1.1 Considerations

For most differential elimination problems, the input systems are relatively sparse in their

indeterminates (with respect to their algebraic degree), so our focus will be on methods

for sparse equations in many indeterminates. For this reason, equations are stored using a

sparse distributed representation.

In differential elimination, the ability to store the terms of equations in the order deter-

mined by the ranking is vital to an efficient implementation. Without this ordered storage,

the process of reduction requires O(k) term comparisons for a k term equation to determine

the leading term. Application of a reduction process to the entire k term equation checking

each term in the equation for a reduction, even when no reduction occurs, will then require

O(k2) operations.

Though ordered storage is possible in Maple using lists or arrays, the core algorithms

(such as multiplication, division, and gcds) are not implemented for these structures. At

present, each use of these algorithms would require the conversion of the ordered represen-

tation into a Maple equation, and the conversion of the result back to ordered form. The

conversion back would require a sort, which is of O(k log(k)) expense for a k term equation.

Development of the CDiffElim environment in C gives us the ability to design an ordered

equation data type, and build algorithms to efficiently perform basic operations on these

ordered equations.
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4.1.2 Data Structures

Numerical Representation: The numerical data type (hereafter referred to as a

varint) supports either an arbitrary precision integer or a modular integer (required for

fast modular gcd and resultant computations). Arbitrary precision integers are stored in

base 65536 allowing fast machine computation of integer addition, subtraction, division,

multiplication, and gcd (see Knuth [35]). The Karatsuba algorithm for fast multiplication

has not been implemented, but the well known binary gcd algorithm is in place.

Indeterminates: The unknowns in the equations (currently including dependent vari-

ables, independent variables, and constants), are stored in a global symbol table. This table

also stores information allowing rapid computation of the derivatives of these indetermi-

nates. All objects external to this table are stored by reference.

Terms: Monomial terms are constructed of two components, a coefficient (which is

a varint), and an indeterminate list. The indeterminate list is ordered (with respect to

the ranking of the derivatives), and contains the reference to each indeterminate, and its

algebraic degree for that term. We note that the representation for a term is sparse with

respect to all possible indeterminates, that is it only stores references to the indeterminates

that are present in the term.

Equations: Equations are constructed as an ordered list of terms, in the order pre-

scribed by the term ranking. There are two data structures used for equations, namely

linked lists or red-black trees (see Cormen, Leiserson and Rivest [17]).

The red-black tree is an implementation of a partially balanced binary tree that supports

O(log(k)) maximum, minimum, search, insert and delete functions for an k element set. We

note that these are similar in concept to AVL trees (see Aho, Hopcroft, and Ullman [1]).

The most commonly used form is the linked list structure, but the binary tree represen-

tation is needed for algorithms where the ordered form of the equations cannot easily be

retained (input parsing and differentiation for example).

Other Structures: In addition to these base data structures, more specialized algorithm-

specific data structures are also implemented. For fast gcd computation, for example,

modular univariate equations and modular matrix data structures are needed.
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Number of Multiplications Term comparisons
Depth calls per call (exact) per call (bound)

1 1 0 lk

2 2 0 l
2k

... ... ... ...

log2(l) − 1 l
2 0 2k

log2(l) l k 0

Table 4.1: Polynomial multiplication operation counts

4.1.3 Basic Operations

Basic operations on integers are implemented based on the algorithms discussed in Knuth

[35]. This includes multi-precision addition, subtraction, multiplication, division, and the

binary gcd algorithm. Polynomial addition and subtraction is implemented as a merge of

the two ordered input polynomials, with O(k + l) cost, where k,l are the number of terms

in each of the polynomials.

4.1.4 Polynomial Multiplication

The ordered structure of equations allows for a recursive multivariate polynomial multipli-

cation algorithm that maintains the ordered structure at little additional asymptotic cost.

Given that we have multivariate polynomials with k and l terms, the cost of performing the

multiplication is O(k l). A straightforward implementation of this multiplication, followed

by a merge sort of the terms, would have an asymptotic complexity of O(kl log(kl)). Rather

than using this method the smaller of the two factors is split into two equations of equal

size and the routine is called recursively. Once there is only one term remaining the product

with the larger equation is computed and the result returned. When the routine receives the

two recursive results it then performs a single-pass merge of the computed results requiring

the same number of comparisons as the total number of terms in the two equations. We

order the equations so that k ≥ l.

There are a total of kl multiplications, and an upper bound of kl log2(l) term compar-

isons, so the worst case running time of this ordered polynomial multiplication algorithm

is O(kl log2(l)). It should also be noted that the worst case only occurs when there are
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very few like terms in the resulting product. In practice, for differential elimination com-

putations, this is not often the case, and the complexity is largely dominated by the O(kl)

multiplication cost.

4.1.5 Polynomial Division

The ordered structure for polynomials discussed above facilitates an efficient implementation

of division. The resulting division algorithm is a modification of the classical polynomial

division algorithm that expedites the division of polynomials having many terms by poly-

nomials having relatively few. This modification is most relevant to division of ordered

polynomial data structures.

We consider the problem: given a, b ∈ Z[x, y, ...] find q such that q ∈ Z[x, y, ...] and

a = b q. We assume that a and b are stored in order with respect to a ranking ≺. For

purposes of the following analysis we state that b has l1 terms, q has l2 terms, and a has

k ≤ l1l2 terms (terms here refer to the number of distinct monomials). Note that we do not

consider the class of problems where there is a remainder.

It is straightforward to see that classical division of a by b will require l2 steps, each

involving one term division, l1 multiplications, and l1 additions, so the complexity of classical

division is O(l1l2). One may also observe that when l1 � l2, or l2 � l1, the expense of

performing the division is roughly O(max(l1, l2)) and that the worst case occurs in the

balanced case when l1 ≈ l2 with complexity O(l1
2).

A problem arises in the implementation of the classical polynomial division algorithm

for ordered equations. Since polynomial addition is implemented as a merge of two ordered

equations, division when l1 � l2 can have complexity O(l2
2). Note that in a private com-

munication between Michael Monagan and Allan Steel it was observed that a version of the

computer algebra language Magma suffered from this problem, so it is not an uncommon

pitfall. As an illustration of this problem, consider the ordered division of the polynomial

r = xzd + xzd−1 + ... + x − yzd − yzd−1 − ... − y (4.1)

by x − y (we will refer to the polynomial r as the remainder). Since (xzd)/x = zd, the

first term of the quotient is zd, and in the first step of the division process xzd − yzd is

subtracted from the remainder, resulting in the cancellation of the xzd term. In subtracting
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the yzd term from the remainder, d term comparisons must be made to find the location

of the yzd term to perform the subtraction. A similar pattern repeats d times. The total

number of term comparisons required for this division is d(d + 1)/2, which is O(l2
2), the

same complexity as the balanced case.

So we see that the problem occurs as the direct result of having to find the location in the

remainder of a term from the product of the divisor term and the dividend. Examination

of the process of division easily reveals a few facts. The quotient terms resulting from each

step of the division process are generated in strictly descending order with respect to the

ranking. This is only natural, as the equation is being stored in descending order with

respect to the ranking, and the ranking is preserved under multiplication. Also, using a

similar observation, the location of the product of a term of the divisor and the current

term of the quotient will always have a location in the remainder that follows the product

of that term of the divisor and the prior term in the quotient.

To avoid the efficiency difficulties mentioned earlier, we take advantage of these obser-

vations to drastically reduce the number of term comparisons in the implementation of the

division process in CDiffElim.

In the first division step, we store a location in the remainder where we begin searching

for the location of each term of the quotient-divisor term product for each term of the

divisor. In all following division steps, we use these stored locations as a starting point to

determine where the product of the next quotient term and the corresponding term of the

divisor belongs, and adjust the stored location as necessary.

As an illustration of the concepts described above, consider the state of the remainder

of (4.1) after the first division step (where the stored locations are marked with the under-

brace):

xzd−1
︸ ︷︷ ︸

+... + x − yzd−1

︸ ︷︷ ︸
−... − y. (4.2)

In the next division step, the stored locations correspond exactly to the terms required when

subtracting xzd−1 − yzd−1 from the remainder.

An asymptotic result for the number of monomial comparisons for this modified algo-

rithm can be obtained as follows:

The total number of comparisons needed for the first division step is at most k < l1l2.

The worst case number of comparisons needed in all following division steps is O(l1l2) for
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each term of the divisor (here l1l2 is the maximum possible length of the dividend). The

reasoning for this is that the stored location for each term of the dividend is only ever moved

to lower order terms in the remainder, and the maximum number of terms in the remainder

is l1l2. So we obtain the number of comparisons as O(k + l1
2l2), which when l1 � l2 gives

O(l2), the same order as the number of arithmetic operations required for the division.

In conclusion, when b has few terms relative to a, we can expect we are in the l1 � l2

case, and use this modified division algorithm. When the number of terms of a and b are

on the same order, the unmodified algorithm should be used instead.

4.1.6 Differentiation

The ordered approach used for addition, multiplication and division does not lend itself well

towards differentiation, so an alternative approach is needed.

The derivative of an equation is constructed through differentiation of each term. As

each term is differentiated, it is inserted into a red-black tree structure (§4.1.2). This has

the advantage that any common terms, resulting from differentiation of different terms, will

not incur more than a single term memory allocation, if implemented correctly.

For example, consider the differentiation of a quadratic polynomial having l terms, with

a result having k ≤ 2l terms. The cost of the differentiation into ordered form requires

approximately 2 l log2(k) comparisons (due to the use of the partially balanced binary tree),

and k memory allocations. An algorithm that were to perform all differentiations and sort

afterwards, would require the same number of term comparisons if performed with a fast

sorting algorithm, but would require 2l memory allocations instead.

4.1.7 Multivariate polynomial gcds

The basis for all multivariate gcd code in CDiffElim is a recent modification of Brown’s

dense modular gcd algorithm by Monagan and Wittkopf [43] (see §6.4), and a new mod-

ification of Zippel’s sparse modular gcd algorithm (see §6.6). Both algorithms include an

inexpensive probabilistic method for obtaining degree bounds for each variable in the gcd,

and as a result allow, with high probability, rapid determination of a trivial gcd, which is

the most common case in many of the operations of differential elimination.
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In the process of differential elimination, gcd computations are required frequently.

Examples include removal of factors depending upon only the independent variables of the

problem, and detection of factor-based case splitting.

These algorithms, and a highly detailed discussion and analysis of modular methods for

gcd computation, can be found in Chapter 6.

4.2 The DiffElim Algorithm

As a test of the CDiffElim environment, the DiffElim algorithm has been implemented in this

environment. A basic outline of the algorithm resembles a modification of the Buchberger

algorithm [10].

Consider systems that are linear in the dependent variables and their derivatives, with

coefficients that are polynomial functions of the independent variables. For such systems,

the DiffElim algorithm terminates in a finite number of steps, and the output is in rif ’-

form, yielding an existence and uniqueness theorem for the input (see Rust et al. [60, 58]).

Although DiffElim is capable of taking inputs that are nonlinear in the dependent variables

and their derivatives, the fact that it is a pure generalization of Gröbner Bases to differential

polynomial rings means that there is no guarantee of termination.

Given the input system, one equation is selected at a time, and reduced with respect

to the already simplified equations. The input ranking is simply a differential ranking

(§1.2). The D-polynomials (hereafter referred to as DPolys), in the linear context, are the

integrability conditions (§1.4) using the redundancy criteria of Rust (provided as Theorem

2 of Chapter 2). For nonlinear systems, they represent an extended form of integrability

condition combined with algebraic S-polynomials. We omit the details here, as the condition

set for the nonlinear case is not necessarily finite.

Rather than forming the DPolys, references are stored, and the DPolys are computed

when needed (making it possible to store the infinite sets of conditions for the nonlinear case

via a description). Once all DPolys are either appended to the system (possibly resulting in

new DPolys) or reduced to zero, the algorithm terminates, and returns the reduced system

with all integrability conditions satisfied.
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Algorithm 14 (DiffElim)

Input: An input system of pde U , a ranking ≺d, and a set of criteria C (§4.2.1).
Output: The reduced form of the input.

G := {}, S := {}
while U 6= {} or S 6= {} do

neweq := SelectFrom(U , S, ≺d, Cselect)

if neweq is a DPoly then

S := S \ {neweq}
neweq := MakeDPoly(neweq, G)

else

U := U \ {neweq}
end if

neweq := Reduce(neweq, G, ≺d, Creduce)

if CheckCriteria(neweq, Caccept) is false then

U := U ∪ neweq

else if neweq is not identically zero then

G := Reduce(G, neweq, ≺d, Creduce)

Gr := HasReduced(G)

if elements of G have reduced (i.e. Gr 6= {}) then

G := G \ Gr

U := U ∪ Gr

S := S \ GetRefs(Gr, S)

end if

S := S ∪ BuildDPolyRefs(neweq, G, ≺d, Ccompat)

G := G ∪ neweq

end if

end while

return G

We now present a brief description of some of the components of the algorithm.

SelectFrom: Determines the next best equation to use for the system. The determination

of the equation or DPoly to be used is based on the Cselect criteria. The selection criteria

has the capability of choosing to compute a DPoly instead of selecting an equation from U
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if none of the equations in U satisfy the criteria.

MakeDPoly: Constructs DPolys, which for linear systems are the integrability conditions

(§1.4).

Reduce: Reduces the equations given in the first input by the equations in the second

input. The type of reduction to perform is based on the Creduce criteria. For linear systems

the reduction is that defined in (§1.3).

CheckCriteria: Validates that the equation still satisfies the selection criteria after being

reduced. This is necessary as the process of reduction can cause the complexity of the input

equation to increase significantly. For example the equation can become excessively large,

or become more dense in the indeterminates of lower rank. The decisions are made based

on the Caccept criteria.

HasReduced: Determines which of the input equations have been changed by the last

reduction. This allows the implementation to be update driven.

GetRefs: Obtains all DPoly references from the second input that depend on the equations

in the first input. Again required for the update driven implementation.

BuildDPolyRefs: Constructs reference form for all DPolys between the input equation,

and the current solved form system G.

4.2.1 Adjustable Criteria

There are various criteria that can be specified for a run of the algorithm. These criteria,

in combination with the input ranking, offer some flexibility as to the manner in which the

system is reduced. The currently available criteria are:

Cselect: The selection criteria is used to determine a good candidate equation or DPoly to

adjoin to the simplified system. Currently this criteria can be based on 4 measures:

1. The overall size of the equation;

2. The differential order of the equation;

3. The algebraic degree of the equation;

4. The size of the coefficient of the leading derivative in the equation.
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A hybrid of the above criteria may also be specified. For DPolys, the quantities are

estimated from the pair of equations that are used to create the DPoly.

Caccept: As mentioned in the discussion of CheckCriteria, the complexity of an equation

can increase greatly in the process of reduction. This criteria can be set to delay the

use of equations of this type until further equations are uncovered (that may reduce

this equation to a simpler form). This may be used to limit the growth of equations

during reduction to a certain percentage of the original size. Alternatively it can be

used as a screen, with a very loose setting for Cselect, to force the algorithm to consider

the reduced form of the DPolys.

Creduce: This criteria controls whether pure reduction, pseudo-reduction (§1.9), or a com-

bination of the two is being used. By a combination of the two, we refer to pseudo-

reduction over a restricted set of variables. In this case of limited pseudo-reduction

(the type of reduction used for the rifsimp implementation), any leading nonlinear

equations are treated as purely algebraic constraints.

Ccompat: This criteria controls how DPolys are generated, and is closely related to Creduce.

If pseudo-reduction is in use, this generates the spawn (§1.7) of any leading non-

linear equations (by differentiating each equation with respect to each independent

variable) and normal integrability conditions for any leading linear equations. The

spawn method is needed to enforce any differential consequences of leading nonlinear

equations. If pure reduction is in use, the extended form of the DPolys is used. If the

reduction form is mixed, then a combination of the methods is used.

For all systems that are treated in the applications in Chapter 5 and the benchmarks in

Chapter 7, the algorithm was used with the settings that give it the same behavior as the

rifsimp implementation uses by default.

It should be noted that although the algorithm is not necessarily finite for nonlinear

systems, it will terminate with a result if it is possible to reduce the input system to one

that is leading linear.

The author has found great utility in the implementation for nonlinear problems, even in

cases where the algorithm does not terminate, as there is an option to store the intermediate

system in Maple format after some fixed number of iterations, resulting in a sequence of

files for the progress of the algorithm on the system. Often it is possible to examine these
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intermediate results in Maple, and determine a useful manual splitting of the system that

will allow DiffElim to terminate in a finite number of iterations.



Chapter 5

Applications

5.1 Lie Symmetries

The symmetries, or transformations leaving invariant a system of partial differential equa-

tions, are not known a priori, and have to be determined.

Applications of symmetries include mapping known solutions to new solutions, reducing

the order of ode and the number of variables in pde, construction of similarity solutions or

solutions invariant under a symmetry, and mapping of a given pde to a more tractable pde

(e.g. transformation of a nonlinear pde to a linear pde). See Bluman [3] or Olver [46] for

more detail.

One method for determination of the symmetries of a pde system in independent vari-

ables x = (x1, x2, ..., xn) and dependent variables u = (u1(x), u2(x)..., um(x)) is to substitute

transformations of the form

(x, u) 7→ (x̂, û) = (X(x, u), U(x, u))

into the pde system and equate to the non-transformed pde. This results in a complex and

highly nonlinear over-determined system of pde for the unknown functions X, U .

Lie’s breakthrough was to simplify the problem of finding continuous symmetries by

linearizing these transformations about the identity. These linearized transformations, called

infinitesimal Lie symmetry transformations, satisfy an associated linear system of over-

determined partial differential equations.

95
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Following this approach, one would seek linearized or infinitesimal symmetries of the

form

(x, u) 7→ (x̂, û) = (x + ξε + O(ε2), u + ηε + O(ε2)), (5.1)

where ξ, η, called infinitesimals, are unknown functions of x, u. The symmetry vector field,

ξ ·∇x + η ·∇u, is tangent to the flow induced by the group transformation of the symmetry.

A simple but inefficient way to obtain the symmetry determining system for ξ and η is

to substitute the linearized form of the transformations above into the pde system. The

determining system is then obtained from the coefficient of the ε term. Lie [46] gave a much

more elegant and efficient method in which the determining equations result from applying

the prolongation of the linearization operator to the pde.

There are many computer algebra programs for automatically generating such infinites-

imal symmetry determining systems (see the extensive review article by Hereman [24], and

also see Ibragimov [30]). We obtained the determining systems for this thesis using Hick-

man’s package [25].

Differential elimination can be used to greatly simplify these determining systems.

5.2 Lie Symmetry Classification Problems

The analysis of Lie symmetries for systems of ode or pde can be extended in a straight-

forward manner to cover a broad class of ode or pde systems within a single computation.

This is accomplished through the introduction of arbitrary functions into the system.

Example 22 Consider the following 3 separate ode,

y′′(x) = g(x)y(x),

y′′(x) = xy(x)2,

y′′(x) =
y(x)2 − xey(x)

x3y(x) + cos(x)
.

Lie symmetry information for all three ode could be obtained from the analysis of the single

ode

y′′(x) − f(x, y(x)) = 0,

where f(x, y(x)) is considered to be an arbitrary function.
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Another example of a situation in which this type of system can arise is in a physical

model, where prescribed functions (such as a wave function or forcing function) are part of

the model.

Different forms of these classification functions can result in distinctly different symmetry

properties for the ode or pde system. A Lie symmetry classification problem then arises,

where it is desirable to obtain information on the symmetries for some (or perhaps all)

possible forms of the classification functions.

In performing a case splitting differential elimination analysis on these systems (having

chosen an appropriate ranking), the determining equations split naturally into a finite num-

ber of cases for the different forms of the classification functions, allowing one to characterize

the symmetries of different subclasses of the system.

Though it may not be possible to solve for the infinitesimal Lie symmetries for each sub-

class, information can still be obtained, such an existence-uniqueness theorem for solutions

of the subclass, and the number and structure of the symmetry group for the subclass.

Naturally, conditions are obtained to allow detection if a specific form of the classification

functions belongs to a class.

Example 23 Consider the ode for y(x)

y′′(x) = ay(x)(y′(x) + by(x)) (5.2)

for arbitrary a, b. The determining system for the infinitesimal Lie symmetries of (5.2)

given by ξ, η from (x, y) 7→ (x + ξε + O(ε2), y + ηε + O(ε2)) is

ηxx = 0,

−2ayηy + ξyy − 2ηxy = 0,

−aξ − 3aby2ηy − ayηx + 2ξxy − ηxx = 0,

−2abyξ − 2aby2ηx + aby2ξy − ayξx + ξxx = 0

A case splitting differential elimination algorithm rapidly gives three cases depending

upon a,b, all of which can be solved for their infinitesimals giving

(i) a 6= 0, b 6= 0 ξ = c1, η = 0,
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(ii) a 6= 0, b = 0 ξ = c1 − c2x, η = c2y,

(iii) a = 0, b = 0 ξ = c1 + c2x + c3y + c4x
2 + c5xy

η = c6 + c7x + c8y + c4xy + c5y
2,

where c1, .., c8 are arbitrary constants for each case. The number of independent arbitrary

constants gives the dimension of the symmetry group for that case.

One may only be interested in classes where certain conditions are satisfied. One quite

useful condition is restriction to classes having at least a specified dimension for the initial

data (see §1.6). This allows one to find the class or classes having the maximal symmetry

group (the classes with the highest dimensional initial data). This approach is used heavily

in the following applications.

5.3 Maximal Group of nonlinear Reaction Diffusion Equa-

tions

In [53] we considered coupled nonlinear reaction diffusion systems (see Murray [45]) of the

form

ut − uxx = f(u), (5.3)

where u is an m-component vector. The components of u are, for example, concentrations

of interacting chemicals in combustion or competing species in biological applications [45].

The group theoretic study of such systems was initiated in Zulehner and Ames [81] (also

see Vol. I, §10.13 of Ibragimov [30]).

Following Lie’s linear approach (§5.1), we considered the transformation

(t, x, u) 7→ (t̂, x̂, û) = (t, x, u) + (τ, ξ, η) ε + O(ε2),

where τ∂t + ξ∂x + η · ∇u is the infinitesimal generator of the symmetry group.

5.3.1 Single Component Equation

We consider the nonlinear reaction diffusion system (5.3) for a single component

ut − uxx = f(u), (5.4)
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where the nonlinearity is imposed by including the additional inequation fuu 6= 0 in the

system. Applying Lie’s linear approach to (5.4) we obtain the system of 7 equations

2ηxu − ξxx + ξt + 3fξu = 0,

ηt − ηxx + fηu − fuη − 2fξx = 0,

τt − τxx + fτu − 2ξx = 0, (5.5)

ηuu − 2ξxu = 0, τxu + ξu = 0,

ξuu = 0, τu = 0, τx = 0,

for the infinitesimal symmetries from τ(t, x, u)∂t + ξ(t, x, u)∂x + η(t, x, u)∂u.

Running with rifsimp with the initial data requirement set to ∞ (see §A.6 and §A.8),

rifsimp(sys, [tau,xi,eta], casesplit, mindim=infinity);

in which sys is a list containing equations (5.5) and the nonlinearity requirement fuu 6= 0

The calculation completes with two cases, both of which violate the initial data constraint,

the first case having initial data with dimension at most 4, the second at most 3.

Re-running rifsimp with mindim=4 gives a result with the case tree (see caseplot in

§A.13) in Figure 5.1.

Figure 5.1: Single component Reaction-Diffusion

So we find exactly one four-dimensional case. For this case there are two conditions on
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f(u),

fufuufuuu + f3
uu + ff2

uuu = 0, fuuuu = 2
f2

uuu

fuu
,

which can be readily solved to give

f(u) = a(u + b) ln(c(u + b))

where a, b, c are arbitrary constants. This is a well-known result given in §10.2, Vol. I

of [30], that the one component diffusion equation with maximal (4 dimensional) group is

ut − uxx = a(u + b1) ln(c1(u + b1)).

The exact solution for the infinitesimals can also be obtained, giving

η(t, x, u) = (C1 + C2x)(u + b)e−at,

ξ(t, x, u) = C3 − 2C2
e−at

a
,

τ(t, x, u) = C4

where C1, C2, C3, C4 are the arbitrary constants that correspond to our 4-dimensional initial

data.

5.3.2 Two Component Uncoupled System

In [53] we considered the two component reaction-diffusion system where u = (u, v) which

is given by

ut − uxx = f(u), vt − vxx = g(v)

where the nonlinearity is imposed by the additional inequation fuu 6= 0.

Running rifsimp on this system, together with the inequation, resulted in 8 infinite

dimensional cases as shown in Figure 5.2. Analysis of each of the infinite branches revealed

that the equation gvv = 0 is common to all. These are all cases in which the second equation

becomes linear with respect to v, and admits an easily interpreted infinite dimensional group,

which was not pursued further.

When we re-ran the calculation adding the assumption gvv 6= 0, we found that there are

no infinite cases, obtaining an upper bound of 5 for the dimension of the initial data.
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Figure 5.2: Uncoupled Reaction-Diffusion (infinite)

Figure 5.3: Uncoupled Reaction-Diffusion (finite)

Running rifsimp with mindim=5 gave us exactly one case, as shown by the caseplot in

Figure 5.3. We also obtained a system of 3 pde, and 4 inequations for f(u), g(v):

fuuu =
−fuugvvg − fuuf2

u + f2
uuf + fugvfuu

ffu − fgv
,

gvvv =
g2
vvgv − fug2

vv

ffuu − gvvg
,

−2ffuugvvg + g2g2
vv − fugvffuu − gvvfugvg

+g2
vffuu + f2f2

uu + f2
ugvvg = 0,

fuu 6= 0, gvv 6= 0, ffuu − gvvg 6= 0.
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f2
u − fugv − ffuu + gvvg 6= 0,

which was solved using Maple’s dsolve with assistance from rifsimp to obtain

f(u) = a(u + b1) ln(c1(u + b1)),

g(v) = a(v + b2) ln(c2(v + b2)).

This is an predictable extension of the result from §5.3.1 and §10.2, Vol. I of Ibragimov [30].

5.3.3 Two Component Partially Coupled System

In [53] we considered the two component reaction-diffusion system given by

ut − uxx = f(u), vt − vxx = g(u, v), (5.6)

where the nonlinearity is imposed by the inequation fuu 6= 0, and the coupling by the

inequation gu 6= 0.

Rather than using rifsimp and manually adjusting the minimum dimension, we used

the MaxDim algorithm (see §3.6, §A.10) to compute the cases with largest initial data. We

obtained a total of 67 cases for this problem, of which 41 had infinite initial data, and 18

were rejected, as the initial data is finite. Investigation revealed that all infinite cases have

two branching equations in common, specifically gvv = 0 and guv = 0.

This means that g(u, v) is of the form g(u, v) = g1v + g2(u), and with this restriction,

the second equation becomes linear in v. Once the nonlinear equation for u alone is solved,

we have an inhomogeneous linear equation in v to solve. This is a predictable class with

infinite groups, which we did not pursue further.

To find pure nonlinear cases, we then examined the three separate cases given by

Case (I): guv 6= 0, gvv = 0;

Case (II): guv = 0, gvv 6= 0;

Case (III): guv 6= 0, gvv 6= 0.

Application of MaxDim to Case (I) showed that there are three solutions having maximal

6 dimensional initial data (see Figure 5.4). The first case (referenced by 16 in Figure 5.4)
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Figure 5.4: Partially Coupled Reaction-Diffusion

gave a straightforward set of differential equations for f, g, which can be readily solved to

give

f(u) = a(u + b)2, (5.7)

g(u, v) = auv + d1u + d2v + c,

where a, b, c, d1, and d2 are arbitrary parameters.

The second case (21 in Figure 5.4) gave a somewhat more complex system of differential

equations, involving four pde, and a constraint

guuu =
2gvg

2
uu − 2fug2

uu − 2guguvguu

fguu + guvg
,

guuv =
guvguugv − g2

uvgu − guvguufu

fguu + guvg
,

gvv = 0, fuu = guv, (5.8)

−2gvguguvfguu + g2
vg

2
uuf + f2guvg

2
uu + 2fg2

uvguug

−fug2
uugvf + fuguugvguvg + g3

uvg
2 + g2

ug2
uvf

−gug2
uvfug + guvguufufgu − guvguuf2

ug = 0.

Since f(u), g(u, v) and all their derivatives are ranked lower than the infinitesimals, the

rifsimp implementation gives the f, g subsystem in rif ’-form. This also means that no new

conditions arise through differentiation of the constraint (see Rust et al. [60]). These can
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also be explicitly solved to give

f(u) = a1(u + b1) ln(c1(u + b1)),

g(u, v) = a1(v + b2) ln(c2(u + b1)) + a2(u + b1),

where a1, a2, b1, b2, c1, and c2 are arbitrary parameters.

The third case can be shown to be a sub-case of the second, so there are two distinct

forms for f(u), g(u, v) that give 6 dimensional initial data.

Exploration of Case (II) revealed that the initial data was at most 4 dimensional. Case

(III), the most computationally challenging of the three, required the use of DiffElim (Chap-

ter 4) to complete, and was shown to be at most 5 dimensional. So we have found the

maximal finite cases.

5.3.4 Extension to Greater Number of Components

In [53] we explored the extension of one of the maximal cases (5.7) for the partially coupled

system (5.6) to a system involving a greater number of components.

Extensive calculations in the three component case, made possible by the DiffElim im-

plementation, and based on the form of the two component system, led us to conjecture the

following form for f = (f1, ..., fn):

f1(u1) = a(u1 + b)2, a 6= 0,

fi(u1, ..., un) = au1ui +
n∑

j=1

di,juj + ci, i = 2, ..., n

For n = 1, 2, ..., 7 it was found that the dimension of the Lie group of symmetries for the

n-component system is n2 + 2. These calculations, which resulted in a single case, are used

as a test problem in §7.1 to compare the efficiency of the rifsimp implementation and the

DiffElim implementation.
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5.4 Determination of Symmetries of Nonlinear Schrödinger

Systems

In this section we discuss the application of differential elimination to the infinitesimal

symmetry defining systems for vector nonlinear Schrödinger systems of the form

iut + ∇2u + F (x, t, u · u∗) u = 0, (5.9)

for which both the spatial dimension n, and the number of components in the vector po-

tential m can be increased arbitrarily.

It was found that these systems were sufficiently challenging to motivate improvements

for both rifsimp and DiffElim.

We briefly describe some peculiarities in the formation of the infinitesimal symmetry

defining systems for complex problems, then proceed to obtain the form of the scalar non-

linear Schrödinger equation having a maximal dimensional symmetry group, and finally

generalize this form to vector nonlinear Schrödinger systems.

5.4.1 Generating Symmetry Defining Systems for Nonlinear Schrödinger

Systems

Following Lie’s linearized approach we seek infinitesimal symmetries of the form

(t, x, u) 7→ (t̂, x̂, û) = (t, x, u) + (τ, ξ, η)ε + O(ε2),

where the infinitesimals of the symmetries, τ , ξ, η are unknown functions of t, x, u.

Lie Theory is an analytic theory, in which all quantities are regarded as complex, in-

cluding dependent and independent variables. Thus the vnls system cannot be treated

directly (see Mansfield, Clarkson, and Reid [40]) since it contains the non-analytic function

u · u∗ = |u|2. To circumvent this difficulty u is expressed in terms of its real and imaginary

parts, embedding the given system in an analytic system. The determining equations can

then be obtained as described in §5.1.

Alternatively, one may use the formal complex conjugate of (5.9):

−iu∗
t + ∇2u∗ + F (x, t, u · u∗) u∗ = 0.
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Here we have assumed that x and t are real, and F is a real analytic function, so that

F ∗ = F , and u∗ is treated as a new dependent variable. The determining equations for the

original and conjugate pde can also be obtained as described in §5.1.

Both methods are equivalent through a simple change of coordinates.

5.4.2 Maximal symmetry group of iut + uxx + F (x, t, uu∗)u = 0

In [74] we determined the form of the scalar (m = 1) nonlinear Schrödinger equation in a

single spatial dimension (n = 1) having the maximal dimension Lie symmetry group. The

condition that F is a function of the product uu∗ (but not u and u∗ independently) was

imposed by adjoining the differential equation

u∗Fu − uFu∗ = 0 (5.10)

to the determining system which was generated for an arbitrary form of F (t, x, u, u∗).

The MaxDim algorithm (§3.6, §A.10) was applied to the determining system to find the

maximal dimension symmetry group.

As a result of the calculation, and an additional calculation with the minimum dimension

specified to be 5, we obtained the following theorem.

Theorem 12 When m = n = 1, (5.9) admits a maximal 6 dimensional symmetry group if

and only if it has the form

iut + uxx +
(

a(t)x2 + b(t)x + c(t) + d|u|4
)

u = 0 (5.11)

where a(t), b(t), c(t) are arbitrary functions of t, and d is an arbitrary nonzero constant.

When m = n = 1 the form

iut + uxx +
(

b(t)x + c(t) + d|u|2σ
)

u = 0 (5.12)

admits a 5 dimensional symmetry group where b(t), c(t) are arbitrary functions of t, d is an

arbitrary nonzero constant, and σ 6= 0, 2.

We note that there are other forms of F for the case m = n = 1 with 5 dimensional

symmetry groups that are not discussed here.
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This result is a generalization of the well-known result (see Bluman and Kumei [3]) for

linear Schrödinger equations of form iut +uxx +F (x, t)u = 0. In particular the result is that

disregarding the infinite superposition group, such an equation has a maximal symmetry

group if and only if F (x, t) = a(t)x2+b(t)x+c(t). We also direct the reader to a classification

of F = f(x, t) + g(x, t)|u|2 given by Gagnon and Winternitz [30].

5.4.3 Generalization to VNLS systems

In our work in [73] we were motivated to consider higher dimensional generalizations of the

results in Theorem 12. We investigated the case where F = |u|2 in (5.9), and we empirically

obtained the formula for the dimension of the associated group G as

dim(G) = 2 + m2 + n(n + 3)/2 + δ(n − 2) (5.13)

where δ(n − 2) is the Kronecker-Delta function (δ(0) = 1, δ(x) = 0 for x 6= 0).

In [74] we considered systems of the form:

iut + ∇2u +
(

a(t)|x|2 + b(t) · x + c(t) + d|u|2σ
)

u = 0.

Calculations for low values of m, n, made possible through the use of DiffElim, led us to the

class where σ = 2
n , or

iut + ∇2u +
(

a(t)|x|2 + b(t) · x + c(t) + d|u| 4
n

)

u = 0, (5.14)

and to the table of the group dimension results below:

Spatial Number of components (m)
Dimension (n) 1 2 3 4

1 6 9 14 21
2 9 12 17 24
3 13 16 21
4 18 21 26
5 24 27
6 31 34
7 39
8 48

Table 5.1: Group dimension results for (5.14)
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We were able to fit the results in Table 1 to a formula, which agreed with result (5.13)

for the overlapping cases with n = 2 and a(t) = b(t) = c(t) = 0. This led to the following

conjecture:

Conjecture 3 The dimension of the Lie group of symmetries of (5.14) is:

dim(G) = m2 + n(n + 3)/2 + 3. (5.15)

Moreover, this is the maximal group of symmetries of (5.9).

A large portion of the 1999 book The Nonlinear Schrödinger Equation (Sulem [66]) is

devoted to the nonlinear Schrödinger equation with power law nonlinearities of the form

iut + ∇2u + |u|2σu = 0. (5.16)

The existence and behavior of solutions, particularly blowup or wave collapse solutions,

depends strongly on the exponent σ.

In the supercritical case, σ > 2
n with rapidly decaying initial conditions, functional

analytic methods show that blowup occurs in finite time (e.g. see Theorem 5.2, page 95, of

[66] and many variations on this result). Additionally the blowup is self-similar. A similar

result, requiring stronger assumptions on the initial conditions, guaranteeing blowup, also

holds in the critical case σ = 2
n . Some global existence results are known for the sub-critical

case σ < 2
n .

It is interesting that the critical case, σ = 2
n , is picked out in our results as the maximal

dimension symmetry case for n = m = 1. This extra symmetry was noted by Taranov [67]

(also see [66], pp. 33 – 37).

The class (5.14) is much broader than (5.16). It would be interesting to see if the

criticality, super-criticality and sub-criticality behavior of blowup solutions is retained by

our extended class (5.14).

5.5 Nonlinear Telegraph System

Consider the nonlinear telegraph system

vx = ut, vt = C(u, x)ux + B(u, x), (5.17)
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where Cu 6= 0 and Bu 6= 0. We note that we briefly stated this result in [53], but it is

provided here with supporting detail. Application of MaxDim with d = ∞, yields several

infinite cases. One of these cases has the classifying conditions

Cxx =
2C2

uCBux + (6C2
u − 4CCuu)B2

u + (4CCuu − 7C2
u)CxBu − C3

uBx + (2C2
u − CCuu)C2

x

C2
uC

Cux =
2CCuuBu + 3C2

uCx − 3C2
uBu − CCuuCx

CuC
, (5.18)

Buu =
2C2

uCx − 2C2
uBu − CCuuCx + 2CCuuBu

CuC
.

Application of rifsimp with an elimination ordering on B and its derivatives provides

the pde

Cuux =
3CuCuuuCx − 2CCuxCuuu − 4CxC2

uu + 4CuCuxCuu

−2CCuu + 3C2
u

(5.19)

in C(u, x) alone.

It is possible to obtain the 3-infinite infinitesimal symmetry group for this pde,

(u, x, C) 7→ (u, x, C) + (f1(x), c1 +
c2√
C

+ f2(x) + f3(x)u,−2f3(x)C + c1C)ε + O(ε2),

where c1 and c2 are arbitrary constants, and f1(x), f2(x) and f3(x) are arbitrary functions

of x.

With a restriction of these symmetries, the invariant surface condition can be solved by

the method of characteristics giving the invariants

r = up(x), v =
C

p(x)2
,

where the arbitrary function p(x) is related to f1(x) and f3(x).

This then gives a solution of (5.19) as C(u, x) = F (p(x)u)p(x)2 for some form of the

function F . Substitution into (5.19) yields no restrictions, so we have found a solution for

the pde for general F, p.

The form of B(u, x) can then be obtained from C(u, x) and (5.18), and a further sim-

plification F (s) = sf(s) gives the class of nonlinear telegraph equations

vx = ut, vt =
p

u
f (pu) ux + pxf (pu) ,

where both p and f are arbitrary functions of their arguments.
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The type of infinite symmetry group admitted by (5.17) for this class satisfies the con-

ditions for Bluman and Kumei’s Linearization Theorem [3]. That theorem shows that

X =

∫
dx

p(x)
, T = t, U = p(x)u, V = v

transforms the system above to

VX = UT , VT = f(U) UX/U,

which is known to be linearizable by hodograph transformation. When f(pu) = b/(pu) and

p(x) = exp(ax), a, b constant, the above system is vx = ut, vt = bux/u2 + ab/u and is

linearizable as was shown in Varley and Seymour [69].

5.6 d’Alembert-Hamilton System

As a final example for this chapter, we consider the n + 1 d’Alembert-Hamilton system

considered by Collins [16]

ux1x1 + ux2x2 + ... + uxnxn − utt = f(u),

u2
x1

+ u2
x2

+ ... + u2
xn

− u2
t = 1 (5.20)

The objective is to discover the forms of f(u) for which an analytic solution exists.

The actual problem considered here is a transformation of (5.20), where t 7→ ixn+1,

making the equations symmetric with respect to all independent variables.

To date, the only prominent differential elimination package capable of working with

arbitrary functions of the dependent variables of the problem is Mansfield’s DiffGrob2 pack-

age (see [37],[38] and [39]). It is still possible to analyze this system with other packages by

means of a hodograph transformation

(x1, x2, ..., xn, xn+1, u) 7→ (X1, X2, ..., Xn, U, Xn+1),

thus interchanging the roles of one of the independent variables and the dependent variable.

As noted by Mansfield in [39], this system has, thus far, required the use of specialized

techniques (such as writing the system in terms of invariants) for classification based on
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f(u) for all n > 1. This is a direct result of the tendency of differential elimination on

systems with large symmetry groups to explode in both time and memory use.

Application of the most recent version of rifsimp (since Maple 7) was able to complete

the classification of the 2 + 1 system in reasonable time and memory (requiring 344 c.p.u

seconds and 19 MB of memory running on a PII 333MHz machine under Linux). This

computation results in the following theorem, which agrees with [39].

Theorem 13 The d’Alembert-Hamilton system (5.20) has an analytic solution only when

f(u) =
ε

u + c

where c is arbitrary, and ε can take the values 0, 1, or 2.



Chapter 6

Polynomial Greatest Common

Divisors (GCD)

6.1 Introduction

In this chapter we investigate the efficient computation of greatest common divisors (gcds)

of multivariate polynomials over the integers Z. Such implementations are vital for many

practical applications in Computer Algebra, including differential elimination algorithms.

Initially we describe Brown’s algorithm [8], which is most efficient for dense gcd problems.

Unfortunately, Brown’s algorithm is inefficient when the gcd is small, but we describe a

modification of the algorithm, the DIVBRO algorithm of Monagan and Wittkopf [43], that

is efficient when the gcd is small.

These algorithms are basically dense algorithms, and are most efficient when the number

of variables is small, or the inputs and result are dense. Since this is not often the case in

many applications, we describe the Zippel approach to tackling these problems [78]. The

Zippel approach, however, was originally designed for leading monic gcd with respect to

the main variable of the problem, which limits its applicability. We present a modification

of this algorithm, LINZIP, which requires only modular linear algebra to extend the method

to the leading non-monic case.

112
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Finally we present a detailed asymptotic comparison of the BROWN, DIVBRO, EEZ-

GCD (Wang [71]) and LINZIP algorithms, showing that the two new algorithms (DIVBRO

and LINZIP) are superior for many important classes of gcd problems.

Throughout this chapter we will use the following notations:

x : x1, x2, ..., xm represents all variables of the problem.

||a||∞ denotes the height of a polynomial (the magnitude of the largest integer coefficient).

lcx : R[x] → R is the leading coefficient of a polynomial using lexicographical order

(with x1 > x2 > ... > xm).

contx : R[x] → R is the content of a polynomial (the gcd of the coefficients in R).

ppx : R[x] → R[x] is the primitive part of a polynomial (i.e. divided by its content).

∆x : R[x] → Nm is the vector degree of a polynomial using lexicographical order

(with x1 > x2 > ... > xm).

resx1
: (R[x], R[x]) → R[x2, ..., xn] is the resultant of two polynomials with respect to x1.

6.2 Integer GCDs, Univariate GCDs, and Homomorphisms

To begin, we briefly review of some of the concepts used in modular gcd algorithms.

The first and best known algorithm in the area of gcds is Euclid’s algorithm for com-

puting the gcd of two integers. The algorithm itself is quite simple, but it is the basis of

all gcd algorithms discussed in this dissertation.

Algorithm 15 (Euclid’s Algorithm)

Input: Two positive integers a and b.

Output: Their integer greatest common divisor g.

while b 6= 0 do

Set a = rem(a, b)

exchange a and b

end loop

return a



CHAPTER 6. POLYNOMIAL GREATEST COMMON DIVISORS (GCD) 114

Where rem is the integer remainder operation that computes q, r such that a = qb + r,0 ≤
r < b.

The proof that the above algorithm provides the greatest common divisor of a and

b is omitted for brevity, but is simply based on the easily verified fact that gcd(a, b) =

gcd(rem(a, b), b).

The Extended Euclidean Algorithm (or eea for short) is an extension of the above al-

gorithm that also computes s and t such that sa + tb = gcd(a, b), and can be obtained

with small modifications to the Euclid algorithm. The eea and its extensions are heavily

used in the area of gcd computation, but are also used to obtain solutions of diophantine

equations.

Now for the extension to problems in the ring R[x], the same algorithm can be used

with some small modifications, but issues arise, in that it may be necessary to extend

the coefficient domain R into a Euclidean Domain. The simplest possible definition of a

Euclidean domain is one in which Euclid’s algorithm works, and requires that the coefficient

domain be a field (since we require the ability to perform the remainder operation in the

algorithm), but the interested reader can consult Geddes [19] for a more detailed discussion.

In the case of computation of univariate gcd over the integers, one needs to perform

intermediate computations in Q[x], the ring of polynomials with rational coefficients. The

unfortunate problem here is that direct application of Euclid’s algorithm results in growth

in the rational coefficients of the problem. One additional consideration is that any integer

gcd that occurs between the contents of the two polynomials will be lost, so must be

computed separately, and will represent the content of the gcd in Z.

Example 24 (Euclid in Z[x]) Consider the computation of the univariate gcd of the two

polynomials:

a = 3074x10 − 160x9 − 13301x8 − 4376x7 − 10476x6 + 1970x5

+ 6004x4 + 15198x3 + 8000x2 + 8179x + 5976,

b = 4558x10 − 8529x9 + 2193x8 − 13728x7 + 481x6 − 20336x5

+ 6740x4 − 5313x3 + 7382x2 − 2104x + 6336

As a first step, we compute the contents of a,b and take their gcd, obtaining the value 1 (the

content of the resulting gcd). If we now proceed by direct application of Euclid’s algorithm,
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working over Q, we obtain the result

g = −3116642696510423648439585612204073264823320648412304

37909302439451406673262854250877356794828191974827
x5

+
294022895897209778154677887943780496681445344189840

2229958967026553333721344367698668046754599527931
x4

+
2881424379792655825915843301849048867478164373060432

37909302439451406673262854250877356794828191974827
x3

+
4586757175996472539212975051922975748230547369361504

37909302439451406673262854250877356794828191974827
x2

+
58804579179441955630935577588756099336289068837968

2229958967026553333721344367698668046754599527931
x

+
4233929700919820805427361586390439152212812956333696

37909302439451406673262854250877356794828191974827
.

As noted previously, we want our result in Z[x], so to obtain this we need to clear denomina-

tors, and set the content to 1 (computed earlier). In doing so, we obtain the correct result,

namely 53x5 − 85x4 − 49x3 − 78x2 − 17x − 72.

Clearly direct application of the Euclid algorithm to this univariate problem caused

significant growth in the size of the coefficients throughout the computation. This coefficient

growth is in fact exponential in the number of steps of the algorithm, and is typical of

naive application of Euclid’s algorithm for this class of problems. Many enhancements are

possible, such as a monic implementation (where the polynomials are scaled to have leading

coefficients of 1), a fraction free form of the algorithm, and one which removes the effect

of the multiplier two steps back, but in all cases the coefficient growth is at least linear in

the number of steps in the algorithm, and we are working with expressions having larger

coefficients than are necessary to represent the inputs and solution of the problem.

A modular approach can be used to obtain better performance for this problem. The

advantage of a modular approach is that the coefficients are mapped directly into a finite

field Zp for prime p where no coefficient growth can occur. We start with a quick illustration

of the approach.

Example 25 (Euclid in Zp[x]) Consider the problem in the prior example, computing

modulo 211. We have:

a ≡ 120x10 + 51x9 + 203x8 + 55x7 + 74x6 + 71x5 + 96x4 + 6x3 + 193x2 + 161x + 68
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b ≡ 127x10 + 122x9 + 83x8 + 198x7 + 59x6 + 131x5 + 199x4 + 173x3 + 208x2 + 6x + 6

We compute the gcd mod 211 obtaining

g ≡ x5 + 82x4 + 15x3 + 110x2 + 143x + 134 (mod 211),

which (after appropriate scaling and setting into the symmetric range) gives our gcd

53x5 − 85x4 − 49x3 − 78x2 − 17x − 72.

Many details are skipped in the above, such as What prime should we use? What is the

“appropriate scaling”? Does this always work? We discuss these details now.

In general, it is possible to choose a sufficiently large prime so that the answer can

always be directly constructed as in the example, but this is not typically done, as it is more

efficient to use a sequence of smaller primes and apply the Chinese Remainder Theorem

to reconstruct the result. In addition to an asymptotic improvement to the performance,

the primes can be cleverly chosen to reduce the expense of computing a modular gcd (for

example, selection of primes so that all coefficient computations for the Euclid algorithm

can be done in hardware integer arithmetic).

As for the second question, to obtain the result in Z[x] from the set of results in Zpi
[x]

one needs to know how to scale the images of the solution (the relative scaling). This is called

the normalization problem, and can be done in the univariate case by setting the leading

coefficient of the gcd to the image of the integer gcd of the leading coefficients of the inputs

modulo the current prime. For the example, γ = gcd(lcx(a), lcx(b)) = gcd(3074, 4558) =

106, and 106 mod 211 = 106, but this is a factor of 2 times too large for the problem. The

important thing to note is that the leading coefficient of the gcd must divide the gcd of the

leading coefficients of the inputs a,b (γ above), but there may be some extra corresponding

to the integer gcd of the leading coefficients of the cofactors. The good news is that once

the result is obtained, the spurious integer content can be removed with a sequence of integer

gcd computations.

As a side note, the handling of integer contents is not entirely straightforward. It is pos-

sible that both the inputs have a common integer gcd component. This is easily computed

as the integer gcd of all coefficients of both inputs (the content). This can either be simply

computed, or computed and removed from the inputs (either way is sufficient). Now the
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resulting computed gcd should be integer content free, allowing removal of any spurious

integer content that is the direct result of the normalization scaling of the problem.

And now for the final question: Does this always work? The answer is no, and there are

two cases in which it may fail. One of these cases is dubbed the bad prime case, and the

other the unlucky prime case.

Definition 14 (Bad Prime) A prime p is bad if

degx(gcd(a mod p, b mod p)) < degx(g).

i.e. if the degree of the gcd is too low.

Example 26 (Bad Prime) Consider the example problem, but perform the computation

modulo the prime 53. We get:

a ≡ 52x9 + 2x8 + 23x7 + 18x6 + 9x5 + 15x4 + 40x3 + 50x2 + 17x + 40

b ≡ 4x9 + 20x8 + 52x7 + 4x6 + 16x5 + 9x4 + 40x3 + 15x2 + 16x + 29

Computing the gcd mod 53 gives:

g ≡ x4 + 33x3 + 19x2 + 32x + 42 (mod 53),

which is of too low a degree.

The main problem with the bad prime case is that there is no way to scale the image

based on the leading coefficient estimate for the gcd, so the image cannot be used for

reconstruction via Chinese remaindering.

It is easily shown that a bad prime must divide the leading coefficient of the gcd.

Detection of the possibility that we have chosen a bad prime is dead simple. We need only

check the image of the scaling factor γ modulo the chosen prime. If it is non-zero then the

prime is not bad. Note also that even if it is zero, then this does not guarantee that the

prime is bad, as it could divide the leading coefficients of both cofactors and not the leading

coefficient of the gcd, but detecting this is more difficult, so simply rejecting potentially

bad primes is a suitable approach.
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So given that the chosen prime is not bad, we can state that the computed gcd is at

worst a polynomial multiple of the true gcd. To detect that it is a true image of the required

gcd the chosen prime must not be unlucky.

Definition 15 (Unlucky Prime) A prime p is unlucky if

degx(gcd(ā mod p, b̄ mod p)) > 0,

i.e. if the degree of the gcd of the cofactors is not zero.

Example 27 (Unlucky Prime) Consider the example problem, but perform the compu-

tation modulo the prime 13. We get:

a ≡ 6x10 + 9x9 + 11x8 + 5x7 + 2x6 + 7x5 + 11x4 + x3 + 5x2 + 2x + 9 (mod 13),

b ≡ 8x10 + 12x9 + 9x8 + 9x5 + 6x4 + 4x3 + 11x2 + 2x + 5 (mod 13).

So first we note that the prime is not bad, as it does not divide γ = 106. Computing the

gcd mod 13 gives

g ≡ x6 + 8x5 + 2x4 + 6x3 + 9x2 + 11x + 12, (mod 13),

which is a problem, as we already know that our gcd should only be degree 5.

So in the example, the chosen prime 13 is unlucky. Unfortunately there is no efficient way

to detect an unlucky prime in advance. The general approach adopted by many algorithms

is to look for an image with too high a degree, relative to the other images, and often

includes a division check at the end (which can also be used to check for termination of the

algorithm).

This seems suitable as long as unlucky primes are not too plentiful, and this is made

clear by the following (simplified) lemma from Geddes [19]

Lemma 10 (Unlucky Primes) Let a, b be polynomials in Z[x] with gcd g and cofactors

ā, b̄. Then p is an unlucky prime if and only if it divides the resultant r = resx(ā, b̄).

Obtaining the resultant of the cofactors is much too expensive (for efficient computation

of a gcd) but this result does put a finite bound on the number of unlucky primes for a

specific problem, making the criteria described earlier sufficient for the task.
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For the example problem, the resultant is 1019581298696173769946 which factors as

(2)(33)(13)(1452395012387711923), so there are only 4 unlucky primes for this problem.

Finally we will briefly describe some of the problems associated with computing gcds

in more than one variable.

All the algorithms that follow at some point reduce multivariate problems to univariate

problems by evaluation of the variables until a univariate problem is obtained. Alas the

unlucky and bad problems apply to the evaluation process in much the same way as they do

for primes in the modular process. This makes some sense, in that computing mod p, and

computing mod xi − αi are, loosely speaking, similar operations.

The extension for bad evaluations is fairly obvious; selection of a bad evaluation point

corresponds to choosing the evaluation so that the degrees of the polynomials in the remain-

ing variables drop. For example, in computing the gcd of (x + y − 1)((y − 1)x + 1) and

(x + y − 2)((y − 1)x + 1), which is (y − 1)x + 1, making the choice y = 1 will destroy the

gcd.

The extension for unlucky evaluations is similar. Selection of an unlucky evaluation

point corresponds to choosing the evaluation so that a gcd appears between the cofactors.

For example, in computing the gcd of the relatively prime polynomials x2 + y − 1 and

(y − 1)x2 + 1, the choice y = 2 could prove troublesome, as then both polynomials are

x2 + 1, making it appear as though they have a nontrivial gcd.

As with the bad prime case, the bad evaluation case is easy to avoid in advance, but the

unlucky evaluation case is not, so it is typically handled as an integral part of the algorithm.

The final problem we discuss is specific to lifting-based algorithms such as EEZ-GCD,

and it is called the bad zero problem. Lifting methods use the eea to reconstruct variable

dependence. The lifting process only requires one of the gcd inputs, and attempts to

reconstruct the gcd and cofactor from the chosen input. In addition, only a single prime,

and a single evaluation of each variable are used throughout. For example, for a problem

with a = āg, we would need to solve the eea for σ, τ in

σg + τ ā = c

for a given value of c.

Now one requirement of the approach (for the eea to work) is that the two factors in use
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(g and ā) must be relatively prime. If not, then c needs to be a multiple of gcd(g, ā), which

is not always possible. Even if the initial g and ā are relatively prime before evaluation, once

they are evaluated down to univariate polynomials, they may lose their relative primality.

Before we disregard this as being rare, we need to consider the following fact: lifting

based algorithms are significantly more efficient when the evaluation points are chosen to be

zero. Unfortunately this is also the most common case where the relative primality is lost,

as zero evaluations remove terms from the problem inputs.

For example, consider the computation of a gcd where the form of a = āg is (x3 +

yz3)(x2+yz). For this problem, the two input factors are relatively prime, but the primality

is lost if we evaluate any of the variables to zero.

The case where evaluating a variable to zero causes the two factors to have a common

gcd is called the bad zero problem.
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Figure 6.1: Homomorphism Diagram for Brown’s Algorithm

6.3 Brown’s Dense GCD Algorithm

Brown’s description of the “dense modular gcd algorithm” in [8] is reproduced here for

the purpose of asymptotic analysis. Brown’s algorithm has two subroutines, M and P.

The main subroutine M maps a polynomial gcd computation from Z[x] (or Z[x1, ..., xn])

into one or more gcd computations in Zp[x] for p ∈ p0, p1, . . ., and applies the Chinese

remainder theorem to obtain the solution in Z[x]. Brown’s presentation of subroutine P is

similar. It maps a polynomial gcd computation from Zp[xn][x1, ..., xn−1] into one or more

gcd computations in Zp[x1, ..., xn−1] by reducing the input polynomials modulo xn = α for

sufficiently many α ∈ Zp, then recovers the dependence of xn by application of the Chinese

remainder theorem.

An important observation to make about Brown’s algorithm is that both subroutines
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have been deliberately designed so that their termination does not require a trial division

of the inputs by the gcd, nor multiplication of the gcd and its cofactors to verify that the

results are correct. This feature leads to good performance for some gcd problems but poor

performance for others.

As hinted in the prior section, both algorithms will suffer from the bad and unlucky

prime and evaluation problems, and these are handled by the algorithms.

Algorithm 16 (Brown M, 1971)

Input: a, b ∈ Z[x] \ {0}, x = x1, ..., xn

Output: g = gcd(a, b), ā = a/g, b̄ = b/g

1 Compute integer contents and their gcd.

Set ca = contx(a) ∈ Z, a = a/ca, cb = contx(b) ∈ Z, b = b/ca, and cg = gcd(ca, cb).

2 Compute the correction coefficients.

Set la = lcx(a) ∈ Z, lb = lcx(b) ∈ Z, and γ = gcd(la, lb).

3 Estimate bound for twice the height of γ×g, γ× ā, γ× b̄ as B = 2γ max(||a||∞, ||b||∞).

4 Set m = 1 (the product of the moduli).

Set e = min(∆xa, ∆xb) ∈ Zn.

Loop:

6 Choose a new prime p that does not divide la or lb.

7 Compute ap = a mod p, bp = b mod p.

8 Compute gp, āp, b̄p ∈ Zp[x] the monic gcd of ap and bp and their cofactors using

algorithm P. If P fails (too few evaluation points are available) goto Loop.

9 Test for a, b relatively prime.

If ∆xgp = 0 then output cg, (ca/cg)a, (cb/cg)b.

10 If ∆xgp > e then (skip this unlucky prime) goto Loop.

11 Leading coefficient correction in Z.

Set gp = γ × gp mod p.

12 First image?

If m = 1 then set gm = gp, ām = āp, b̄m = b̄p, m = p, e = ∆xgp and goto Loop.
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13 If ∆xgp < e then all previous primes were unlucky. Restart the algorithm keeping only

the current prime.

Set gm = gp, ām = āp, b̄m = b̄p, m = p, e = ∆xgp and goto Loop.

14 Combine the new image with the old using the CRA and express the result in the

symmetric range for Zp.

Set ām = CRA([āp, ām], [p, m]), b̄m = CRA([b̄p, b̄m], [p, m]),

gm = CRA([gp, gm], [p, m]).

15 Set m = m × p, if m ≤ B then goto Loop.

16 Test for termination.

Without explicitly computing gm × ām and gm × b̄m determine if ||gm × ām||∞ < m/2

and ||gm× b̄m||∞ < m/2. If so then we have m | (γa−gm× ām) and m | (γb−gm× b̄m)

and also γa − gm × ām = 0 and γb − gm × b̄m = 0 over Z, hence we are done; so

set g = ppx(gm), δ = lcx(g) ∈ Z, ā = ām/δ, b̄ = b̄m/δ.

Output cg × g, (ca/cg)ā, (cb/cg)b̄.

17 Goto Loop – either we do not have enough primes yet or all primes are unlucky.

Algorithm 17 (Brown P, 1971)

Input: a, b ∈ Z[xn][x1, ..., xn−1] \ {0}, p prime.

Output: g = gcd(a, b), ā = a/g, b̄ = b/g

1 If n = 1 then compute the gcd using Euclid’s algorithm and the cofactors by division

and return, otherwise compute contents in Zp[xn] and their gcd.

Set ca = contx1,...,xn−1(a) ∈ Zp[xn], a = a/ca,

cb = contx1,...,xn−1(b) ∈ Zp[xn], b = b/ca, and cg = gcd(ca, cb).

2 Compute the correction coefficients.

Set la = lcx1,...,xn−1(a) ∈ Zp[xn], lb = lcx1,...,xn−1(a) ∈ Zp[xn], γ = gcd(la, lb).

3 Bound the degree in xn of γ×g, γ× ā, γ× b̄. Set B = degxn
γ+max(degxn

a, degxn
b).

4 Set m = 1 (the product of the moduli). Set e = min(∆x1,...,xn−1a, ∆x1,...,xn−1b) ∈ Zn−1.

Loop:

6 Choose a new evaluation point α ∈ Zp such that xn − α does not divide la × lb. If no

such evaluation point exists then p is too small and the algorithm fails.
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7 Compute aα = a mod 〈xn − α〉 ∈ Zp[x1, ..., xn−1], and

bα = b mod 〈xn − α〉 ∈ Zp[x1, ..., xn−1].

8 Compute gα, āα, b̄α ∈ Zp[x1, ..., xn−1] the monic gcd of aα and bα and their cofactors

with a recursive call to this algorithm.

9 Test for a, b relatively prime.

If ∆x1,...,xn−1gα = 0 then output cg, (ca/cg)a, (cb/cg)b.

10 If ∆x1,...,xn−1gα > e then (skip this unlucky evaluation) goto Loop.

11 Leading coefficient correction in Zp[xn].

Set gα = γ(α) × gα mod p.

12 First image?

If m = 1 then set gm = gα, ām = āα, b̄m = b̄α, m = xn − α, e = ∆x1,...,xn−1gα and

goto Loop.

13 If ∆x1,...,xn−1gα < e then all previous evaluations were unlucky.

Restart the algorithm keeping only the current evaluation.

Set gm = gα, ām = āα, b̄m = b̄α, m = xn − α, e = ∆x1,...,xn−1gα and goto Loop.

14 Combine the new image with the old using the CRA.

Set ām = CRA([āα, ām], [xn − α, m]), b̄m = CRA([b̄α, b̄m], [xn − α, m]),

gm = CRA([gα, gm], [xn − α, m]).

15 Set m = m × (xn − α).

If degxn
m ≤ B then goto Loop.

16 Test for termination.

If degxn
gm+degxn

ām = degxn
γ+degxn

a and degxn
gm+degxn

b̄m = degxn
γ+degxn

b

then set g = ppx1,...,xn−1
(gm), δ = lcx1,...,xn−1g, ā = ām/δ, b̄ = b̄m/δ, and output cg×g,

(ca/cg)ā, (cb/cg)b̄.

17 Goto Loop – all α′s are unlucky.

In order to determine the complexity of Brown’s algorithm, the central quantities of

interest will be the number of primes p used by algorithm M and the number of evaluation

points α used by algorithm P . The reader will note that these quantities, computed in step

[3] and used in step [15] of both algorithms, are determined by the size of the inputs a and

b and not by the size of g, ā and b̄.
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6.4 DIVBRO: The Modified Brown Algorithm

A modification of the Brown algorithm, DIVBRO, was presented by Monagan and Wittkopf

in [43], and provides greater efficiency for many classes of problems. It uses the well known

alternative of a division test to check for algorithm termination, and only constructs the

gcd, not the cofactors.

The new aspects of the approach that provide the increased efficiency are as follows:

Early Termination: Since we are only reconstructing g, we may need fewer primes in

algorithm M than required for reconstruction of g and the cofactors. In addition, the

bounds on the coefficient size of g are often pessimistic, forcing too many additional

images to be computed. If we apply the criteria that we perform the division check in

M once g is unchanged for an iteration, with high probability we need only perform

that division once, and we will compute at most one extra image.

Degree Bounds: Since only the gcd is to be constructed, having reasonable bounds on

the degree of the gcd in x1, ..., xn can be used as a stopping criteria for algorithm P,

and helps with detection of unlucky primes and evaluations.

One-Pass Newton: Since we have degree bounds, the reconstruction of the current vari-

able in algorithm P can be done more efficiently, as we can perform the Newton

interpolation once all images have been computed, instead of reconstructing incre-

mentally.

Bivariate Optimizations: In the bivariate case, additional optimizations are available,

including a way to remove the division test in algorithm P and improved handling of

content computations for the gcd. These optimizations make a significant difference

for bivariate problems.

The details of the bivariate optimizations can be found in [43], but in this presentation

we are primarily concerned with the general multivariate case, so we will not discuss the

bivariate case further here. We present the modified algorithms below, where we note that

the numbering of the steps from Brown algorithms has been retained when possible (so the

numbering is not entirely sequential):
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Algorithm 18 (DIVBRO M)

Input: a, b ∈ Z[x] \ {0}, x = x1, ..., xn

Output: g = gcd(a, b)

1 Compute integer contents and their gcd.

Set ca = contx(a) ∈ Z, a = a/ca, cb = contx(b) ∈ Z, b = b/ca, and cg = gcd(ca, cb).

2 Compute the correction coefficient.

Set la = lcx(a) ∈ Z, lb = lcx(b) ∈ Z, and γ = gcd(la, lb).

4 Set m = 1 (the product of the moduli).

Compute degree bounds e for the gcd in x1, ..., xn.

Loop:

6 Choose a new prime p that does not divide γ.

7 Compute ap = a mod p, bp = b mod p.

8 Compute gp ∈ Zp[x] the monic gcd of ap and bp using algorithm P.

If P fails (too few evaluation points are available, or unlucky) goto Loop.

9 Test for a, b relatively prime: If ∆xgp = 0 then output cg.

11 Leading coefficient correction in Z.

Set gp = γ × gp mod p.

12 First image?

If m = 1 then set gm = gp, m = p, e = ∆xgp and goto Loop.

13 If ∆xgp < e then all previous primes and the degree bounds were unlucky.

Restart the algorithm keeping only the current prime and the new bounds.

Set gm = gp, m = p, e = ∆xgp and goto Loop.

14 Combine the new image with the old using the CRA and express the result in the

symmetric range for Zp.

Set gm = CRA([gp, gm], [p, m]).

15 Set m = m × p, and if gm changed in step 14 goto Loop.

16 Test for termination computing g = ppx(gm) and performing a division check to assure

that g divides both a and b. If so, we are done so output cg × g.

17 Goto Loop – either we do not have enough primes yet or all primes are unlucky.
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Algorithm 19 (DIVBRO P)

Input: a, b ∈ Z[x1, ..., xn−1] \ {0}, p prime, and the degree bounds e0.

Output: g = gcd(a, b) or Fail

1 If n = 1 then compute the gcd using Euclid’s algorithm and return, otherwise compute

contents in Zp[xn] and their gcd.

Set ca = contx1,...,xn−1(a) ∈ Zp[xn], a = a/ca,

cb = contx1,...,xn−1(b) ∈ Zp[xn], b = b/ca, and cg = gcd(ca, cb).

2 Compute the correction coefficient.

Set la = lcx1,...,xn−1(a) ∈ Zp[xn], lb = lcx1,...,xn−1(a) ∈ Zp[xn], γ = gcd(la, lb).

3 Set the initial degree bounds for this computation, e = e0.

4 Set gseq = Null, vseq = Null.

Loop:

6 Choose a new evaluation point α ∈ Zp such that xn − α does not divide γ. If no such

evaluation point exists then p is too small, so return Fail.

7 Compute aα = a mod 〈xn − α〉 ∈ Zp[x1, ..., xn−1], and

bα = b mod 〈xn − α〉 ∈ Zp[x1, ..., xn−1].

8 Compute gα the monic gcd of aα and bα with a recursive call to this algorithm.

10 If the recursive call fails (n > 2), or if the gcd is of too high a degree (n = 2)

then (skip this unlucky evaluation) goto Loop unless this has occurred twice with no

successful images, in which case we assume that a higher prime or evaluation is unlucky

and return Fail.

9 Test for a, b relatively prime: If ∆x1,...,xn−1gα = 0 then output cg.

11 Leading coefficient correction in Zp[xn].

Set gα = γ(α) × gα mod p.

12 First image?

If gseq = Null then set gseq = gα, vseq = α, e = ∆x1,...,xn−1gα and goto Loop.

13 If ∆x1,...,xn−1gα < e then all previous evaluations and the degree bound were unlucky.

Restart the algorithm keeping only the current evaluation.

Set gseq = gα, vseq = α, e = ∆x1,...,xn−1gα and goto Loop.
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14 Add the new image and evaluation point

Set gseq = gseq, gα, vseq = vseq, α

15 If we have enough images to construct to the degree bound in xn plus degxn
(γ) then

goto 18, otherwise goto Loop.

18 Compute the gcd g via Newton interpolation in xn using the sequence of gcds gseq

and points vseq.

19 Test for correctness

Remove the content g = ppx1,...,xn−1
(gm) and check that g divides a and b. If so, output

cg × g, otherwise return Fail (unlucky content in xn).

The main advantage of this approach is that the core computational complexity of the

algorithm is based on the coefficient size and the degree of g, unlike Brown’s algorithm

which is based on the coefficient size and the degree of the inputs a and b.

6.5 Zippel’s Sparse GCD Algorithm

Zippel [78] proposed an algorithm (which can be used in combination with Brown’s algo-

rithm) that is more efficient for sparse problems. The main idea behind this algorithm

is as follows: Once we know the form of the gcd for a specific prime or evaluation, we

can use this information to more efficiently compute additional images for other primes or

evaluations.

Example 28 Consider the computation of the bivariate gcd x3 + 12xy + 100. Brown’s P

algorithm would call Brown’s M algorithm to compute the gcd g as

g ≡ x3 + 12xy2 + 9 (mod 13).

continuing to follow the Brown approach would require additional calls to Brown’s M algo-

rithm to compute other images, say, mod 17, mod 23, etc.

The Zippel approach instead utilizes information about the form of the gcd obtained in

the first call assuming that the gcd is of the form x3 + αxy2 + β for some α, β.

If this is the case, all information required for a new image mod 17 can be obtained from

a single univariate gcd call.
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The gcd is computed mod 〈y − 2, 17〉 as x3 + 14x + 15, which is then equated to the

image of the assumed form of the gcd mod 〈y − 2, 17〉 as x3 + 4αx + β, and we obtain

α ≡ 12 mod 17, β ≡ 15 mod 17, giving us the new image

g ≡ x3 + 12xy2 + 15 (mod 17).

So as hinted at by the example, recursive calls to compute new gcd images can be

replaced by the solution of a sequence of linear systems, and a bit of manipulation.

Zippel’s algorithm M is described here.

Algorithm 20 (Zippel M)

Input: a, b ∈ Z[x] \ {0}

Output: g = gcd(a, b)

1 Compute integer gcd cg = gcd(contx(a), contx(b))

2 Compute the correction coefficient γ = gcd(lcx(a), lcx(b))

3 Estimate coefficient bound B = 2γ max(||a||∞, ||b||∞)

4 Compute a modular gcd image g1 with a call to the Zippel P algorithm for a random

prime p1.

5 Assume that of step 4 produces a correct image of the gcd with no missing terms, and

that the prime is not unlucky. We call the assumed form gf . Count the largest number

of non-zero terms in any coefficient of the main variable x1, calling this nx.

6 Set gseq = g1 and pseq = p1.

7 repeat

7.1 Choose a new prime pi that it does not divide γ.

7.2 Set S = ∅, ni = 0

7.3 repeat

7.3.1 Choose α2, ..., αn ∈ Zp at random such that degx1
(a mod I) = degx1

(a), or

degx1
(b mod I) = degx1

(b), where I = 〈x2 − α2, ..., xn − αn〉.

7.3.2 Compute gi = gcd(a mod I, b mod I).
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7.3.3 Check if degx1
(gi) < degx1

(gf ). If this occurs then our original image was

unlucky, so goto 4.

7.3.4 Check if degx1
(gi) > degx1

(gf ). If this occurs then our current image is

unlucky, so goto 7.3.1.

7.3.5 Add the equations obtained from equating coefficients of gi and the evaluation

of gf mod I to S, and set ni = ni + 1.

Until ni ≥ nx

7.4 We should now have a sufficient number of equations in S to solve for all un-

knowns in gf mod pi so attempt this now, scaling the leading coefficients of the

gi to γ mod pi.

7.5 If the system is under-determined, then we need more images, so goto 7.3.1.

7.6 If the system is inconsistent, then our original image must be missing terms, or

the original prime was unlucky, so goto 4.

7.7 The resulting solution is consistent and determined, so we have a new image gi,

so add to gseq and add the prime to pseq

Until we have a sufficient number of primes to reconstruct our gcd to B.

8 Reconstruct our candidate gcd g using Chinese remaindering on gseq,pseq.

9 Perform a division test on g relative to the inputs. If it fails our original image must

be missing terms, or our original prime was unlucky, so goto 4.

10 return g.

Algorithm P can be easily obtained from algorithm M by replacing the coefficient bound

by a degree bound, the call to Zippel P by a recursive call in one fewer variable, and the

selection of new primes and evaluations mod a prime by the selection of new random values

vi for the current variable xj and evaluations mod 〈x2 − α2, ..., xj−1 − αj−1, p〉, where p is

the prime passed down from algorithm Zippel M.

A number of comments must be made on the above algorithm, most notably when and

why failures occur, and limitations of the algorithm.

• The algorithm heavily depends on the completeness of the gcd image computed in step

2, where by completeness we mean that the image contains all the terms present in
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the gcd. It is straightforward to see that for a t term polynomial the probability that

a term may be missed is O( t
p), where p is the current prime, and p � t. This is not

such a restriction as long as either t is sufficiently small, or p is sufficiently large, but

can be a problem for a greater number of terms or small primes.

• Bad results will always be detected by either the checks within the algorithm, or the

division test at the end, so if the algorithm returns a result it will be correct.

• The termination of the algorithm depends upon the allowable choices of p, and the form

of the resulting gcd. If p � t then the algorithm will likely terminate in the first pass,

while for p ' t the algorithm is unlikely to terminate.

• The algorithm, as stated in [78], is only applicable to gcds that are monic in the main

variable, which means the well known content and normalization problems are not

handled by this approach for the multivariate part (in Zippel P).

In the following section we will develop a modification of this algorithm that handles

the content and normalization problems, extending the algorithm to apply to a larger class

of problems.

6.6 LINZIP : The Modified Zippel Algorithm

In this section we will develop a modification of the Zippel sparse algorithm that is applicable

to all inputs in Z[x1, ..., xn].

The first problem we consider is the normalization problem. This is best illustrated

through a pair of examples, one of which is a straightforward modification, the other is not.

Example 29 Consider the computation of the bivariate gcd 3x3y2 + 12y + 100 at the top

level using the Zippel algorithm (20). In addition, we assume that we have γ = 3, so we

know the leading coefficient of our gcd. The image obtained in step 4 of the algorithm, with

p1 = 13 would be

g ≡ x3y2 + 4y + 3 (mod 13),

so our expected form of the gcd , after scaling through by γ, is gf = 3x3y2 + αy + β.
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Since the O(x0) term has two terms, we need to compute two modular images for our

next prime to reconstruct the y dependence. For the next prime, p2 = 17, we choose y = 1, 2

and obtain the gcds x3 + 9 and x3 + 16 respectively.

Before converting to a linear system we need to normalize the computed gcd, as other-

wise the linear relations will give an incorrect result. Fortunately this is easy to do here, as

we know the form of the leading coefficient, including the y dependence, which is 3y2. As

a result we must scale our first univariate gcd by 3(1)2 = 3, and the second by 3(2)2 = 12

before equating, giving:

3x3 + α + β = 3x3 + 10

12x3 + 2α + β = 12x3 + 5

Solving this system for α, β mod 17 gives α = 12, β = 15 resulting in the new image

g2 ≡ 3x3y2 + 12y + 15 (mod 17).

Additional images for other primes can be computed in the same way.

So for a coefficient known up to a scaling there is no problem. What is interesting is

what occurs when we can no longer scale a single coefficient of the gcd for reconstruction,

as illustrated by the next example.

Example 30 Consider the computation of the bivariate gcd x3(3y2 − 90) + 12y + 100 at

the top level using the Zippel algorithm (20). The image obtained in step 2 of the algorithm,

with p1 = 13 would be

g1 = x3y2 + 9x3 + 4y + 3 (mod 13),

so our expected form of the gcd is gf = x3y2 + αx3 + βy + γ.

Since each x term of the gcd has two terms, we need to compute two modular images

for our next prime to reconstruct the y dependence. For the next prime, p2 = 17, we choose

y = 1, 2 and obtain the gcds x3 + 12 and x3 + 8 respectively.

Now we run into a problem when attempting to normalize the computed gcds to construct

the linear system we require. The difficulty is this: All coefficients of the gcd have unknown

parameters present, so we have no way of scaling the gcd unless we know the exact form of

one of the coefficients.
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A solution to the problem illustrated by the above example could be obtained in a number

of ways. One approach involves computation of one of the required coefficients exactly, for

example by factoring the leading coefficient, as is done by the EEZ-GCD algorithm. We

wish to avoid this as it could be expensive, and it complicates the implementation of the

algorithm.

This problem only occurs when all coefficients of the gcd with respect to the main

variable have more than one term. In any other case, we can choose any single term

coefficient to use for scaling (not just the leading or trailing coefficient) as the form of single

term coefficients is always known up to a scaling of the entire gcd.

It is clear that the problem boils down to how to scale the univariate gcd images in

such a way that the solution of the linear system produces the correct result.

The approach followed now is quite simple in concept. It is to treat the scaling factors of

the computed univariate gcds as unknowns as well. This results in a larger linear system,

and sometimes requires additional univariate gcd images, but never requires additional

multivariate gcd computations. We call this the multiple scaling case (as opposed to the

single scaling case).

If we allow all univariate gcds to be scaled along with all coefficients of the assumed

form of the multivariate gcd, the resulting system will be under-determined by exactly 1

unknown, as the computation is only determined up to a scaling factor. Rather than fixing

an unknown in the form of the gcd to 1, we instead fix the scaling factor of the first gcd to

1 (for reasons to be explained later).

The following example illustrates this approach.

Example 31 Consider the computation of the bivariate gcd from Example 30:

(3y2 − 90)x3 + 12y + 100. Just as in that example, we obtain for p1 = 13

g ≡ x3y2 + 9x3 + 4y + 3 (mod 13),

and expected form of the gcd gf = αx3y2 + βx3 + γy + σ.

Instead of computing two univariate gcd images for the new prime p2 = 17, we compute

three, choosing y = 1, 2, 3 and obtaining the gcds x3 + 12, x3 + 8, and x3 respectively. We
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form the modified system as follows:

αx3 + βx3 + γ + σ = m1 (x3 + 12) = x3 + 12,

4αx3 + βx3 + 2γ + σ = m2 (x3 + 8),

9αx3 + βx3 + 3γ + σ = m3 (x3),

where m2, m3 are the new unknown scaling factors, and we have set the first scaling factor

m1 to 1.

Solving this system yields α = 7, β = 11, γ = 11, σ = 1, with scaling factors m2 =

5, m3 = 6, so our new gcd image is given by

g ≡ 7x3y2 + 11x3 + 11y + 1 (mod 17),

which is consistent with our gcd.

Now we explain the reason for fixing a multiplier value instead of an unknown in the

gcd. In general it is possible to select a prime or evaluation so that the chosen scaling term

in the gcd is zero, but there is no way to detect it. For the example, suppose we set α = 1.

In this case, the evaluation y = 0 is not bad (the form of the gcd is still cubic in x) but

α = 0, so the resulting system will be incorrect. Attempting to set β = 1 will have the

same problem if we used the prime p = 5. In contrast, as long as we choose our primes and

evaluations so that the leading term of the gcd does not vanish (which is detected as a bad

prime or evaluation), then the scaling factors can never be zero, so setting one of them to

a fixed value will never result in this problem.

One might wonder why the multiple scaling case can be even mildly efficient, as we are

constructing a system that ties together all unknowns of the problem through the multipliers.

This is in direct contrast to the single scaling case, for which each degree in x1 has an

independent subsystem. The trick is to realize that the resulting system is highly structured,

and the structure can be exploited to put the solution expense of the multiple scaling case

on the same order as the solution expense of the single scaling case.

Example 32 (Multiple Scaling) Consider the linear algebra required in the computation

of the gcd for a problem with the image:

gf = (a32y
2+a31y+a30)x

3+(a23y
3+a22y

2+a21y+a20)x
2+(a13y

3+a11y+a10)x+(a01y
2+a00)
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We find that we will have a sufficient number of equations to solve for all unknowns if we

compute 4 images, where we note that for this problem the number of required images is

exactly the same as for the single scaling case. The resulting Matrix, involving 16 equations

for the 15 unknowns (12 image unknowns and 3 unknown scaling factors) has the following

structure: ∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
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(6.1)

Where the equations are ordered by decreasing degree in x then by image number, and the

unknowns are ordered in the same order as the image, with the scaling factors on the right,

and the c’s denote (possibly) non-zero entries, all other entries being strictly zero. Note also

that the first column of multipliers (the bold c’s) have fixed values.

The solution of the above system can be easily computed by solution of a number of

smaller subsystems corresponding to the rectangular blocks of non-zero entries augmented

with the multiplier columns. Once the subsystems are upper triangular, remaining rows,

only involving the multipliers, can be used to compute the multiplier values, which can then

be back-substituted into the subsystems to obtain the image coefficients.

Note that for the single scaling case, the structure is similar to the above, except that the

scaling columns would be replaced by a single column of constants. For that case, all blocks

are clearly independent, making the efficient solution of the problem obvious.

This approach does offer a solution to our problem, but it also introduces another diffi-

culty, as illustrated by the following example:
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Example 33 Consider the computation of the bivariate gcd (y +2)x3 +12y2 +24y. Using

a call to the Brown algorithm, we can obtain our first image for p1 = 13 as

g1 = x3y + 2x3 + 12y2 + 11y (mod 13),

and expected form of the gcd gf = αx3y + βx3 + γy2 + σy.

Just as for the prior example, we know we need at least three univariate gcd images for

the new prime p2 = 17. We choose y = 1, 2, 3 and obtain the gcds x3 + 12, x3 + 7, and

x3 + 2 respectively. We form the modified system as follows:

αx3 + βx3 + γ + σ = x3 + 12,

2αx3 + βx3 + 4γ + 2σ = m2(x
3 + 7),

3αx3 + βx3 + 9γ + 3σ = m3(x
3 + 2),

In attempting to solve this system, we find that it is under-determined, so we add a new

evaluation point, y = 4, obtaining a gcd of x3 + 14, and the new equation

4αx3 + βx3 + 16γ + 4σ = m4(x
3 + 14).

In attempting to solve the new system of equations, we find that it is still under-determined.

In fact, we could continue to choose new evaluation points for y until we run out of points

(modp), and the linear system would remain under-determined.

This is the case for any chosen prime and set of evaluations, so the algorithm fails to

find the gcd for this problem.

What is not necessarily obvious from the above example is the cause of the failure, which

is the presence of a content in the gcd with respect to the main variable x, namely y + 2.

The existence of a content in the evaluated variables can be immediately recognized as a

source of problems for the algorithm, as it can be absorbed into the multipliers on the right

hand side of the formed system for the equations with multipliers, and otherwise absorbed

into each of the unknowns (for the first equation where the multiplier is set to 1).

This is exactly what occurs in the above example, as the content in y is absorbed into

the unknowns, so only the relative ratio between terms can be computed, and we can never

obtain a solution for the coefficients in our candidate form.
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It is clear that content can cause a problem for the algorithm, so just as for many

other sparse algorithms (EEZ-GCD for example), the content must be removed before the

algorithm is called.

Here we note that the content removal problem has been dealt with in a very elegant

fashion in Kaltofen and Trager [33], wherein a transformation of the form xi 7→ x1 +αxi for

random α and 2 ≤ i ≤ n is applied to the input polynomials to force the content to become

part of the gcd in the main variable. We also note that efficient use of this technique

requires treatment of the input polynomials as black boxes, as otherwise the polynomials

become dense, and as we are focusing on direct modular techniques, where such a technique

would result in excessive expression swell, we discuss this approach no further here.

One may ask is it sufficient to simply remove the gcd content before calling the algorithm

to take care of this problem? Unfortunately, the answer is no, as certain choices of primes

and evaluation points can cause an unlucky content to appear in the gcd.

Definition 16 (Unlucky Content) Given a ∈ Z[x1, ..., xn] with contx1(a) = 1, a prime p

is said to introduce an unlucky content if contx1(a mod p) 6= 1. Similarly for a ∈ Z[x1, ..., xn]

with contx1(a) = 1 an evaluation xi = αi is said to introduce an unlucky content if

contx1(a mod 〈xi − αi〉) 6= 1.

Consider, for example, computation of the gcd x(y+1)+y+14. If we choose p = 13 the

gcd has a content of y + 1, while for any other prime, or over Z[x, y], no content is present.

This is a significant consideration in the design of the algorithm, and must be carefully

checked. An argument can be made as to the similarity between the probability of obtaining

an unlucky content, and the probability of selecting an unlucky prime or evaluation, and the

fact that these are both equally uncommon, so a similar approach will be used in the design

of the algorithm for handling unlucky contents. Specifically we will design the algorithm so

these problems are not detected in advance, but rather through their effect, so that detection

of this problem does not become a bottleneck of the algorithm.

We now present the LINZIP M algorithm, which computes the gcd in Z[x] from a

number of images in Zp[x], and the LINZIP P algorithm, which computes the gcd in

Zp[x1, ..., xn] from a number of images in Zp[x1, ..., xn−1]. We emphasize that any content

of the gcd with respect to x1 must be removed before the initial call to the LINZIP M
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algorithm, though it is not required that the cofactor contents be removed.

Algorithm 21 (LINZIP M)

Input: a, b ∈ Z[x] such that gcd(contx1(a), contx1(b)) = 1 and degree bounds dx on the

gcd in x

Output: g = gcd(a, b) ∈ Z[x]

1 Compute the scaling factor γ = gcd(lcx(a), lcx(b)) ∈ Z

2 Choose a random prime p such that γp = γ mod p 6= 0, and set ap = a mod p,

bp = b mod p, then compute from these a modular gcd image gp ∈ Zp[x1, ..., xn] with

a call to LINZIP P. If the algorithm returns Fail, repeat, otherwise set dx1 = degx1
(gp)

and continue.

3 Assume that gp has no missing terms, and that the prime is not unlucky. We call the

assumed form gf . There are two cases here.

3.1 If there exists a coefficient of x1 in gf that is a monomial, then we will normalize

by setting the integer coefficient of that monomial to 1. Count the largest number

of terms in any coefficient of x1 in gf , calling this nx.

3.2 If there is no such coefficient, then multiple scaling must be used. Compute the

minimum number of images needed to determine gf for a new prime with multiple

scaling, calling this nx.

4 Set gm =
γp

lcx(gp) × gp mod p and m = p.

5 Repeat

5.1 Choose a new random prime p such that γp = γ mod p 6= 0, and

set ap = a mod p, bp = b mod p.

5.2 Set S = ∅, ni = 0.

5.3 Repeat

5.3.1 Choose α2, ..., αn ∈ Zp at random such that for I = 〈x2 − α2, ..., xn − αn〉
we have degx1

(ap mod I) = degx1
(a), degx1

(bp mod I) = degx1
(b), and set

a1 = ap mod I, b1 = bp mod I

5.3.2 Compute g1 = gcd(a1, b1)



CHAPTER 6. POLYNOMIAL GREATEST COMMON DIVISORS (GCD) 139

5.3.3 If degx1
(g1) < dx1 then our original image and form gf and degree bounds

were unlucky, so set dx1 = degx1
(g1) and goto 2.

5.3.4 If degx1
(g1) > dx1 then our current image is g1 unlucky, so goto 5.3.1, un-

less the number of failures exceeds min(1, ni), in which case we assume p is

unlucky and goto 5.1.

5.3.5 Add the equations obtained from equating coefficients of g1 and the evaluation

of gf mod I to S, and set ni = ni + 1.

Until ni ≥ nx

5.4 We may now have a sufficient number of equations in S to solve for all unknowns

in gf mod p so attempt this now, calling the result gp.

5.5 If the system is inconsistent then our original image must be incorrect (missing

terms or unlucky), so goto 2.

5.6 If the system is under-determined, then record the degrees of freedom, and if

this has occurred twice before with the same degrees of freedom then assume that

an unlucky content problem was introduced by the current prime p so goto 5.1.

Otherwise we need more images so goto 5.3.1.

5.7 The resulting solution is consistent and determined, so we have a new image gp

Set gp =
γp

lcx(gp) × gp mod p, gm = CRA([gp, gm], [p, m]), m = m × p.

Until gm has stopped changing for one iteration.

7 Compute gc = ppx(gm) and check that gc | a and gc | b. If not we need more primes,

so goto 5.1.

8 Return gc.

Algorithm 22 (LINZIP P)

Input: a, b ∈ Zp[x1, ..., xn], a prime p, and degree bounds dx on the gcd in x

Output: g = gcd(a, b) ∈ Zp[x1, ..., xn] or Fail

0 Check the gcd of the inputs for content in xn, if present return Fail.

1 Compute the scaling factor γ = gcd(lcx1,...,xn−1(a), lcx1,...,xn−1(b)) ∈ Zp[xn]

2 Choose v ∈ Zp at random such that degx1,...,xn−1
(a mod 〈xn − v〉) = degx1,...,xn−1

(a),

degx1,...,xn−1
(b mod 〈xn − v〉) = degx1,...,xn−1

(b), and set av = a mod 〈xn − v〉, bv =
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b mod 〈xn − v〉, then compute from these a modular gcd image gv ∈ Zp[x1, ..., xn−1]

with a recursive call to LINZIP P (n > 2) or via the Euclidean algorithm (n = 2).

If for n > 2 the algorithm returns Fail or for n = 2 we have degx1
(gv) > dx1 then

return Fail, otherwise set dx1 = degx1
(gv) and continue.

3 Assume that gv has no missing terms, and that the evaluation is not unlucky. We call

the assumed form gf . There are two cases here.

3.1 If there exists a coefficient of x1 in gf that is a monomial, then we will normalize

by setting the integer coefficient of that monomial to 1. Count the largest number

of terms in any coefficient of x1 in gf , calling this nx.

3.2 If there is no such coefficient, then multiple scaling must be used. Compute the

minimum number of images needed to determine gf for a new evaluation of xn

with multiple scaling, calling this nx.

4 Set gseq = γ(v)
lcx1,...,xn−1 (gv) × gv mod p and vseq = v.

5 Repeat

5.1 Choose a new random v ∈ Zp such that degx1,..,xn−1
(a mod 〈xn − v〉)

= degx1,..,xn−1
(a), degx1,..,xn−1

(b mod 〈xn − v〉) = degx1,..,xn−1
(b), and

set av = a mod 〈xn − v〉, bv = b mod 〈xn − v〉.

5.2 Set S = ∅, ni = 0.

5.3 Repeat

5.3.1 Choose α2, ..., αn−1 ∈ Zp at random such that for I = 〈x2 − α2, ..., xn−1 −
αn−1〉 we have degx1

(av mod I) = degx1
(a), degx1

(bv mod I) = degx1
(b),

and set a1 = av mod I, b1 = bv mod I

5.3.2 Compute g1 = gcd(a1, b1)

5.3.3 If degx1
(g1) < dx1 then our original image and form gf and degree bounds

were unlucky, so set dx1 = degx1
(g1) and goto 2.

5.3.4 If degx1
(g1) > dx1 then our current image is g1 unlucky, so goto 5.3.1, unless

the number of failures exceeds min(1, ni), in which case we assume xn = v is

unlucky and goto 5.1.

5.3.5 Add the equations obtained from equating coefficients of g1 and the evaluation

of gf mod I to S, and set ni = ni + 1.
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Until ni ≥ nx

5.4 We should now have a sufficient number of equations in S to solve for all un-

knowns in gf mod p so attempt this now, calling the result gv.

5.5 If the system is inconsistent then our original image must be incorrect (missing

terms or unlucky), so goto 2.

5.6 If the system is under-determined, then record the degrees of freedom, and if

this has occurred twice before with the same degrees of freedom then assume the

content problem was introduced by the evaluation of xn so goto 5.1. Otherwise

we need more images so goto 5.3.1.

5.7 The resulting solution is consistent and determined, so we have a new image gv

Set gseq = gseq,
γ(v)

lcx1,...,xn−1 (gv) × gv, vseq = vseq, v

Until we have dxn + degxn
(γ) + 1 images.

6 Reconstruct our candidate gcd gc using Newton interpolation (dense) on gseq,vseq,

then removing content in xn.

7 Loop some fixed number of times

7.1 Choose α2, ..., αn ∈ Zp at random such that I = 〈x2 − α2, ..., xn − αn〉 is not a

bad evaluation point, and set a1 = a mod I, b1 = b mod I, and gv = gc mod I.

7.2 Compute g1 = gcd(a1, b1) and if g1 does not divide gv then our original image

must be bad, so goto 2.

8 Return gc.

A number of comments are required for the above algorithms, and a discussion of the

correctness and termination of the overall algorithm follows.

1. The degree bounds of the gcd have very specific uses. The degree bound of the gcd in

the main variable x1 is used to detect unlucky primes and evaluations, but only detects

those that involve x1, and we update the degree bound whenever we compute a gcd of

lower degree in x1. The degree bounds of the gcd in the non-main variables x2, ..., xn

are used to compute the number of images needed in the Newton interpolation in step

6 of LINZIP P, and are not updated by the algorithm.
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2. The number of required images for the multiple scaling case computed in step 3.2 can

be the same as the number of required images for the single scaling case computed in

step 3.1 (if the gcd is of certain forms), and up to at most 50% higher. The worst

case is quite infrequent, and will only occur when there are only two coefficients with

respect to the main variable, each having exactly the same number of terms. For three

coefficients, this is limited to 33%, for 10 it is limited to 10%, etc. The extra expense

of this step can usually be reduced by an intelligent choice of the main variable x1.

The exact formula for the number of images needed depends upon the term counts

for a problem. For a problem with coefficients having term counts of n1, ..., ns for

the coefficients with respect to x1 and a maximum term count of nmax is given by

max(nmax, d(∑s
i=1 ni − 1)/(s − 1)e).

3. The check in step 0 of LINZIP P is used to detect an unlucky content in the initial

gcd introduced higher up in the recursion by either a prime or evaluation. Note that

we can always detect the problem (if not the source of the problem) in this way, as any

content in the gcd with respect to x1 will eventually show up as a univariate content

as we evaluate xn, xn−1, ....

4. The check in step 5.6 of either algorithm is intended to check for an unlucky content

introduced by the evaluation (LINZIP P) or prime (LINZIP M ) chosen in step 5.1 of

both algorithms. Since it is possible that a new random image from step 5.3.1 does

not necessarily constrain the form of the gcd (even without the content problem) we

check for multiple failures before rejecting the current iteration of loop 5.

5. The LINZIP P algorithm has been modified to perform a probabilistic division test in

step 7 instead of testing that gc | a and gc | b. If a few iterations are performed, then

the result is correct with high probability, and the test is substantially less expen-

sive. There is, however, a chance that the test fails to detect an incorrect answer, so

the termination division test in LINZIP M must be retained to make the algorithm

deterministic.

6. A major enhancement could be realized through the use of a highly efficient implemen-

tation of Brown’s P algorithm once we evaluate down to 2 variables. The reasoning

here is that by the time we evaluate down to 2 variables, the problem will very likely

be dense in those variables. In this case, the use of the Brown approach could provide
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an efficiency improvement, and if implemented as a general strategy (i.e. always eval-

uate down to a bivariate problem instead of a univariate one), would make the use

of multiple scaling less likely (as now we are considering coefficients with respect to 2

variables), and would reduce the size of the linear systems to be solved.

7. There is an enhancement to the above algorithm that is not explicitly described, and it

is the following: Do not always throw away images when repeating step 2 as the result

of an inconsistent system in step 5.5. Instead retain the image, and consider it with

respect to the new computed image. If the images differ with respect to relatively few

terms, then use them both to determine the expected form for g. Note that this is

typically the main failure case for the algorithm (i.e. it has a much higher probability

than an unlucky prime/evaluation or an unlucky content). This has the advantage

that even for problems where the number of terms is close to the value of the prime,

all terms of the image will eventually be found, and in the unlikely event that one of

the images chosen for use was unlucky, this will only enlarge the number of terms to

be solved for, and will not result in an incorrect solution.

We now discuss the correctness and termination of the algorithm. We need to consider

4 main problems with sparse modular methods, namely bad primes or evaluations, unlucky

contents, unlucky primes or evaluations, and missing terms (in an initial image).

The treatment of bad primes and bad evaluations is straightforward, and is handled for

the first prime or first evaluation by the vector degree checks in step 2 of the algorithms,

handled for the current prime or current evaluation by the vector degree checks in step 5.1

of the algorithms, and handled for the univariate images in step 5.3.1 of the algorithms.

The treatment of the unlucky content problem for the first prime or first evaluation is

handled in step 0 of LINZIP P by the single variable content check. As in point 3 above

we emphasize that this check will always detect the problem at some level of the recursion,

specifically the level containing the last variable contained in the unlucky content (as all

the other variables in the content have been evaluated, so the content becomes univariate).

We note that there is no efficient way to detect which prime or evaluation introduced the

unlucky content. It may have been introduced by the prime chosen in LINZIP M or any

evaluation in prior calls (for xj with j > n) to LINZIP P in the recursion. Since this

problem is rare, we handle this by rejecting the case all the way back up to the LINZIP M
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algorithm, which results in a completely new prime and set of evaluations. This strategy is

fairly efficient, as only evaluations (modular and variable) and other single variable content

checks have been performed before a failure is detected at any level of the recursion.

The introduction of an unlucky content by the prime or evaluation chosen in step 5.1

of either algorithm will be handled in the combination of steps 5.4 and 5.6. Note that an

unlucky content is only a problem when multiple scaling is in use (as it is the scaling of

the image that is the issue). The result is a system with additional degrees of freedom, so

this always results in an under-determined system. The check in step 5.6 handles this, as

eventually we will obtain a solution for all variables but the free ones resulting from the

unlucky content, so the degrees of freedom will stabilize, and we will go back to step 5.1

choosing a new prime or evaluation.

The treatment of unlucky primes is less straightforward.

First we consider an unlucky evaluation in step 2 of LINZIP P for xn for which the

factor added to the gcd depends upon x1. If the degree bound dx1 is tight, then this will

be detected at a lower level of the recursion by step 2 of LINZIP P when n = 2. If the

degree bound dx1 is not tight, then the gcd computed in that step may be unlucky, but we

proceed with the computation. Once we reach loop 5, we begin to choose new evaluation

points for xn, and with high probability we will choose a new point that is not unlucky

in step 5.1, the problem will be detected in step 5.3.3, and we will go back to step 2, and

compute a new image. In the worst case, all evaluations in step 5.1 may also be unlucky,

introducing the same factor to the gcd, and we will proceed to step 6, and reconstruct an

incorrect result. Note that if the factor is in fact different, then the equations accumulated

in step 5.3.5 will most likely be inconsistent, and this problem will most likely be detected

in steps 5.4 and 5.5. Step 7 will again perform checks much like those in step 5.3.3, and

will detect this problem with high probability, but if it does not, an invalid result may be

returned from LINZIP P.

If we continue to choose unlucky evaluations we will eventually return an incorrect image

to LINZIP M.

This problem (as well the unlucky prime case for step 2 of LINZIP M ) is handled by

the structure of the LINZIP M algorithm. Since the steps are essentially the same, the

same reasoning follows, and we need the computation to be unlucky through all iterations
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of loop 5. Now in this case, since the form of the gcd is incorrect, it is unlikely that gm will

stabilize, and we will continue to loop. Note that in the event that gm does stabilize, the

invalid image will not divide a and b, so step 7 will put us back into the loop. Now within

that loop, which will not terminate until we have found the gcd, step 5.3.4 will eventually

detect this problem, as we must eventually find a prime that is lucky.

So the unlucky case for the initial image is handled when the factor added to the

gcd depends upon x1.

Now consider the case where the unlucky evaluation or prime is chosen in step 2 of either

algorithm, and the factor added to the gcd is independent of x1. In this case, the factor is

actually a content with respect to x1, so this is handled by the same process as the unlucky

content problem, specifically it is handled on the way down by step 0 of LINZIP P.

Now if an unlucky prime or evaluation occurs in step 5.1 of either algorithm, it will either

raise the degree in x1, in which case it will be detected in step 5.3.4 of either algorithm,

or it will be independent of x1, in which case it is a content. If the content is purely a

contribution of the cofactors, then this case will not cause a problem for the algorithm, as

it will simply reconstruct the new gcd image without that content present (as a result of

the assumed form).

The only type of unlucky evaluation that can occur in step 5.3.1 of either algorithm

must raise the degree of the gcd in x1, so is handled by step 5.3.4.

The final issue to discuss is the case where the initial image is missing terms in either

algorithm. When this occurs, the resulting system will likely be inconsistent, so will be

detected by step 5.5 with high probability, but this may not be the case. If the problem is

not detected in any iteration of loop 5, then an incorrect image will be reconstructed in step

6 of LINZIP P. The additional check(s) in step 7 of LINZIP P will, with high probability,

detect this problem with the new images, but if this also fails, then we return an incorrect

image from LINZIP P.

Again assuming a sequence of failures to detect this problem, we arrive at LINZIP M.

Now we will compute new images in LINZIP M until gc divides both a and b, so the problem

must eventually be detected.

Note that the missing term case is the most likely failure case, as unlucky primes, unlucky

evaluations, and unlucky contents are generally quite unlikely. The probability of choosing
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a prime or evaluation that causes a term to vanish is O( t
p), where t is the number of terms

in the polynomial, and p is the prime. So for sparse problems, and a sufficiently large prime,

the chance of a bad evaluation is small, and the initial image is likely not missing terms.

Conversely if the prime is small, or the problem is large and dense (having many terms), it

is possible that the algorithm may never terminate. The algorithm, however, is designed for

sparse problems, so this is not an issue as long as primes of a suitable size are used. Note

that the enhancement described as item 7 earlier can be used for this case.

6.7 The EEZ-GCD Sparse GCD Algorithm

The EEZ-GCD algorithm is also based on modular computation, though it takes a distinctly

different approach than the methods described thus far. To understand the method, it is

necessary to lay some foundations for the p-adic and I-adic lifting methods.

The information in this section is provided primarily to give the flavor of the method,

and the details for efficient implementation of the algorithms are left for the asymptotic

analyses.

6.7.1 Lifting Methods

The basic approach used in these lifting methods is to pose the problem in the form of an

equation, f(u) = 0, where u ∈ Z[x1, ..., xn], and obtain a solution u1 in a simpler domain

Zp[x1] such that u1 satisfies f(u1) = 0 mod 〈p, x2 −α2, ..., xn −αn〉. The solution u1 is then

lifted to the solution u ∈ Z[x1, ..., xn].

A generic description of a lifting process (that parallels the one in use by EEZ-GCD) is

presented in the following diagram:

There are some significant differences between this approach and the modular approaches

described earlier.

1 This approach performs only one computation of the actual problem in the simpler do-

main, Zp[x1], then uses that solution to reconstruct the solution of the full problem.

2 Only one prime and set of evaluations is used for the entire process.
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Given problem in
Z[x1, ..., xn]

?
φxn−α

?

φx2−γ

?
φp

Problem in
Zp[x1]

- Solution in
Zp[x1]

6
Lift to pl

Solution in
Zpl [x1]

6
Lift x2

6
Lift xn

Desired solution in
Zpl [x1, ..., xn]

Figure 6.2: Homomorphism Diagram for Lifting Approach

3 The integer coefficient reconstruction is performed at the lowest level, before reconstruc-

tion of the dependence of the variables x2, ..., xn.

Note that l is chosen to be sufficiently large so that the solution in Zpl is the same as

the solution in Z. The lifting process for the variables can proceed one variable at a time,

or all variables simultaneously.

6.7.2 Application to GCD (p-adic lifting)

The lifting approach utilized to compute gcd is known as Hensel lifting, and is slightly

different than the lifting process described in the prior subsection.

The equation to be solved depends upon two expressions, u, w, and is of the form F −
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uw = 0, where F ∈ Z[x1, ..., xn] is one of the polynomials for which we are computing the

gcd, and u, w are the gcd and cofactor of that polynomial.

With this in mind, the first step, finding the solution in Zpl [x1] (effectively in Z[x1]), is

simply the process of evaluating the polynomial inputs at 〈p, x2−α2, ..., xn−αn〉, computing

the gcd u1, then selecting F to be one of the polynomials, and w1 to be the corresponding

cofactor. We then lift the solution to one with coefficients in Z by applying univariate

Hensel lifting which we give a basic description of below.

Note we are free to choose either of the polynomial inputs as the one used in the recon-

struction, which allows us some flexibility that can be leveraged to increase the efficiency of

the algorithm.

To see how the univariate Hensel lifting algorithm works, we re-write u, w, F for the

problem in Z[x1] in p-adic form (base p) as follows

u = u0 + u1p + u2p2 + ...,

w = w0 + w1p + w2p2 + ...,

F = F 0 + F 1p + F 2p2 + ...,

where ui, wi, F i ∈ Zp[x1].

Now consider the equation we want to solve, F − uw = 0. Application of the re-written

forms above gives

F − uw = (F 0 + F 1p + ...) − (u0 + u1p + ...)(w0 + w1p + ...)

= (F 0 + u0w0) + (F 1 + u0w1 + w0u1)p + ...,

from which it is obvious (by considering the equation mod p) that the O(p0) term is satisfied

immediately by setting u0 = u1 and w0 = w1.

We then want to improve the approximation by computing higher order terms, namely

u1, w1, u2, w2, ..., requiring that

F − (u0 + u1p + ... + uipi)(w0 + w1p + ... + wipi) ≡ 0 (mod pi+1).

We will label these improved approximations ui, defining these as ui+1 = ui + uipi, with a

similar definition for w.
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We will assume the use of linear lifting to obtain the higher order terms, and not quadratic

lifting. Using linear lifting we obtain a single higher order term (such as u1,u2,...) in each

step. Use of quadratic lifting allows doubling the number of known higher order terms in

each step, but the computations in each step are more expensive, and the overall cost is

shown to be asymptotically equivalent by Miola and Yun [41], assuming that classical integer

multiplication and division are used.

We assume that we have computed ui, wi and show how to obtain ui, wi, thus obtaining

the approximations ui+1, wi+1.

By definition, we have:

F − uiwi ≡ 0 (mod pi).

Now consider the exact solutions u,w:

u = u0 + u1p + ... + ui−1pi−1 + uipi + O(pi+1)

= ui + uipi + O(pi+1),

w = wi + wipi + O(pi+1).

Substitution into our equation F − uw, computing mod pi+1 gives

F − (ui + uipi + O(pi+1))(wi + wipi + O(pi+1)) mod pi+1 = 0

F − uiwi − (uiwi + uiw
i)pi + O(pi+1) mod pi+1 = 0

F − uiwi

pi
− (uiwi + uiw

i) mod p = 0

F − uiwi

pi
− (uiw1 + u1w

i) mod p = 0,

so our solution updates ui,wi can be obtained from the modular diophantine equation

uiw1 + u1w
i =

F − uiwi

pi
mod p, (6.2)

though the actual implementation uses a more efficient incremental approach for the com-

putation of the right-hand-side of (6.2).

The solution of this equation can be easily accomplished via the extended Euclidean

algorithm (eea), as Zp[x1] is a Euclidean domain.

So we can obtain the initial approximation, and can update the approximation to one

that is satisfied mod pl. Once the solution has been improved so that F − uiwi = 0, we

have obtained the solution in Z[x1].
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There are a few additional details for the above algorithm, and these are listed here:

1 The use of the eea to compute the solutions for equation 6.2 requires that there is no

common gcd between u1 and w1. If this is not the case, then either the prime was

a bad choice, or there is actually a gcd between u and w, in which case the other

polynomial for which we are computing the gcd could be used instead, or some linear

combination of the two polynomials.

2 The presented algorithm only provides a solution for monic inputs, since the output

must be monic. The modification for non-monic problems can be easily devised by

an appropriate scaling of F by its leading coefficient, and reconstruction of u,w each

scaled by the leading coefficient of the original F . The true gcd and cofactor can then

be recovered by removal of the content of the reconstructed u, w ∈ Zpl [x1] viewed as

polynomials in Z[x1].

3 There are considerations in the selection of the prime p, and cases where the choice of

the prime can be bad (non-monic case) or unlucky. For example, an unlucky choice

of p could cause the gcd to be too high a degree, then there would exist no u, w

corresponding to the u0, w0 inputs. This must be detected and handled, and the

algorithm must indicate failure for these cases.

4 Solutions for equation 6.2 only require a single application of the eea, as once we have

the solution for u1σ + w1τ = 1 (mod p), all solutions to 6.2 can be obtained through

polynomial multiplication and division.

These considerations are discussed in detail in Geddes [19], along with a pseudocode

description of the algorithm.

6.7.3 Application to GCD (I-adic lifting)

The prior subsection only described reconstruction from Zp[x1] to Zpl [x1], and in this sub-

section we will complete the description by reconstructing the variable dependencies from

Zpl [x1] to Zpl [x1, ..., xn].

The EEZ-GCD algorithm reconstructs the dependencies one variable at a time (though

all dependencies can be reconstructed simultaneously [19]), so the solution is lifted from
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Zpl [x1] to Zpl [x1, x2], then from Zpl [x1, x2] to Zpl [x1, x2, x3], and so on, until we have the

required solution.

The concepts behind the process are identical to those of the univariate case, but with

the solution written I-adically instead of p-adically.

So we have the solution F − uw = 0 mod I, where I = 〈x2 −α2, ..., xn −αn〉 is the ideal

used to compute the original gcd u1.

We then write our solutions u, w ∈ Zpl [x1, x2] (in the form of a Taylor series) as

u = u0 + u1(x2 − α2) + u2(x2 − α2)
2 + ...,

w = w0 + w1(x2 − α2) + w2(x2 − α2)
2 + ...,

where ui, wi ∈ Zp[x1]. Once again, u0, w0 are known, and we need to compute the higher

order approximations.

In a similar manner as for the univariate case, we easily obtain the solution as

uiw1 + u1w
i =

F − uiwi

(x2 − α2)i
mod 〈pl, x2 − α2〉. (6.3)

At this point the similarities with the univariate case end. Equation (6.3) is again a

diophantine equation, but the underlying domain, Zp[x2 −α2][x1] is no longer Euclidean, so

we cannot directly obtain the update terms ui, wi via the eea. A more involved process must

be used to solve this problem, and the algorithm for computing solutions of multivariate

diophantine equations is presented in [19], and will also be presented in a later section for

the purpose of complexity analysis.

For this approach there are also a number of additional considerations:

1. For efficiency one would like to choose the simplest ideal, namely 〈x2, ..., xn〉, as then

the reconstruction for a variable would only need to reconstruct the coefficients that

are not identically zero. For example, when reconstructing the dependence of x2

as described above, if α2 = 0, then if u, w were sparse, many of the diophantine

equations to be solved would have zero right-hand-sides, which naturally have the

solution ui = wi = 0, so no multivariate diophantine equation would need to be

solved for these. Unfortunately, this is not always possible, as the choice of x2 = 0

can cause a number of problems. For sparse polynomials, setting one of the variables
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to zero could cause the leading coefficient to vanish (bad evaluation), it could result

in a gcd between the actual gcd and the cofactor (bad zero), or it could result in

a gcd between the cofactors (unlucky evaluation). These cases are very common,

and often non-zero points must be chosen. For a non-zero evaluation point, every

coefficient must be constructed up to the degree of the variable being reconstructed.

2. The leading coefficient problem becomes more difficult here, as if the F has a leading

coefficient that depends upon x2, ..., xn, then it may be necessary to factor that co-

efficient (a potentially expensive process), and properly split the factors between the

gcd and the cofactor.

These issues are discussed the paper of Wang [71] that introduces the EEZ-GCD algorithm.

6.8 General Asymptotic Comparison

It is not possible to provide a rigorous and exhaustive asymptotic work estimate for the

standard (and new) gcd algorithms, as they are heavily dependent upon the specific in-

stance of the problem being computed, and the complexity of the underlying arithmetic in

Z and Zp[x]. Certain algorithms perform better than others depending upon certain aspects

of the problem (for example, the form of the leading coefficient of the gcd, whether the

problem has content with respect to the main variable, the structure of the non-zero terms,

etc.).

In this section, we provide asymptotic estimates for the most common form of problems,

for both sparse and dense cases, and provide some analysis for how these may change under

special circumstances.

We use the following simplification assumptions throughout the analysis.

1. We ignore the cost of manipulating the exponent vectors when multiplying two mono-

mials. So multiplication of two monomials with coefficients of 1 is O(1).

2. We consider arithmetic operations in Zp, where p is a small (machine sized) prime, to

have O(1) expense.

3. We assume the use of classical integer and polynomial arithmetic. So for two integers
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in Z with C1, C2 digits respectively, addition and subtraction have an expense of

O(max(C1, C2)), multiplication has an expense of O(C1C2), and division of a C1 +

C2 digit number by a C1 digit number (with a C2 digit result) has an expense of

O(C1C2). Similarly, for two dense polynomials in Zp[x] with degrees N1, N2, addition

and subtraction have an expense of O(max(N1, N2)) and multiplication and division

(as defined for the integer case) have an expense of O(N1N2).

4. We ignore the effect of addition on the coefficient size when computing the product of

two polynomials. So multiplication of two polynomials with coefficient sizes of C1

and C2 will result in a polynomial with coefficient size C1 + C2. Note that a standard

exception for this assumption is to consider the product of two fully dense polynomials

of degree N in d variables with all coefficients being 1. In this case the product has a

maximal coefficient of (N +1)d (the number of terms in one polynomial). Considering

that we are working with machine-sized integers (32 bits), the number of terms needed

to add one word (digit) to the size of the maximal coefficient in a product operation

is over 4 billion. So with this in mind we will ignore this effect.

5. We assume that the inputs are free of content with respect to the main variable with the

following justification. For the dense algorithms (Brown and DIVBRO), the existence

of a content should affect both equally, and unnecessarily complicates the analysis.

For the sparse algorithms (EEZGCD and LINZIP), the inputs must be content free

with respect to the main variable for the algorithms to function correctly, and the cost

of computing and removing the content would again be equal.

With these assumptions it is straightforward to show that the cost of Chinese remain-

dering for a C digit coefficient is O(C2), and similarly the cost of interpolation of values

in Zp to obtain a degree N polynomial in Zp[x] is O(N2). The cost of the gcd and eea

algorithms for two polynomials ∈ Zp[x] of degree N1, N2 can be shown to be O(N1N2).

We consider the gcd problem g = gcd(a, b) with cofactors ā, b̄. We use the symbols

N , T , and C to represent the maximum degree (in any single variable), the number of

terms, and the length of the coefficients respectively, using subscripts to denote which of

g,ā,b̄ they correspond to. So for example, Ng represents the maximum degree of g, and Tb̄

represents the number of terms in b̄. We write these symbols with multiple subscripts to

denote the maximum over those quantities. So for example, Ngāb̄ = max(Ng, Nā, Nb̄). We
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let n represent the number of variables in the problem, and use Z[x] to describe Z[x1, ..., xn],

the domain of our problem.

6.8.1 Asymptotic complexity of sub-algorithms

In this section we will analyze a number of sub-algorithms that are used in the gcd algorithms

we describe later.

Degree bounds

Degree bounds are needed for the new algorithms, namely DIVBRO and LINZIP, but these

bounds may be used to make other algorithms more efficient. Degree bounds would only

be useful if the expense of computing them is smaller than the gcd computations that use

them. We discuss an efficient approach to compute these bounds now.

As discussed previously, a gcd computed with respect to a prime or evaluation that is

not bad results in at worst a polynomial multiple of the true gcd g with respect to that

prime or evaluation. This is the core of the approach: We perform the gcd computation

mod a prime, evaluating out all but a single variable, and the resulting gcd will have degree

no lower than the degree of g in that variable. In other words, this computation provides

a bound on the degree of g in that variable. We would like to emphasize here that if

the prime and random evaluations are not bad, and the prime is not trivially small, the

computed bound will be exact with high probability.

To reduce expense, we perform the bound computation for all variables with respect to

a single prime, so the expense of the initial mod is given by O((Cg +Cā)(Ng +Nā)
n +(Cg +

Cb̄)(Ng + Nb̄)
n) = O(CgāNgā

n + Cgb̄Ngb̄
n) for the dense case, and O((Cg + Cā)TgTā + (Cg +

Cb̄)TgTb̄) = O(CgāTgTā + Cgb̄TgTb̄) for the sparse case.

Now we could proceed by direct evaluation of all but a single variable in turn, computing

each gcd as we go, but we can improve on this. We evaluate half the variables twice, splitting

into two problems that have half the variables of the initial problem. Continuing in this

manner, we need to take log2(n) steps to obtain all univariate pairs needed to compute the

bounds.

For the dense case, the first evaluation with respect to half the variables has a cost of
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n
2O(Ngā

n + Ngb̄
n), which we perform twice, for a total cost of O(n(Ngā

n + Ngb̄
n)). For the

next set of evaluations the polynomials are now dense in only n
2 variables, which significantly

lowers the costs. It is easily shown that the expense of the 4 evaluations required at this level

is O(n(Ngā
n
2 + Ngb̄

n
2 )). If we then proceed until there is only one variable left, we obtain

a sum, but from the form of that sum it is clear that all remaining terms in the sum are

asymptotically smaller than the first term (corresponding to the first pair of evaluations), so

the total expense of the evaluations in the dense case is O(n(Ngā
n + Ngb̄

n)). We note that

in this case the total cost of computing the powers of all variables is nO(max(Ngā, Ngb̄)),

which can be ignored, as it is asymptotically insignificant.

For the sparse case, the first evaluation with respect to half the variables has a cost of
n
2O(TgTāb̄) + n

2O(Ngāb̄), where the second term corresponds to the expense of computing

the powers of the variables to be evaluated. We perform this computation twice, for a total

cost of O(nTgTāb̄ + nNgāb̄). For the next set of evaluations we assume we have stored the

computed powers of the variables to be evaluated. There will be at most the same number of

terms present, and we require 4 evaluations with respect to n
4 variables for two polynomials

in n
2 variables with a total cost of O(nTgTāb̄), which is the same as the first term of the

expense at the first evaluation level. This pattern continues, and we obtain a sum, which

when evaluated gives the expense as O(n log2(n)TgTāb̄ + nNgāb̄).

Now given that the expense in computing the n gcds in Zp[x] is O(nNgāNgb̄) for both

cases, we obtain the estimates for the degree bound computation in Table 6.1.

Dense O(CgāNgā
n + Cgb̄Ngb̄

n + n(Ngā
n + Ngb̄

n) + nNgāNgb̄)

Sparse O(CgāTgTā + Cgb̄TgTb̄ + n log2(n)TgTāb̄ + nNgāNgb̄)

Table 6.1: gcd Degree Bound Computation Expense

In addition to providing degree bounds, this method also allows detection of trivial gcds

with high probability, and also allows for detection of variables that are not present in the

gcd, allowing a simplification of the problem (see the comments at the end of the next

section).
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Univariate content computation in Zp[x]

Most of the algorithms have an early step where it is necessary to compute a univariate

content; i.e. the content of the gcd in the current variable.

The direct method of computation is quite expensive, as it involves a gcd computation

for every coefficient in the current variable. For example, in the dense case with n variables,

we have O(Nn) terms, and O(Nn−1) coefficients that are degree N in the current variable.

The expense of the direct method is easily seen to be O(Nn+1) for the dense case, and

O(TN2) for the sparse case.

There is a more efficient way to compute this, with high probability, in only a single

gcd computation. The approach is simply to take the one smallest coefficient in xn, and

a random linear combination of all other coefficients, and compute the gcd of these two

polynomials in xn. Using this approach one needs to take care that the random linear

combination is not bad (i.e. no degree drop in xn), and if this is so, the computed gcd will

be at worst a polynomial multiple of the content (in the unlucky case). To reduce this

possibility, another combination could be obtained, and the gcd could be computed again.

This could be repeated some fixed number of times, reducing the probability of an unlucky

content computation to nearly zero.

The effect of this approach is most dramatic for the cases where the content is small,

and as this is a probabilistic result, the removal of the content (through division) makes it

deterministic. We do not include the content removal (division) cost here, but do consider

it in the individual algorithms.

So the cost of performing the linear combination is O((Ng + Nā)
n + (Ng + Nb̄)

n) =

O(Ngā
n + Ngb̄

n) in the dense case, and O(TgTā + TgTb̄) = O(TgTāb̄) in the sparse case, and

cost of the gcd computation is O((Ng + Nā)(Ng + Nb̄)) = O(NgāNgb̄) in both cases.

We also note that a similar approach can be used for the computation of the integer

content in the Brown M and LINZIP M algorithms, so we simply provide the analogous

results without detail. Note that we do need to apply our assumption that the coefficients

of a, b are O(Cg + Cā),O(Cg + Cb̄) respectively to obtain the results below.

The total asymptotic cost for a single univariate content computation and for a single

integer content computation for a, b is given in Table 6.2.
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Case Direct Method Improved Method

Dense Univariate O((Ngā
n−1 + Ngb̄

n−1)NgāNgb̄) O(Ngā
n + Ngb̄

n + NgāNgb̄)

Sparse Univariate O(TgTāb̄NgāNgb̄) O(TgTāb̄ + NgāNgb̄)

Dense Integer O((Ngā
n + Ngb̄

n)CgāCgb̄) O(CgāNgā
n + Cgb̄Ngb̄

n + CgāCgb̄)

Sparse Integer O(TgTāb̄CgāCgb̄) O(CgāTgTā + Cgb̄TgTb̄ + CgāCgb̄)

Table 6.2: gcd Content Computation Expense

We will assume that this approach is used whenever an integer or univariate content

needs to be computed.

Now in addition to this approach being used to compute contents, a similar approach can

be used in combination with the degree bounds in the prior section to simplify the problem.

Much as we did with the content computation, we can take a random linear combination

of the coefficients of the inputs a, b with respect to all variables that are not in the gcd.

With high probability we will have reduced the number of variables in the problem to only

those that are in the gcd, and will still obtain the same result in a computation with fewer

variables.

Multivariate content computation

For the sparse algorithms, namely the EEZ-GCD and LINZIP algorithms, the input polyno-

mials must have no content with respect to the main variable x1 to succeed. This condition

needs to be enforced prior to calling the algorithm, and may in some cases be used to choose

a better main variable (i.e. a main variable that is present in all factors of the gcd, hence

no content problem).

The straightforward approach here is unthinkable, namely performing at least one, and

possibly several gcd computations in one fewer variable, as the expense of this approach

will likely be on the order of the expense of the gcd computation itself. Fortunately we can

adapt the approach used for computing the univariate contents of the gcd to this problem.

Once a main variable is chosen, we can select the smallest coefficient in that variable,

over both a and b, take a random linear combination of the remaining coefficients (making

sure the combination is not bad), and compute the gcd of these expressions. With high

probability this will compute the content of the problem in a single gcd in one fewer variable.
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We will not analyze this in detail, as we will primarily be comparing the efficiency of

the sparse algorithms with each other, and both have this additional cost associated with

them, so in the analysis we assume contx1(a, b) = 1.

Polynomial division

Here we consider the expense of polynomial division of the inputs a, b by the gcd g in Z[x].

This is required as a correctness check at the end of all the presented algorithms except

Brown’s algorithm.

We consider performing the division of the expanded polynomials a, b by the expanded

gcd g. We perform the division in much the same way as a Gröbner basis reduction with

respect to a lexicographic ordering, starting with the leading term of a, b. We note that a

great deal of care must be taken in implementation of this algorithm to prevent the term

comparisons from becoming a significant factor.

For the dense case, the division of a by g will require as many division steps as terms

present in ā, O(Nā
n), with an expense of O(CgCāNg

n) per step. This makes the overall

expense of the division O(CgCāNg
nNā

n), basically the product of the sizes of the quotient

and divisor. Similarly the division of b by g will have overall expense O(CgCb̄Ng
nNb̄

n).

For the sparse case a similar approach can be used. Division of a by g will require O(Tā)

steps with an expense of O(CgCāTg) per step, giving an overall expense of O(CgCāTgTā).

Similarly the division of b by g will have an overall expense of O(CgCb̄TgTb̄).

So we have the complexity estimates for classical polynomial division in Table 6.3, and

we note that this is the same as the complexity of classical polynomial multiplication of ā, b̄

times g (the product between the quotients and the divisor).

Dense Division O(CgNg
n(CāNā

n + Cb̄Nb̄
n))

Sparse Division O(CgTg(CāTā + Cb̄Tb̄))

Table 6.3: Classical Polynomial Division Expense
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6.8.2 Asymptotic complexity of Brown’s Algorithm

We first consider the simplest algorithm, and determine the complexity of Brown’s algorithm

for a general number of variables. For both algorithms (M and P), all steps that clearly

have a lower order effect are ignored.

First consider the content computation in step 1 of algorithm M. This involves compu-

tations with coefficients of size Cgā,Cgb̄ for O(Ngā
n), O(Ngb̄

n) terms in the dense case, and

O(TgTā), O(TgTb̄) terms in the sparse case. We will utilize the improved content computa-

tion scheme, and we obtain expenses (Table 6.2) of O(CgāNgā
n +Cgb̄Ngb̄

n +CgāCgb̄) for the

dense case, and O(CgāTgTā + Cgb̄TgTb̄ + CgāCgb̄) for the sparse case. Since we assume for

the analysis that contx(g) = 1, there will be no content to remove.

Next consider the number of primes needed by algorithm M. This is initially chosen

as B = 2γmax(||a||∞, ||b||∞). As discussed in Brown [8], the exceptional cases where the

estimate for B is too small are generally rare, so we will assume it is sufficient. Based on

our assumptions we have ||a||∞ = O(Cgā) and ||b||∞ = O(Cgb̄), so we can obtain the worst

case bound log(B) = O(min(Cgā, Cgb̄) + max(Cgā, Cgb̄)). It is straightforward to see that

this is equivalent to the best case bound, so we obtain log(B) = O(Cgāb̄), and the number of

iterations of the loop will be proportional to the length of the maximum integer coefficient

in g, ā, and b̄.

Consider the expense for the steps inside the loop for all iterations. For a single pass, the

modular reductions in step 7 of algorithm M have a cost per coefficient that is proportional

to the length of the coefficient. This means that a single reduction of a, b in the dense case

has associated cost O(Cgā ×Ngā
n + Cgb̄ ×Ngb̄

n), and a single reduction of a, b in the sparse

case has associated cost O(Cgā × TgTā + Cgb̄ × TgTb̄), so for all iterations these become

O(Cgāb̄(CgāNgā
n + Cgb̄Ngb̄

n)) and O(Cgāb̄(CgāTgTā + Cgb̄TgTb̄)) for the dense and sparse

cases respectively. We denote the cost of the call to Brown’s P algorithm for n variables in

step 8 by CostPd(n), CostPs(n) for the dense and sparse cases respectively, so their total

expense is multiplied by O(Cgāb̄).

Consider the overall cost of performing the Chinese remaindering to obtain the gcd and

cofactors in Z[x] over all iterations of the loop. This is known to be proportional to the

square of the number of images used for each coefficient, so this is given by O(Cgāb̄
2 ×

(Ng
n + Nā

n + Nb̄
n)) = O(Cgāb̄

2Ngāb̄
n) for the dense case, and O(Cgāb̄

2 × (Tg + Tā + Tb̄)) =
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O(Cgāb̄
2Tgāb̄) for the sparse case.

As for the cost of the content computation and removal in step 16, we can bound it by

the cost of the Chinese remaindering. We again utilize the improved content computation

scheme, which for the computation of the three required contents can be shown to be

O(Cgāb̄
2 + Cgāb̄ × (Ng

n + Nā
n + Nb̄

n)) = O(Cgāb̄
2 + Cgāb̄Ngāb̄

n) for the dense case, and

O(Cgāb̄
2 + Cgāb̄ × (Tg + Tā + Tb̄)) = O(Cgāb̄

2 + Cgāb̄Tgāb̄) for the sparse case. Removal of the

computed contents has expense O(Cgāb̄
2Ngāb̄

n) for the dense case, and O(Cgāb̄
2Tgāb̄) for the

sparse case, so the total asymptotic expense for this step is the same as the expense of the

Chinese remaindering.

Combining and simplifying the above gives the asymptotic cost estimates

CostMd(n) = O(Cgāb̄
2Ngāb̄

n) + Cgāb̄ × CostPd(n),

CostMs(n) = O(Cgāb̄Tg(CgāTā + Cgb̄Tb̄) + Cgāb̄
2Tgāb̄) + Cgāb̄ × CostPs(n),

for the dense and sparse cases, respectively.

Now consider the cost of algorithm P for n variables. We need to take a good deal more

care in the sparse case, as a polynomial that is sparse in n variables may actually be dense

when considered as a polynomial in fewer variables. To handle this, we will bound the term

counts by their dense equivalents. So, for example, a polynomial having originally Tg terms,

when evaluated down to a univariate polynomial, will have at most min(Tg, Ng + 1) terms.

For the content computation in step 1 we again utilize the improved method (Table 6.2)

giving expenses of O(Ngā
n + Ngb̄

n + NgāNgb̄) for the dense case, and O(min(TgTā, Ngā
n) +

min(TgTb̄, Ngb̄
n)+NgāNgb̄) for the sparse case. Since the gcd is assumed to be content free,

we expect that the content is small (the content is 1 with high probability as it can only be

introduced by the prime or evaluations), so the cost of its removal is O(Ngā
n +Ngb̄

n) in the

dense case and O(min(TgTā, Ngā
n) + min(TgTb̄, Ngb̄

n)) in the sparse case.

The analysis of the number of evaluation points needed for algorithm P is similar to

the analysis of the number of primes needed for algorithm M. In summary, for all cases,

O(Ngāb̄) evaluation points are needed to reconstruct the dependence of xn for g, ā, and b̄.

Consider the expense for the steps inside the loop for all iterations. For a single pass,
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the modular evaluations in step 7 of algorithm P have O(1) cost per term (a multipli-

cation in Zp). This means that a single evaluation of a,b in the dense case has associ-

ated cost O(Ngā
n + Ngb̄

n), and a single evaluation of a,b in the sparse case has associ-

ated cost O(min(TgTā, Ngā
n) + min(TgTb̄, Ngb̄

n) + Ngāb̄), so for all iterations these become

O(Ngāb̄(Ngā
n+Ngb̄

n)) and O(Ngāb̄(min(TgTā, Ngā
n)+min(TgTb̄, Ngb̄

n)+Ngāb̄)) for the dense

and sparse cases, respectively. In step 8 we have the recursive call to algorithm P with one

fewer variable, so the total expense is simply multiplied by O(Ngāb̄).

Consider the overall cost of performing the Chinese remaindering (equivalent to Newton

interpolation) to reconstruct the dependence of xn. This is known to be proportional to

the square of the number of images used for each coefficient, so this is given by O(Ngāb̄
2 ×

(Ng
n−1+Nā

n−1+Nb̄
n−1)) = O(Ngāb̄

n+1) for the dense case, and O(Ngāb̄
2×(min(Tg, Ng

n−1)+

min(Tā, Nā
n−1) + min(Tb̄, Nb̄

n−1))) for the sparse case, and for the latter we apply the

notation O(Ngāb̄
2 × min(T, Nn−1)gāb̄) for brevity.

Finally, as for the M algorithm, the cost of the content computations in step 16 is

bounded by the cost of the Chinese remaindering, so combining and simplifying the above

gives the asymptotic cost estimates

CostPd(n) = O(Ngāb̄
n+1) + Ngāb̄CostPd(n − 1),

CostPs(n) = O(Ngāb̄(min(TgTā, Ngā
n) + min(TgTb̄, Ngb̄

n)) + Ngāb̄
2min(T, Nn−1)gāb̄)

+Ngāb̄CostPs(n − 1),

for the dense and sparse cases, respectively.

Once we are left with only one variable (i.e. n = 1), we apply the Euclidean algorithm to

the inputs, which has a cost that depends only upon the degree, having expense O(NgāNgb̄)

for both cases. The expense of the division to obtain the cofactors ā, b̄ is O(NgNā +NgNb̄),

so we obtain CostPd(1) = CostPs(1) = O(NgāNgb̄).

These recurrences are easily solved from the bottom up.

First consider the dense case, for which the complexity has a similar structure for any

number of variables. Since the cost for a single variable is O(NgāNgb̄), we compute

CostPd(2) = O(Ngāb̄
3) + Ngāb̄ ×O(NgāNgb̄) = O(2Ngāb̄

3),

CostPd(3) = O(Ngāb̄
4) + Ngāb̄ ×O(2Ngāb̄

3) = O(3Ngāb̄
4),

CostPd(4) = O(Ngāb̄
5) + Ngāb̄ ×O(3Ngāb̄

4) = O(4Ngāb̄
5),
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which gives CostPd(n) = O(nNgāb̄
n+1) for algorithm P, and combining with the result for

algorithm M we obtain

CostMd(n) = O(Cgāb̄
2Ngāb̄

n + nCgāb̄Ngāb̄
n+1). (6.4)

For the sparse case we will proceed differently. We let nx be the greatest number of

variables in which the inputs and outputs can be considered dense polynomials in those

variables. More precisely, we choose nx, 2 ≤ nx ≤ n so that TgTā = O(Ngā
nx) and TgTb̄ =

O(Ngb̄
nx), but TgTā = o(Ngā

nx+1) and TgTb̄ = o(Ngb̄
nx+1). With this definition of nx we

state that the complexity of Brown’s algorithm M for n variables is given by

CostPs(n) = O(nxNgāb̄
n+1).

We provide an outline of the proof. For n = 2 we obtain

CostPs(2) = O(Ngāb̄(min(TgTā, Ngā
2) + min(TgTb̄, Ngb̄

2)) + Ngāb̄
2min(T, N)gāb̄)

+O(Ngāb̄NgāNgb̄).

We claim that the above expression is bounded by O(Ngāb̄
3), and further for sufficiently

dense g,ā,b̄ this bound is tight. Clearly it is tight if g,ā,b̄ are dense, but this is not necessary,

as they need only be dense in x1, not in all variables. This can be most easily seen from the

third term in the estimate, which becomes O(Ngāb̄
3) when g,ā,b̄ are dense in x1.

Now if we assume that our statement is true for i − 1, i ≤ nx then we have

CostPs(i) = O(Ngāb̄(Ngā
i + Ngb̄

i) + Ngāb̄
i+1) + Ngāb̄ × CostPs(i − 1)

= O(Ngāb̄
i+1) + Ngāb̄ ×O((i − 1)Ngāb̄

i)

= O(iNgāb̄
i+1).

Now if we consider what happens for i = nx + 1 we obtain

CostPs(nx + 1) = O(Ngāb̄(TgTā + TgTb̄) + Ngāb̄
nxTgāb̄) + Ngāb̄ × CostPs(nx)

= o(Ngāb̄
nx+1) + Ngāb̄ ×O(nxNgāb̄

nx+1)

= O(nxNgāb̄
nx+1),

and this continues to hold for all i > nx + 1.
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It may not be entirely clear in the analysis, but the primary expense in the sparse case

comes from the recursive calls for i ≤ nx, unlike the dense case where the contribution

from the current variable and the recursion have similar complexity. This provides some

motivation for the Zippel approach, and also indicates that if the cases for small i can be

coded efficiently, an implementation of this algorithm may be suitable for moderately sparse

inputs.

In any event, combining the expense of algorithm P with the result for algorithm M we

obtain the complexity estimate for the sparse case as

CostMs(n) = O(Cgāb̄Tg(CgāTā + Cgb̄Tb̄) + Cgāb̄
2Tgāb̄ + Cgāb̄nxNgāb̄

n+1). (6.5)

6.8.3 Asymptotic complexity of DIVBRO

We now consider the complexity of the DIVBRO algorithm for sparse and dense multivariate

polynomials.

The expense for the content computation in step 1 of algorithm M is the same as that

of Brown M, namely O(CgāNgā
n + Cgb̄Ngb̄

n + CgāCgb̄) for the dense case, and O(CgāTgTā +

Cgb̄TgTb̄ + CgāCgb̄) for the sparse case. Since we assume for the analysis that contx(g) = 1,

there will be no content to remove. We also note that this expense bounds the single integer

gcd in step 3. The expense of the degree bound computations from step 4 can be taken

directly from Table 6.1, and we denote these as Bd(n), Bn(n) for the dense and sparse cases,

respectively.

Now consider the number of primes needed by algorithm DIVBRO M. Recall that with

high probability the algorithm will use at most one more prime than needed to reconstruct
γ

lcx(g) × g, where γ = gcd(lcx(a), lcx(b)). If we use Cγ to represent the length of the integer
γ

lcx(g) , then the number of primes required is O(Cg + Cγ) = O(Cgγ).

Consider the expense for the steps inside the loop for all iterations. The expense of

performing the modular evaluations in step 7 of DIVBRO M will be the same as for Brown’s

algorithm M, but will be repeated O(Cgγ) times, so the total expense for all iterations will

be O(Cgγ × (CgāNgā
n +Cgb̄Ngb̄

n)) for the dense case, and O(Cgγ × (CgāTgTā +Cgb̄TgTb̄)) for

the sparse case. We denote the expense of the call to DIVBRO P for n variables in step 8

by CostPd(n), CostPs(n) for the dense and sparse cases, respectively, so their total expense
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is multiplied by O(Cgγ).

Consider the overall expense of performing the Chinese remaindering to obtain the

gcd in Z[x] over all iterations of the loop. The analysis is the same as for Brown’s M algo-

rithm except that we are only reconstructing g, so the expense is given by O(Cgγ
2 × Ng

n)

for the dense case, and O(Cgγ
2 × Tg) for the sparse case.

The content computation in step 16 is bounded by the expense of the Chinese remain-

dering (using the same reasoning as for Brown’s algorithm).

If we denote the dense and sparse division costs in step 16 by Dd(n) and Ds(n) respec-

tively, and combine and simplify the results above, we obtain the asymptotic cost estimates

CostMd(n) = O(CgāCgb̄ + Cgγ(CgāNgā
n + Cgb̄Ngb̄

n)) + Cgγ × CostPd(n) + Bd(n) + Dd(n),

CostMs(n) = O(CgāCgb̄ + CgγTg(CgāTā + Cgb̄Tb̄)) + Cgγ × CostPs(n) + Bs(n) + Ds(n),

for the dense and sparse cases respectively.

Now consider the expense of algorithm DIVBRO P for n variables. Again we need to

take care here for the sparse case, as a polynomial that is sparse in n variables may actually

be dense when considered as a polynomial in fewer variables.

As for Brown’s P algorithm, the expense of computing the contents in step 1 will be

O(Ngā
n + Ngb̄

n + NgāNgb̄) for the dense case, and O(min(TgTā, Ngā
n) + min(TgTb̄, Ngb̄

n) +

NgāNgb̄) for the sparse case. Also as for Brown’s P algorithm, we assume the content is

O(1), so its removal has the same expense as its computation.

We will need sufficiently many evaluation points to reconstruct γ
lcx1,...,xn−1 (g)g, so if the

degree of γ
lcx1,...,xn−1 (g) in xn is denoted Nγ , the number of evaluation points will be O(Ng +

Nγ) = O(Ngγ).

Consider the expense for the steps inside the loop for all iterations. The expense of

performing the modular evaluations in step 7 of DIVBRO P will be the same as for Brown’s

algorithm P, but will be repeated O(Ngγ) times, so the total expense for all iterations will

be O(Ngγ(Ngā
n+Ngb̄

n)) for the dense case and O(Ngγ(min(TgTā, Ngā
n)+min(TgTb̄, Ngb̄

n)+

Ngāb̄)) for the sparse case. In step 8 we have the recursive call to DIVBRO P with one fewer

variable, so the total expense is simply multiplied by O(Ngγ).

Now outside the loop, we consider the expense of performing the Newton interpolation
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in step 18 to reconstruct the dependence of xn. As with Chinese remaindering, this is known

to be proportional to the square of the number of images used for each coefficient, so this is

given by O(Ngγ
2 ×Ng

n−1) for the dense case, and O(Ngγ
2 ×min(Tg, Ng

n−1)) for the sparse

case.

Again we ignore the content computations in step 19 by the same reasoning as DIVBRO

M. The expense of the division tests in step 19 are given by O(Ng
nNāb̄

n) for the dense case,

and O(TgTāb̄) for the sparse case (as the coefficients are O(1) in DIVBRO P). We combine

and simplify the above giving the asymptotic cost estimates

CostPd(n) = O(NgγNgāb̄
n) + O(Ng

nNāb̄
n) + NgγCostPd(n − 1),

CostPs(n) = O(Ngγ(min(TgTā, Ngā
n) + min(TgTb̄, Ngb̄

n)) + Ngγ
2min(Tg, Ng

n−1))

+NgγCostPs(n − 1),

where the expense of the division is written separately for the dense case (the source of the

O(Ng
nNāb̄

n) term), and is asymptotically smaller than the other expenses for the sparse

case (if the polynomials are sufficiently sparse).

Again the single variable case, n = 1, has expense CostPd(1) = CostPs(1) = O(NgāNgb̄).

Before solving these recurrences we will make an observation. The Cγ factor is at worst

bounded by Cāb̄ for DIVBRO P and the Nγ factor is at worst bounded by Nāb̄ for DIVBRO

M, and in the event that these bounds are tight, the recurrences (ignoring the division cost)

are of the same form as those obtained for Brown’s algorithm, so their solution is identical.

In many cases, Cγ , Nγ are small, with one notable exception, namely computation of a

square-free polynomial. It is still possible to reduce the size of this factor, by utilizing a

trailing coefficient normalization instead of a leading coefficient normalization. With this

in mind, we assume that cases where Cγ , Nγ are at their worst are generally rare, and

proceed with the analysis assuming that Cγ = O(Cg) and Nγ = O(Ng). We now solve these

recurrences under the new assumptions from the bottom up.

As for Brown’s P algorithm, the solution of the recurrence is fairly straightforward, and

we have

CostPd(2) = O(NgNgāb̄
2 + Ng

2Nāb̄
2) + Ng ×O(NgāNgb̄) = O(2NgNgāb̄

2 + Ng
2Nāb̄

2),

CostPd(3) = O(NgNgāb̄
3 + Ng

3Nāb̄
3) + Ng × CostPd(2) = O(3NgNgāb̄

3 + Ng
3Nāb̄

3),

CostPd(4) = O(NgNgāb̄
4 + Ng

4Nāb̄
4) + Ng × CostPd(3) = O(4NgNgāb̄

4 + Ng
4Nāb̄

4),
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so for the DIVBRO P algorithm we obtain CostPd(n) = O(nNgNgāb̄
n + Ng

nNāb̄
n), where

we note that the second term in the estimate is a direct result of the division test only. An

observation can be made that for Ng � Nāb̄ the core contribution to the asymptotic expense

comes from the evaluations and divisions performed at the top level of the recursion, and the

expense simplifies to CostPd(n) = O(NgNgāb̄
n + Ng

nNāb̄
n). This contrasts with Brown’s P

algorithm, where the current and recursive components contribute equally to the asymptotic

expense in all cases.

We obtain the total expense for the DIVBRO algorithm in the dense case (including the

division cost from Table 6.3 and the degree bound cost from Table 6.1) as

CostMd(n) = O(CgāCgb̄ + Cg(CgāNgā
n + Cgb̄Ngb̄

n) + nCgNgNgāb̄
n)

+O(CgNg
n(CāNā

n + Cb̄Nb̄
n)). (6.6)

For the sparse case we will proceed as in Brown, with the same definition for nx, 1 <

nx ≤ n the number of variables after which the inputs begin to appear sparse. The solution

in this case is given by

CostPs(n) = O(Ng
n−nx+1Ngāb̄

nx

nx∑

i=2

αi−2),

for n, nx ≥ 2 and α =
Ng

Ngāb̄
≤ 1.

We now proceed to outline the proof.

For n = 2 we can obtain the solution directly from CostPs(1) and the recurrence for

CostPs(n) evaluated at n = 2 as

CostPs(2) = O(Ng(Ngā
2 + Ngb̄

2) + Ng
2Ng + NgNgāNgb̄)

where we have utilized the assumption that nx ≥ 2 so the minimums are known. It is

clear that all terms are bounded by NgNgāb̄
2, and further that the bound is tight for any of

Ng,Nā,Nb̄ maximal. This agrees with the form of the solution.

Now we assume that the estimate holds for n = j − 1 < nx, so for n = j we obtain

CostPs(j) = O(Ng(Ngā
j + Ngb̄

j) + Ng
2Ng

j−1) + Ng × CostPs(j − 1)

= O(NgNgāb̄
j) + Ng ×O(NgNgāb̄

j−1
j−1
∑

i=2

αi−2)
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= O(NgNgāb̄
j) + Ngāb̄α ×O(NgNgāb̄

j−1
i−1∑

i=2

αi−2)

= O(NgNgāb̄
j(1 + α

j−1
∑

i=2

αi−2))

= O(NgNgāb̄
j

j
∑

i=2

αi−2).

Also for n = nx + 1 we obtain

CostPs(nx + 1) = O(Ng(TgTā + TgTb̄) + Ng
2Tg) + NgCostPs(nx)

= O(NgNgāb̄
nx) + Ng ×O(NgNgāb̄

nx

nx∑

i=2

αi−2)

= O(Ng
2Ngāb̄

nx

nx∑

i=2

αi−2),

and this pattern continues for any number of variables, each level of the recurrence n > nx

simply multiplying the complexity by the factor Ng.

And now a comment on the sum factor. Since α ≤ 1, and nx ≤ n, then this factor f

is purely in the range 1 ≤ f ≤ n. The analysis could have proceeded more smoothly by

simply setting it to n, but this misses an interesting feature of the complexity. Specifically,

if α =
Ng

Ngāb̄
≤ 1

2 , then the factor f is bounded by 2 regardless of the number of variables

in the problem. In fact for any fixed value less than 1, there is a finite limit to the size of

this factor that is independent of the number of variables in the problem. Note also that

when α = 1, Ng = Ngāb̄, and the result for the complexity is identical to the complexity of

Brown’s algorithm.

Using the shorthand f =
∑nx

i=2 αi−2 we obtain the total expense for the DIVBRO algo-

rithm in the sparse case as

CostMs(n) = O(CgāCgb̄ + CgTg(CgāTā + Cgb̄Tb̄) + CgfNg
n−nx+1Ngāb̄

nx

+n log2(n)TgTāb̄ + nNgāNgb̄), (6.7)

where we have accounted for the division cost from Table 6.3, O(CgTg(CāTā + Cb̄Tb̄)), as it

is bounded by the second term in the above cost (the expense of the modular evaluations

in algorithm M), and included the degree bound cost from Table 6.1.
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There are a few practical points to note when comparing the Brown algorithm and the

DIVBRO algorithm. The first is that DIVBRO was designed for use on small gcd problems,

specifically those for which the division expense is not dominant. Consider the expenses of

the Brown and DIVBRO algorithms when the size of g (in coefficient length, term count

and degree) is O(1) in Table 6.4.

Brown Dense O(Cāb̄
2Nāb̄

n + nCāb̄Nāb̄
n+1)

Brown Sparse O(Cāb̄(CāTā + Cb̄Tb̄) + Cāb̄
2Tāb̄

2 + Cāb̄nxNāb̄
n)

DIVBRO Dense O(CāCb̄ + CāNā
n + Cb̄Nb̄

n)
DIVBRO Sparse O(CāCb̄ + CāTā + Cb̄Tb̄ + Nāb̄

nx + n log2(n)Tāb̄ + nNāNb̄)

Table 6.4: Small gcd Dense Algorithm Expense Comparison

For the dense case, the DIVBRO algorithm is asymptotically faster by at least O(Nāb̄),

as the expense is one degree lower. In addition the expense resulting from the coefficient

operations is significantly smaller. For the sparse case the effect is even more dramatic, as

nx is usually quite small, likely between 1 and 3 for moderately sparse problems, so there

is a significant savings there, as well as fewer coefficient operations.

The balanced case, where Ng = O(Nā) = O(Nb̄) will be discussed in a later section.

6.8.4 Asymptotic complexity of EEZ-GCD

The analysis for the EEZ-GCD algorithm is significantly more complex than that of the prior

analyses, and involves a number of algorithms. It should be noted that modular operations

generally need to be done in the symmetric range, as we are working with representations

for signed integers.

A large portion of the expense is associated with the solution of the diophantine equations

that arise in the course of the computation. There are two algorithms, the p-adic algorithm,

which lifts an image from Zp[x1] to Zpl [x1], and the I-adic algorithm, which lifts an image

from Zpl [x1, ..., xn]/〈xn − αn〉 to Zpl [x1, ..., xn].

One other key point is that only one of the inputs for the gcd problem is used for the

lifting part of the algorithm, which can offer notable efficiency improvements if one input is

significantly larger or more dense than the other.

For this analysis, without loss of generality, we choose a to be the polynomial product
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to be reconstructed, and we assume that the inputs are in two variables or more. We will

continue to use subscript notation to describe quantities C, N , and T , and we also define

C = Cuw (= Cgā) as this quantity occurs with great frequency in the analysis.

p-adic Algorithm

The algorithm for lifting an image in Zp[x1] to an image in Zpl [x1] requires the solution of

univariate diophantine equations in Zp[x1]. Fortunately we are in a Euclidean domain, so

we can apply the eea to obtain the initial solution, and lift it p-adically.

The linear lifting algorithm is as follows:

Algorithm 23 (UniHensel)

Input: A monic polynomial a ∈ Z[x1], a prime p, relatively prime polynomials u0, w0 ∈
Zp[x1] satisfying a − u0w0 = 0 mod p, and a bound B on the coefficient size of u, w

on output.

Output: u, w ∈ Zpl [x1] such that a − uw = 0 in Z[x1], or Fail if no such u, w exist.

1 Solve σu0 + τw0 = 1 for σ, τ ∈ Zp[x1] using the eea

2 Initialize, set e = a − u0w0, m = p, u = u0, w = w0

3 Loop until e = 0 or m > 2B

3.1 Set e = e/p

3.2 Compute image of error in Zp[x1], set c = e mod p

3.3 Obtain diophantine solutions ui, wi:

Set s = σc mod p, t = τc mod p,

Divide s by w0 to get q, r ∈ Zp satisfying s = w0q + r mod p,

Set wi = r, ui = t + qu0 mod p

3.4 Update the error e and the images u, w:

Set e = e − (wui + uwi) − muiwi,

u = u + mui, w = w + mwi

3.5 Update the coefficient magnitude, set m = m × p

4 If e = 0 then return the solutions u, w, otherwise return Fail.
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Some implementations of the EEZ-GCD algorithm utilize a modification of this algo-

rithm that provides better performance for cases where non-zero evaluation points are used.

The l in the algorithm is specified by the EEZ-GCD algorithm (based on the object it is

intended to reconstruct) instead of the bound B, and the solution is not required to satisfy

a − uw = 0 but rather a − uw = 0 (mod p)l. The advantage this provides is to avoid the

use of a larger l as a result of the coefficient growth (which disappears as the variables are

reconstructed) caused by the use of non-zero evaluation points. The change to the algo-

rithm is minor, specifically the bound check in step 3 is changed to a fixed loop from 2 to

l (retaining the early stop criteria for e = 0), and step 4 is changed to simply return u, w.

This is the form of the algorithm we will use in the analysis, which means that l ∈ O(C)

(while for non-zero evaluation points this is not true for the original algorithm).

We assume use of a machine sized prime p, so arithmetic operations in Zp are O(1).

First we consider the dense case. The expense of step 1 is O(NuNw), and the computation

of the error in step 2 is O(CNuNw), so as we will see, the expense is dominated by the expense

of the loop. The average expense of steps 3.1, 3.2 is O(CNuw). The computation of the

diophantine solutions in step 3.3 involves a number of multiplications between O(N) sized

objects (all mod p), and can be shown to be O(Nuw
2). The computation of the updates in

step 3.4 is dwarfed by the update to the error, in which the first two products each have an

average expense of O(CNuNw), and the third product has an average expense bounded by

this. The expense of the computation inside the loop is O(Nuw
2 +CNuNw), and as a result

the overall asymptotic complexity is O(CNuw
2 + C2NuNw).

Now we consider the sparse case. Note that even if u0, w0 are sparse, the polynomials σ, τ

computed in step 1 will be dense. The expense of step 1 is the same as for the dense case, as

the asymptotic expense of the eea is independent of the density of the input polynomials.

The expense of step 2 is O(CTuTw). The average expense of steps 3.1, 3.2 is O(CTuTw). All

operations in step 3.3 involve multiplication or division of a dense and sparse polynomial,

so the expense can be obtained as O(TuTwNuw). As in the dense case the computation of

the updates in step 3.4 is dwarfed by the update to the error, having an average expense of

O(CTuTw). The expense of the computation inside the loop is O(TuTwNuw + CTuTw), and

as a result the overall asymptotic complexity is O(NuNw + CTuTwNuw + C2TuTw).

In some implementations, a shortcut is taken, and the modulus m is chosen so that
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m > 2B. In some cases m is chosen to be a prime, while in others it may be chosen as

a power of a prime. As a result, the entire univariate Hensel computation can be avoided,

all expense being absorbed by the initial gcd computation. For this approach, the initial

gcd computation takes the place of the Hensel lifting, and the cost is no longer negligible,

so we compute it now.

In contrast to the Hensel approach, the large modulus approach now depends on the

characteristics of the second gcd input b. Once we obtain the images in Zp[x1], the com-

putation of the gcd is easily shown to be O(NuwNub̄CuwCub̄). For the case where the two

gcd inputs have similar characteristics, this simplifies to O(Nuw
2C2), which we see to have

somewhat less attractive asymptotic performance in comparison to the small prime approach

(at least when Nuw = O(C)).

A summary of the results for the univariate Hensel algorithm is provided in Table 6.5.

Dense O(CNuw
2 + C2NuNw)

Sparse O(NuNw + CTuTwNuw + C2TuTw)
Large Modulus O(NuwNub̄CuwCub̄)

Table 6.5: Univariate Diophantine Solution Expense

Multivariate Diophantine Equations

As mentioned previously, the solution of multivariate diophantine equations in Zpl is neces-

sary for the EEZ-GCD algorithm. This analysis splits into a greater number of cases than

the analysis of the p-adic algorithm, as the computations for dense and sparse cases are

quite different, and the use of a zero evaluation point (versus a non-zero evaluation point)

makes a significant difference to the complexity.

The algorithm is recursive in nature, and is as follows:

Algorithm 24 (MultiDio)

Input: The prime p and power l of the coefficient domain Zpl, polynomials u, w, c ∈
Zpl [x1, ..., xn], evaluation points I = 〈x2 − α2, ..., xn − αn〉, and the maximum degree

d of the result with respect to any of x2, ..., xn.

Output: σ, τ ∈ Zpl [x1, ..., xn] such that σu + τw = c ∈ Zpl [x1, ..., xn].
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1 If I = ∅ (we are in Zpl [x1])

1.1 Compute u0 = u mod p, w0 = w mod p, c0 = c mod p

1.2 Solve su0 + tw0 = 1 for s, t ∈ Zp[x1] using the eea

1.3 Set v = c0s mod p

1.4 Divide v by w0 to get q, r ∈ Zp[x1] satisfying v = qw0 + r

1.5 Set σ = r, τ = c0t + u0q mod p

1.6 Initialize, set m = p, e = c − σu − τw

1.7 Loop k from 2 to l while e 6= 0

1.7.1 Set e = e/p, ck = e mod p

1.7.2 Set v = cks mod p

1.7.3 Divide v by w0 to get q, r ∈ Zp[x1] satisfying v = qw0 + r

1.7.4 Set q = ckt + u0q mod p

1.7.5 Update, set e = e − ru − qw, σ = σ + mr, τ = τ + mq, m = m × p

1.8 return σ, τ

2 Evaluate: u0 = u mod 〈xn − αn〉, w0 = w mod 〈xn − αn〉, c0 = c mod 〈xn − αn〉

3 Recursively solve the diophantine equation σu0 + τw0 = c0 for σ, τ ∈ Zpl [x1, ..., xn−1],

and on failure return Fail.

4 Initialize: Set e = c − σu − τw, m = 1

5 Loop k from 1 to d while e 6= 0

5.1 Set m = m × (xn − αn)

5.2 Set ck to the (xn − αn)k coefficient of the Taylor expansion of e about xn = αn.

5.3 if ck = 0 then next loop

5.4 Recursively solve the diophantine equation su0+tw0 = ck for s, t ∈ Zpl [x1, ..., xn−1],

and on failure return Fail.

5.5 Set s = m × s, t = m × t

5.6 Update the error e and images σ,τ

Set e = e − tu − sw, σ = σ + s, τ = τ + t
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6 If e = 0 then return the solutions σ, τ , otherwise return Fail.

As before we use subscript notation for the bounds for the degree (N), coefficient length

(C), and term counts (T ) for the quantities involved in the algorithm. The degree and form

of the results are quite important for the overall analysis, and the values of these can be

approximated in the analysis of the calling algorithm.

A few observations are in order here, and these are specific to the case where this

algorithm is in use by the EEZ-GCD algorithm.

In all cases, the outputs of the algorithm, τ, σ are bounded by the degrees and term

counts of u, w respectively. This is because they are used either as the updates for u, w if

the algorithm is being called from EEZ-GCD, or they are part of the reconstruction of the

updates to τ, σ if the algorithm is being called recursively. This means that Nτ ≤ Nu and

Nσ ≤ Nw.

Additionally, the form of c entering into the algorithm is known in terms of the solution.

Specifically, c = uσ + wτ , where σ,τ are the outputs. This means that Nc = max(Nu +

Nσ, Nw + Nτ ), implying Nc ≤ Nu + Nw (through use of Nσ ≤ Nw, Nτ ≤ Nu). This also

means that Tc ≤ TuTw for the sparse case.

Finally, the evaluations of u,w required in step 2 of the algorithm, and the diophantine

solution required in step 1.2 of the algorithm are already known from computations per-

formed in EEZ-GCD, so we will assume that this information is stored and can be used by

this algorithm.

Base Case

Here we will look at the base case where I = ∅. For both the sparse and dense cases, the

expense of the eea in 1.2 is the same, O(C2NuNw), and the outputs s, t are both dense,

having degrees Nw,Nu respectively. We note that the outputs of the algorithm, σ, τ will,

however, be sparse in the sparse case, and the updates to these values must have similar

sparsity.

For the dense case, the modular reductions in step 1.1 have expense O(C(Nc+Nu+Nw)).

The product in step 1.3 has expense O(NcNw) as does the quotient in step 1.4. The two

products in step 1.5 have expense O(NcNu), and the error computation in step 1.6 has
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expense O(NσNu+NτNw). Now within the loop, the average expense for both computations

in step 1.7.1 is O(CNc). The expense of steps 1.7.2 through 1.7.4 and the error update in

step 1.7.5 have the same expense as steps 1.3-1.6, and the other updates in step 1.7.5 have

average expense O(C(Nσ + Nτ )). Combining all expenses, both outside the loop and for all

iterations of the loop, and removing obvious lower order terms, gives O(NuNw)+O(C2(Nc+

Nσ +Nτ ))+O(CNc(Nw +Nu)), which further simplifies to O(NuNw)+O(C2Nc +CNuwNc)

where we have intentionally written the cost for the eea separately, as it is already computed

within the EEZ-GCD algorithm.

For the sparse case, the evaluations in step 1.1 have expense O(C(Tc + Tu + Tw)). The

product in step 1.3 has expense O(TcNw) and the quotient in step 1.4 has expense O(TwNc).

The products in step 1.5 have expense O(TcNu + TuNc), and the error computation in step

1.6 has expense O(TσTu + TτTw) = O(Tc). Now within the loop, the average expense

for both computations in step 1.7.1 is O(CTc). The expense of steps 1.7.2 through 1.7.4

and the error update in step 1.7.5 have the same expense as steps 1.3-1.6, and the other

updates in step 1.7.5 have average expense O(C(Tσ + Tτ )). Combining all expenses, both

outside the loop and for all iterations of the loop, and removing obvious lower order terms,

gives O(NuNw) +O(C2(Tc + Tσ + Tτ )) +O(CTc(Nw + Nu) + CNc(Tw + Tu)), which further

simplifies to O(NuNw) +O(C2Tc + CNuwTc + CTuwNc), where again the separation for the

eea is intentional. We can further simplify this to O(C2NuNw) + O(C2Tc + CNuwTc) as

Nc = max(Nu + Nc, Nw + Nσ) = O(Nuw) and Tuw ≤ Tu + Tw ≤ TuTσ + TuTτ = O(Tc).

Dense Non-zero

Now we look at the overall algorithm for the dense case when the evaluation point αn is

non-zero. Note that we consider here the case where the inputs are fully dense, i.e. that

monomials xi1
1 xi2

2 xi3
2 ... where 0 ≤ i1, i2, i3, ... ≤ N are present. Alternatively we could

assume the inputs are total degree dense (where in the above, the restriction becomes 0 ≤
i1 + i2 + i3 + ... ≤ N), but the asymptotic cost for either case is the same.

The evaluations mod 〈xn−αn〉 in step 2 have associated expense of O(C2(Nu
n +Nw

n +

Nc
n)), which is a count of the terms being evaluated. This can be simplified to O(C2Nc

n),

both because Nc > Nu,Nc > Nw, and because the computation for u0, w0 is already known.

We then have the recursive call in step 3 with one fewer variable, which we denote as
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Costdn(n− 1). The error computation in step 4 involves two products of dense polynomials

in n and n − 1 variables, which have an expense of O(C2(Nσ
n−1Nu

n + Nτ
n−1Nw

n)).

The loop starting on step 5 runs to the maximum degree of the diophantine solution for

the current variable, which is Nστ .

Further analysis of the algorithm requires estimates of the size of (number of terms in)

the objects in the computation, so we determine these now. The polynomial factor m in

step 5.1 is growing linearly in xn with k. The size of the coefficient ck computed in step 5.2

will be O(Nc
n−1), and the size of the error will be bounded by O(Nc

n−1(Nc −k)) as in each

iteration the coefficient ck is being set to zero. The diophantine solutions will have sizes of

O(Nσ
n−1) for σ and O(Nτ

n−1) for τ .

The update of the factor in step 5.1 has a cost of O(C2k). The extraction of the

coefficient ck in step 5.2 will require O(C2Nc
n−1(Nc − k)) expense for the kth loop, as each

of the remaining terms of the error have a contribution as a result of the non-zero evaluation

point. Since we are in the dense case, ck is likely non-zero, so we proceed to the recursive

call in step 5.4 with expense Costdn(n − 1).

The multiplication in step 5.5 computes the products of the diophantine solutions and

m, so the expense for the kth loop is O(C2k(Nσ
n−1 + Nτ

n−1)). The updates to σ, τ , and

e in step 5.6 are dominated by the update to e which involves multiplication of dense

polynomials in n variables with the results of step 5.5, with an expense for the kth loop of

O(C2k(Nσ
n−1Nu

n + Nτ
n−1Nw

n)).

The various terms of the expense can be combined and written as

Costdn(n) = C2
Nστ∑

k=0

(

Nc
n−1(Nc − k) + k(Nσ

n−1Nu
n + Nτ

n−1Nw
n)
)

+
Nστ∑

k=0

Costdn(n − 1)

where the expenses of steps outside the loop have been combined with those inside as the

k = 0 term of the sum, and the expenses of steps 5.1 and 5.5 have been dropped as they are

of lower order than that of step 5.6.

We note here that evaluation of the first sum is straightforward, as the terms linear in k

can be replaced by their average values without affecting the result, so it is easily shown to

sum to O(NστNc
n + Nστ

2(Nσ
n−1Nu

n + Nτ
n−1Nw

n)). Given that the expense of the base

case is Costdn(1) = O(C2Nc + CNuwNc) a straightforward induction proof can be used to
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show that the expense is dominated by the highest level of the recursion, giving

Costdn(n) = O(C2(NστNc
n + Nστ

2(Nσ
n−1Nu

n + Nτ
n−1Nw

n))).

A further simplification results from closer examination of the Nc
n term in the above

expression. Since we know that Nc = O(Nuw) then Nc
n = O(Nuw

n), so the expense

associated with that term is dominated by the other, giving us the simplified cost

Costdn(n) = O(C2Nστ
2(Nσ

n−1Nu
n + Nτ

n−1Nw
n)). (6.8)

Dense Zero

Now we look at the overall algorithm for the dense case when the evaluation point αn is

zero. The evaluations mod 〈xn − 0〉 in step 2 simply involve a scan of the existing terms,

only retaining those not containing xn, with associated expense O(Nu
n+Nw

n+Nc
n). Using

the same reasoning as for the dense case, we can simplify this to O(Nc
n). The recursive

call in step 3 has expense Costdz(n− 1), and the computation of the error in step 4 has the

same expense as the non-zero case, namely O(C2(Nσ
n−1Nu

n + Nτ
n−1Nw

n)).

The loop in step 5 is repeated Nστ times. The monomial multiplication by xn in step

5.1 is trivial, and the coefficient extraction in step 5.2 only requires a term scan of the error,

having expense bounded by O(Nc
n(Nc − k)). Again we proceed to step 5.4 with expense

Costdz(n − 1). The monomial multiplication in step 5.5 has an expense of O(Nu
n−1 +

Nw
n−1). Again, the error update is the dominant term in step 5.6, but in this case the s, t

used in the update only have O(Nσ
n−1) and O(Nτ

n−1) terms respectively, so the cost is

O(C2(Nσ
n−1Nw

n + Nτ
n−1Nu

n)).

The various terms of the expense can be combined and written as

Costdz(n) =
Nστ∑

k=0

(

Nc
n−1(Nc − k) + C2(Nσ

n−1Nu
n + Nτ

n−1Nw
n)
)

+
Nστ∑

k=0

Costdz(n − 1)

where the expenses of steps outside the loop have again been combined with those inside as

the k = 0 term of the sum, and the expenses of steps 5.1 and 5.5 have again been dropped

as they are of lower order than that of step 5.6.

The first sum has a value of O(NστNc
n + C2Nστ (Nσ

n−1Nu
n + Nτ

n−1Nw
n)), which we

simplify to O(C2Nστ (Nσ
n−1Nu

n + Nτ
n−1Nw

n)) using an argument similar to the one in
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the dense non-zero case. Now since the expense of the base case is given by Costdz(1) =

O(C2Nc+CNuwNc) a straightforward induction proof can be used to show that the expense

is again dominated by the highest level of the recursion, giving

Costdz(n) = O(C2Nστ (Nσ
n−1Nu

n + Nτ
n−1Nw

n)). (6.9)

Sparse Non-zero

Now we look at the overall algorithm for the sparse case when the evaluation point αn is

non-zero. This is the more interesting case, as it occurs often in practice.

We note that even if the inputs are sparse, the intermediate σ, τ computed in a single

invocation of the algorithm become dense in the current variable. This is a direct result

of the non-zero evaluation point and the fact that an approximation of a single monomial,

say xj
2, will be represented as a dense polynomial in x2 until degree j is reached, at which

point the dense polynomial will collapse to xj
2. Upon completion of the computation, the

σ, τ returned from the algorithm are in fact sparse (we have completed the computation out

to the highest degree, so all approximations have collapsed to the correct sparse terms). For

the same reason, the error term, though initially sparse, grows in size as the computation

proceeds, becoming dense in the current variable fairly rapidly, then reduces in size (but

slowly) as k approaches Nστ (as a greater number of terms are correctly computed). This

indicates that we may have a significant variation of the complexity of the algorithm based

on whether most of the terms are of a low degree in the current variable (least expensive

case), or of a high degree in the current variable (most expensive case).

We will proceed with 2 analyses for this case, the first of which we will call the typical

case. Here the terms are roughly evenly distributed with respect to the degree of the current

variable. In the second case, which we will call the special case, we assume that only one of

the terms is of degree O(N).

For either case, the expense of step 2 is O(C2(Tu + Tw + Tc)) = O(C2Tc), where we

assume that the powers αi
n have been previously computed and stored. The expense of

the recursive call is given by Costsn(n − 1, Tc, Tσ, Tτ ). Note that for this estimate we are

including the term counts for c, σ, and τ because they are not necessarily constant. Use

of Tc,Tσ, and Tτ is viable for the first call, as for sufficiently sparse polynomials use of a

non-zero evaluation point will not significantly reduce the term counts.
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The expense of step 4 will be O(C2(TσTu + TτTw)), and the loop will repeat Nστ times,

with step 5.1 having expense O(C2k), but now the analyses start to diverge, as the expense

of the remaining steps will depend on the structure of the solution σ,τ .

For the typical case, the number of terms for e and ck can be bounded by O(Tck), O(Tc)

terms in iteration k respectively. Since we have a non-zero evaluation point, it is unlikely

that ck = 0, so we proceed to the recursive call with expense Costsn(n − 1, Tc, Tσ, Tτ ).

The number of terms in the diophantine solutions s,t computed in step 5.4 are bounded

by Tσ,Tτ respectively, so the expense of step 5.5 is O(C2k(Tσ + Tτ )), and the expense of

step 5.6 is dominated by the error update with expense O(C2k(TσTu + TτTw)).

Combining, performing the obvious sum and simplifying, we obtain

Costsn(n, Tc, Tσ, Tτ ) = O(C2Nστ
2(TσTu + TτTw)) +

Nστ∑

k=0

Costsn(n − 1, Tc, Tσ, Tτ )

where we use Tc = O(TuTσ + TwTτ ), again combine expenses outside and inside the loop,

and again drop the expense of steps 5.1, 5.5, as they are lower order than that of step 5.6.

Now use of the base case Costsn(1, Tc, Tσ, Tτ ) = O(C2Tc + CNuwTc) and solution of the

recurrence gives the asymptotic expense as

Costsn(n, Tc, Tσ, Tτ ) = O(C2Nστ
nTc + CNστ

n−1NuwTc), (6.10)

where we note that in this case, unlike the dense cases, the primary contribution to the

expense comes from the recursive call (for n > 2).

For the special case, the sizes for the error and ck can be approximated by O(k), O(1)

terms in iteration k respectively. Again by the same reasoning as the typical case, we

proceed to the recursive call with expense Costsn(n − 1, 1, 1, 1).

Step 5.5 has expense O(C2k), and the expense of step 5.6 is dominated by the error

update with expense O(C2k(Tu + Tw)).

Combining, performing the obvious sum and simplifying, we obtain

Costsn(n, Tc, Tσ, Tτ ) = O(C2(TσTu + TτTw) + C2Nστ
2(Tu + Tw))

+ Costsn(n − 1, Tc, Tσ, Tτ ) +
Nστ∑

k=1

Costsn(n − 1, 1, 1, 1)

where we have eliminated negligible expenses, and also used Tc = O(TuTσ + TwTτ ).
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Now with use of the base case Costsn(1, Tc, Tσ, Tτ ) = O(C2Tc + CNuwTc) it is possible

to show that the expense is given by

Costsn(n, Tc, Tσ, Tτ ) = O(C2Nστ
n+CNuwNστ

n−1+C(nC+Nuw)Tc+C2(n+Nστ )NστTuw)).

For this result, it is likely that the first two terms describe the dominant expense, but the

remaining terms, which likely drop out for some small n, are retained to indicate that the

number of terms do have an effect on the complexity.

It is also worthy of note that comparison of the expenses of the typical and special cases

shows primarily a difference in how Tc enters into the complexity, and for problems where

Tc is quite small, the complexity is essentially the same. This makes sense given that for a

very small Tc there will be very few terms with degree > 1 (in fact very few terms at all)

for the problem, so we expect the similarity.

Sparse Zero

Now we look at the overall algorithm for the sparse case when the evaluation point αn

is zero. This is the case where the algorithm has greatest efficiency. For this case, the

analysis needs to be the most precise for the result to accurately reflect the complexity of

the algorithm.

Since we are in the sparse zero case, the sum of the terms of the Taylor coefficients of

σ,τ being computed will be equal to the total number of terms of σ,τ upon completion of

the algorithm. Furthermore, due to the fact that the recursive calls in the algorithm are

always utilizing u0 and w0, the ck being used for recursive calls of the algorithm will be

given by σku0 + τkw0, where σk,τk use the notation of I-adic lifting described in §6.7.3, or

explicitly σ = σ0 + xnσ1 + x2
nσ2 + x3

nσ3 + ..., and τ = τ 0 + xnτ1 + x2
nτ2 + x3

nτ3 + ....

The important observation here is that since we are using a zero evaluation point, the

σk,τk will only contain the terms in σ,τ that are degree k in xn. To utilize this information,

we will use the notation Tσ,k to represent the number of terms in σk, and Tτ,k to represent

the number of terms in τ k. We apply a similar notation for u,w, but for c we use the notation

Tc,k to represent the number of terms in ck in the kth iteration, which will be bounded by

Tσ,kTu,0 + Tτ,kTw,0.

The values of u0, v0 computed in step 2 of the algorithm are already known, so we need
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only concern ourselves with the computation of c0 which has expense O(Tc) for the term

scan. The recursive call in step 3 will have expense Costsz(n − 1, Tc,0, Tσ,0, Tτ,0), and the

error computation in step 4 will have expense O(C2(Tσ,0Tu + Tτ,0Tw)).

Now the loop in step 5 will be executed Nστ times, though not all steps of the loop are

necessarily executed in each pass. The monomial multiplication by xk in step 5.1 is trivial,

and the coefficient extraction in step 5.2 only requires a term scan of the error, having

expense bounded by O(Tc). In the event that the coefficient ck computed in step 5.2 is

non-zero, we will proceed to 5.4, with associated expense Costsz(n− 1, Tc,k, Tσ,k, Tτ,k). The

cost in step 5.5 is O(Tσ,k + Tτ,k) (which can be ignored as we will see it is less expensive

than step 5.6), and finally the expense in step 5.6 is dominated by the products involved in

the error computation with an expense of O(C2(Tσ,kTu + Tτ,kTw)).

As our first simplification, we will claim that the conditional execution of steps 5.4-5.6 can

be ignored because for the cases in which those steps are not run we need σk = 0 and τk = 0,

and as we will see the expense of those steps will be zero for Tc,k = 0, Tσ,k = 0, Tτ,k = 0.

We can combine the expense of step 4 and all iterations of step 5.6 into the sum

Nστ∑

k=0

O(C2(Tσ,kTu + Tτ,kTw)) = O(C2

((
Nστ∑

k=0

Tσ,k

)

Tu +

(
Nστ∑

k=0

Tτ,k

)

Tw

)

)

= O(C2(TσTu + TτTw)),

where we see that the contribution of 5.6 to the expense is indeed zero for Tσ,k = 0, Tτ,k = 0.

We can also combine the expense of steps 3 and 5.4 into a single sum, and combining this

with the result above and including all remaining steps gives the complexity estimate

Costsz(n, Tc, Tσ, Tτ ) = O(C2(TσTu + TτTw) + NστTc) +
Nστ∑

k=0

Costsz(n − 1, Tc,k, Tσ,k, Tτ,k),

where we see that our claim that the conditional execution of steps 5.4-5.6 is taken care of

will be true as long as Costsz(n − 1, 0, 0, 0) = 0.

Combining with the base case Costsn(1, Tc, Tσ, Tτ ) = O(C2Tc + CTcNuw), we see that

all terms in the base case and the recursion are proportional to one of Tc, Tσ, Tτ , so the

conditional execution of steps 5.4-5.6 is taken care of, and we will now state and prove the

solution.
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Theorem 14 Using the base case Costsn(1, Tc, Tσ, Tτ ) = O(C2Tc+CTcNuw) and the recur-

rence Costsz(n, Tc, Tσ, Tτ ) = O(C2(TσTu+TτTw)+NστTc)+
∑Nστ

k=0 Costsz(n−1, Tc,k, Tσ,k, Tτ,k),

and all preceding definitions for T ,N , the expense of the multivariate diophantine algorithm

for the sparse zero case is given by

Costsn(n, Tc, Tσ, Tτ ) = O(nC2Tc + (n − 1)NστTc + CNuwTc). (6.11)

Proof

We will prove this by induction. Since the base case (n = 1) is in agreement with the

expense (6.11) we need only show that it is true for n+1 given that it holds for n. Consider

the sum in the recurrence, we have

Nστ∑

k=0

Costsz(n, Tc,k, Tσ,k, Tτ,k) =
Nστ∑

k=0

O((nC2 + (n − 1)Nστ + CNuw)Tc,k)

= O((nC2 + (n − 1)Nστ + CNuw)
Nστ∑

k=0

(Tσ,kTu,0 + Tτ,kTw,0))

= O((nC2 + (n − 1)Nστ + CNuw)(TσTu,0 + TτTw,0))

≤ O((nC2 + (n − 1)Nστ + CNuw))(TσTu + TτTw))

= O((nC2 + (n − 1)Nστ + CNuw)Tc)

where we have used TσTu +TτTw = O(Tc) in the first step,
∑Nστ

k=0 Tσ,k = Tσ and
∑Nστ

k=0 Tτ,k =

Tτ in the third step, Tu,0 ≤ Tu and Tw,0 ≤ Tw in the fourth step, and TσTu + TτTw = O(Tc)

in the last step.

Utilizing this result in the recurrence gives

Costsn(n + 1, Tc, Tσ, Tτ ) = O((C2 + Nστ )Tc) + O((nC2 + (n − 1)Nστ + CNuw)Tc)

= O((n + 1)C2Tc + nNστTc + CNuwTc),

as required, so by induction on n the result is proved. 2

Sparse Partial Zero

It is often the case that zero evaluation points can be used for some of the variables, while

non-zero evaluation points must be used for others. This case is not covered by the prior
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two analyses, but the form of the complexity for the sparse non-zero and sparse zero cases

is quite suggestive.

We call the number of variables for which we can use a zero evaluation point n0, so

naturally the number of variables for which we require a non-zero evaluation point is given

by n−n0−1. Since we already have the recurrences and results for the sparse non-zero and

zero cases they can be applied in a number of ways to obtain the result for the mixed case.

In proceeding with the analysis it was discovered that the asymptotic complexity for the

case where the variables are arranged so that xn−n0+1, ..., xn utilize zero evaluation points

is better than for the case where we arrange the variables so that x2, ..., xn0+1 utilize zero

evaluation points.

The result for xn−n0+1 = 0, ..., xn = 0, stated without proof is

Costsn0(n, Tc, Tσ, Tτ ) = O(CNστ
n−n0−1(CNστ + Nuw)Tc + n0(C

2 + Nστ )Tc), (6.12)

and the result for x2 = 0, ..., xn0+1 = 0 is

Costsn0(n, Tc, Tσ, Tτ ) = O(CNστ
n−n0−1(CNστ + Nuw)Tc + Nστ

n−n0−1n0(C
2 + Nστ )Tc),

where we note that in the latter case, the exponential behavior with respect to Nστ is

coupled with the expense from the sparse computation, while in the former it is not.

We will utilize the first (better) result, and we note that although it is in exact agreement

with the result for the sparse non-zero case for n0 = 0, it is not in agreement with the result

for the sparse zero case for n0 = n − 1, and this can be explained by the fact that we are

using the sparse non-zero case as a base case, and it is only valid for n ≥ 2.

Summary

We summarize our results for the analysis of the multivariate diophantine algorithm in Table

6.6, where all but the base cases are only valid for n ≥ 2, and the sparse mixed case is only

valid for n0 < n − 1.
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Dense Base O(C2Nc + CNuwNc)
Dense Non-zero O(C2Nστ

2(Nσ
n−1Nu

n + Nτ
n−1Nw

n))
Dense Zero O(C2Nστ (Nσ

n−1Nu
n + Nτ

n−1Nw
n))

Sparse Base O(C2Tc + CNuwTc)
Sparse Non-zero O(C2Nστ

nTc + CNστ
n−1NuwTc)

Sparse Zero O(nC2Tc + (n − 1)NστTc + CNuwTc)
Sparse Mixed (n0) O(CNστ

n−n0−1(CNστ + Nuw)Tc + n0(C
2 + Nστ )Tc)

Table 6.6: Multivariate Diophantine Solution Expense

Complexity of EEZ-GCD - monic inputs

We now have the foundation necessary to present and analyze the EEZ-GCD algorithm for

the case where the inputs are leading monic in the main variable. The simplified analysis

presented here assumes that the prime and evaluations do not introduce a bad zero and are

not unlucky.

Algorithm 25 (EEZMonic)

Input: Polynomials a, b ∈ Z[x1, ..., xn] for which we want to compute the gcd g. A prime

p and power l so that pl is larger than twice the magnitude of the largest coefficient in

a. A set of evaluations I = 〈x2 − α2, ..., xn − αn〉.

Output: g, ā ∈ Z[x1, ..., xn] such that g = gcd(a, b) and a = āg, or Fail.

1 Compute images of inputs, Set a1 = a mod I, a0 = a1 mod p, b0 = b mod 〈I, p〉

2 Compute gcd in Zp[x1], Set u0 = gcd(a0, b0) (mod p), w0 = a0
u0

mod p

If gcd(u0, w0) 6= 1 then return Fail.

3 Find u, w ∈ Zpl [x1] such that a1 − uw ≡ 0 (mod pl) using the univariate Hensel

algorithm (23)

4 Loop i from 2 to n

4.1 Set ui = u,wi = w

4.2 Compute ai = a mod 〈xi+1 − αi+1, ..., xn − αn, pl〉

4.3 Initialize, Set e = ai − uw mod pl, m = 1

4.4 Loop k from 1 to degxi
(a) while e 6= 0

4.4.1 Set m = m × (xi − αi) mod pl
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4.4.2 Set ck to (xn − αn)k coefficient of the taylor expansion of e about xn = αn.

4.4.3 If ck = 0 then next loop

4.4.4 Solve σui + τwi = ck for σ, τ ∈ Zpl [x1, ..., xi−1] using the MultiDio algorithm

(24), and on failure return Fail.

4.4.5 Set σ = mσ mod pl, τ = mτ mod pl

4.4.6 Update error and solution

Set e = e − σu − τw − στ mod pl, u = u + τ mod pl, w = w + σ mod pl

4.5 If e 6= 0 then return Fail.

5 Apply division test to assure that u divides a and b, if not return Fail.

6 Return u, w

Before beginning the analysis, we will briefly describe some aspects of the algorithm.

The failure in step 2 has two possible causes: it may be a bad zero, or it may be that ā, g

have a common factor. In the latter case we need to either use b for the reconstruction,

or if the same problem occurs then we must use some linear combination of a and b. The

failures in steps 4.4.4 and 4.5 catch the unlucky cases where the additional factor appearing

in the gcd is not actually a factor of a in Z[x1, ..., xn]. The division test in step 5 catches

the other unlucky case where the additional factor is an actual factor of a in Z[x1, ..., xn].

In addition, we need to apply the division test to a also, as we are choosing a value of l

that is sufficient to reconstruct the coefficients of a only (ignoring the effect of the non-zero

expansion points). Note that bad evaluations are not a concern here, as the inputs are

leading monic in the main variable.

Again, the analysis needs to split into the four combinations, dense or sparse with

non-zero or zero evaluation points. As in the prior analyses we use subscripted forms for

the maximum degree (N), the number of terms (T ) and the coefficient length (C) for

g, ā, b̄. Clearly we want to choose a to have the smaller cofactor, and we use the notation

C = Cgā = O(l).
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Dense Non-zero

We begin the analysis with the internals of the loop at step 4. Before performing the

analysis, however, we look at the sizes of the expressions involved in the computation.

At the start of each loop of 4, the u,w are dense in i − 1 variables, so they have

O(Ng
i−1),O(Nā

i−1) terms, respectively. The error is initially dense in i variables, so it

starts with O((Ng + Nā)
i) terms, and as each iteration of the inner loop 4.4 zeros another

error coefficient, this drops as O((Ng + Nā − k)(Ng + Nā)
i−1) = O((Ngā − k)Ngā

i−1). In

addition, the number of terms in ck will be given by the lower order term of the remaining

error, which is O((Ng + Nā)
i−1) = O(Ngā

i−1). In the loop 4.4, u,w grow from being dense

in i− 1 variables to dense in i variables, so a suitable bound on their terms in the kth loop

is given by O(kNg
i−1),O(kNā

i−1) for u,w respectively.

We now proceed with the analysis of the loop. First we assume that we have computed

and retained the value of ai mod pl outside of the loop to provide better efficiency (discussed

later), so there is no cost for step 4.2 inside the loop, and the computation of the error in

step 4.3 has expense O(C2Ng
i−1Nā

i−1) based on the initial sizes of u,w.

The loop 4.4 will repeat Ngā times, and step 4.4.1 will have expense O(C2k) as m

is a dense polynomial of degree k in xi. The extraction of the coefficient in step 4.4.2

will have expense O(C2(Ngā − k)Ngā
i−1) as every term remaining in the error will have a

contribution due to the non-zero evaluation point. We will clearly proceed past step 4.4.3,

as the input is dense, so the expense of the call to the multivariate diophantine algorithm in

step 4.4.4 (Table 6.6) is O(C2Ngā
2(Nā

i−1Ng
i + Ng

i−1Nā
i)) = O(C2Ngā

3Nā
i−1Ng

i−1). The

expense of step 4.4.5 will be given by O(C2k(Ng
i−1 + Nā

i−1)), and will enlarge σ,τ to have

O(kNā
i−1),O(kNg

i−1) terms respectively. Step 4.4.6 will be dominated by the error update,

where all three products have an expense of O(C2k2Nā
i−1Ng

i−1).

Combining these expenses, and dropping the obvious lower order terms gives

Cost4i = O(C2Ng
i−1Nā

i−1) +

Ngā∑

k=1

O(C2(Ngā − k)Ngā
i−1)

+

Ngā∑

k=1

O(C2Ngā
3Nā

i−1Ng
i−1) +

Ngā∑

k=1

O(C2k2Nā
i−1Ng

i−1).
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We can compute the sums in the above to obtain

Cost4i = O(C2(NgNā)
i−1 + C2Ngā

i+1 + C2Ngā
4(NgNā)

i−1 + C2Ngā
3(NāNg)

i−1)

= O(C2Ngā
4(NgNā)

i−1),

where we observe that the third term in the error, the one corresponding to the expense of

the multivariate diophantine algorithm, is asymptotically larger than the others.

Now for the analysis of the entire algorithm, consider the evaluations in step 1. As

mentioned earlier, we would like to precompute the required values of ai needed in step 4.2

of the algorithm, both for this algorithm and for the multivariate diophantine algorithm.

This is a natural fit, as we already need to perform these evaluations (at least in some

form) for step 1 of the algorithm, in preparation for computing the required gcd. We would

proceed by initially computing a mod pl, but this is unnecessary, as pl has been chosen so

that a mod pl = a. Now we loop through, evaluating out one variable at a time, with expense

O(C2Ngā
i) for evaluation with respect to xi, in the end obtaining a1, which is required for the

univariate Hensel algorithm. As a final step, we evaluate mod p obtaining the a0 needed for

the gcd computation. This entire process has expense bounded by O(C2Ngā
n), the expense

of the first evaluation. The required computation for b, however, can be done a bit more

efficiently as the entire process, except the initial mod, can be computed in Zp[...], so the

expense for this is simply given by O(Cgb̄Ngb̄
n).

This precomputation of the ai significantly reduces the expense of step 4.2 of the algo-

rithm, for if one were to proceed as the algorithm is written, evaluations would need to be

performed multiple times, so the overall expense would be at least O(nC2Ngā
i), adding a

factor of n to the expense of all executions of that step, so even if this does not affect the

complexity of the result, it is a useful optimization for an implementation.

The gcd in step 2 has expense O(NgāNgb̄), the univariate Hensel algorithm in step 3 has

expense O(CNgā
2 + C2NgNā), and we denote the cost of the division in step 5 by Dd(n).

We now have all information necessary to estimate the cost of the algorithm for this

case, which (dropping obvious lower order terms) is given by

Costdn = O(C2Ngā
n + Cgb̄Ngb̄

n + NgāNgb̄ + CNgā
2 + C2NgNā)

+Dd(n) +
n∑

i=2

O(C2Ngā
4(NgNā)

i−1).
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It is straightforward to see that for the terms in the sum, the one for i = n will be

asymptotically largest, having an expense of O(C2Ngā
4(NgNā)

n−1), and in addition this

term is larger than any of the other terms not involving b. If we also apply the result for

the dense division Dd(n) from Table 6.3, we obtain

Costdn = O(CgCb̄(NgNb̄)
n + NgāNgb̄ + C2Ngā

4(NgNā)
n−1). (6.13)

Dense Zero

As with the prior analysis, we begin with the internals of the loop at step 4. The sizes of

the u,w, the error, and the coefficient ck are identical to those discussed at the start of the

dense non-zero analysis, so we will not repeat the information here.

As with the non-zero case, we precompute the required ai values, so step 4.2 is accounted

for, and the computation of the initial error in 4.3 has expense O(C2Ng
i−1Nā

i−1).

The loop 4.4 will repeat Ngā times, and the monomial product in step 4.4.1 will have

negligible expense. The extraction of the coefficient in step 4.4.2 will have expense O((Ng +

Nā−k)(Ng +Nā)
i−1) = O((Ngā−k)Ngā

i−1) as we need only perform a scan of the remaining

terms in the error e. We will again proceed past step 4.4.3, as the input is dense, so the

expense of the call to the multivariate diophantine algorithm in step 4.4.4 (Table 6.6) is

O(C2Ngā(Nā
i−1Ng

i+Ng
i−1Nā

i)) = O(C2Ngā
2(NgNā)

i−1). The expense of step 4.4.5 will be

given by O(Ng
i−1 + Nā

i−1), but unlike the non-zero case, the size of σ,τ will be unchanged.

Step 4.4.6 will be dominated by the error update, where the first two products have an

expense of O(C2k(NāNg)
i−1), and the third product has a lower order expense.

Combining these expenses, and dropping the obvious lower order terms gives

Cost4i = O(C2Ng
i−1Nā

i−1) +

Ngā∑

k=1

O((Ngā − k)Ngā
i−1) +

Ngā∑

k=1

O(C2Ngā
2(NgNā)

i−1)

+

Ngā∑

k=1

O(C2k(NāNg)
i−1),

and computing the sums we obtain

Cost4i = O(C2Ngā(NgNā)
i−1 + Ngā

i+1 + C2Ngā
3(NgNā)

i−1 + C2Ngā
2(NāNg)

i−1)

= O(C2Ngā
3(NgNā)

i−1),
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where again the third term in the error, the one corresponding to the expense of the multi-

variate diophantine algorithm, is asymptotically larger than the others.

Now for the analysis of the entire algorithm, consider the evaluations in step 1. As

for the dense non-zero case we will precompute the required values of ai needed in step

4.2 of the algorithm. In contrast to the dense non-zero case, we need not perform any

coefficient arithmetic for the computation of ai, and can actually obtain all required values

in a single pass over a with expense O(Ngā
n). Finally evaluating a1 mod p does require

coefficient arithmetic, but only O(C) and only for O(Ngā) terms, so the total expense for

all evaluations of a is given by O(Ngā
n + CNgā). Analysis of the required computation for

b is identical, with total expense O(Ngb̄
n + Cgb̄Ngb̄).

The gcd in step 2 has expense O(NgāNgb̄), the univariate Hensel algorithm in step 3 has

expense O(CNgā
2 + C2NgNā), and we denote the cost of the division in step 5 by Dd(n).

We now have all information necessary to estimate the cost of the algorithm for this

case, which (dropping obvious lower order terms) is given by

Costdz = O(Ngā
n + Ngb̄

n + Cgb̄Ngb̄ + NgāNgb̄ + CNgā
2 + C2NgNā)

+Dd(n) +
n∑

i=2

O(C2Ngā
3(NgNā)

i−1).

It is straightforward to see that for the terms in the sum, the one for i = n will again

be asymptotically largest, having an expense of O(C2Ngā
3(NgNā)

n−1), and is again larger

than any of the other terms not involving b. If we also apply the result for the dense division

Dd(n) from Table 6.3, we obtain

Costdn = O(CgCb̄(NgNb̄)
n + NgāNgb̄ + C2Ngā

3(NgNā)
n−1). (6.14)

Sparse Non-zero

As with the prior cases, we will begin the analysis with the internals of the loop at step

4. The analysis of this loop is closely related to that of the sparse non-zero case for the

multivariate diophantine algorithm. Recall from that analysis that the non-zero evaluation

point caused the intermediate σ,τ and error to become dense in the current variable, and we

will see the same behavior here with respect to u,w and e. Also, as with the sparse non-zero
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multivariate diophantine analysis, we assume that use of a non-zero evaluation point does

not significantly reduce the number of terms in u,w.

As with the prior cases, we assume that we have computed values of ai mod pl outside

of the loop, so step 4.2 has no expense. The expense of the computation of the initial error

in step 4.3 is simply O(C2TgTā).

The loop in step 4.4 repeats Ngā times, and the expense of step 4.4.1 is O(C2k), as m

is a dense polynomial of degree k in xi. The expense of step 4.4.2, the extraction of the

degree k Taylor coefficient from the error, can be estimated as O(C2kTgTā) as the error

has approximately O(kTgTā) terms, and all terms of degree k and higher contribute to ck

as a result of the non-zero evaluation point. In addition ck will have O(TgTā) terms. Since

we have a non-zero evaluation point we will proceed to step 4.4.4, and the expense of the

multivariate diophantine algorithm for this case (Table 6.6) simplifies to O(C2TgTāNgā
i).

Within steps 4.4.5 and 4.4.6, the error update in the latter is asymptotically largest, so the

expense for these steps is O(C2k2TgTā).

Combining these expenses (dropping lower order terms) gives

Cost4i = O(C2TgTā) +

Ngā∑

k=1

O(C2TgTāNgā
i + C2TgTāk

2)).

Further simplification of the above, together with the fact that i ≥ 2 gives us the simple

complexity estimate Cost4i = O(C2TgTāNgā
i+1). We note that in the case i = 2 the error

update in step 4.4.6 and the multivariate diophantine solution in step 4.4.4 contribute equally

to the expense, while for i > 2 only the multivariate diophantine solution contributes to the

expense.

Now for the analysis of the entire algorithm, consider the evaluations in step 1. As

with the prior cases, we precompute all ai values in this step. In this case, we evaluate

one variable at a time, with expense O(C2TgTā) for each, then evaluate the final univariate

result with negligible expense O(CTgTā). This entire process has expense bounded by

O(C2(n− 1)TgTā). As with the dense non-zero case, the required computation for b can be

done more efficiently as the entire process can be computed mod p, so the expense for the

evaluation of b is O((Cgb̄ + n)TgTb̄).

The gcd in step 2 has expense O(NgāNgb̄), the univariate Hensel algorithm in step 3

has expense O((C2 + CNgā)TgTā + NgNā), and we denote the cost of the division in step 5
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by Ds(n).

We now have all information necessary to estimate the cost of the algorithm for this

case, which (dropping obvious lower order terms) is given by

Costsn = O(C2(n − 1)TgTā + (Cgb̄ + n)TgTb̄ + NgāNgb̄ + (C2 + CNgā)TgTā)

+
n∑

i=2

O(C2TgTāNgā
i+1) + Ds(n).

It is straightforward to see that for the terms in the sum, the one for i = n will be

asymptotically dominant, and will eliminate a number of lower order terms. Combining

with the division cost Ds(n) = O(CgTg(CāTā + Cb̄Tb̄) from Table 6.3 and simplifying gives

Costsn = O((CgCb̄ + n)TgTb̄ + NgāNgb̄ + C2(Ngā
n+1 + n)TgTā). (6.15)

Sparse Zero

As with the prior cases, we will begin the analysis of the loop at step 4. For this analysis

we will use similar notation as for the analysis of the sparse zero case of the multivariate

diophantine algorithm. Recall from that analysis that for any given set of evaluations, the

number of terms in each of the expressions is smaller, as evaluation of some of the variables

to zero only seeks to reduce the size of the inputs and the result. We will simplify the

notation for the initial analysis by using the standard notation (e.g. Tg,Tā, etc.), but keep

in mind that Tg really means the number of terms in u at the current evaluation level, and

Tg,0 represents the number of terms in u one level of evaluation deeper.

Again we compute and retain ai outside of the loop, so step 4.2 has no expense, and

initially u,w have i − 1 variables, so the error computation in step 4.3 is O(C2Tg,0Tā,0).

The loop in step 4.4 repeats Ngā times, and the expense of the monomial product in

step 4.4.1 is negligible. The expense of step 4.4.2 is at worst O(TgTā) for the term scan,

and ck will have O(Tā,0Tg,k + Tg,0Tā,k) terms, as it is the sum of the products of the order

k and 0 Taylor coefficients of u,w.

If we proceed to step 4.4.4, the expense of that step is O((iC2+CNgā+(i−1)Ngā)(Tā,0Tg,k+

Tg,0Tā,k)). Again, the error update in step 4.4.6 is asymptotically larger than any other

computations in steps 4.4.5, 4.4.6, and we can compute the asymptotic complexity of the
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error update to be O(C2(Tā,k
∑k−1

j=0 Tg,i + Tg,k
∑k−1

j=0 Tā,i + Tā,kTg,k)), which we simplify to

O(C2(Tā,kTg + Tg,kTā)).

Combining these expenses (dropping lower order terms) gives us

Cost4i = O(C2Tg,0Tā,0) +

Ngā∑

k=1

O(TgTā + (iC2 + CNgā + (i − 1)Ngā)

×(Tā,0Tg,k + Tg,0Tā,k) + C2(Tā,kTg + Tg,kTā))

= O(NgāTgTā) + O((iC2 + CNgā + (i − 1)Ngā)(Tā,0Tg + Tg,0Tā)) + O(C2TāTg)

= O((C2 + Ngā)TgTā) + O((iC2 + CNgā + (i − 1)Ngā)(Tā,0Tg + Tg,0Tā))

where we have avoided doing anything special with the sum, as the contributions for the

conditionally executed steps, 4.4.4-4.4.6, are zero if the steps are not to be run.

We introduce a new notation, namely that the term counts Tg:i,Tā:i are used to denote the

number of terms in u,w respectively at the end of loop i, or alternatively these can be thought

of as the number of terms in u,w evaluated with respect to 〈xi+1, ..., xn〉. Using this notation,

the above result becomes O((C2 + Ngā)Tg:iTā:i + (iC2 + CNgā + (i − 1)Ngā)(Tā:i−1Tg:i +

Tg:i−1Tā:i)).

Now for the analysis of the entire algorithm, consider the evaluations in step 1. Again

we perform the required ai computations outside the loop. Recall that p,l are chosen so that

pl is twice the size of any coefficient of a, so all ai can be computed in a single term scan

with expense O(TgTā). The value of a0 is computed from a1 with expense O(CTg:1Tā:1).

Application of a similar approach to b gives expense O(TgTb̄ + Cgb̄Tg:1Tb̄:1).

For step 2, the gcd computation has expense O(NgāNgb̄), and the expense of the fol-

lowing division is asymptotically smaller. The expense of the lifting in step 3 was computed

earlier to be O((C2 +CNgā)Tg:1Tā:1 +NgNā), and we denote the cost of the division in step

5 by Ds(n).

We now have all components to represent the cost of the algorithm for this case, which

(dropping obvious lower order terms) is given by

Costsz = O(Tg(Tā + Tb̄) + Cgb̄Tg:1Tb̄:1 + NgāNgb̄ + (C2 + CNgā)Tg:1Tā:1)

+
n∑

i=2

O((C2 + Ngā)Tg:iTā:i + (iC2 + CNgā + (i − 1)Ngā)(Tā:i−1Tg:i + Tg:i−1Tā:i)).

+ Ds(n).
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From this we can obtain a very coarse estimate of the work involved in the algorithm,

by assuming that Tj:i = O(Tj), giving (after combining with the division cost from Table

6.3 and suitable simplification)

Costsz = O(CgCb̄TgTb̄ + NgāNgb̄ + nCNgāTgTā + n2(C2 + Ngā)TgTā), (6.16)

where the first two terms account for all complexity associated with b (steps 1,2, and 5 only),

and the third and fourth terms describe the complexity of the lifting algorithm. Of these

terms, we claim that the third term is likely the dominant term for the lifting algorithm with

the following justification. It can be observed that operations involving coefficient arithmetic

have a much more visible effect than those that are pure data structure operations, so we

expect the nCNgāTgTā term will dominate the n2NgāTgTā term, unless n is very large.

It is also likely that the nCNgāTgTā term will dominate the n2C2TgTā term unless the

coefficients and number of variables are quite large. The third term from the result above

is in agreement with the analysis of Moses and Yun [44].

To obtain a finer estimate, we consider the behavior of Tg:i, Tā:i as we vary i. First we

have Tg:n = Tg and Tā:n = Tā, but consider now Tg:n−1, Tā:n−1. For these we have evaluated

the u,w with respect to xn = 0, which will clearly reduce the number of terms, but by

how much? To get a basic approximation we assume that at most half of the terms in u

and w are degree 0 in xn (a pessimistic estimate for most problems). In addition, we know

that we must have Tg:1, Tā:1 non-zero, and in fact a minimum of 2 terms to avoid the bad

zero problem. Applying this logic recursively to all evaluation levels provides us with the

estimate

Tj:i = O(Tj2
i−n) + O(1).

Following through the analysis with this estimate simplifies the sum to

n∑

i=2

O((C2 + Ngā)Tg:iTā:i + (iC2 + CNgā + (i − 1)Ngā)(Tg:i−1Tā:i + Tā:i−1Tg:i))

=
n∑

i=2

O((C2 + Ngā)(TgTā2
2(i−n) + (Tg + Tā)2

i−n + 1))

+
n∑

i=2

O(CNgā(TgTā2
2(i−n)−1 + (Tg + Tā)2

i−n + 1))

+
n∑

i=2

O(i(C2 + Ngā)(TgTā2
2(i−n)−1 + (Tg + Tā)2

i−n + 1))
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= O((C2 + Ngā)TgTā + n(C2 + Ngā)) + O(CNgāTgTā + nCNgā)

+O(n(C2 + Ngā)TgTā + n2(C2 + Ngā))

= O(CNgāTgTā + n((C2 + Ngā)TgTā + CNgā) + n2(C2 + Ngā)),

so the assumed form for u,w results in a decoupling of the term density and the number

of variables for the core expense of the algorithm, and may provide a better estimate of its

complexity.

In addition, the form of the complexity estimate for the sum provides us additional

information that allows us to better choose the order of the evaluations. Specifically we

would see the greatest efficiency if the evaluations were chosen in such a way that xn = 0

eliminated the greatest number of terms in a (and hence u,w also), xn−1 = 0 eliminated the

greatest number of remaining terms in an−1, etc.

We state here the complete result using the assumed form for u,w

Costsz = O(CgCb̄TgTb̄ + NgāNgb̄ + CNgāTgTā

+n((C2 + Ngā)TgTā + CNgā) + n2(C2 + Ngā)) (6.17)

Sparse Partial Zero

As with the analysis for the multivariate diophantine algorithm, we also consider the case

where some of the evaluation points are zero (we use n0), and some are non-zero (n−n0−1).

Based on the results of the analysis for the multivariate diophantine algorithm, we expect

that the greatest efficiency for EEZ-GCD will be realized if we choose the variable order

so that the zero evaluations occur at the highest level. More specifically, the variables are

ordered so that we have 〈x2 − α2, ..., xn−n0 − αn−n0 , xn−n0+1, ..., xn〉.

For the most part we can utilize results from the analysis of the sparse zero and sparse

non-zero cases. Using these results, we can state that the expense for loop 4 for the non-

zero evaluation points (i ≤ n − n0) will be given by O(C2TgTāNgā
i+1), so the expense for

all iterations with i ≤ n − n0 will be dominated by the loop for i = n − n0 with expense

O(C2TgTāNgā
n−n0+1). Combining the analysis of the sparse zero case with the sparse mixed

diophantine result gives us the expense for loop 4 for the zero evaluation points (i > n−n0)

as O((C2 + Ngā)TgTā + (C2Ngā
n−n0 + (i − n + n0)(C

2 + Ngā))(Tg,0Tā + Tā,0Tg)).
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Applying similar assumptions as the sparse zero case on the form of g and ā, we ap-

proximate the number of terms in iteration i >= n−n0 to be Tj:i = O(Tj2
i−n)+O(1), and

obtain the following sum for all iterations of loop 4

Cost4 = O(C2Tg:n−n0Tā:n−n0Ngā
n−n0+1) +

n∑

i=n−n0+1

O((C2 + Ngā)Tg:iTā:i)

+
n∑

i=n−n0+1

O(C2Ngā
n−n0(Tg:i−1Tā:i + Tā:i−1Tg:i))

+
n∑

i=n−n0+1

O((i − n + n0)(C
2 + Ngā)(Tg:i−1Tā:i + Tā:i−1Tg:i))

= O(C2Ngā
n−n0+1(2−2n0TgTā + 1)) +

n∑

i=n−n0+1

O((C2 + Ngā)(2
2(i−n)TgTā + 1))

+
n∑

i=n−n0+1

O(C2Ngā
n−n0(22(i−n)−1TgTā + 1))

+
n∑

i=n−n0+1

O((i − n + n0)(C
2 + Ngā)(2

2(i−n)−1TgTā + 1))

= O(C2Ngā
n−n0+1TgTā) + O((C2 + Ngā)(TgTā + n − n0))

+O(C2Ngā
n−n0(TgTā + n − n0)) + O((C2 + Ngā)((n − n0)TgTā + (n − n0)

2))

= O(C2Ngā
n−n0+1TgTā + (n − n0)(C

2Ngā
n−n0 + (C2 + Ngā)TgTā)

+(n − n0)
2(C2 + Ngā)).

The expense of the evaluations required for step 4.2 will be dominated by the non-zero

evaluations. The expense of the evaluations of a can be bounded by O(C2(n−n0−1)TgTā),

and the expense of the single evaluation of b can be bounded by O((Cgb̄ + n − n0)TgTb̄).

The other expenses are all as in the sparse non-zero case, so we can estimate the cost of the

algorithm for this case (including all contributions) as

Costn0 = O(CgCb̄TgTb̄ + NgāNgb̄ + C2Ngā
n−n0+1TgTā (6.18)

+(n − n0)(C
2Ngā

n−n0 + (C2 + Ngā)TgTā) + (n − n0)
2(C2 + Ngā),

where we note that for the case of a single non-zero evaluation point, the estimate becomes

cubic in Ngā.
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6.8.5 Asymptotic complexity of LINZIP

The analysis for the LINZIP algorithm is more straightforward than for the EEZ-GCD

algorithm, as the number of algorithms used, and the number of cases is smaller. Specifi-

cally, the difference between the complexity of the LINZIP P and LINZIP M algorithms is

minimal, so the analysis for LINZIP M will heavily utilize the results from LINZIP P.

Note that in the analysis, we exclude the unlucky and bad cases, as these should be

sufficiently rare and do not cause catastrophic failure as they do for EEZ-GCD. In addition,

we ignore the missing term problem, as it should be rare for sufficiently sparse inputs (and

can also be handled using a variant of point 7 at the end of §6.6 without significantly

affecting the asymptotic cost).

LINZIP P: Base Case

Some consideration must be made when determining which n corresponds to the base case

of the LINZIP P algorithm. Clearly when entering LINZIP P with only 2 variables, most of

the structure is redundant, as we need only compute a single image for each reconstruction

(i.e. loop 5.3 is useless and the linear solve in step 5.4 is trivial). This suggests that for

practical implementation, when we have reduced to the bivariate case we may want to

include an optimized Brown-type algorithm (e.g. DIVBRO).

This is unnecessary for the analysis, as the expense for the base case of n = 2 would be

the same as the expense for the DIVBRO algorithm.

LINZIP P: Dense Case

In step 0 of algorithm 22 we perform a univariate content check for content in the current

variable, which we see from Table 6.2 has an expense of O(Ngā
n + Ngb̄

n + NgāNgb̄) =

O(Ngāb̄
n + NgāNgb̄), and in step 1 we compute the scaling factor γ via a univariate gcd of

the leading coefficients with expense O(NgāNgb̄).

In step 2, the inputs a, b are evaluated with respect to xn = vn, having O(Ngāb̄
n)

expense, which is followed by a recursive call to LINZIP P for one fewer variable, with

expense CostPd(n − 1).
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In step 3, we compute the number of univariate images needed to reconstruct a new

image in one fewer than the current number of variables, which is ni = Ng
n−2 for the dense

case. We note here that the number of images needed with scaling is at most 50% higher

than without, so this choice does not affect the asymptotic complexity.

The loop in step 5 will repeat O(Ng + Nγ) = O(Ngγ) times, and step 5.1 will have

expense O(Ngāb̄
n).

The loop in step 5.3 will repeat O(ni) = O(Ng
n−2) times. Step 5.3.1 for the evaluation

of a,b with respect to x2 = α2, ..., xn−1 = αn−1 will have expense O((n − 1)Ngāb̄
n−1) (for

the computation of n− 1 products in Zp for each term). Step 5.3.2 is a univariate modular

gcd with expense O((Ng + Nā)(Ng + Nb̄)) = O(NgāNgb̄), and we will assume that step

5.3.5 will have negligible expense with compared with the following linear solve (i.e. placing

the data in the matrix structure is less expensive than performing the linear solve). This

completes loop 5.3 for which the expense is given by O(Ng
n−2(NgāNgb̄ + (n − 1)Ngāb̄

n−1)).

Now for step 5.4, the analysis for the multiple and single scaling cases is slightly different,

though as we will see the asymptotic result is the same. We will start with the single

scaling case. We need to reconstruct all terms for each coefficient in x1 ∈ Zp[x2, ..., xn−1].

Since the input is dense, the number of terms for the coefficient of xj
1 is O(Ng

n−2). The

solution process is simply a modular linear solve with expense of O(S3) for S unknowns,

so in this case the total expense of obtaining the values for all coefficients is given by
∑Ng

j=0 O(Ng
3n−6) = O(Ng

3n−5).

For the multiple scaling case, we need to structure the computation as described in §6.6.
Doing so, only one dimension of each modular matrix will be larger, but no larger than

the number of images used. This simply increases the number of columns in each matrix

by Ng
n−2, but this is on the order of the number of columns we already have, so it simply

inserts a factor of 2 into the expense of the solve. The factor of 2 can be explained as follows:

The total number of row operations on the matrix (which is O(S2)) will be the same for

both the multiple and single scaling cases, as we are working with the gcd unknown part

of the Matrix, and carrying the additional columns along. Each of these row operations is

twice as expensive as in the single scaling case, so the overall adjustment to the expense of

the linear solve will be a factor of 2. Finally, the solution for the multipliers will require

the solution of a Ng
n−2 by Ng

n−2 matrix, so this adds one term to the sum above, but the
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asymptotic result remains the same.

This completes loop 5, and the total expense of that loop is given by

Ngγ ×O(Ngāb̄
n + Ng

n−2(NgāNgb̄ + (n − 1)Ngāb̄
n−1) + Ng

3n−5)

= O(NgγNgāb̄
n + NgγNg

n−2(NgāNgb̄ + (n − 1)Ngāb̄
n−1) + NgγNg

3n−5).

The Newton interpolation in step 6 has a known expense of O(Ngγ
2) for each coefficient,

so the total expense is O(Ngγ
2Ng

n−1). The loop in step 7 will not affect the overall com-

plexity, as the test in the loop is no more expensive than a single iteration of loop 5, and it

is only being run a fixed number of times (generally once or twice).

Now as for the DIVBRO algorithm, using the same arguments (primarily that we do

have some freedom in choosing the scaling coefficient) we make the reasonable assumption

that Ng = O(Nγ), which somewhat simplifies the earlier expenses, and combining these

(dropping lower order terms) we obtain

CostPd(n) = CostPd(n − 1)

+O(NgNgāb̄
n + Ng

n−1(NgāNgb̄ + (n − 1)Ngāb̄
n−1) + Ng

max(3n−4,n+1))

= CostPd(n − 1) + CostPd0(n),

where we use CostPd0(n) to represent the cost at the current level only.

Note that the choice of using a trailing (rather than a leading) coefficient for scaling

requires a similar adjustment be applied to the check for bad evaluations and the chosen

scaling coefficient for the multiple scaling case.

LINZIP M: Dense Case

In step 1 of algorithm 21 we are computing the scaling factor γ via a single integer gcd with

expense O(CgāCgb̄).

In step 2 we compute the inputs a, b modulo a prime p, having O(CgāNgā
n + Cgb̄Ngb̄

n)

expense, which is followed by a call to LINZIP P for the total number of variables for the

problem, with expense CostPd(n).

In step 3, we compute the number of univariate images needed to reconstruct a new

image with respect to a different prime, which is ni = Ng
n−1 for the dense case. Again,
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use of multiple scaling will increase the number of images by at most 50% which will not

significantly affect the asymptotic complexity.

The loop in step 5 will repeat O(Cg+Cγ) = O(Cgγ) times, and step 5.1 will have expense

O(CgāNgā
n + Cgb̄Ngb̄

n).

The analysis for the loop starting in step 5.3 will be identical to that of LINZIP P, with

the exception that we will need to execute the loop O(Ng
n−1) times, and the evaluations

will have an expense of O(nNgāb̄
n) (for the computation of n products in Zp for each term),

so the overall expense of that loop is O(Ng
n−1(NgāNgb̄ + nNgāb̄

n)).

For step 5.4, the same arguments as for LINZIP P apply for the multiple and single

scaling cases, so we need only consider the single scaling case. Again the analysis is nearly

identical, noting that now we need to reconstruct all variables, and that the number of terms

for the coefficient of xj
1 is O(Ng

n−1). The sum for the expense of the linear solves becomes
∑Ng

j=0 O(Ng
3n−3) = O(Ng

3n−2).

The expense of the Chinese remaindering in step 5.7 is known to accumulate to O(Cgγ
2)

for each coefficient over all iterations, so the total contribution to the expense is given by

O(Cgγ
2Ng

n).

This completes loop 5, and the total expense of that loop is given by

Cgγ ×O(CgāNgā
n + Cgb̄Ngb̄

n + Ng
n−1(NgāNgb̄ + nNgāb̄

n) + Ng
3n−2) + O(Cg

2Ng
n)

= O(Cgγ(CgāNgā
n + Cgb̄Ngb̄

n) + CgγNg
n−1(NgāNgb̄ + nNgāb̄

n) + CgγNg
3n−2).

Again with a similar argument as for LINZIP P we assume Cγ = O(Cg), and denoting

the expense of the division test by Dd(n), gives our total expense as

CostMd(n) = CostPd(n) + O(CgāCgb̄ + CgCgāNgā
n + CgCgb̄Ngb̄

n

+CgNg
n−1(NgāNgb̄ + nNgāb̄

n) + CgNg
3n−2 + Cg

2Ng
n + Dd(n)

= CostPd(n) + CostMd0(n),

where we use CostMd0(n) to represent the cost at the current level only.
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LINZIP: Dense Result

We can now combine the results of the LINZIP P and LINZIP M analyses to obtain an

overall asymptotic estimate for the dense case.

The first consideration here is that the recursion is constant, so the solution of the

recurrence is simply given by

CostMd(n) = CostMd0(n) +
n∑

i=2

CostPd0(i).

Examination of the form of CostPd0(i) shows that when compared to CostPd0(n), all the

other CostPd0(i) terms are asymptotically insignificant, so this simplifies to

CostMd(n) = CostMd0(n) + CostPd0(n).

This can be written (at length) as:

CostMd(n) = O(CgāCgb̄ + CgCgāNgā
n + CgCgb̄Ngb̄

n + CgNg
n−1(NgāNgb̄ + nNgāb̄

n)

+CgNg
3n−2 + Cg

2Ng
n + Ng

n−1(NgāNgb̄ + (n − 1)Ngāb̄
n−1)

+NgNgāb̄
n + Ng

max(3n−4,n+1) + CgNg
n(CāNā

n + Cb̄Nb̄
n)),

where we have added in the division cost from Table 6.3. Simplification of the above,

including the (asymptotically insignificant) expense of the degree bound computation from

Table 6.1 gives

CostMd(n) = O(CgāCgb̄ + CgCgāNgā
n + CgCāNg

nNā
n + CgCgb̄Ngb̄

n + CgCb̄Ng
nNb̄

n

+CgNg
n−1(NgāNgb̄ + nNgāb̄

n) + CgNg
3n−2), (6.19)

which again emphasizes that the greatest expense for the dense case occurs at the top level,

as all terms from CostPd0(n) are of lower order than the contribution from CostMd0(n).

Note: use of this algorithm for the dense case is ill-advised for a number of reasons. The

first of which is that the probability of computing a correct initial image in step 1 of the

algorithm is inversely proportional to the number of terms present in the gcd, which means

that for sufficiently dense problems it will fail frequently (though this is somewhat alleviated

by the multiple image strategy described in point 7 following the algorithm in §6.6). The

second of which is that the expense of solving the linear system is cubic in the number of
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unknowns, from which we expect that this direct approach will be quite inefficient for this

case. There is an approach described in Zippel [79, 80], and Kaltofen and Lee [32] that can

be used to reduce the expense of the linear solve from cubic to quadratic, but as we will

see this will not be the preferred approach for dense problems, so the analysis of this case

is provided primarily for discussion.

LINZIP P: Sparse Case

In step 0 of algorithm 22 we perform a univariate content check for content in the current

variable, which we see from Table 6.2 has an expense of O(TgTāb̄ + NgāNgb̄), and in step

1 we need to compute the scaling factor γ via a univariate gcd of the leading coefficients

with expense O(NgāNgb̄).

In step 2, the input a,b are evaluated with respect to xn = vn, having O(TgTāb̄) expense,

which is followed by a recursive call to LINZIP P for one fewer variable, with expense

CostPs(n − 1).

In step 3, we compute the number of univariate images needed to reconstruct a new

image in one fewer than the current number of variables, which is ni = Tg. Again the

number of images required by multiple scaling does not significantly affect the asymptotic

estimate.

The loop in step 5 will repeat O(Ng + Nγ) = O(Ngγ) times, and step 5.1 will have

expense O(Ngāb̄ + TgTāb̄), where the first term is the cost of computing the values of xi
n,

and the second is the cost of performing the evaluations.

The loop in step 5.3 will repeat O(ni) ≤ O(Tg) times. The expense in step 5.3.1 for

the evaluation with respect to x2 = v2, ..., xn−1 = vn−1 will be O((n − 1)(Ngāb̄ + TgTāb̄)).

Step 5.3.2 is a univariate modular gcd with expense O(NgāNgb̄), and we will assume that

step 5.3.3 will have negligible expense with compared with the following linear solve (i.e.

placing the data in the matrix structure is less expensive than performing the linear solve).

This completes loop 5.3, and the total expense of that loop is given by O(Tg(NgāNgb̄ +(n−
1)(Ngāb̄ + TgTāb̄))).

Now for step 5.4, the analysis for the multiple and single scaling cases is again equivalent,

due to the arguments put forth for the prior cases, so we will only consider the single scaling
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case. We need to reconstruct all terms for each coefficient in x1 ∈ Zp[x2, ..., xn−1]. Since the

input is sparse the number of terms for the coefficient of xj
1 is highly problem dependent.

For a truly sparse polynomial of moderate degree, this could be as small as O(1), or for a

highly structured polynomial, for example, one where half the terms of the gcd are degree

0 in x1, this could be as large as O(Tg). We use O(Tg) for the analysis. It is straightforward

to see that the overall cost of the linear solve is limited to O(Tg
3), which only occurs for

the worst case, as any case where the terms of the gcd are more evenly distributed in the

powers of x1 will result in less expense (the expense in the number of solves is linear, but

cubic in the size of the system to be solved).

This completes loop 5, and the total expense of that loop is given by

Ngγ ×O(Ngāb̄ + TgTāb̄ + Tg(NgāNgb̄ + (n − 1)(Ngāb̄ + TgTāb̄)) + Tg
3)

= O(NgγTg(NgāNgb̄ + (n − 1)(Ngāb̄ + TgTāb̄)) + NgγTg
3).

The Newton interpolation in step 6 has a known expense of O(Ngγ
2) for each coefficient,

so the total expense is O(Ngγ
2Tg), and with a similar argument as for the dense case, the

expense in loop 7 is bounded by the expense of loop 5.

Again with a similar argument as for the dense case we assume that Nγ = O(Ng), so

combining the above expenses (dropping lower order terms) we obtain

CostPs(n) = CostPs(n − 1) + O(NgTg(NgāNgb̄ + (n − 1)(Ngāb̄ + TgTāb̄)) + NgTg
3)

= CostPs(n − 1) + CostPs0(n),

where we use CostPs0(n) to represent the cost at the current level only.

Now this analysis surely provides an asymptotic bound for the expense of the algorithm,

but it is surely a worst case bound, for the following reasons:

1. We estimated the number of times that we repeat loop 4.3 to be O(Tg), but this is only

true when one of the xj
1 coefficients of the gcd has O(Tg) terms. It is more likely that

the terms are more evenly distributed amongst the powers of x1, and we can estimate

this as perhaps O(Tg
1
2 ).

2. In the event that the largest coefficient is not O(Tg), as discussed in the prior point,

our estimate for the cost of the solution of the systems of equations in step 4.4 is
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pessimistic. We would expect instead to need to solve O(Tg
1
2 ) systems of size O(Tg

1
2 ),

which drops the expense of that step to O(NgTg
2).

With these considerations, if the size of the largest coefficient of x1 in the input is

O(Tg
1
2 ), the complexity of the algorithm is given by

CostPs0(n) = O(NgTg
1
2 (NgāNgb̄ + (n − 1)(Ngāb̄ + TgTāb̄)) + NgTg

2).

For a highly sparse input, where the number of terms at each degree is O(1), the expense

of the solution process in step 5.4 is dropped as a lower order term, and the complexity would

be given by

CostPs0(n) = O(Ng(NgāNgb̄ + (n − 1)(Ngāb̄ + TgTāb̄))).

LINZIP M: Sparse Case

In step 1 of algorithm 21 we are computing the scaling factor γ via a single integer gcd with

expense O(CgāCgb̄).

In step 2, we compute the inputs a,b modulo a prime p, having O(CgāTgTā + Cgb̄TgTb̄)

expense, which is followed by a call to LINZIP P for the total number of variables for the

problem, with expense CostPs(n).

In step 3, we compute the number of univariate images needed to reconstruct an image

with respect to a new prime, which is ni = Tg. We note that again the number of images

required by multiple scaling does not affect the asymptotic estimate.

The loop in step 5 will repeat O(Cg+Cγ) = O(Cgγ) times, and step 5.1 will have expense

O(CgāTgTā + Cgb̄TgTb̄).

The analysis for the loop starting in step 5.3 is nearly identical to that of the sparse

LINZIP P, with associated expense O(Tg(Ngb̄Nāb̄ + n(Ngāb̄ + TgTāb̄))). Also, step 5.4 is

identical to the sparse LINZIP P case with associated expense O(Tg
3).

The expense of the Chinese remaindering in step 5.7 is known to accumulate to O(Cgγ
2)

for each coefficient over all iterations, so the total contribution to the expense is given by

O(Cgγ
2Tg).
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This completes loop 5, and the total expense of that loop is given by

Cgγ ×O(CgāTgTā + Cgb̄TgTb̄ + Tg(Ngb̄Nāb̄ + n(Ngāb̄ + TgTāb̄)) + Tg
3) + O(Cgγ

2Tg)

= O(CgγCgāTgTā + CgγCgb̄TgTb̄ + CgγTg(Ngb̄Nāb̄ + n(Ngāb̄ + TgTāb̄)) + CgγTg
3 + Cgγ

2Tg).

Noting that the expense of the division test (Table 6.3) is at worst equivalent to the first

two terms in the expense for loop 5, and using the assumption Cγ = O(Cg) as in the dense

case, our total expense simplifies to

CostMs(n) = CostPs(n) + O(CgāCgb̄ + CgTg(CgāTā + Cgb̄Tb̄)

+CgTg(Ngb̄Nāb̄ + n(Ngāb̄ + TgTāb̄)) + CgTg
3)

= CostPs(n) + CostMs0(n),

where we use CostMs0(n) to represent the cost at the current level only.

With the same considerations as used for LINZIP P, for the case where the largest

coefficient with respect to x1 has O(Tg
1
2 ) terms, the complexity of the algorithm is given by

CostMs0(n) = O(CgāCgb̄+CgTg(CgāTā+Cgb̄Tb̄)+CgTg
1
2 (Ngb̄Nāb̄+n(Ngāb̄+TgTāb̄))+CgTg

2).

For a highly sparse input, where the number of terms at each degree is O(1), the solution

process in step 5.4 is again dropped as a lower order term, and the complexity would be

given by

CostMs0(n) = O(CgāCgb̄ + CgTg(CgāTā + Cgb̄Tb̄) + Cg(Ngb̄Nāb̄ + n(Ngāb̄ + TgTāb̄))).

LINZIP: Sparse Result

We can now combine the results of the LINZIP P and LINZIP M analyses to obtain an

overall asymptotic estimate for the sparse case.

As in the dense case, recursion is constant, so the solution of the recurrence is simply

given by

CostMs(n) = CostMs0(n) +
n∑

i=2

CostPs0(i).
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We can evaluate the sum, giving

CostMs(n) = O(CgāCgb̄ + CgTg(CgāTā + Cgb̄Tb̄) + CgTg(Ngb̄Nāb̄ + n(Ngāb̄ + TgTāb̄))

+CgTg
3 + (n − 1)NgTgNgāNgb̄ +

n(n − 1)

2
NgTg(Ngāb̄ + TgTāb̄)

+(n − 1)NgTg
3),

which after minor simplification, addition of the (asymptotically insignificant) degree bound

expense from Table 6.1, and grouping gives

CostMs(n) = O(CgāCgb̄ + CgTg(CgāTā + Cgb̄Tb̄)

+ Tg(NgāNgb̄ + n(Ngāb̄ + TgTāb̄) + Tg
2)(Cg + nNg)). (6.20)

As with the analysis of the LINZIP P and LINZIP M algorithms, we can obtain the

cost for the case where g has a maximum of O(Tg
1
2 ) terms for any xj

1 coefficient as

CostMs(n) = O(CgāCgb̄ + CgTg(CgāTā + Cgb̄Tb̄)

+ Tg
1
2 (NgāNgb̄ + n(Ngāb̄ + TgTāb̄) + Tg

3
2 )(Cg + nNg)). (6.21)

Similarly for the O(1) case we obtain

CostMs(n) = O(CgāCgb̄ + CgTg(CgāTā + Cgb̄Tb̄)

+ (NgāNgb̄ + n(Ngāb̄ + TgTāb̄))(Cg + nNg)). (6.22)
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6.9 Summary and Discussion

We summarize our results for the complexity of the Brown, DIVBRO, EEZ-GCD and

LINZIP algorithms in Table 6.7, where the author believes these to be the most detailed

asymptotic results available for the Brown and EEZ-GCD algorithms.

Brown Dense O(Cgāb̄
2Ngāb̄

n + nCgāb̄Ngāb̄
n+1)

Brown Sparse O(Cgāb̄Tg(CgāTā + Cgb̄Tb̄) + Cgāb̄
2Tgāb̄ + Cgāb̄nxNgāb̄

n+1)

DIVBRO Dense O(CgāCgb̄ + Cg(CgāNgā
n + Cgb̄Ngb̄

n) + nCgNgNgāb̄
n

+CgNg
n(CāNā

n + Cb̄Nb̄
n))

DIVBRO Sparse O(CgāCgb̄ + CgTg(CgāTā + Cgb̄Tb̄) + CgfNg
n−nx+1Ngāb̄

nx

+n log2(n)TgTāb̄ + nNgāNgb̄)

EEZ-GCD Dense Non-zero O(CgCb̄(NgNb̄)
n + NgāNgb̄ + C2Ngā

4(NgNā)
n−1)

EEZ-GCD Dense Zero O(CgCb̄(NgNb̄)
n + NgāNgb̄ + C2Ngā

3(NgNā)
n−1)

EEZ-GCD Sparse Non-zero O((CgCb̄ + n)TgTb̄ + NgāNgb̄ + C2(n + Ngā
n+1)TgTā)

EEZ-GCD Sparse Zero O(1) O(CgCb̄TgTb̄ + NgāNgb̄

+nCNgāTgTā + n2(C2 + Ngā)TgTā)
EEZ-GCD Sparse Zero O( 1

2) O(CgCb̄TgTb̄ + NgāNgb̄ + CNgāTgTā

+n((C2 + Ngā)TgTā + CNgā) + n2(C2 + Ngā))
EEZ-GCD Sparse Mixed (n0) O(CgCb̄TgTb̄ + NgāNgb̄ + C2Ngā

n−n0+1TgTā

+(n − n0)(C
2Ngā

n−n0 + (C2 + Ngā)TgTā)
+(n − n0)

2(C2 + Ngā))

LINZIP Dense O(CgāCgb̄

+Cg(CgāNgā
n + CāNg

nNā
n + Cgb̄Ngb̄

n + Cb̄Ng
nNb̄

n)

+CgNg
n−1(NgāNgb̄ + nNgāb̄

n) + CgNg
3n−2)

LINZIP Sparse O(Tg) O(CgāCgb̄ + CgTg(CgāTā + Cgb̄Tb̄)

+Tg(NgāNgb̄ + n(Ngāb̄ + TgTāb̄) + Tg
2)(Cg + nNg))

LINZIP Sparse O(Tg
1
2 ) O(CgāCgb̄ + CgTg(CgāTā + Cgb̄Tb̄)

+Tg
1
2 (NgāNgb̄ + n(Ngāb̄ + TgTāb̄) + Tg

3
2 )(Cg + nNg))

LINZIP Sparse O(1) O(CgāCgb̄ + CgTg(CgāTā + Cgb̄Tb̄)

+(NgāNgb̄ + n(Ngāb̄ + TgTāb̄))(Cg + nNg))

Table 6.7: General Asymptotic Results for gcd Algorithms

As a simplification of Table 6.7, and for purposes of discussion, we consider the balanced

case, where the degree, density, and coefficients of the gcd and cofactors are equal, and

we assume that in the sparse case the polynomials will appear sparse when viewed in 2

variables. The simplified results are presented in Table 6.8.
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Brown Dense O(C2Nn + nCNn+1)
Brown Sparse O(C2T 2 + CNn+1)

DIVBRO Dense O(C2Nn + nCNn+1 + C2N2n)
DIVBRO Sparse O((C2 + n log2(n))T 2 + CNn + nN2)

EEZ-GCD Dense Non-zero O(C2N2n+2)
EEZ-GCD Dense Zero O(C2N2n+1)
EEZ-GCD Sparse Non-zero O(C2(Nn+1 + n)T 2)
EEZ-GCD Sparse Zero O(1) O(N 2 + nC2NT 2 + n2(C2 + N)T 2)
EEZ-GCD Sparse Zero O( 1

2) O(N2 + CNT 2 + n((C2 + N)T 2 + CN) + n2(C2 + N))
EEZ-GCD Sparse Mixed (n0) O(C2Nn−n0+1T 2 + (n − n0)(C

2Nn−n0 + (C2 + N)T 2)
+(n − n0)

2(C2 + N))

LINZIP Dense O(C2N2n + nCN2n−1 + CN3n−2)
LINZIP Sparse O(Tg) O(C2T 2 + T (N2 + n(N + T 2))(C + nN))

LINZIP Sparse O(Tg
1
2 ) O(C2T 2 + T

1
2 (N2 + n(N + T 2))(C + nN))

LINZIP Sparse O(1) O(C2T 2 + (N2 + n(N + T 2))(C + nN))

Table 6.8: Balanced Asymptotic Results for gcd Algorithms

So clearly Brown’s algorithm gives the best asymptotic cost for balanced dense prob-

lems. Specifically the expense of Brown’s algorithm scales as Nn, while the EEZ-GCD and

DIVBRO algorithms scale as N 2n, and the LINZIP algorithm scales as N 3n (though this

can be reduced to O(N 2n), see Zippel [79, 80], and Kaltofen and Lee [32]).

The EEZ-GCD algorithm clearly gives the best asymptotic cost for sparse problems, but

only in the cases where we can choose zero evaluation points. Alas, problems where this is

not possible arise quite frequently in practice. Some obvious examples include homogeneous

(or nearly homogeneous) polynomials, polynomials where the leading term of greatest degree

has all variables present (e.g. leading term is (x1x2x3)
n), and other less obvious cases where

upon evaluating with respect to 〈x2, ..., xn〉 the g, ā have a nontrivial gcd. Since the EEZ-

GCD algorithm can be made to work with a mix of zero and non-zero evaluation points

we can look at the results for that case above, which displays an interesting feature of the

algorithm. As soon as one non-zero evaluation point is chosen, the expense is at least cubic

in the degree of the problem (see the EEZ-GCD Sparse Mixed result with n0 = n−2, which

simplifies to O(C2N3T 2)), so the expense of the algorithm jumps by O(N 2) for a single

non-zero evaluation point.

Perhaps in part because of this fact, and in part because of the frequency of this problem,

some implementations don’t bother to fully implement the zero case, simply doing a single
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check, and on failure utilizing all non-zero evaluation points. The unfortunate result of this

is that the complexity becomes exponential in the degree, so the asymptotic cost begins to

resemble that of Brown’s algorithm. In practice, however, use of EEZ-GCD with non-zero

evaluation points is significantly more efficient than Brown’s algorithm, and this can be

explained in that the exponential nature of EEZ-GCD comes from a single source (step

4.4.4 of Algorithm 25) at the outermost iteration, when we are lifting the final variable of

the problem. In contrast, the contribution to the exponential nature of Brown’s algorithm

comes from all levels of the implementation.

The LINZIP algorithm does not suffer from the bad zero problem, so it can be used for

any sparse problem, and it does not display the same exponential behavior of EEZ-GCD

with non-zero evaluation points. In addition, the asymptotic complexity of LINZIP is fairly

competitive with the complexity of EEZ-GCD when the latter requires even a single non-zero

evaluation point. Also, the core computations for LINZIP are all performed mod p, so can

be implemented in compiled code. Another aspect of this is that all coefficient operations

for EEZ-GCD use full sized integers, while machine integers can be used for LINZIP P, so

the factor of C2 in the expense of EEZ-GCD can become significant. The author would like

to note that variants of the EEZ-GCD algorithm that do not exhibit this O(C2) behavior

are possible, but then begin to more closely resemble the other algorithms, as a sequence

of primes must be used at the top level, requiring Chinese remaindering, and it is expected

that the data structure overhead would become more significant.

When comparing with existing implementations, in Maple, for example, the O(T 3) sys-

tem solution can be implemented in the LinearAlgebra:-Modular package, as with the numer-

ous univariate gcd computations required in the course of the algorithm. Though this does

not change the asymptotic behavior of the algorithm, it does make a significant difference

in the constants.

We will obtain highly efficient implementations of all gcd algorithms discussed in this

thesis, and present an implementation comparison in a future work. In the implementations

thus far, the asymptotic results appear to give an accurate description of the algorithm

performance for large problems. In particular, some surprising results, such as the decou-

pling of the dependency of the EEZ-GCD sparse zero O( 1
2) case on the parameters of the

problem, and the cubic degree dependence of the EEZ-GCD sparse mixed case with one

nonzero evaluation, have been empirically verified.



Chapter 7

Benchmarks

In this chapter we focus on a comparison of the RifSimp algorithm implemented in Maple

(rifsimp), to the DiffElim implementation in C. The benchmark problems are systems of

determining equations for symmetries of ode and pde. These provide a scalable set of prob-

lems, for which the number of components in a system, the number of spatial dimensions,

or both, can be varied to increase or decrease the difficulty of the system.

We have made a number of determining systems and benchmarks available on the web

at http://www.cecm.sfu.ca/˜wittkopf/systems.html [72], including:

• The classical Laplace equation for 3-16 spatial dimensions;

• The classical harmonic oscillator for 3-16 spatial dimensions;

• The vnls system with potential F = |u|2 for 1-4 components in 1-10 spatial dimen-

sions;

• The vnls system with general potential for 1-4 components in 1-10 spatial dimensions.

All but the last of the above systems are discussed in [74]. The last collection of systems

has been provided for experimentation, allowing different forms of the potential to be used.

We note that the systems themselves are quite large, in some cases containing thousands

of equations, thus making web distribution more appropriate than inclusion in this thesis.

For brevity, we restrict the benchmarks in this chapter to the most challenging of the

available systems, though as mentioned other benchmarks are available on the web.

208
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7.1 Partially Coupled Reaction Diffusion Systems

The Lie infinitesimal determining systems for the partially coupled reaction diffusion systems

given by

u1t − u1xx = a(u1 + b)2, (7.1)

uit − uixx = au1ui +
n∑

j=1

di,juj + ci, i = 2, ..., n (7.2)

and discussed in §5.3.4 were used as a benchmark system for n = 1, 2, ..., 7 to compare the

running time and memory use of rifsimp and DiffElim.

The results are summarized in Table 7.1, where memory is measured in megabytes (MB),

and time in c.p.u. seconds running on a PII 333MHz Linux machine.

rifsimp DiffElim
n dim Time Mem Time Mem

1 3 2.41 2.56 – 0.69
2 6 4.63 2.69 0.01 0.71
3 11 9.55 3.00 0.04 0.74
4 18 19.93 3.12 0.09 0.81
5 27 42.72 3.56 0.26 0.92
6 38 91.28 4.12 0.53 1.03
7 51 202.99 4.50 0.81 1.43

Table 7.1: Run-time Comparison

For these problems, the DiffElim implementation has a running time between 1
164 and 1

250

of that of rifsimp, and requires less than 1
3 the memory to perform differential elimination

on these systems.

7.2 Statistics on speed, memory and relative performance

In this section, the family of vnls equations (5.14) is used to test our implementation of

the DiffElim algorithm and compare it to the rifsimp implementation.
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7.2.1 Statistics on the input systems

When Hickman’s Maple package Symmetry [25], was applied to the vnls system for the

general form of the potential, the numbers of determining equations it generated are listed

in Table 7.2.

Spatial Number of components (m)
Dimension (n) 1 2 3 4

1 46 248 678 1408
2 120 624 1704 3552
3 222 1144 3126 6528
4 352 1808 4944 10336
5 510 2616 7158 14976
6 696 3568 9768 20448
7 910 4664 12744 26752
8 1152 5904 16176 33888

Table 7.2: Number of determining equations for the vnls system (1.3)

It’s nice to note that we were able to fit the number of pde in the determining systems

to an exact polynomial in m and n, CountDets(n, m), given by

CountDets(n, m) = (4n2 + 8n)m3 + (10n2 + 24n + 8)m2 − 8m. (7.3)

The total length of the pde present in the input determining systems (as measured by

Maple’s length function) is also recorded in Table 7.3.

Spatial Number of components (m)
Dimension (n) 1 2 3 4

1 5983 32239 96003 218539
2 12967 69611 209583 483283
3 23171 123711 373143 863147
4 37027 196459 591723 1368499
5 54967 289775 870363 2009707
6 77423 405579 1214103 2797139
7 104827 545791 1627983 3741163
8 137611 712331 2117043 4852147

Table 7.3: Length of determining systems for the vnls system (1.3)

These are the lengths of the determining system for the arbitrary form of the potential
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F in (1.3). Substitution of the particular form of F from (5.14) increases their size by

35% − 60%.

It was also possible to fit this data to a polynomial function, LengthDets(n, m), that is

cubic in n, and quartic in m:

LengthDets(m, n) = (56n2 + 112n)m4

+ (16n3 + 356n2 + 876n + 616)m3

+ (40n3 + 584n2 + 1542n + 1204)m2

+ (16n3 + 182n2 + 416n − 36)m + 3.

To obtain and verify this result, we also generated determining systems for m = 5, 6 which

are not included in Tables 2 and 3. These relationships for the input equation count and

total length hold exactly for all determining systems that were generated, which is quite

surprising considering the sensitivity of Maple’s length function to mild changes in the form

of the input.

Similar results were found for the classical Laplace equations and the oscillator Schrödinger

equation, and are presented in Wittkopf and Reid [74].

7.2.2 Statistics on the output systems

Since the input equation counts and system sizes were found to be exact polynomial functions

of m, n, it is natural to inquire whether the same is true for the output. This was found to be

the case for the equation count for all systems successfully simplified, and this relationship

is given by

CountOut(m, n) =
1

3
m3 +

5

2
m2 + (

49

6
+ 4n)m +

1

6
n3 + n2 +

17

6
n + 1, (7.4)

where additional systems for m = 5, 6 not present in the table were also used to validate

the result.

The computed output equation counts are given in Table 7.4.

The total length of pde present in the output determining systems, as measured by

Maple’s length function, was also recorded, and is given in Table 7.5.
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Spatial Number of components (m)
Dimension (n) 1 2 3 4

1 20 42 73 115
2 31 57 92 138
3 46 76 115
4 66 100 143
5 92 130
6 125 167
7 166
8 216

Table 7.4: Output Determining System Equation Counts for (5.14)

Spatial Number of components (m)
Dimension (n) 1 2 3 4

1 10312 55011 189599 493215
2 24782 101519 289161 673075
3 47177 166767 420947
4 77578 250853 585057
5 118698 359112
6 168984 488021
7 232633
8 306252

Table 7.5: Output Determining System Lengths (5.14)

Unfortunately it was not possible to polynomially fit the lengths of the output systems.

For the dependence on n, it initially appears to be exponential for small n values, but this

pattern seems to fail for larger n.

It is remarkable that the output length is always larger than the input length, but what is

not so obvious is the structure of the output. Though larger, it is more useful, as it provides

significant additional information that the input system does not (such as the dimension

and structure of the symmetry groups).

7.2.3 Comparison of running times for rifsimp and DiffElim

We have recorded the running times for rifsimp and DiffElim in Table 7.6 as a function of

m, n. In all tables, time is measured in c.p.u. seconds running on a PII 333 MHz PC under

Linux. Any cases that failed due to insufficient memory (i.e. required more than 128 MB),
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are marked by Mem, while cases not attempted (as the result of the failure of an easier

system for the same m) are blank.

Spatial Number of components (m)
Dimension (n) 1 2 3 4

1 0.1 2.5 7.1 77.4
10.1 1446.0 15238.6 Mem

2 0.2 3.6 36.1 70.0
29.0 709.2 18202.4

3 0.4 25.4 106.0 Mem
59.7 3065.7 Mem

4 0.7 26.7 309.5
115.2 Mem

5 1.2 103.9 Mem
242.9 Mem

6 1.9 309.5
451.6

7 3.0 Mem
940.2

8 4.5
1572.8

Table 7.6: Run-time comparison between DiffElim (top) and rifsimp (bottom) for the re-
duction of the determining system of (5.14)

The average ratio of DiffElim running time, to rifsimp running time in the above table is

about 400. The performance was noticed to be exponential in m and n, and a least squares

fit of the data to the form Time(m, n) := C exp(an) exp(bm) gives

rifsimp : Time(m, n) ≈ 0.3 e3.4n e0.7m,

DiffElim : Time(m, n) ≈ 0.006 e2.4n e0.7m,

where we have liberally rounded the coefficients in the formulae since they are based on only

a few data points. Indeed the standard deviation of the linear fit of the log of the run time

to the linear relation an + bm + ln(C) here is 0.96 for DiffElim, and 0.40 for rifsimp.

7.2.4 Comparison of Memory Use for rifsimp and DiffElim

The memory usage for rifsimp and DiffElim, as a function of m, n, is shown in Table 7.7.

Again, any cases that failed due to insufficient memory (> 128 MB), are marked by Mem,



CHAPTER 7. BENCHMARKS 214

while cases not attempted are blank.

Spatial Number of components (m)
Dimension (n) 1 2 3 4

1 0.8 1.7 2.6 16.3
3.1 24.1 51.9 Mem

2 0.8 2.2 10.5 10.4
3.9 12.7 201.0

3 0.9 6.3 23.5 Mem
4.6 31.2 Mem

4 1.1 6.3 19.9
6.1 Mem

5 1.3 29.8 Mem
9.2

6 1.5 48.3
11.4

7 1.9 Mem
16.0

8 2.5
20.9

Table 7.7: Memory usage comparison between DiffElim (top) and rifsimp (bottom) for the
reduction of the determining system of (5.14)

The average ratio of DiffElim memory use, to rifsimp memory use in the above table is

about 9. The memory usage also appears to be exponential in m and n, and a least squares

fit of the data to the form Mem(m, n) := C exp(an) exp(bm) gives

rifsimp : Mem(m, n) ≈ 0.4 e1.7n e0.3m,

DiffElim : Mem(m, n) ≈ 0.1 e1.2n e0.3m,

where we make the same cautionary remarks about the fits as in the prior section.

7.3 Discussion

For the class of benchmark problems, the implementation of the DiffElim algorithm in

the new CDiffElim environment outperformed rifsimp on average by a factor of 400, using

significantly less memory in the process.
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The CDiffElim environment has an equation data structure well suited to differential

elimination, enhanced memory management, and fast algorithms for standard operations

on ordered equations. In addition it was found that the enhanced gcd implementations

described in Chapter 6, most specifically the LINZIP implementation (§6.6), provided an

impressive performance boost over the algorithm previously implemented (an early variant

of DIVBRO §6.4).

The rifsimp implementation, however, is much more flexible (to get some idea of this,

simply consult the help pages in Appendix A), and is written in a multi-purpose environ-

ment, providing even greater flexibility.

The CDiffElim environment is still in a developmental stage, with many algorithms

still needed (such as multivariate factorization), and much work remains to be done on

interfacing and improving portability (currently only implemented under Linux).

In hindsight, though the CDiffElim environment shows substantial improvements over

use of a general-purpose computer algebra system, the maintenance of such an environment,

including integration of new algorithms, better ways of performing some computations,

etc. requires an equally (if not more) substantial quantity of effort and work. The ideal

approach would be the addition of some of the more relevant ideas to an already well tested

and well established computer algebra system, thus providing many of the benefits of both

approaches, while avoiding the primary drawbacks.



Chapter 8

Conclusions

Within this dissertation we provided a moderately detailed introduction to the area of

differential elimination, describing key components for some of the various approaches used.

Building on the work of Rust [58], we provided a means of reducing the number of

compatibility conditions (integrability conditions) that need be considered for nonlinear

problems to be O(r2) for r pde in all cases. We reiterate that previously (in the useful

case of non-sequential rankings) a potentially infinite number of conditions needed to be

considered.

In addition we developed an easily implementable and highly efficient algorithm for

identifying further redundant conditions in the O(r2) set. Not previously noted is the fact

that this algorithm is easily adapted for use by other algorithms, such as Gröbner basis

computation, and is expected to provide significant efficiency gains there as well.

These results allow for a much more efficient implementation of the RifSimp algorithm

because we avoid redundant conditions which were always of higher differential order, thus

requiring significantly more work to reduce and eliminate.

We provided a detailed description of the RifSimp algorithm implementation in Maple

as the rifsimp command [54], and recounted the core implementation details that result in

the current efficient implementation of RifSimp. This was followed by a description of the

MaxDim algorithm [53], and its use with RifSimp (though, as mentioned, it can be used

with other differential elimination algorithms). The author would like to note that the Rif

216
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package has been part of the commercially distributed version of Maple since Maple 6, and

the MaxDim algorithm has been part of Rif since Maple 7. It comes with an extensive set of

help pages, available in the appendix, and provides efficient differential elimination, both for

users, and as a tool utilized automatically by other parts of Maple (symbolic ode solution

for example).

We described the implementation of a specialized environment for differential elimina-

tion [73, 74], focusing on the core requirements for specialization to differential elimination

applications. Within that environment, the first implementation of the LINZIP algorithm

for efficient computation of sparse multivariate gcds appeared. It was found that the addi-

tion of this gcd algorithm provided significant enhancements for many classes of problems,

in some cases reducing their run-time by as much as a factor of 5. Clearly efficient gcd

computation is a key part of differential elimination, which hardly needs to be stated given

that some problems spend more than 80% of their time computing gcds.

This led us to two variants of gcd algorithms, the DIVBRO algorithm [43], and the

LINZIP algorithm. A detailed asymptotic comparison of these algorithms and two other well

known algorithms is also provided, clearly indicating for which (large) classes of problems

these new variants are the most relevant.

Following this, we utilized our differential elimination implementations in the area of Lie

symmetry analysis, verifying some known results, and providing some new results as well

[53, 73, 74].

And finally we concluded with a comparison of rifsimp in Maple and the DiffElim algo-

rithm implemented in our specialized differential elimination environment, demonstrating

that use of the specialized environment can enhance efficiency by approximately two orders

of magnitude [73, 74]. In addition, timings and systems have been made available to others

in the area of differential elimination as a means of testing or improving the efficiency of

their algorithms [72].

There are, however still a few open questions and some work to do:

Conjecture #1: Can we use the Syzygy Simplify algorithm (Algorithm 9) incrementally?

Conjecture #2: Can we weaken the conditions for termination of the poly rif ICs’ algo-

rithm (Algorithm 10) for non-sequential rankings?
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Project #1: Efficient implementation of all studied gcd algorithms in Maple, and a bench-

mark comparison relating to the complexity results of Chapter 6.

We will endeavor to discover the answers to these questions as part of our continuing

research.



Appendix A

The rifsimp Implementation Help

Pages

219
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A.1 Introduction to the Rif Subpackage Version 1.1

Description

The Rif subpackage of DEtools is a powerful collection of commands for the simplification

and analysis of systems of polynomially nonlinear ODEs and PDEs.

The package includes a command to simplify systems of ODEs and PDEs by converting

these systems to a canonical form (reduced involutive form), graphical display of results for

ease of use, a command to determine the initial data required for the existence of formal

power series solutions of a system, and a command to generate formal power series solutions

of a system.

Rif is used by both dsolve and pdsolve to assist in solution of ODE/PDE systems (see

dsolve,system, pdsolve,system).

In addition, the casesplit command of the PDEtools package extends the functionality

of Rif by allowing differential elimination to proceed in the presence of nearly all non-

polynomial objects known to Maple (over one hundred of these, including trigonometric,

exponential, and generalized hypergeometric functions, fractional exponents, etc.).

Though the results obtained from the rifsimp command are similar to those obtained from

the diffalg package, the commands use different approaches, one of which may work better

for specific problems than the other.

The Rif package generalizes the Standard Form package for linear ODE/PDE systems to

polynomially nonlinear ODE/PDE. The linear system capabilities of the Standard Form

package for the simplification of ODE/PDE systems are also present as part of Rif.

The improvements over the most recently released version of Standard Form (1995) include

1) Full handling of polynomially nonlinear systems

2) Automatic case splitting

3) Flexible nonlinear ranking

4) Handling of inequation constraints (expr<>0)

5) Speed and memory efficiency

The improvements over the release 1.0 of Rif (Maple 6) include



APPENDIX A. THE RIFSIMP IMPLEMENTATION HELP PAGES 221

1) New function maxdimsystems to find the most general solutions for case

splitting problems

2) Improvements to case visualization and initial data computation

3) Greater flexibility in rifsimp with the addition of new options for

control of case splitting, declaration of arbitrary functions and/or

constants, detection of empty cases, and much more

4) More efficient handling of nonlinear systems via new nonlinear equation

methods

5) Significant overall speed and memory enhancements

6) Automatic adjustment of results to remove inconsistent cases, and

their effect on the returned consistent cases.

The functions available

rifsimp Simplifies systems of polynomially nonlinear ODEs and PDEs

to canonical form. Splits nonlinear equations into cases,

using Groebner basis techniques to handle algebraic

consequences of the system. Accounts for all differential

consequences of the system.

maxdimsystems Also simplifies systems of polynomially nonlinear ODEs

and PDEs, but performs case splitting automatically,

returning the most general cases (those with the highest

number of parameters in the initial data).

rifread Loads a partially completed rifsimp calculation for

viewing and/or manual manipulation. rifsimp must be

told to save partial calculations using the storage

options.

checkrank Provides information on ranking to allow determination

of an appropriate ranking to use with rifsimp.
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caseplot Takes the case split output of rifsimp, and provides

a graphical display of the solution case tree.

initialdata Obtains the initial data required by an ODE/PDE system to

fully specify formal power series solutions of the system.

Typically the output of rifsimp is used as input for this

procedure, but any ODE/PDE system in the correct form can

be used.

rtaylor Calculates the Taylor series of solutions of an ODE/PDE

system to any order. Just as for initialdata, any

ODE/PDE system in the correct form can be used.

For theory used to produce the rifsimp and maxdimsystems algorithm, and related the-

ory, please see the following:

Becker, T., Weispfenning, V. Groebner Bases: A Computational Approach to Commutative

Algebra. New York: Springer-Verlag, 1993.

G.W. Bluman and S. Kumei, ”Symmetries and Differential Equations”, Springer-Verlag,

vol. 81.

Boulier, F., Lazard, D., Ollivier, F., and Petitot, M. ”Representation for the Radical of a

Finitely Generated Differential Ideal”. Proc. ISSAC 1995. ACM Press, 158-166.

Carra-Ferro, G. ”Groebner Bases and Differential Algebra”. Lecture Notes in Comp. Sci.

356 (1987): 128-140.

Goldschmidt, H. ”Integrability Criteria for Systems of Partial Differential Equations”. J.

Diff. Geom. 1 (1967): 269-307.

Mansfield, E. 1991. Differential Groebner Bases. Ph.D. diss., University of Sydney.

Ollivier, F. ”Standard Bases of Differential Ideals”. Lecture Notes in Comp. Sci. 508 (1991):

304-321.

G.J. Reid and A.D. Wittkopf, ”Determination of Maximal Symmetry Groups of Classes of

Differential Equations”, Proc. ISSAC 2000. ACM Press, 272-280
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Reid, G.J., Wittkopf, A.D., and Boulton, A. ”Reduction of Systems of Nonlinear Partial

Differential Equations to Simplified Involutive Forms”. Eur. J. Appl. Math. 7 (1996):

604-635.

Rust, C.J. 1998. ”Rankings of Derivatives for Elimination Algorithms, and Formal Solv-

ability of Analytic PDE”. Ph.D. diss., University of Chicago.

Rust, C.J., Reid, G.J., and Wittkopf, A.D. ”Existence and Uniqueness Theorems for Formal

Power Series Solutions of Analytic Differential Systems”. Proc. ISSAC 1999. ACM Press,

105-112.

For a review of other algorithms and software (but more closely tied to symmetry analysis),

please see the following.

Hereman, W. ”Review of Symbolic Software for the Computation of Lie Symmetries of

Differential Equations”. Euromath Bull. 1 (1994): 45-79.

For a detailed guide to the use the Standard Form package, the predecessor of rifsimp,

please see:

Reid, G.J. and Wittkopf, A.D. ”The Long Guide to the Standard Form Package”. 1993.

Programs and documentation available on the web at http://www.cecm.sfu.ca/˜wittkopf.
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A.2 rifsimp - simplify overdetermined polynomially nonlin-

ear PDE or ODE systems

Calling Sequences

rifsimp(system, options)

rifsimp(system, vars, options)

Parameters

system - list or set of polynomially nonlinear PDEs or ODEs (may contain inequations)

vars - (optional) list of the main dependent variables

options - (optional) sequence of options to control the behavior of rifsimp

Description

The rifsimp function can be used to simplify or rework overdetermined systems of poly-

nomially nonlinear PDEs or ODEs and inequations to a more useful form – relative stan-

dard form. The rifsimp function does not solve PDE systems, but provides existence and

uniqueness information, and can be used as a first step to their solution. As an example,

inconsistent systems can be detected by rifsimp.

Basically, given an input PDE system, and a list of dependent variables or constants to

solve for, rifsimp returns the simplified PDE system along with any existence conditions

required for the simplified system to hold.

Detailed examples of the use of rifsimp for various systems (along with some explanation

of the algorithm) can be found in rifsimp,overview.

Other options are sometimes required along with the specification of the system and its solv-

ing variables. For common options, please see rifsimp[options], and for more advanced

use, please see rifsimp[adv options].

For a description of all possible output configurations, see rifsimp,output.

Examples

1. Overdetermined Systems

As a first example, we have the overdetermined system of two equations in one dependent
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variable y(x).
> sys1:=[x*diff(y(x),x)^2*diff(y(x),x,x)^2-2*x*diff(y(x),x)*

> diff(y(x),x,x)*y(x)*diff(y(x),x,x,x)+x*y(x)^2*

> diff(y(x),x,x,x)^2-y(x)*diff(y(x),x,x)+diff(y(x),x)^2=0,

> -diff(y(x),x)*diff(y(x),x,x)+y(x)*diff(y(x),x,x,x)+

> 2*y(x)^2*diff(y(x),x,x)^2-4*y(x)*diff(y(x),x,x)*

> diff(y(x),x)^2+2*diff(y(x),x)^4=0];

sys1 := [x ( ∂
∂x y(x))2 ( ∂2

∂x2 y(x))2 − 2 x ( ∂
∂x y(x)) ( ∂2

∂x2 y(x)) y(x) ( ∂3

∂x3 y(x))

+ x y(x)2 ( ∂3

∂x3 y(x))2 − y(x) ( ∂2

∂x2 y(x)) + ( ∂
∂x y(x))2 = 0,−( ∂

∂x y(x)) ( ∂2

∂x2 y(x))

+ y(x) ( ∂3

∂x3 y(x)) + 2 y(x)2 ( ∂2

∂x2 y(x))2 − 4 y(x) ( ∂2

∂x2 y(x)) ( ∂
∂x y(x))2 + 2 ( ∂

∂x y(x))4 =

0]

Now call rifsimp.

> with(DEtools):

> ans1:=rifsimp(sys1);

ans1 := table([Solved =

[

∂2

∂x2 y(x) =
( ∂

∂x y(x))2

y(x)

]

, Case = [[y(x) 6= 0, ∂3

∂x3 y(x)]],

Pivots = [y(x) 6= 0]

])

We see that the system has been reduced (for the case y(x) not identically zero) to one

much simpler equation that can now be handled with Maple’s dsolve.

> dsolve(convert(ans1[Solved],’set’),{y(x)});
{y(x) = e( C1 x) C2}

In addition to assisting dsolve in obtaining exact solutions, the simplified form can be used

in combination with the initialdata function to obtain the required initial data for the

solved form.

> id1:=initialdata(ans1[Solved]);

id1 := table([Infinite = [], Finite = [y(x0) = C1 , ∂
∂x y(x0) = C2 ]])

In this case, it gives us the expected results for a second order ODE, but it can also cal-

culate the required initial data for more complex PDE systems (see initialdata for more



APPENDIX A. THE RIFSIMP IMPLEMENTATION HELP PAGES 226

information). Numerical methods can now be successfully applied to the reduced system,

with initial conditions of the type calculated by initialdata.
> dsolve(convert(ans1[Solved],set) union {y(0)=1,D(y)(0)=2},
> {y(x)}, numeric, output=array([0,0.25,0.5,0.75,1.0]));

















[

x, y(x), ∂
∂x y(x)

]













0 1. 2.

.25 1.64870721760397 3.29741443520794

.5 2.71795936016842 5.43591872033684

.75 4.48001357532832 8.96002715065664

1.0 7.38492244417078 14.7698448883416





























Finally, we can also obtain a formal power series (Taylor series) for the local solution of this

problem (see rtaylor for more information).

> tay_ser:=rtaylor(ans1[Solved],order=4);

tay ser :=



y(x) = y(x0) + ( ∂
∂x y(x0)) (x − x0) +

1

2

( ∂
∂x y(x0))

2 (x − x0)
2

y(x0)

+
1

6

( ∂
∂x y(x0))

3 (x − x0)
3

y(x0)2
+

1

24

( ∂
∂x y(x0))

4 (x − x0)
4

y(x0)3





The above series is fully determined when given the initial data described earlier:

> tay_ser:=rtaylor(ans1[Solved],id1,order=4);

tay ser := [y(x) =

C1 + C2 (x − x0) +
1

2

C2 2 (x − x0)
2

C1
+

1

6

C2 3 (x − x0)
3

C1 2 +
1

24

C2 4 (x − x0)
4

C1 3 ]

2. Inconsistent Systems

rifsimp can often determine whether a system is inconsistent.
> sys2:=[diff(u(x,y),x)^2+diff(u(x,y),y,y)=0,

> u(x,y)^3-diff(u(x,y),x)+x=0]:

> rifsimp(sys2);

table([status = “system is inconsistent”])

3. Constrained Mechanical Systems
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This example shows the use of rifsimp as a preprocessor for a constrained mechanical

system (that is, a Differential-Algebraic Equation or DAE system). The method of Lagrange

formulates the motion of a bead of nonzero mass m on a frictionless wire of shape Phi(x,y)

under gravity as follows:
> ConstrainedSys:= [m<>0, Phi(x(t),y(t))=0,

> m*diff(x(t),t,t)=-lambda(t)*D[1](Phi)(x(t),y(t)),

> m*diff(y(t),t,t)=-lambda(t)*D[2](Phi)(x(t),y(t))-m*g];

ConstrainedSys := [m 6= 0, Φ(x(t), y(t)) = 0, m ( ∂2

∂t2
x(t)) = −λ(t) D1(Φ)(x(t), y(t)),

m ( ∂2

∂t2
y(t)) = −λ(t) D2(Φ)(x(t), y(t)) − m g]

Note that a mass falling under gravity without air resistance corresponds to:

> Phi:= (x,y) -> 0;

Φ := 0

We pick the example of a pendulum, so the bead moves on a circular wire.

> Phi:= (x,y) -> x^2 + y^2 - 1;

Φ := (x, y) → x2 + y2 − 1

> ConstrainedSys;

[m 6= 0, x(t)2 + y(t)2 − 1 = 0, m ( ∂2

∂t2
x(t)) = −2 λ(t) x(t), m ( ∂2

∂t2
y(t)) = −2 λ(t) y(t) − m g]

Such constrained systems present great difficulties for numerical solvers. Of course, we

could eliminate the constraint using polar coordinates, but in general this is impossible for

mechanical systems with complicated constraints. For example, just replace the constraint

with another function, so that the wire has a different shape.

> Phi2:= (x,y) -> x^4 + y^4 - 1;

Φ2 := (x, y) → x4 + y4 − 1

(See Reid et al., 1996, given in the reference and package information page Rif). The

pendulum is the classic example of such systems that have been the focus of much recent

research due to their importance in applications.

> SimpSys:=rifsimp(ConstrainedSys);
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SimpSys := table([Constraint =

[m ( ∂
∂t y(t))2 + 2 y(t)2 λ(t) − y(t) m g + y(t)3 m g − 2 λ(t) = 0, x(t)2 + y(t)2 − 1 = 0],

Solved =
[

∂2

∂t2
y(t) = −2 λ(t) y(t) + m g

m
, ∂

∂t λ(t) = −3

2
( ∂

∂t y(t)) m g, ∂
∂t x(t) = −y(t) ( ∂

∂t y(t))

x(t)

]

,

Case = [[x(t) 6= 0, ∂
∂t x(t)], [(y(t) − 1) (y(t) + 1) 6= 0, ∂

∂t λ(t)]],

Pivots = [m 6= 0, x(t) 6= 0, y(t) − 1 6= 0, y(t) + 1 6= 0]

])
> initialdata(SimpSys);

table([Constraint = [

C6 C4 2 + 2 C3 2 C1 − C3 C6 C5 + C3 3 C6 C5 − 2 C1 = 0,

C2 2 + C3 2 − 1 = 0], Infinite = [],

Finite = [λ(t0) = C1 , x(t0) = C2 , y(t0) = C3 , ∂
∂t y(t0) = C4 , g = C5 , m = C6 ],

Pivots = [ C6 6= 0, C2 6= 0, C3 − 1 6= 0, C3 + 1 6= 0]

])

Although there is no simplification as in the previous examples, rifsimp has found ad-

ditional constraints that the initial conditions must satisfy (Constraint and Pivots in

the initialdata output), and obtained an equation for the time derivative of lambda(t).

Maple’s dsolve[numeric] can then be used to obtain a numerical solution, in the manner

of the previous example.

4. Lie Symmetry Determination

This example shows the use of rifsimp to assist in determination of Lie point symmetries

of an ODE. Given the ODE:

> ODE:=2*x^2*y(x)*diff(y(x),x,x)-x^2*(diff(y(x),x)^2+1)+y(x)^2;

ODE := 2 x2 y(x) ( ∂2

∂x2 y(x)) − x2 (( ∂
∂x y(x))2 + 1) + y(x)2

We can obtain the system of PDE for it’s Lie point symmetries via:

> sys := {gensys(ODE, [xi,eta](x,y))};
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sys := {η(x, y) x y2 + η(x, y) x3 − 2 x3 y ( ∂
∂x ξ(x, y)) + 2 x y3 ( ∂

∂x ξ(x, y))

+ x3 y ( ∂
∂y η(x, y)) − x y3 ( ∂

∂y η(x, y)) − 2 ξ(x, y) y3 + 2 ( ∂2

∂x2 η(x, y)) x3 y2,

− 3 x3 y ( ∂
∂y ξ(x, y)) + 3 x y3 ( ∂

∂y ξ(x, y)) − 2 x3 y ( ∂
∂x η(x, y))

+ 4 ( ∂2

∂y ∂x η(x, y)) x3 y2 − 2 ( ∂2

∂x2 ξ(x, y)) x3 y2,

η(x, y) x3 − x3 y ( ∂
∂y η(x, y)) + 2 ( ∂2

∂y2 η(x, y)) x3 y2 − 4 ( ∂2

∂y ∂x ξ(x, y)) x3 y2,

−x3 y ( ∂
∂y ξ(x, y)) − 2 ( ∂2

∂y2 ξ(x, y)) x3 y2}
We can then use rifsimp to greatly simplify this system:

> rifsys:=rifsimp(sys);

rifsys := table([

Solved = [ ∂2

∂x2 η(x, y) =
−η(x, y) x + ξ(x, y) y

x3
, ∂

∂x ξ(x, y) =
η(x, y)

y
,

∂
∂y η(x, y) =

η(x, y)

y
, ∂

∂y ξ(x, y) = 0]

])

From this point, pdsolve can be used to obtain the infinitesimals for the Lie point symme-

tries via:

> pdsolve(rifsys[’Solved’]);

{ξ(x, y) = −x C2 + 2 x C3 − 2 x C3 ln(x) + C1 x + x C2 ln(x) + x C3 ln(x)2,

η(x, y) = ( C1 + C2 ln(x) + C3 ln(x)2) y}
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A.3 rifsimp[overview] - description of algorithm concepts

and use

Description

The rifsimp algorithm is essentially an extension of the Gaussian elimination and Groebner

basis algorithms to systems of nonlinear PDEs.

This help page presents successively more involved examples of the use of rifsimp for the

simplification of systems of equations, explaining what the algorithm does, and introducing

ideas that are helpful for effective use of the algorithm.

Examples

Example 1: rifsimp form of a linear algebraic system

> with(DEtools):

> rifsimp([x - 2*y = 1, x + 2*z = 4]);

table([Solved = [x = −2 z + 4, y =
3

2
− z]])

This is the same result that one would expect from the Gaussian elimination algorithm.

Note that rifsimp has chosen to solve for x and y in terms of z. For this problem the

order of solving, called a ranking, is x > y > z (the default ranking for rifsimp). Given

the inequality, rifsimp looks at the unknowns in an equation, and chooses the greatest one

to solve for. This is a purely illustrative example, because Maple has specialized functions

that solve such systems.

Example 2: rifsimp form of a linear ODE system

> sys:= [3*x(t)-diff(x(t),t)=0, diff(x(t),t,t)-2*x(t)=0];

sys := [3 x(t) − ( ∂
∂t x(t)) = 0, ( ∂2

∂t2
x(t)) − 2 x(t) = 0]

> rifsimp(sys);

table([Solved = [x(t) = 0]])

As described in the prior example, rifsimp requires a ranking to determine the unknown

for which to solve in an equation. For this ODE system, the ranking (using prime notation

for derivatives) defaults to the following:

x < x’ < x’’ < x’’’ < ...
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So the first equation is solved for x’ giving x’ = 3*x. The second equation is then differ-

entially simplified with respect to the first, and gives 3*x’-2*x = 0 after the first simplifi-

cation, and finally 7*x = 0 after the second. This equation is then solved for x, then back

substitution into the first equation gives 0 = 0.

For more general systems, rifsimp accounts for all of the derivative consequences of a system

in a systematic and rigorous way.

Example 3: rifsimp form of a nonlinear algebraic system
> sys := [x^10-2*x^5*y^2+y^4-y^3+1, 2*x^10-4*x^5*y^2+2*y^4+3*y^3-3,

> x^5-y^2+y^3-1];

sys := [x10 − 2 x5 y2 + y4 − y3 + 1, 2 x10 − 4 x5 y2 + 2 y4 + 3 y3 − 3, x5 − y2 + y3 − 1]

> rifsimp(sys);

table([Constraint = [x5 − y2 = 0, −1 + y3 = 0]])

The output was returned in the Constraint entries which means algebraic constraints as

opposed to differential constraints. For this system, rifsimp gives the Groebner basis form

of the algebraic system as output, as can be seen by running the Groebner package on the

same system (with the appropriate ranking).

> Groebner[gbasis](sys,tdeg(x,y));

[−1 + y3, x5 − y2]

In general, rifsimp on algebraic systems is closer to a factoring case splitting Groebner basis

(see rifsimp[nonlinear], and Maple’s Groebner package). rifsimp does not use Maple’s

Groebner package, but instead its own, optimized for differential elimination.

Example 4: rifsimp form of a nonlinear ODE system
> sys:= [x(t)^3 + x(t) + 1 = 0,diff(x(t),t,t)-3*diff(x(t),t)=0,

> diff(x(t),t,t,t)-2*diff(x(t),t)=0];

sys := [x(t)3 + x(t) + 1 = 0, ( ∂2

∂t2
x(t)) − 3 ( ∂

∂t x(t)) = 0, ( ∂3

∂t3
x(t)) − 2 ( ∂

∂t x(t)) = 0]

> rifsimp(sys);

table([Solved = [ ∂
∂t x(t) = 0], Constraint = [x(t)3 + x(t) + 1 = 0]])

Now the output is present in both the Solved and Constraint lists. The equation is present

in the constraint list because the leading indeterminate of the equation occurs nonlinearly

(for information on the leading indeterminate, please see rifsimp[ranking]). Again, to
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obtain the answer, a ranking of the derivatives was required. The ranking used ranks ”higher

derivatives in x(t) before lower derivatives”. This is a fairly standard ranking called the

total degree ranking.

It is clear that the solution of the constraint equation gives x(t) = constant, so from that

point of view, the equation in the derivative of x(t) is redundant, but it needs to be retained

for the proper functioning of other algorithms, such as initialdata, and rtaylor. The

additional equation in the Solved is a differential consequence of the Constraint, as can be

verified through differentiation. This redundant equation is called a spawn equation, as it is

a differential constraint spawned (through differentiation by t) from the nonlinear equation.

Redundant equations can be removed with the clean or fullclean options as follows (see

rifsimp[options]):

> rifsimp(sys,clean=[spawn]);

table([Constraint = [x(t)3 + x(t) + 1 = 0]])

> rifsimp(sys,fullclean);

table([Constraint = [x(t)3 + x(t) + 1 = 0]])

Example 5: rifsimp form of a linear PDE system
> sys:= [diff(u(x,y),x,x) - y*diff(u(x,y),x) = 0,

> diff(u(x,y),y) = 0];

sys := [( ∂2

∂x2 u(x, y)) − y ( ∂
∂x u(x, y)) = 0, ∂

∂y u(x, y) = 0]

> rifsimp(sys);

table([Solved = [ ∂
∂x u(x, y) = 0, ∂

∂y u(x, y) = 0]])

In this example, rifsimp used the default ranking (where indices are used to denote differ-

entiation)

u < u[x] < u[y] < u[xx] < u[xy] < u[yy] < ...

This ranking satisfies the following properties:

1. It is preserved under differentiation (u < u[x] implies u[x] < u[xx]).

2. u is less than any derivative of u.

These two properties are crucial for the termination of the algorithm. Fortunately, the
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default rankings chosen by rifsimp obey these properties, so these do not have to be con-

sidered. In general, many such orderings are possible, and methods for specifying them are

discussed in rifsimp[ranking] and checkrank.

As an illustration, we will manually simplify the above system to rifsimp form. As the first

step, we solve each equation for its leading derivative (given the ranking described above).

This gives u[xx] = y u[x] and u[y] = 0. Alas, we do not have our final answer, but no

differential simplifications remain. How is this possible? Well, for PDE systems we have

one further consideration called integrability conditions.

After looking at our solved system for a time, we may realize that differentiation of the first

equation by y and differentiation of the second equation by x twice will give the derivative

u[xyy] on the left hand side of both equations. If the solution to the system is differentiable

to third order (an assumption implicitly made by rifsimp), we differentiate the equations

to the described order and subtract, giving the new, nontrivial equation

0 = D[y](u[xx])-D[xx](u[y]) = D[y](y u[x])+D[xx](0) = y u[xy]+u[x]

Differential simplification of this equation with respect to the current system yields u[x] =

0, which is then used to simplify the system and give us the answer returned by rifsimp.

To summarize, for systems of linear PDEs, the rifsimp form of the system can be obtained

by the following heavily simplified algorithm, for a given input ranking <:

Rifsimp-Linear(input: system, <)

neweqns := system

rifsys := empty

while neweqns not empty do

rifsys := rifsys union neweqns

rifsys := diff-gauss-elim(rifsys,rifsys,<)

neweqns := integrability-cond(rifsys)

neweqns := diff-gauss-elim(neweqns,rifsys,<)

end-while

return(rifsys)

end

Care must be taken in how the diff-gauss-elim routine operates on the solved rifsys.



APPENDIX A. THE RIFSIMP IMPLEMENTATION HELP PAGES 234

Example 6: rifsimp form of a nonlinear PDE system

This system is considered in the paper Reid et al., 1996 (see Rif) and is used as an example

in Rust, 1998. For the ranking u < u[x] < u[y] < u[xx] < u[xy] < u[yy] < ..., the

initial system consists of one leading linear PDE, u[xx]-u[xy] = 0 (with leading derivative

u[xx]), and one leading nonlinear, PDE u[y]ˆ2+u[y]-u = 0 (with leading derivative u[y]).

No linear elimination can be done in the single leading linear PDE, so the leading nonlinear

PDE is differentiated with respect to both independent variables to spawn the two leading

linear PDEs: (2 u[y]+1) u[xy]-u[x] = 0 and (2 u[y]+1) u[yy]-u[y] = 0 (for more

information on spawning, see rifsimp[nonlinear]). These are solved for their leading

derivatives, yielding u[xy] = u[x]/(2 u[y]+1) and u[yy] = u[y]/(2 u[y]+1), subject

to the pivot or inequation condition 2 u[y]+1 <> 0. Integrability conditions are then

taken across the leading linear PDE and simplified subject to the system, yielding one

more PDE: u[x] u[y]-u[x]ˆ2 = 0. When this equation is spawned, the resulting equations

vanish to zero upon reduction by the current system, so the algorithm then terminates. In

summary, constraints are treated algebraically, and the leading linear equations are treated

differentially. The system is then viewed modulo the constraint equations, using the concept

of a relative basis, rigorously described in the thesis of Rust (see references on the Rif help

page).
> sys:= [diff(u(x,y),x,x) - diff(u(x,y),x,y) = 0,

> diff(u(x,y),y)^2 + diff(u(x,y),y) - u(x,y) = 0];

sys := [( ∂2

∂x2 u(x, y)) − ( ∂2

∂y ∂x u(x, y)) = 0, ( ∂
∂y u(x, y))2 + ( ∂

∂y u(x, y)) − u(x, y) = 0]

> rifsimp(sys);

table([Solved =

[

∂2

∂x2 u(x, y)=
∂
∂xu(x, y)

%1
, ∂2

∂y∂xu(x, y)=
∂
∂xu(x, y)

%1
, ∂2

∂y2 u(x, y)=

∂
∂yu(x, y)

%1

]

,

Case = [[%1 6= 0, ∂2

∂y2 u(x, y)]],Constraint = [

−( ∂
∂x u(x, y)) ( ∂

∂y u(x, y)) + ( ∂
∂x u(x, y))2 = 0, ( ∂

∂y u(x, y))2 + ( ∂
∂y u(x, y)) − u(x, y) = 0

],

Pivots = [%1 6= 0]

])

%1 := 2 ( ∂
∂y u(x, y)) + 1

Example 7: rifsimp form of a nonlinear PDE system with cases
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This problem arises from the determination of Lie symmetry groups for different values of

a,b for the ODE:

> ODE := diff(y(x),x,x)-2*a^2*y(x)^3+2*a*b*x*y(x)-b;

ODE := ( ∂2

∂x2 y(x)) − 2 a2 y(x)3 + 2 a b x y(x) − b

The Lie symmetry determining equation can be obtained through use of the DEtools[gensys]

function as follows:

> sys := {gensys(ODE, [xi,eta](x,y))};

sys := {−η(x, y) (6 a2 y2 − 2 a b x) − 2 (2 a2 y3 − 2 a b x y + b) ( ∂
∂x ξ(x, y))

+ (2 a2 y3 − 2 a b x y + b) ( ∂
∂y η(x, y)) + 2 ξ(x, y) a b y + ( ∂2

∂x2 η(x, y)),

( ∂2

∂y2 η(x, y)) − 2 ( ∂2

∂y ∂x ξ(x, y)), ∂2

∂y2 ξ(x, y),

−3 (2 a2 y3 − 2 a b x y + b) ( ∂
∂y ξ(x, y)) + 2 ( ∂2

∂y ∂x η(x, y)) − ( ∂2

∂x2 ξ(x, y))}
When viewed as a system in xi and eta, it is a linear system, but if we are also considering

a,b to be unknowns, the system becomes effectively nonlinear. Now what we want to

accomplish is to find the equations for the symmetry generators for all values of a,b. We

can do this by allowing rifsimp to perform case splitting on the system using the casesplit

option (see rifsimp[cases] for more detail).

> ans:=rifsimp(sys,casesplit);
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ans := table([1 = table([Solved = [η(x, y) = 0, ξ(x, y) = 0],

Case = [[a 6= 0, ∂
∂y ξ(x, y)], [b 6= 0, η(x, y)]],

Pivots = [a 6= 0, b 6= 0]]),

2 = table([Solved = [ ∂
∂x η(x, y) = 0, ∂

∂x ξ(x, y) = −η(x, y)

y
, ∂

∂y η(x, y) =
η(x, y)

y
,

∂
∂y ξ(x, y) = 0, b = 0],

Case = [[a 6= 0, ∂
∂y ξ(x, y)], [b = 0, η(x, y)]],

Pivots = [a 6= 0]]),

3 = table([Solved = [ ∂3

∂y2 ∂x
η(x, y) = 0, ∂3

∂y3 η(x, y) = 0,

∂2

∂x2 η(x, y) = b (2 ( ∂
∂x ξ(x, y)) − ( ∂

∂y η(x, y))),

∂2

∂x2 ξ(x, y) = −3 ( ∂
∂y ξ(x, y)) b + 2 ( ∂2

∂y ∂x η(x, y)), ∂2

∂y ∂x ξ(x, y) =
1

2
( ∂2

∂y2 η(x, y)),

∂2

∂y2 ξ(x, y) = 0, a = 0],

Case = [[a = 0, ∂
∂y ξ(x, y)]]]),

casecount = 3])

The structure of the output of rifsimp has changed form into a recursive table for multiple

cases. The returned table has a casecount entry, and individual rifsimp answers for each

case indexed by the numbers 1,2,3. For the three cases, the form of the Solved equations

for xi,eta is different. This indicates that for different values of a,b the structure of the Lie

symmetry group is different, and provides the systems that must be satisfied for each group.

This case splitting also covers all possible values of a,b, so it fully describes the dependence

of the determining system on these values, and no other systems for other values of a,b

exist.

The structure of the case tree can be observed in a plot using caseplot.

> caseplot(ans);
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A.4 rifsimp[output] - description of algorithm output

Description The output of the rifsimp command is a table. A number of possible

table formats (or entries) may or may not be present as they depend on specific options.

The format changes from a table containing the simplified system to a nested table when

casesplit is activated.

Single Case

Solved This entry gives all equations that have been solved in

terms of their leading indeterminate.

Pivots This entry gives all inequations (equations of the form

expression <> 0) that hold for this case. These may be part

of the input system, or decisions made by the program during

the calculation (see rifsimp[cases] for information on

pivots introduced by the algorithm).

Case This entry describes what assumptions were made to arrive

at this simplified system (see rifsimp[cases].)

Constraint This table contains all equations that are nonlinear in

their leading indeterminate. The equations in this list

form a Groebner basis and can be viewed as purely algebraic

because any differential consequences that result from these

equations are already taken care of through spawning

(see rifsimp[nonlinear]).

If the initial option has been specified, then these

equations are isolated for the highest power of their

leading derivatives, otherwise they are in the form expr=0.

DiffConstraint This table entry contains all equations that are nonlinear

in their leading indeterminate, but either are not in

Groebner basis form or have differential consequences that
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are not accounted for (see spoly and spawn

in rifsimp[nonlinear]).

Whenever equations appear in this entry, the system is in

incomplete form and must be examined with care.

UnSolve This table entry contains all equations that rifsimp did

not attempt to solve (see unsolved in rifsimp[adv_options]).

Whenever equations appear in this entry, the system is in

incomplete form and must be examined with care.

UnClass This table entry contains all equations that have not yet

been examined (i.e. Unclassified). This entry is only

present when looking at partial calculations using rifread,

or when a computation is halted by mindim.

status If this entry is present, then the output system is missing

due to either a restriction or an error. The message in

this entry indicates what the restriction or error is.

dimension This entry is only present when the mindim option is used

(see rifsimp[cases]), or for maxdimsystems.

For the case where a single constraint is in effect (such

as through use of the option mindim=8), the right-hand side

is a single number (the dimension for the case). For

multiple constraints, it is a list of dimension counts,

one for each constraint in the mindim specification.

Here are examples of status messages:

"system is inconsistent" No solution exists for this system

"object too large" Expression swell has exceed Maple’s

ability to calculate
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"time expired" Input time limit has been exceeded (see

ctl, stl and itl in rifsimp[options])

"free count fell below mindim" Free parameters have fallen below the

minimum (see mindim in rifsimp[adv_options])

Of the above, only the ”object too large” message actually indicates an error.

To summarize, if the input system is fully linear in all indeterminates (including unknown

constants), then only the Solved entry will be present. If the system is (and remains) linear

in its leading indeterminates throughout the calculation, but has indeterminate expressions

in the leading coefficients, then Solved, Pivots, and Case will be present. If equations that

are nonlinear in their leading indeterminates result during a calculation, then Constraint

will also be present. If the status entry is present, then not all information for the case will

be given.

If mindim is used, then the dimension entry will be set to the dimension of the linear part

of the system for the case when status is not set, and an upper bound for the dimension of

the case if the count fell below the minimum dimension requirement.

Multiple Cases

For multiple cases (using the casesplit option), numbered entries appear in the output

table, each of which is itself a table of the form described above.

For example, if a calculation resulted in 10 cases, the output table would have entries

’1=...’,..., ’10=...’, where each of these entries is itself a table that contains Solved, Pivots,

Case, or other entries from the single case description.

In addition to the numbered tables is the entry casecount, which gives a count of the

number of cases explored. Cases that rejected for reasons other than inconsistency will have

the Case entry assigned, in addition to the status entry. Inconsistent cases, for multiple

case solutions, are removed automatically.

So what is the difference between Pivots and Case?

The Pivots entry contains the inequations for the given case in simplified form with re-

spect to the output system. The Case entry is a list with elements of the form [as-

sumption,leading derivative] or [assumption,leading derivative,”false split”]. It
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describes the actual decision made for the case split in unsimplified form (i.e. as it was

encountered in the algorithm). The assumption will be of the form expr<>0 or expr=0,

where expr depends on the dependent variables, derivatives and/or constants of the prob-

lem. The leading derivative is the indeterminate the algorithm was isolating that required

the assumption. If the third ”false split” entry is present, then it was later discovered that

one branch of the split is entirely inconsistent, so the actual splitting was a false splitting, as

the displayed assumption is always true with respect to the rest of the system. For example,

if the algorithm were to split on an equation of the form a*diff(f(y),y)+f(y)=0, the Case

entries that correspond to this case split are [a<>0,diff(f(y),y)], and [a=0,diff(f(y),y)].

If it was found later in the algorithm that a=0 leads to a contradiction, then the Case

entry would be given by [a<>0,diff(f(y),y),”false split”].

Note that when faclimit or factoring are used (of which factoring is turned on by

default), it is possible to introduce a splitting that does not isolate a specific derivative.

When this occurs, the case entry will be of the form [assumption,”faclimit”] or [as-

sumption,”factor”].

Occasionally both the Case and Pivots entries contain the same information, but it should

be understood that they represent different things.

Important

As discussed above, some options have the effect of preventing rifsimp from fully simplifying

the system. Whenever DiffConstraint or UnSolve entries are present in the output,

some parts of the algorithm have been disabled by options, and the resulting cases must be

manually examined for consistency and completeness.

Examples

> with(DEtools):

As a first example, we take the overdetermined system of two equations in one dependent

variable f(x), and two constants a and b.

> sys1:=[a*diff(f(x),x,x)-f(x),b*diff(f(x),x)-f(x)];

sys1 := [a ( ∂2

∂x2 f(x)) − f(x), b ( ∂
∂x f(x)) − f(x)]

Call rifsimp for a single case only (the default).

> ans1:=rifsimp(sys1);
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ans1 := table([Case = [[a 6= 0, ∂2

∂x2 f(x)], [b 6= 0, ∂
∂x f(x)], [b2 − a 6= 0, f(x)]],

Solved = [f(x) = 0],

Pivots = [a 6= 0, b 6= 0, b2 − a 6= 0]

])

We see that under the given assumptions for the form of a and b (from Pivots), the only

solution is given as f(x)=0 (from Solved). Now, run the system in multiple case mode

using casesplit.

> ans1m:=rifsimp(sys1,casesplit);

ans1m := table([1=table([Case = [[a 6= 0, ∂2

∂x2 f(x)], [b 6= 0, ∂
∂x f(x)], [b2 − a 6= 0, f(x)]],

Solved = [f(x) = 0],

Pivots = [a 6= 0, b 6= 0, b2 − a 6= 0]

]), 2 = table([Case = [[a 6= 0, ∂2

∂x2 f(x)], [b 6= 0, ∂
∂x f(x)], [b2 − a = 0, f(x)]],

Solved = [ ∂
∂x f(x) =

f(x)

b
, a = b2],

Pivots = [b 6= 0]

]), 3 = table([Case = [[a 6= 0, ∂2

∂x2 f(x)], [b = 0, ∂
∂x f(x)]], Solved = [f(x) = 0, b = 0],

Pivots = [a 6= 0]

]), 4 = table([Case = [[a = 0, ∂2

∂x2 f(x)]], Solved = [f(x) = 0, a = 0]]),

casecount = 4
])

We see that we have four cases:

> ans1m[casecount];

4

All cases except 2 have f(x)=0.

Looking at case 2 in detail, we see that under the constraint a = bˆ2 (from Solved) and

b <> 0 from Pivots, the solution to the system will be given by the remaining ODE in

f(x) (in Solved). Note here that the constraint on the constants a and b, together with

the assumption b <> 0, imply that a <> 0, so this constraint is not present in the Pivots

entry due to simplification. It is still present in the Case entry because Case describes

the decisions made in the algorithm, not their simplified result. Also, case 4 has no Pivots

entry. This is because no assumptions of the form expression <> 0 were used for this
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case.

One could look at the caseplot with the command:

> caseplot(ans1m);

As a final demonstration involving this system, suppose that we are only interested in

nontrivial cases where f(x) is not identically zero. We can simply include this assumption

in the input system, and rifsimp will take it into account.

> ans1a:=rifsimp([op(sys1),f(x)<>0],casesplit);

ans1a := table([Case = [[a 6= 0, ∂2

∂x2 f(x), “false split”], [b 6= 0, ∂
∂x f(x), “false split”]],

Solved = [ ∂
∂x f(x) =

f(x)

b
, a = b2],

Pivots = [f(x) 6= 0]

])

We see that the answer is returned in a single case with two false split Case entries. This

means the computation discovered that the a=0 and b=0 cases lead to contradictions, so

the entries in the Case list are labelled as false splits, and the alternatives for the binary

case splittings (cases with a=0 or b=0) are not present.

For the next example, we have a simple inconsistent system:

> sys2:=[diff(u(x),x,x)+diff(u(x),x)^2-1,diff(u(x),x,x)+1];

sys2 := [( ∂2

∂x2 u(x)) + ( ∂
∂x u(x))2 − 1, ( ∂2

∂x2 u(x)) + 1]

> rifsimp(sys2);

table([status = “system is inconsistent”])

So there is no solution u(x) to the above system of equations.

The next example demonstrates the UnSolve list, while also warning about leaving inde-

terminates in unsolved form.

> sys3:=[diff(f(x),x)*(diff(g(x),x)-g(x))+f(x)^2,diff(g(x),x)-g(x)];

sys3 := [( ∂
∂x f(x)) (( ∂

∂x g(x)) − g(x)) + f(x)2, ( ∂
∂x g(x)) − g(x)]

So we run rifsimp, but only solve for f(x), leaving g(x) in unsolved form. Unfortunately,

the resulting system is inconsistent, but this is not recognized because equations containing

only g(x) are left unsolved. As discussed earlier in the page, these equations come out in

the UnSolve list.
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> rifsimp(sys3,[f],unsolved);

table([Case = [[%1 6= 0, ∂
∂x f(x)]], Solved = [ ∂

∂x f(x) = − f(x)2

%1
], Pivots = [%1 6= 0],

UnSolve = [0 = %1]

])

%1 := ( ∂
∂x g(x)) − g(x)

When equations are present in the UnSolve list, they must be manually examined.

Here is a nonlinear example.

> sys4:=[diff(f(x),x,x)+f(x),diff(f(x),x)^2-f(x)^2];

sys4 := [( ∂2

∂x2 f(x)) + f(x), ( ∂
∂x f(x))2 − f(x)2]

By default rifsimp spawns the nonlinear equation to obtain a leading linear equation, and

performs any required simplifications. The end result gives the following output:

> rifsimp(sys4,casesplit);

table([Case = [[f(x) = 0, ∂
∂x f(x), “false split”]], Solved = [f(x) = 0]])

We have only one consistent case. Attempting to perform this calculation with the

spawn=false option gives the following:

> rifsimp(sys4,casesplit,spawn=false);

table([Solved = [ ∂2

∂x2 f(x) = −f(x)], DiffConstraint = [0 = ( ∂
∂x f(x))2 − f(x)2]])

So it is clear that by disabling spawning, the system is not in fully simplified form (as indi-

cated by the presence of the DiffConstraint entry), and we do not obtain full information

about the system.
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A.5 rifsimp[options] - common options

Description

The rifsimp options are given after the input system, and optionally the vars. The following

are the most commonly used options:

vars

This is the optional second argument to rifsimp. It indicates which indeterminates are to be

solved for. By default rifsimp attempts to solve for all dependent variables with the same

differential order and differentiations with equal precedence, breaking ties alphabetically.

rifsimp solves for constants when only constants remain in an equation.

The selection of the solving indeterminate (called the leading indeterminate) of an equation

is performed based on the ranking imposed on the system. This argument can be used

in nested list form to modify the indeterminates to solve for. For example, if f(x), g(x),

and h(x) were the dependent variables of a problem, and we wanted to isolate all of these

with equal precedence, we could specify vars as [f,g,h]. If instead we wanted to eliminate

f(x) from as much of the system as possible, we could specify [[f ],[g,h]] instead, which

tells rifsimp to solve for f(x) and its derivatives with higher precedence than g(x), h(x)

and any of their derivatives, regardless of the differential order of f(x). Under this nested

list ranking, and equation of the form g”’ f-g” h”=0 would be solved for f giving f=g”

h”/g”’. See rifsimp[ranking] and checkrank for more detail.

indep=[ind1,ind2,...]

This option specifies the names of the unknowns to be treated as independent variables.

By default, only those unknowns given in the dependency list of all unknown functions

in the input system are considered to be independent variables. All other unknowns are

considered constants. Treating an independent variable as though it were a constant will

result in an incomplete answer, so you must use this option when required (see examples

below). Please note that rifsimp always views unknowns present in a dependency list of

an unknown function as independent variables, even when not specified by this option.

The order in which the independent variables are specified in this option affects the selec-

tion of the leading indeterminate (the indeterminate to be solved for) in an equation. See

rifsimp[ranking] and checkrank for details.
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arbitrary=[v1,v2,...]

This option specifies a list of parameters or functions that should be treated as arbitrary.

Any special cases where these parameters or functions take on specific values are rejected as

inconsistent cases. Note: This means that no relations purely in the arbitrary parameters

or functions can be present in the input system (with the sole exception of dependency

related equations such as diff(f(x,y),y)=0). If a constraint is required for one of these

unknowns, then it is no longer truly arbitrary, but rather restricted, so at least one of the

unknowns in the constraint must be a solving variable.

This option generalizes the concept of a field of constants as used in the diffalg pack-

age to functions of the independent variables. It is most useful when only generic results

are needed, but it may be the case that the result is invalid for specific values of these

parameters (for example, if a was a parameter, and it occurred as a denominator, then the

solution is only valid for a<>0).

casesplit

This option indicates that the program should explore all cases. A case split is most often

introduced when, among the remaining unsolved equations, there is an equation that is linear

in its highest ranked indeterminate (called the leading indeterminate, see rifsimp[ranking]

or checkrank), and the coefficient of that indeterminate (called the pivot) may or may not

be zero (see rifsimp[cases]).

Isolation of the leading indeterminate in this equation introduces a case split – namely the

two possibilities, pivot <> 0 and pivot = 0. The more generic case, pivot <> 0, is

explored first. Once that case (possibly containing further case splits) is completed, the

case with pivot = 0 is explored. This results in a case tree, which can be represented

graphically (see caseplot).

In addition to producing multiple cases, this option changes the output of rifsimp. For

more detail, see rifsimp[output].

gensol

This option indicates that the program should explore all cases that have the possibility of

leading to the most general solution of the problem. Occasionally it is possible for rifsimp

to compute only the case corresponding to the general solution of the ODE/PDE system.
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When this option is given, and this occurs, rifsimp will return the single case corresponding

to the general solution. When it is not possible for rifsimp to detect where in the case tree

the general solution is, then multiple cases are returned, one or more of which correspond

to the general solution of the ODE/PDE system, and others may correspond to singular

solutions. For some particularly difficult problems, it is possible that the entire case tree is

returned. Note: this option cannot be used with the casesplit,casecount, pivsub, and

mindim options.

ctl=’time’

This option imposes a limit on the amount of time (in CPU seconds) that would be required

to compute each case from scratch (i.e. using the extended option casesplit=[...] described

in rifsimp[adv options]). It is clear that this option may count computation time more

than once, as the time prior to a case split is counted for each case after the split. This

bounds the total time consumed to be no greater than the imposed limit times the number

of cases obtained (and most often, significantly less as per the prior comment). For highly

nonlinear systems, it may be impossible to obtain all cases in a reasonable amount of time.

Use of this option allows the simpler cases to be computed, and the more expensive cases

to be deferred. Note: there are two other time limit related options, stl and itl, and these

are discussed in the rifsimp[adv options] page.

clean=[cleaning criteria]

This option is a fine-tuning control over the system(s) output by rifsimp. There are three

types of cleaning that the algorithm can perform:

Pivots: These are the inequations resulting from case splitting in the system (or present

on input). As an example, consider the pivot diff(f(x),x)<>0. This pivot clearly implies

that f(x)<>0, so on completion, the pivot f(x)<>0 is considered to be redundant. There

are three options for specification of pivot cleaning:

nopiv perform no cleaning, returning all pivots obtained

in the course of the computation.

piv perform cleaning of obvious redundant pivots (i.e.

those that can be detected by inspection of the

pivots list on output.

fullpiv perform thorough cleaning of pivots, including
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removal of pivots that are redundant only for

solutions of the output case/system.

Note that the fullpiv criteria may remove pivots that would require a great deal of compu-

tation to recover. For example, consider the simple case described earlier for diff(f(x),x)<>

0. If later in the algorithm, diff(f(x),x) was reduced, and looked nothing like the origi-

nal pivot, on completion f(x)<>0, which is a consequence of the original pivot, would be

removed.

One-Term Equations: These are simply equations of the form derivative=0. These are

retained in the course of the computation (for efficiency) even when they reduce modulo one

of the other equations of the system. These equations can be quite helpful in attempting

to integrate of the results of rifsimp. The oneterm criteria indicates that the redundant

one-term equations should be removed, while nooneterm indicates that they should be

retained.

Spawn: The spawning process is only used with nonlinear equations in rifsimp, and results

in equations that are derivatives of any nonlinear equations in the output. These spawned

equations are necessary for the proper running of initialdata and rtaylor. The following

options specify spawned equation cleaning:

nospawn do not remove any redundant spawned equations

spawn remove any redundant spawned equations that are not

in solved form.

fullspawn remove all redundant spawned equations.

By default, the clean settings are [piv,oneterm,nospawn].

fullclean

This is a shortcut specification for the clean options for rifsimp (see above). This corre-

sponds to the specification clean=[fullpiv,oneterm,fullspawn].

Examples

> with(DEtools):

This example highlights the difference between treating the unknown y as a constant and

treating it as an independent variable; by default, the code assumes that y is a constant.
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> sys1:=[y*f(x)+g(x)];

sys1 := [y f(x) + g(x)]

> rifsimp(sys1);

table([Solved = [f(x) = −g(x)

y
], Pivots = [y 6= 0], Case = [[y 6= 0, f(x)]]])

Specification of y as an independent variable gives the following.

> rifsimp(sys1,indep=[x,y]);

table([Solved = [f(x) = 0, g(x) = 0]])

This next example demonstrates the use of the casesplit option. We consider the Lie-

symmetry determining system for the following ODE:

> ODE:=diff(y(x),x,x)+(2*y(x)+f(x))*diff(y(x),x)+diff(f(x),x)*y(x);

ODE := ( ∂2

∂x2 y(x)) + (2 y(x) + f(x)) ( ∂
∂x y(x)) + ( ∂

∂x f(x)) y(x)

The Lie symmetries are given as the solution of the following system of determining PDEs

(as generated using DEtools[odepde]):

> sys:=[coeffs(expand(odepde(ODE,[xi(x,y),eta(x,y)], y(x))),_y1)];

sys := [2 ( ∂
∂x ξ(x, y)) ( ∂

∂x f(x)) y + η(x, y) ( ∂
∂x f(x)) + 2 ( ∂

∂x η(x, y)) y + ( ∂
∂x η(x, y)) f(x)

+ ( ∂2

∂x2 η(x, y)) − ( ∂
∂y η(x, y)) ( ∂

∂x f(x)) y + ξ(x, y) ( ∂2

∂x2 f(x)) y, −( ∂2

∂y2 ξ(x, y)),

( ∂
∂x ξ(x, y)) f(x) − ( ∂2

∂x2 ξ(x, y)) + ξ(x, y) ( ∂
∂x f(x)) + 2 ( ∂2

∂y ∂x η(x, y)) + 2 η(x, y)

+ 3 ( ∂
∂y ξ(x, y)) ( ∂

∂x f(x)) y + 2 ( ∂
∂x ξ(x, y)) y,

−2 ( ∂2

∂y ∂x ξ(x, y)) + 2 ( ∂
∂y ξ(x, y)) f(x) + ( ∂2

∂y2 η(x, y)) + 4 ( ∂
∂y ξ(x, y)) y]

So running this system with rifsimp:
> ans:=rifsimp(sys,[xi,eta]):

> ans[’Solved’];

[ξ(x, y) = 0, η(x, y) = 0]

And we see that the given ODE has no point symmetries for general f(x).

We may want to know if there are particular forms of f(x) for which point symmetries exist

(this is called a classification problem). Running rifsimp with casesplit:
> ans:=rifsimp(sys,[xi,eta],casesplit):

> ans[’casecount’];
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4

so we see there are cases.

We could use the caseplot command to give a pictorial view of the case tree with the

following command.

> caseplot(ans);

Looking at case 3 in detail:

> copy(ans[3]);

table([Solved =

[

∂
∂x ξ(x, y) =

−ξ(x, y) ( ∂
∂x f(x)) − 2 η(x, y)

2 y + f(x)
,

∂
∂x η(x, y) =

( ∂
∂x f(x)) (2 ξ(x, y) ( ∂

∂x f(x)) + 4 η(x, y) + f(x)2 ξ(x, y) + 2 ξ(x, y) f(x) y)

2 f(x) + 4 y

, ∂
∂y ξ(x, y) = 0, ∂

∂y η(x, y) =
ξ(x, y) ( ∂

∂x f(x)) + 2 η(x, y)

2 y + f(x)
, ∂2

∂x2 f(x) = −f(x) ( ∂
∂x f(x))

]

,

Pivots = [ ∂
∂x f(x) 6= 0],

Case = [[−3 ( ∂
∂x f(x)) ( ∂2

∂x2 f(x)) + 2 ( ∂3

∂x3 f(x)) y + ( ∂3

∂x3 f(x)) f(x) + 2 ( ∂
∂x f(x))2 y

− 2 ( ∂
∂x f(x))2 f(x) + f(x)2 ( ∂2

∂x2 f(x)) + 2 f(x) ( ∂2

∂x2 f(x)) y = 0, ξ(x, y)],

[ ∂
∂x f(x) 6= 0, ∂2

∂x2 f(x)]]

])

so we see we have a 2 parameter Lie group for the specific form of f(x) given by:

> dsolve(diff(f(x),x,x) = -f(x)*diff(f(x),x));

f(x) =
tanh(

1

2

(x + C2 )
√

2

C1
)
√

2

C1
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A.6 rifsimp[adv options] - advanced options

Description

The rifsimp options are given after the input system, and optionally the vars.

The following are the advanced options:

store[=name]

Store the system after each iteration in a file called name.m (default is RifStorage.m).

Note: when multiple cases are being examined, only the latest iteration of the current case

is available. Iterations can be observed by setting infolevel[rifsimp] to 2 or greater. This

file can be read using the rifread command.

storeall[=name]

Store the system iterations separately in a file called name cs i.m, where cs is the current

case number, and i is the current iteration number (default is RifStorage cs i.m). This file

can be read using the rifread command.

ezcriteria=[quantity, size ratio]

The ezcriteria option allows control over how quickly equations are chosen for solving.

quantity is a factor that adjusts the number of equations selected, while the size ratio tells

rifsimp how large a difference in size can exist between the smallest and largest equations

chosen in a single iteration.

The number of equations selected in a single iteration is based upon the number that have

already been solved. So if we have no equations solved for their leading derivative, then the

algorithm will select at most 10 new equations, whereas if there are 200 equations already in

solved form, only one new equation will be selected. The option works this way to control

how much work is done in each iteration, since adding one equation when there are no

equations in solved form requires no checking of compatibility (integrability) conditions,

while adding one equation to the 100 already in solved form may require checking of 100

compatibility conditions.

The size ratio enforces a maximum difference in size between the smallest and largest equa-

tions chosen in an iteration. If the size ratio was set to 2 (the default), and the three

equations remaining to be solved have sizes of 100, 190, 400, 500, then even if the number
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to be selected based on the quantity was more than 2, only the first two equations will be

selected, as equations 3 and 4 are more than double the size of equation 1.

Primary uses of this option are for the ultra-conservative setting of [1,0.9], and the setting

of [infinity,infinity] at the other extreme.

tosolve=n

This option indicates that the first n equations or expressions in the input system are to be

placed into solved form immediately. If an inequation is present in the first n equations, it

is not counted as one of the first n equations. This option is only available when the system

has been specified in list form.

unsolved

This tells Maple not to solve for any dependent variables or constants not explicitly men-

tioned in vars. It should only be used used when rifsimp is being used as a preprocessor.

It is inadvisable to use this option with nonlinear equations, as it can result in infinite loops,

may prevent inconsistent cases from being recognized, and does not result in a disjoint set

of cases. This option cannot be used with the arbitrary option (see rifsimp[options]).

stl=’time’

This option imposes a limit on the amount of time (in CPU seconds) spent on the calculation

since the last case split occurred. Use of this option allows the simpler calculations to be

performed, and the more expensive calculations to be deferred. Note, this option is quite

different from ctl, as it does not come into effect until the first splitting starts, and only

bounds time between splittings. This has the effect of screening out cases that are not

making progress quickly enough.

itl=’time’

This option imposes a limit on the amount of time (in CPU seconds) spent on any single

iteration. An iteration consists of selecting one or more equations to isolate, adding them to

the solved list, simplifying the existing system with respect to the new simplified equations,

and then considering all consequences that the new equations have with respect to the

already-solved equations in the system. Iterations in a calculation can be viewed by setting

the rifsimp infolevel to 2 or greater.

ranking=[[ind weights 1, dep weights 1], [ind weights 2, dep weights 2], ...]
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This gives the linear ordering used to determine the relative weights of the dependent

variable derivatives. See rifsimp[ranking] for more information.

casesplit=[‘<>‘,‘=‘,‘< >‘]

This option turns on case splitting and also gives the start of the tree which will be examined.

See rifsimp[cases] for further details.

mindim=...

This option is used to limit the cases being examined based on the solution space dimension

of the linear part of the system. The simple specification is given as mindim=’n’. If vars

is specified as a simple list, this gives the minimum of n free 0-dimensional parameters in

the vars dependent variables. If vars contains lists, it is specified as part of a ranking (see

rifsimp[ranking]), and only the first element of vars is used to compute the dimension.

Once the condition fails, the current case is discarded.

NOTE: mindim only looks at the linear part of the current system, so if nonlinear con-

straints are present, the actual dimension may be lower than the dimension reported.

It is possible to give more detailed and/or multiple specifications for a calculation. Please

see rifsimp[cases] for the more advanced usage, and additional information.

pivselect=choice

This option gives some control over how rifsimp performs case splitting. More information

can be found in rifsimp[cases].

nopiv=[var1, ...]

This option gives a list of all variables and constants which cannot be present in pivots.

This is most useful for quasi-linear systems for which the linearity of the resulting system

is of greatest importance. This may also have the effect of reducing the size of the case

tree in these systems. The unsolved equations are then treated as fully nonlinear (see

rifsimp[nonlinear]).

faclimit=n

Typically the pivot chosen is the coefficient of the leading indeterminate in the equation.

In the event that the leading indeterminate is itself a factor of the equation, and this same

leading indeterminate factor occurs in n or more equations, then it is chosen as the pivot
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rather than the coefficient. See rifsimp[cases] for more information.

This is most useful for Lie determining systems having many inconsistent cases, since many

equations of this form typically occur during the calculation. The answer may be obtained

without this option, but it has the beneficial effect of reducing the number of cases.

factoring=desc

This option is used to control introduction of pivots that are not necessarily the leading

coefficient of an equation. Basically, if no leading linear equations remain in the unsolved

equations, then depending on the value of this parameter, if the unsolved equations can be

factored, a split will be performed on that factor. If desc=none, then this is disabled; if

desc=nolead, then factors may only be chosen if they do not contain the leading derivative

(this is the default); if desc=all then any factor can be split on. See rifsimp[cases] for

more detail.

Note that use of factoring=none can result in non-termination for some nonlinear prob-

lems.

checkempty

This option tells rifsimp to try to eliminate any empty cases in the computed result(s).

These can only occur when both pivots and nonlinear equations are present in the result,

and is quite uncommon. This is not done by default (See rifsimp[nonlinear] for details).

grobonly

This option tells rifsimp to only use Groebner basis simplification for the leading nonlinear

equations instead of the more efficient method described in rifsimp[nonlinear].

initial

This option tells rifsimp to isolate the highest power of the leading derivative of each

equation in the Constraint list, performing further case splitting on the coefficient if re-

quired. This causes the output case structure to more closely resemble that of diffalg,

and changes the form of the equations in Constraint. This option is enabled by default

unless grobonly is specified (see rifsimp[output]). For more information on this option,

please see rifsimp[cases].

grob rank=[[1,deg,none],[1,ilex]]
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This option controls the ranking for algebraic Groebner basis sub-computations.

See rifsimp[nonlinear] for details.

spoly=[true,false]

This option indicates whether to generate S-polynomials during the Groebner basis algo-

rithm (default is true). Setting spoly=false has some risk associated with it, and if non-

linear equations are present in the output, then it is possible that not all consequences of

these equations have been obtained (hence they are placed in the DiffConstraint list rather

than the Constraint list). If an orderly ranking is used (see rifsimp[ranking], and spawn

is set to true, then only algebraic simplifications remain, but these may still result in an

inconsistent system when considered with the Pivot equations.

spawn=[true,false]

This option indicates whether to perform a differential spawn of nonlinear equations (default

is true). Setting this to false makes the program ignore any differential consequences of

the polynomially nonlinear equations. This is only useful if rifsimp is being used as a

single step of a different calculation, since an incomplete answer will be obtained. See

rifsimp[nonlinear].

For a description and examples of the above options, please see the specific pages describing

those options:

ranking See rifsimp,ranking

casesplit, mindim, pivselect, nopiv, See rifsimp,cases

faclimit, pivsub, factoring, initial "

grobonly, grob_rank, spoly, spawn, See rifsimp,nonlinear}

checkempty "
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A.7 rifsimp[ranking] - understanding rankings and related

concepts

Description

What is a ranking?

A ranking is essentially an ordering of all indeterminates in a system. To introduce rankings,

we must first introduce some related concepts.

Dependent variable

This term describes any unknown function that is present in the input system. As an

example, consider a system involving f(x,y) and its derivatives, g(x,y) and its derivatives,

and exp(x). In a calculation, you may want to view f(x,y) as the solving variable, and

g(x,y) as a parameter. Even in this case, these are both considered to be dependent

variables. Because exp(x) is a known function, it is not considered to be a dependent

variable.

Independent variable

For a problem containing f(x,y) and its derivatives, g(x,y) and its derivatives, and exp(x),

x and y are the independent variables.

Constants

Any unknown not having a dependency, and not occurring in a dependency, is considered

to be a constant. This is true even if it appears in a known function. For example, in the

equation a*f(x,y)+sin(c)*g(x,y), both a and c are considered to be constants.

Note: The distinction between independent variables and constants is vital, since mistaking

one for the other will not give a valid result for a system. For information on the specification

of independent variables, please see rifsimp[options].

Indeterminate

An indeterminate can be any constant, dependent variable, or derivative of a dependent

variable. This does not include any known functions or independent variables. This is

exactly the group of items that a ranking is defined for.

With these definitions, a more precise definition of ranking for a system is now possible:
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Ranking

A ranking is a strict ordering of all indeterminates appearing in a system in the course of a

calculation. Note that it is necessary to rank more than just the indeterminates appearing

in the initial system, because higher derivatives may appear in the course of the algorithm.

Leading indeterminate

The leading indeterminate of an equation is defined as the indeterminate in that equation

that is of the highest rank (maximal with respect to the ranking).

The concept of a leading indeterminate is important for understanding how the rifsimp

algorithm works, because any equation in which the leading indeterminate appears linearly

is solved with respect to that indeterminate.

Properties of a ranking

Rankings have a number of properties, some of which are required for the proper performance

and termination of the algorithm, others of which may be helpful in tackling specific systems.

In any of the descriptions below, v1 and v2 are indeterminates that may depend on some

of x1, x2, x3, ...

Preservation of ranking under differentiation

Given a ranking v1 > v2, this ranking also holds after equal differentiation of both v1

and v2 with respect to any independent variable, for all v1, v2 where v1 and v2 are

indeterminates.

Note: You must restrict yourself to non-vanishing indeterminates (for example, for h(x)

> g(x,y), differentiation with respect to y makes h(x) vanish, so the rule does not apply).

This property is required for the proper running of rifsimp. Once an equation is solved

for the leading indeterminate, any differentiation of that equation (assuming that the lead-

ing indeterminate does not vanish) is also in solved form with respect to its new leading

indeterminate (the derivative of the prior leading indeterminate).

Positive ranking

Given a ranking >, it must be true that diff(v1,x1) > v1 for all indeterminates v1 and all

independent variables x1, as long as diff(v1,x1) is nonzero.



APPENDIX A. THE RIFSIMP IMPLEMENTATION HELP PAGES 257

This property is required for the proper running of rifsimp, because it prevents any infinite

chain of differential substitutions from occurring.

As an example, consider the solved form of the equation u[t]-u[tt] = 0 under a non-positive

ranking u[t] = u[tt]. Differential elimination of the derivative u[xt] with respect to this

equation will give u[xtt], then u[xttt], then u[xtttt], and so on. It will never terminate.

Total-degree ranking

Let dord() give the total differential order of an indeterminate with respect to all inde-

pendent variables. Then for v1 and v2 derivatives of the same dependent variable, given a

ranking >, then dord(v1) larger than dord(v2) implies v1 > v2.

For rifsimp to run correctly, a ranking does not have to be total degree. In some cases

this does allow rifsimp to run faster, however. For those familiar with Groebner basis

theory, a total degree ranking is similar to a total degree Groebner basis ordering, because

calculations usually terminate more quickly than they would with a lexicographic ordering.

Orderly ranking

A ranking is said to be orderly if, for any indeterminate, no infinite sets of indeterminates

that are lower in the ordering exist.

As an example of a ranking that is not orderly, we consider a ranking of f(x), g(x), and

of all derivatives. If we choose to solve a system using rifsimp for f(x) in terms of g(x)

(by specification of only f(x) in the solving variables), then this is not an orderly ranking,

because g(x) and all of its derivatives are of lower rank than f(x) and any of its derivatives.

For rifsimp to run correctly, using the defaults for nonlinear equations, a ranking is not

required to be orderly (see rifsimp[nonlinear].)

The Default ranking

The rifsimp default ranking is an orderly, total-degree ranking that is both positive and

preserved under differentiation. Note that if the solving variables are specified, we may

no longer be using the default ranking (since specification of solving variables alters the

ranking. See ”Specification of a ranking” below.

On input, rifsimp assumes that all dependent variables present in the input system are

solving variables, and that all constants are to be viewed as parameters. The set of dependent
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variables is then sorted alphabetically, along with the set of constants. In contrast, the set

of independent variables is ordered based on order of appearance in the dependency lists of

the dependent variables.

A description of the sorting method for independent variables can be found in the ”Specifi-

cation of a ranking” section. Note that this sort is used to break ties for derivatives of equal

differential order (under some circumstances).

Under the above restriction, the default ranking is defined by the following algorithm, which

returns true if v1 is greater than v2 with respect to the default ordering (and false if v1

is less than v2).

rank-greater(v1,v2)

#Criterion 1: Solving variabless

If v1 is a solving variable, and v2 is not, then

return(true)

If v2 is a solving variable, and v1 is not, then

return(false)

#Criterion 2: Total Degreee

If dord(v1) is larger than dord(v2), then

return(true)

If dord(v2) is larger than dord(v1), then

return(false)

#Criterion 3: Independent Variable Differential Order

Loop i := each independent variable in sorted order

If diff. order of v1 in i is larger than order of v2 in i, then

return(true)

If diff. order of v2 in i is larger than order of v1 in i, then

return(false)

end loop

#Criterion 4: Dependent Variablee

If dependent var for v1 occurs before v2, then

return(true)

If dependent var for v2 occurs before v1, then
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return(false)

end

The following examples are for a system containing f(x,y,z), g(x,y), and h(x,z), and

derivatives with the constants a and b. The system is recognized with the following (already

sorted):

Dependent Variables [f(x,y,z), g(x,y), h(x,z)]

Independent Variables [x,y,z]

Constants [a,b]

So, by default, f, g, and h are considered solving variables, and a and b parameters.

When the criteria are considered in order, any pair of distinct indeterminates are ranked by

exactly one of them (as the ranking process then stops and returns the result). Of course

to reach, say, criterion 3, criteria 1 and 2 must not differentiate the inputs. The following

is a list of examples of each criterion in action:

Criterion 1 a < f, a < g, b < f,

b < g, a < f[x], b < h[xxzz]

Criterion 2 f[xyy] < f[xxyy], f[x] < h[zz], g[xx] < h[xxz],

h[z] < f[xx], f < h[x], h < f[x]

Criterion 3 f[xxy] < f[xxx], h[z] < f[y], g[y] < f[x],

f[xz] < g[xy], f[yz] < f[xz], h[z] < h[x]

Criterion 4 g[xxy] < f[xxy], b < a, h[z] < f[z],

g[xy] < f[xy], h[xz] < f[xz], g < f

Equivalence classes

Any step of the ranking process can be viewed as separating all possible indeterminates

into a sorted chain of equivalence classes. When considering all criterion simultaneously,

the size of each equivalence class must be exactly one. Sometimes viewing the ranking

from the point of view of equivalence classes helps visualize how ranking is performed. As

an example, we illustrate the equivalence classes for the prior example for each criterion

considered independently of the other criteria:
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Criterion 1: Rank solving variables higher than parameters

{a, b} < {f, g, h, f[x], f[y], f[z], g[x], g[y], h[x], h[z],

f[xx], f[xy], ‘...‘}}

Criterion 2: Rank by differential order

{f, g, h} < {f[x], f[y], f[z], g[x], g[y], h[x], h[z]}

< {f[xx], f[xy], ‘...‘} < ...}

Criterion 3: Rank by differential degree in each independent variable in turn

{f, g, h} < {f[x], g[x], h[x]} < {f[y], g[y]} < {f[z], h[z]}

< {f[xx], g[xx], h[xx]} < {f[xy], g[xy]} < ...}

Criterion 4: Rank by dependent variable or constant name

{b} < {a} < {h, h[x], h[z], h[xx], h[xz], ‘...‘}

< {g, g[x], g[y], g[xx], g[xy], ‘...‘}

< {f, f[x], f[y], f[z], f[xx], ‘...‘}}

So the process is equivalent to determining in which equivalence class each indeterminate

falls, and checking if this criterion distinguishes the two input indeterminates.

Specification of a ranking

Three options can be used to control the ranking in rifsimp. Two of these perform simple

modifications to the default ranking, while the third allows complete control of the ranking.

Specification of solve variables

As mentioned in the ”Default ranking” section, specification of solving variables in a manner

or order different from the default order changes the ranking. The solving variables can be

specified in two ways:

1. Simple List

When the vars parameter is entered as a simple list, it affects the ranking in the following

ways:

Criterion 1 of the default ranking is changed to add an additional class of indeterminates,

which is specified by the solving variables. Specifically, any indeterminate mentioned in

vars is ranked higher than any indeterminate not in vars. Any dependent variables not

mentioned in vars are still ranked higher than any constants not mentioned in vars.
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As an example, suppose an input system contained f(x,y,z), g(x,y), h(x,z), a, b, and c.

If vars had been specified as [f(x,y,z),b,h(x,y)], then f, h, any f or h derivatives, and the

constant c would be ranked higher than g and any g derivatives, which would be ranked

higher than the constants a and b. Using equivalence classes, criterion 1 becomes

{a, b} < {g, g[x], g[y], g[xx], ‘...‘}

< {f, b, h, f[x], f[y], f[z], h[x], h[z], f[xx], f[xy], ‘...‘}

where the new equivalence class is on the right.

Criterion 4 of the default ranking is changed to reflect the same order as the specified vars,

so when criterion 4 is reached, f is ranked higher than b, which in turn is ranked higher

than g, which in turn is ranked higher than h, and so on.

Using equivalence classes, we have the following:

{b} < {a} < {g, g[x], g[y], g[xx], g[xy], ‘...‘}

< {h, h[x], h[z], h[xx], h[xz], ‘...‘} < {c}

< {f, f[x], f[y], f[z], f[xx], ‘...‘}

This is an unusual ranking (since it allows for c to be solved in terms of h, g, and derivatives

of g), but it was chosen to highlight the flexibility of rankings.

2. Nested List

This is just a variation of the simple list specification that allows multiple equivalence

classes to be specified. It is activated by the presence of a list in the vars input. When this

specification is used, every entry in the vars list is interpreted as an equivalence class (even

if it is not a list itself). This is best illustrated by an example. Use the same system as the

prior example. If vars is specified as [f(x,y,z),[g(x,y),c]], we notice that the second entry

is a list, so the equivalence classes for criterion 1 become

{a, b} < {h, h[x], h[z], h[xx], ‘...‘} <

{g, c, g[x], g[y], g[xx], ‘...‘} < {f, f[x], f[y], f[z], f[xx],

f[xy], ‘...‘}

An equivalence class has been added for f and its derivatives, then one for g and c, and g

derivatives, then the two that are created by default.

We can interpret this as ”solve for f in terms of all other indeterminates; if the expression

does not contain an f, then solve for g or c in terms of all other indeterminates, and so on”.
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Criterion 4 is changed to reflect the order in which the entries of vars appear in their

equivalence classes:

{b} < {a} < {h, h[x], h[z], h[xx], h[xz], ‘...‘} < {c}

< {g, g[x], g[y], g[xx], g[xy], ‘...‘} < {f, f[x], f[y], f[z], f[xx],

‘...‘}

Option: indep=[...]

This option allows for specification of the independent variables, but modifies the ordering as

well. Put simply, it specifies the order in which criterion 3 looks at the dependent variables.

First, recall how the default ordering works. To begin with, the set of independent variables

is sorted alphabetically. Then, the set of independent variables is sorted based on their

occurrence in the dependent variable lists, where the dependent variable lists are considered

in the same order in which they are ranked. If the order of a dependency list disagrees with

the order of another dependency list, only the one of higher rank one is used.

As an example, consider a system containing f(x,y), g(y,x). In this case the independent

variables are sorted in the order [x,y] if f is ranked higher than g, but in the order [y,x] if

the reverse is true.

For a system containing f(x,y), g(x,z), the independent variables are sorted [x,y,z], because

ties are broken alphabetically.

The specification of indep=[...] enforces the order specified in the list, so if the input

contains f(x,y,z) and h(x,y,z) and we specify [z,x,y], then the independent variables are

ordered as specified.

These two ways of controlling the ordering of a system are sufficient for most purposes, but

you can also fully specify the exact ordering to be used for a system.

Advanced specification of a ranking

This method requires a bit of description first:

Say that we have a system with n independent variables (we call these x1,...,xn), and m

dependent variables (we call these V1,...,Vm). For each derivative, we can then construct

a list of n+m elements, where the first n elements are the differentiations of the derivative

with respect to the corresponding independent variable, and the remaining m elements are

all zero, except for the one that corresponds to the dependent variable of the derivative.
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Ranking examples:

Say that we have a system with independent variables indep = [x,y,z], and dependent

variables [f,g,h,s]. Then the vector for g[xxz] can be constructed as [2,0,1, 0,1,0,0]. This

vector then contains all the information required to identify the original derivative. From

the last four items in the list, we see that our dependent variable is g (since the 1 corresponds

to the placement of g in the dependent variable list). We can also see from the first three

elements of the list that it is differentiated twice with respect to x, 0 times with respect to

y, and once with respect to z (where we are matching up the first three elements of the list

to the corresponding independent variables).

With the same system, we may obtain:

f[xyz] [1,1,1, 1,0,0,0]

h[xxxxx] [5,0,0, 0,0,1,0]

s[xzz] [1,0,2, 0,0,0,1]

g [0,0,0, 0,1,0,0]

Now we have specified a way to turn each derivative into a list of integer values. Using this,

we now can create a new list called a criterion, which must be of the same length and must

be specified with integer values. The dot product of the derivative list and the criterion is

called the weight of that derivative with respect to the criterion.

So for the above example, if we specified the criterion list to be [1,0,0, 0,0,0,0], then g[xxz]

would have weight 2, f[xyz] would have weight 1, h[xxxxx] would have weight 5, and so

on.

Now when two derivatives are being compared with respect to one of these list criteria, the

ranking would be determined by their respective weights. So, for example, f[xyz] < g[xxz]

with respect to [1,0,0, 0,0,0,0], because weight(f[xyz]) = 1 is less than weight(g[xxz])

= 2 with respect to [1,0,0, 0,0,0,0].

The new ranking can then be constructed as a list of these criteria which, during a com-

parison, are calculated and compared in order. The construction of a ranking in this way is

called a Janet ranking.

As an example, we can construct the default ranking as a criterion list for the example

system as:
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ranking = [ [0,0,0, 1,1,1,1], # This corresponds to criterion 11

[1,1,1, 0,0,0,0], # This corresponds to criterion 22

[1,0,0, 0,0,0,0], # These three lines are criterion 33

[0,1,0, 0,0,0,0],

[0,0,1, 0,0,0,0],

[0,0,0, 4,3,2,1]] # This corresponds to criterion 44

So if we compared f[xyz] to f[xyy], the weights for the first entry would be 1 and 1, for the

second entry 3 and 3, for the third entry 1 and 1, and for the fourth entry 1 and 2, at which

point it is recognized that f[xyz] < f[xyy].

Specification of the ranking to rifsimp

The ranking is specified on the command line to rifsimp as ’ranking = list of criteria’,

where the criterion list is as described above. We recommend that you specify the dependent

variables and independent variables so that the order is known and the ranking behaves as

expected.

Additional notes

In the event that the input ranking does not fully specify a ranking (two different indetermi-

nates are not ranked differently by the input ranking), the default ranking is then used (see

examples). If the system contains constants, and any of the entries of the input ranking do

not have corresponding entries for these constants, then the entries are padded with zeros.

Examples

For examples we will take as input single equations or a system of decoupled equations and

observe their solved form in the output. They will be solved for their leading indeterminate.

> with(DEtools):
> sys:=[diff(g(x,y,t),x,x)+diff(f(x,y,t),x,y)+

> diff(f(x,y,t),y,y)+diff(f(x,y,t),t)=0];

sys := [( ∂2

∂x2 g(x, y, t)) + ( ∂2

∂y ∂x f(x, y, t)) + ( ∂2

∂y2 f(x, y, t)) + ( ∂
∂t f(x, y, t)) = 0]

By default, the above will be solved for the g derivative, as f and g have equal weight

(criterion 1). The equation is differential order 2, so this narrows it down to the three second

order derivatives (criterion 2), but x derivatives are of greater weight than y derivatives

(criterion 3), so the equation will be solved for g[xx]:
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> rifsimp(sys);

table([Solved = [ ∂2

∂x2 g(x, y, t) = −( ∂2

∂y ∂x f(x, y, t)) − ( ∂2

∂y2 f(x, y, t)) − ( ∂
∂t f(x, y, t))]])

So how can we solve for f instead? The obvious way is to give f more weight than g by

declaring it as the solving variable by using vars (alter criterion 1):

> rifsimp(sys,[f]);

table([Solved = [ ∂2

∂y ∂x f(x, y, t) = −( ∂2

∂x2 g(x, y, t)) − ( ∂2

∂y2 f(x, y, t)) − ( ∂
∂t f(x, y, t))]])

What if we wanted to solve for the y derivative of f? Well, we could then also weight y

derivatives greater using indep:

> rifsimp(sys,[f],indep=[y,x]);

table([Solved = [ ∂2

∂y2 f(x, y, t) = −( ∂2

∂x2 g(x, y, t)) − ( ∂2

∂y ∂x f(x, y, t)) − ( ∂
∂t f(x, y, t))]])

Good, but what if we want to solve for the t derivative of f. This is an unusual example

because we are solving for a lower order derivative in terms of higher order derivatives. We

could specify a new ranking that weights t derivatives higher than everything else:
> sample_rank:=[[0,0,0,1,0], # Solve for f over g

> [0,0,1,0,0]]:# t derivs are greatest

> ivars:= [x,y,t]:

> dvars:= [f,g]:

With the above ranking, f is always greater than g, and t derivatives are always greater

than x or y derivatives of any order. We have to declare the order of occurrence in the

command line arguments so that we can match the independent and dependent variables to

the sample rank table. (These are typed in above for visualization.)

> rifsimp(sys,dvars,indep=ivars,ranking=sample_rank);

table([Solved = [ ∂
∂t f(x, y, t) = −( ∂2

∂x2 g(x, y, t)) − ( ∂2

∂y ∂x f(x, y, t)) − ( ∂2

∂y2 f(x, y, t))]])

Note: We did not specify a full ranking, but instead specified as much as we required, then

let the default ranking take over.

Note that a ranking like the one above is natural for certain classes of equations. As an

example, consider the heat equation u[t] = u[xx]+u[yy]+u[zz] where the form of the

solved equation is only physically meaningful when solving for the time derivatives in terms

of the space derivatives, even when the space derivatives are of higher differential order.
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As a final example, we construct a strange ranking that weights t derivatives twice as heavily

as x derivatives. This is done for the following:
> sys:=[diff(f(x,t),x,x,x)+diff(f(x,t),t)+diff(f(x,t),x,x),

> diff(g(x,t),t)+diff(g(x,t),x,x)];

sys := [( ∂3

∂x3 f(x, t)) + ( ∂
∂t f(x, t)) + ( ∂2

∂x2 f(x, t)), ( ∂
∂t g(x, t)) + ( ∂2

∂x2 g(x, t))]

> sample_rank:=[[1,2,0,0], # t derivs have 2* weight of x

> [0,1,0,0]]:# t derivs are greatest

> ivars:= [x,t]:

> dvars:= [f,g]:

> rifsimp(sys,dvars,indep=ivars,ranking=sample_rank);

table([Solved = [ ∂3

∂x3 f(x, t) = −( ∂
∂t f(x, t)) − ( ∂2

∂x2 f(x, t)), ∂
∂t g(x, t) = −( ∂2

∂x2 g(x, t))]])
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A.8 rifsimp[cases] - case splitting and related options

Description

What is a Case Split?

If an input system is nonlinear with respect to any of its indeterminates (including con-

stants), case splitting may occur.

As an example, consider the ODE in u(t): u’-a u” = 0. rifsimp can only isolate the

leading indeterminate u” when a <> 0. Unfortunately, we do not know if this condition

holds, so two possibilities result; either a <> 0 or a = 0.

Consider as a second example the equation u’ˆ2 a-u’-uˆ2=0. rifsimp needs to isolate the

highest power of the leading derivative, u’ˆ2 which introduces the same two possibilities as

for the first example. This second type of pivot is called the initial of the equation.

This prompts the following definitions:

Pivot

The coefficient of the highest power of the leading indeterminate in an unsolved equation.

It is not known whether this coefficient is nonzero or whether it vanishes with respect to

the resulting system.

Case Split

A case split in the rifsimp algorithm is the separate handling of the cases of nonzero or

zero pivot during the solution of an equation in the system. By default (without casesplit

on), only the nonzero case is explored.

In the u[t]-a u[tt] = 0 example, the pivot is a, and the generic a <> 0 case is handled by

default.

Exploring All Cases

For some systems, a simplified result for all cases is required. To obtain this, use the

casesplit option. Specification of casesplit in the arguments to rifsimp tells it to examine

all cases in the following way:

Proceed to find the generic solution by assuming that all pivots are nonzero. After each
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solution is found, back up to the most recent nonzero assumption, change to a zero assump-

tion, and proceed to find the solution under this new restriction. The process is complete

when no nonzero assumptions are left to back up to.

The result is a tree of disjoint cases, with the simplified forms presented in a table. Each

case is stored as a numbered entry in the output table, having all the standard entries,

along with an entry called Case that can be used to reconstruct a tree of case splittings

using the caseplot command. This Case entry is a list of assumptions made to obtain the

answer for that case. Each assumption is a two or three element list, the first element is the

assumption made, the second is the derivative being isolated that required the assumption,

and if the third entry is present, it indicates that is was later found that the assumption

is always true, so the assumption does not represent a true case split of the problem, but

rather a false split.

There are three options below that mildly alter this behavior, and these are the faclimit,

factoring, and grobonly options. The first two allow pivots to be introduced to the system

that do not necessarily occur as the coefficient of a specific leading derivative. When one

of these pivots occur, then the second element of the assumption is the name of the option

(rather than the leading derivative). The third option, grobonly, has the effect of introduc-

ing fewer pivots (as equations that are nonlinear in their leading derivative, such as the equa-

tion in the second example at the top of this page, do not directly introduce case splittings),

but has the disadvantage that a less efficient nonlinear equation handling method (pure

Groebner basis) must be employed. For more detail on the output see rifsimp[output],

and for more detail on nonlinear equation handling see rifsimp[nonlinear].

Case Restrictions

Two options can be used to limit or restrict which cases are explored:

1) casesplit=[‘<>‘,‘=‘,‘< >‘]

This option turns on casesplit and gives the start of the tree to be examined. It is used

primarily for repeating a calculation, or for avoiding particularly difficult cases. Note: A

rerun of the system with additional equations is likely to change the order of the pivots,

so this option is only reliable for the same input as the initial calculation. If a calculation

for a specific case is to be repeated with additional equations, it would be better to append

the assumptions made in the Case list to the original system, and run rifsimp with the
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combined system.

2) mindim=[...]

This option is used to limit the cases being examined based on the solution space dimension

of the linear part of the current system. Though the dimension of the solution space is not

known until the computation is complete, an upper bound is available by looking at the

current Solved equations. Note: In the presence of nonlinear constraints, the computed

dimension represents an upper bound on the dimension of the case. This could be used, for

example, to find all forms of a second order ODE that are related by a Lie-point transforma-

tion to the equation y”=0, by setting the minimum free parameters of the Lie-determining

system to 8. The minimum dimension can be specified in a number of ways, including some

shortcuts:

mindim=n Minimum of n free 0-dimensional parameters in

the dependent variables in vars.

mindim=[v,n] Minimum of n free 0-dimensional parameters in

the dependent variables v (v is either a

dependent variable name or set of more than one).

mindim=[v,n,d] Minimum of n free d-dimensional parameters in

the dependent variables v, where v is as above.

mindim=[c1,c2,...] Here c1,c2,... are conditions of the [v,n,d] type.

When this option is used, a dimension entry is also provided for each case in the output

system. See the information in rifsimp[output] for more detail.

Note: When using multiple specifications, each must be a full specification defining the

number, the dependent variables, and the dimension of the required data.

If any of the input conditions fail, computation is halted on the current case, it is tagged

with the status ”free count fell below mindim”, and the computation proceeds to the next

case.

Pivoting and Pivot Selection
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The rifsimp algorithm proceeds by putting as many PDEs into solved form as possible

without introducing new pivots. When it has reached a point where none of the remaining

unsolved equations can be solved without the introduction of a pivot, it must then decide

which equation to solve. By default, rifsimp chooses the leading linear unsolved equation

that is smallest in size, but this behavior can be modified by the pivselect option described

below. The new pivot for the chosen equation then results in a case split if casesplit is set,

otherwise exploration of only the nonzero (generic) case if casesplit is not set. If none of the

equations are leading linear, then no standard pivot can be found, so rifsimp then attempts

to factor the leading nonlinear equations searching for factors that do not depend on the

leading derivative. If these are found, then the smallest factor (based on the Maple length

function) is chosen, and a ”factor” split is performed. This behavior can be modified

through use of the factoring option described below. If nonlinear equations remain, then

the coefficient of the highest degree of the leading derivative in the equation (the initial of

the equation) is split on if initial has been specified (see below) or if grobonly has not

been specified (see rifsimp[nonlinear]).

The following options relate to pivoting and to the control of pivoting in the course of the

algorithm:

1) pivselect=choice

During the course of a computation, rifsimp proceeds by performing as much elimination as

possible before introducing a pivot. Once no further elimination can be done, a pivot must

be introduced, and there is generally more than one possible choice. There are currently six

possible choices for pivot selection:

"smalleq" Choose the pivot belonging to the smallest

equation (based on the Maple length function).

This is the default.

"smallpiv" Similar to "smalleq", but the length of the

pivots are compared instead.

"lowrank" Choose the pivot for the equation with

leading derivative of lowest rank. Ties



APPENDIX A. THE RIFSIMP IMPLEMENTATION HELP PAGES 271

are broken by equation length.

"mindim" Choose the pivot for the equation with

leading derivative that will reduce the size

of the initial data by the greatest amount.

This option can only be used in combination

with the mindim option described above.

["smalleq",vars] Same as "smalleq" above, but it only looks at

equations with leading derivatives in the

vars sequence.

["lowrank",vars] Same as "lowrank" above, but it only looks at

equations with leading derivatives in the

vars sequence.

The choice of a pivoting strategy can significantly affect the efficiency of a computation for

better or worse. In addition to efficiency considerations, the selection of different pivoting

strategies can also simplify the resulting case structure, though the choice that gives the

best case structure is highly problem dependent.

The ”smalleq” and ”smallpiv” options are generally focussed on efficiency. ”smalleq” makes

the computation more efficient by selecting smaller equations for splitting, while ”smallpiv”

makes the computation more efficient by introducing smaller pivots.

The ”lowrank” and ”mindim” options are focussed on keeping the number of cases to a

minimum.

2) nopiv=[var1, ...]

This option gives a list of all variables and constants that cannot be present in pivots.

This is most useful for quasi-linear systems for which the linearity of the resulting system

is of greatest importance. This may also have the effect of reducing the size of the case

tree in these systems. The unsolved equations are then treated as fully nonlinear (see

rifsimp[nonlinear]).

3) faclimit=<n>
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Typically the pivot chosen is the coefficient of the leading indeterminate in the equation.

In the event that the leading indeterminate is itself a factor of the equation, and this same

leading indeterminate factor occurs in <n> or more equations, then it is chosen as the pivot

rather than as the coefficient. This is most useful for Lie determining systems having many

inconsistent cases, since in these systems, many equations of this form typically occur during

the calculation. The answer may be obtained without this option, but it can significantly

reduce the number of cases returned.

4) factoring=desc

As briefly described above, by default equations that factor are split if one of the factors

does not depend upon the leading derivative of that equation. This option can be used to

modify that behavior based on the value of desc used in the factoring option:

nolead This is the default. Only split on a factor

if it does not contain the leading derivative

of the equation.

all Split on any factors, even if they contain the

leading derivative.

none Do not perform factored splitting.

In any event, the factoring pivots are always the last to be considered (i.e. faclimit and

regular pivots are used if available). Note: factoring=”all” should be used with cau-

tion as it has the potential to significantly increase the number of cases returned. Note:

factoring=”none” can result in non-termination for some nonlinear problems.

5) pivsub

When introducing a new pivot, attempt to reword that pivot as a new dependent variable

when it is advantageous to do so. For example, if the new pivot is a(x)+b(x)-c(x,y),

then rifsimp creates a new dependent variable, say F1(x,y), and adds an equation to the

system indicating that F1(x,y) = a(x)+b(x)ˆ2-c(x,y). The ranking would be arranged

such that the new equation would be solved in terms of an existing indeterminate in the

pivot, and the overall effect would be to make the new pivot a single-term expression.
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The primary advantage of this strategy is that, after introducing a pivot, the solution

procedure usually results in the occurrence of that pivot and its derivatives, sometimes to

a high polynomial degree. Leaving the pivot in its regular form can result in extensive

expression swell, whereas the reworded pivot remains quite small and manageable.

The new dependent variables are chosen as F.(i),F.(i+1), and so on, where i is larger than

the largest occurrence of an F.(j) in the present system, and is not globally assigned.

6) initial

This option only applies to systems which have nonlinear Constraint equations in their

output. The initial is the coefficient of the highest power of the leading derivative in a

polynomially nonlinear equation (the leading nonlinear derivative). For example, in the

equation u[x]ˆ2*u+u[x]ˆ2+u[x]+u-1, the initial is the coefficient of u[x]ˆ2, which is

u+1. By default, rifsimp splits on the initial, unless grobonly is specified (in which

case it does not need to), introducing additional cases in the output. With these additional

cases, rifsimp isolates the leading nonlinear derivatives in the Constraint equations. When

grobonly is not specified, only the form of the Constraint output is different.

Note: These options do not require that casesplit be on, but are typically most useful in

that situation.

Other Case-related Options

Another option that is also related to case-splitting is the gensol option, which may return

multiple cases for some problems:

gensol

This option indicates that the program should explore all cases that have the possibility of

leading to the most general solution of the problem. Occasionally it is possible for rifsimp

to compute only the case corresponding to the general solution of the ODE/PDE system.

When this option is given, and this occurs, rifsimp will return the single case corresponding

to the general solution. When it is not possible for rifsimp to detect where in the case tree

the general solution is, then multiple cases are returned, one or more of which correspond to

the general solution of the ODE/PDE system, and others correspond to singular solutions.

For some particularly difficult problems, it is possible that the entire case tree is returned.

Note: this option cannot be used with the casesplit,casecount, pivsub, and mindim
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options.

Examples

> with(DEtools):

Suppose we have the ODE shown below. We want to determine conditions on g(y(x)) and

f(x) that allow the equation to be mapped to y” = 0 by an invertible change of variables of

the form Y=Y(x,y), X=X(x,y). It is known that the equation can be mapped to y”=0

if the Lie group of the equation is 8-dimensional. This is the perfect opportunity to use the

mindim option in combination with cases, to tell rifsimp that we are only interested in

cases with 8 dimensions or more:

> ODE1:=diff(y(x),x,x)+g(y(x))*diff(y(x),x)+f(x)*y(x);

ODE1 := ( ∂2

∂x2 y(x)) + g(y(x)) ( ∂
∂x y(x)) + f(x) y(x)

We can use the DEtools odepde command to generate the determining system for this

ODE, and we obtain the following:

> sys1:=[coeffs(expand(odepde(ODE1,[xi(x,y),eta(x,y)], y(x))),_y1)];

sys1 := [g(y) ( ∂
∂x η(x, y)) + η(x, y) f(x) − ( ∂

∂y η(x, y)) f(x) y + ξ(x, y) ( ∂
∂x f(x)) y

+ 2 ( ∂
∂x ξ(x, y)) f(x) y + ( ∂2

∂x2 η(x, y)), −( ∂2

∂y2 ξ(x, y)),

−2 ( ∂2

∂y ∂x ξ(x, y)) + 2 ( ∂
∂y ξ(x, y)) g(y) + ( ∂2

∂y2 η(x, y)), η(x, y) ( ∂
∂y g(y))

+ 3 ( ∂
∂y ξ(x, y)) f(x) y + ( ∂

∂x ξ(x, y)) g(y) + 2 ( ∂2

∂y ∂x η(x, y)) − ( ∂2

∂x2 ξ(x, y))]

Applying rifsimp:

> ans1:=rifsimp(sys1,[xi,eta],casesplit,mindim=8):

> caseplot(ans1);

Issuing the caseplot command above would show that there is one case for which this occurs.

This case is given by:

> copy(ans1[3]);
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table([Solved = [ ∂3

∂y2 ∂x
η(x, y) = −2 f(x) ( ∂

∂y ξ(x, y)), ∂3

∂y3 η(x, y) = 0,

∂2

∂x2 ξ(x, y) = 3 ( ∂
∂y ξ(x, y)) f(x) y + ( ∂

∂x ξ(x, y)) g(y) + 2 ( ∂2

∂y ∂x η(x, y)), ∂2

∂x2 η(x, y)

= −g(y) ( ∂
∂x η(x, y)) − η(x, y) f(x) + ( ∂

∂y η(x, y)) f(x) y − ξ(x, y) ( ∂
∂x f(x)) y

− 2 ( ∂
∂x ξ(x, y)) f(x) y, ∂2

∂y ∂x ξ(x, y) = ( ∂
∂y ξ(x, y)) g(y) +

1

2
( ∂2

∂y2 η(x, y)),

∂2

∂y2 ξ(x, y) = 0, ∂
∂y g(y) = 0],

Case = [[ ∂2

∂y2 g(y) = 0, ∂
∂x ξ(x, y)], [( ∂

∂y g(y)) g(y) = 0, ∂
∂y ξ(x, y)]],

dimension = 8
])

So the original ODE is equivalent to y”=0 when g’(y) is zero, regardless of the form of

f(x).

As a demonstration of the faclimit option, consider the following system:
> sys2:=[eta(x,y)*(3*f(x)+2*g(x)-h(x)),

> eta(x,y)*(f(x)-2*g(x)-5*h(x)+2),

> eta(x,y)*(-f(x)-3*g(x)+h(x)-3),

> eta(x,y)*(3*f(x)-3*g(x)-5*h(x)-1)];

sys2 := [η(x, y) (3 f(x) + 2 g(x) − h(x)), η(x, y) (f(x) − 2 g(x) − 5 h(x) + 2),

η(x, y) (−f(x) − 3 g(x) + h(x) − 3), η(x, y) (3 f(x) − 3 g(x) − 5 h(x) − 1)]

The regular case-splitting strategy produces an undesirable result for this system, namely

more cases than required to describe the system:

> ans2_1:=rifsimp(sys2,[eta],casesplit);
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ans2 1 := table([

1 = table([Solved = [η(x, y) = 0], Pivots = [%2 6= 0], Case = [[%2 6= 0, η(x, y)]]]), 2

= table([Solved = [η(x, y) = 0, f(x) = −2

3
g(x) +

1

3
h(x)], Pivots = [%1 6= 0],

Case = [[%2 = 0, η(x, y)], [%1 6= 0, η(x, y)]]

]), 3 = table([Solved = [η(x, y) = 0, f(x) =
3

2
h(x) − 1

2
, g(x) = −7

4
h(x) +

3

4
],

Pivots = [h(x) − 1 6= 0],

Case = [[%2 = 0, η(x, y)], [%1 = 0, η(x, y)], [h(x) − 1 6= 0, η(x, y)]]

]), 4 = table([Solved = [f(x) = 1, g(x) = −1, h(x) = 1],

Case = [[%2 = 0, η(x, y)], [%1 = 0, η(x, y)], [h(x) − 1 = 0, η(x, y)]]

]),

casecount = 4
])

%1 := 4 g(x) + 7 h(x) − 3

%2 := 3 f(x) + 2 g(x) − h(x)

So we get 4 cases. Now set faclimit set to 2:

> ans2_2:=rifsimp(sys2,[eta],casesplit,faclimit=2);

ans2 2 := table([1 = table([Solved = [f(x) = 1, g(x) = −1, h(x) = 1],

Pivots = [η(x, y) 6= 0],Case = [[η(x, y) 6= 0, “faclimit”]]

]), 2 = table([Solved = [η(x, y) = 0], Case = [[η(x, y) = 0, “faclimit”]]]),

casecount = 2
])

So although both ans2 1 and ans2 2 equally valid, it is clear that ans2 2 would be pre-

ferred.

As an example of the factoring option, consider the following purely algebraic system:

> sys := [x^3-7*x+6];

sys := [x3 − 7 x + 6]

With default options, we obtain

> rifsimp(sys,casesplit);

table([Constraint = [x3 − 7 x + 6 = 0]])

With full factoring enabled, we obtain

> rifsimp(sys,casesplit,factoring=all);
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table([1 = table([Solved = [x = 2], Case = [[x − 1 6= 0, “factor”], [x + 3 6= 0, “factor”]]]),

2 = table([Solved = [x = −3], Case = [[x − 1 6= 0, “factor”], [x + 3 = 0, “factor”]]]),

3 = table([Solved = [x = 1], Case = [[x − 1 = 0, “factor”]]]),

casecount = 3
])

So we see that the system has been split into three disjoint cases. Also note that the Case

entries describe the path the computation took, and there are no Pivots entries. This is

because the pivots resulting from the case splits are identically satisfied for each case.
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A.9 rifsimp[nonlinear] - information and options specific to

nonlinear equations

Description

Leading nonlinear equations

This help page explains how rifsimp handles equations which are polynomially nonlinear

in their leading indeterminate (called leading nonlinear equations), or equations that are

leading linear, but have a coefficient that depends on pivot restricted variables (see nopiv

in rifsimp[cases]).

As an example, consider the equation u[tt] u-u[t]ˆ2 = 0. This equation is linear in its

leading indeterminate, so as long as u can be present in a pivot it will be handled through

case splitting rather than nonlinear equation handling (see rifsimp[cases]). Conversely,

the equation u[tt]ˆ2-u[t] = 0 is leading nonlinear, and is always handled through the

nonlinear methods described here.

During the course of the computation, nonlinear equations are always differentially simplified

with respect to the linear equations of the system, but they are also algebraically simplified

with respect to each other. This simplification process resembles an algebraic Groebner

basis, but takes the inequations (pivots) of the system into account, and does not compute

algebraic S-polynomials. Use of this set of equations allows recognition of, and elimination

of redundant equations, and produces a more compact representation (due to the use of

pivots and lack of S-polynomials).

In order to perform the algebraic simplification of these nonlinear equations, a monomial

ordering must be imposed for all possible nonlinear terms. This is simply chosen to be pure

lexicographical ordering with respect to the ordering imposed on the linear derivatives.

For example, the equation u[xx]ˆ2 u[x]+u[xx]ˆ2 u-u[x]ˆ2-uˆ2 for a system in which

u[x]+u<>0 holds is algebraically solved for u[xx]ˆ2 giving the nonlinear relation:

u[xx]ˆ2=(u[x]ˆ2+uˆ2)/(u[x]+u).

Note: during the course of the algorithm, when nonlinear equations are encountered, case

splitting is performed on the coefficient of the highest degree of the leading derivative each

equation. This coefficient is called the initial of the equation. So for the example above, the
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initial is u[x]+u. If there was no condition on u[x]+u, then rifsimp would split into the

cases u[x]+u<>0 and u[x]+u=0. This can increase the number of cases in the output,

but is required for the proper functioning of the more compact nonlinear equation handling

algorithm, so if this splitting is not desired, pure Groebner basis methods can be used

instead with the grobonly option.

If leading linear equations with usable pivots are found in the algebraically simplified set,

rifsimp removes them from the set, and treats them using leading linear methods (i.e. isola-

tion of the leading derivative and pivoting, differential substitution, and linear integrability

conditions).

Differential consequences are enforced by the spawning (differentiation with respect to each

independent variable) of each equation, which naturally results in leading linear equations.

Before algorithm completion, rifsimp forms an algebraic Groebner basis over the leading

nonlinear equations, spawning any new relations that appear as a result of S-polynomials.

This step is necessary to ensure that all differential consequences of the leading non-linear

equations are accounted for, so that the set of nonlinear constraint equations returned by

the algorithm can be viewed as algebraic (not differential) constraints.

Of course, Groebner basis computations require a ranking of monomials in a system. By

default the ranking is chosen as total-degree order with ties broken by inverse lexicographical

order (otherwise known as grevlex). The allowed rankings for rifsimp are quite flexible,

but require some knowledge of rankings (please see rifsimp[ranking], and look at the

Groebner Rankings description below).

Control options

There are four options used to control how rifsimp handles leading nonlinear equations.

The spoly and spawn options limit what is done in the algorithm, and thus they generally

return an incomplete answer. Unfortunately, these options are needed in some cases as

highly nonlinear ODE/PDE systems may have to perform a Groebner basis of a large

number of equations in a large number of indeterminates. Though the process is finite, it

can be extremely time consuming, and may not return the result for days (weeks, months,

etc.). These options allow rifsimp to return a result that can be further processed using

other tools, such as hand integration or resultants, to obtain the final result.

1) grobonly



APPENDIX A. THE RIFSIMP IMPLEMENTATION HELP PAGES 280

This option tells rifsimp to only use Groebner basis simplification of the nonlinear equations

in the course of the algorithm instead of using the algebraic simplification described above.

This has the potential to decrease the number of cases in the output, but caution should be

used with this option, as rifsimp works with only part of the system at any one time, so

use of full a Groebner basis on only a partial system can often lead to inefficiency.

2) checkempty

This option tells rifsimp to attempt to determine, on the completion of the calculation (or

the completion of each calculation when dealing with cases) whether the resulting system

contains any solutions. These empty systems do not occur for linear problems, but when

algebraic constraints and pivots are both present for a system, then there is a possibility

that the resulting output has no solution. For a simple example, see the last problem in

the examples section below. Caution should be used for this option also, as the checking

process can be quite expensive.

3) spoly=[true,false]

This option indicates whether to generate S-polynomials during the Groebner basis algo-

rithm (default is true). Setting spoly=false has some risk associated with it, as if nonlinear

equations are present in the output, then it is possible that not all consequences of these

equations have been obtained (hence they are placed in the DiffConstraint list rather than

the Constraint list). If an orderly ranking is used ( see rifsimp[ranking]), and spawn

is set to true (see below), then only algebraic simplifications remain, but these may still

result in an inconsistent system when considered with the Pivot equations.

Note: By algebraic simplifications we mean that there are no further integrability conditions

that can result once the system is algebraically simplified. Differential reduction of leading

linear equations can still occur.

4) spawn=[true,false]

Indicates whether to perform a differential spawn of nonlinear equations (default is true).

A differential spawn simply means taking the derivative of an equation with respect to all in-

dependent variables. Setting this to false allows rifsimp to ignore differential consequences

of the polynomially nonlinear equations. This is only useful if rifsimp is being used as a

single step of a different calculation, since an incomplete answer may be obtained. When

spawn=false, all nonlinear equations are placed in the DiffConstraint list rather than
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the Constraint list to indicate that the answer may be incomplete.

Groebner rankings 1

A Groebner ranking is a ranking defined on the set of all monomials in the indeterminates

of a system of equations. For example, if the indeterminates were x, y, and z, a ranking

would be able to order the monomials x*yˆ2*z, xˆ3*yˆ2, xˆ2*y*zˆ2, xˆ2*y*zˆ4, and

determine a leader. The determination of this leader is vital to the completion of a Groebner

basis, and different rankings can give drastically different bases for the same input system.

Algebraic monomial rankings

There are a number of standard Groebner basis rankings available for algebraic systems of

equations. The rankings described below can be used in rifsimp. Each ranking is described

as a comparison of two monomials:

1) Total-degree ranking

This only defines a partial ranking; that is, there can be ties for different terms. It looks at

the degree of each monomial in all indeterminates (the total degree), and if the total degrees

of the monomials are different, the one of larger degree is ranked higher.

2) Lexicographic ranking

Given an ordered list of indeterminates, lexicographic ranking compares the degrees of the

two monomials in each indeterminate in turn. If the degree of one monomial is greater than

the other in that indeterminate, then it is ranked higher.

3) Inverse Lexicographic ranking

This ranking looks at the ordered list of indeterminates in reverse order, and compares the

degrees of the two monomials in each indeterminate in turn. If the degree of one monomial

is lower than the other in that indeterminate, then it is ranked higher.

It is important that a ranking is deterministic. That is, given two different monomials

it is always possible to rank one higher than the other. Since a total-degree ranking is

not deterministic, it must be followed by either a lexicographic or an inverse lexicographic

ranking.

As an example we look at all monomials in x, y, and z up to total degree 3 and rank them

using the rankings described above.
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Total Degree followed by Lexicographic on [x,y,z]

x^3 > x^2*y > x^2*z > x*y^2 > x*y*z > x*z^2 > y^3 > y^2*z > y*z^2

> z^3 > x^2 > x*y > x*z > y^2 > y*z > z^2 > x > y > z > 1

Total Degree followed by Lexicographic on [z,y,x]

z^3 > y*z^2 > x*z^2 > y^2*z > x*y*z > x^2*z > y^3 > x*y^2 > x^2*y

> x^3 > z^2 > y*z > x*z > y^2 > x*y > z^2 > z > y > x > 1

Total Degree followed by Inverse Lexicographic on [x,y,z]

x^3 > x^2*y > x*y^2 > y^3 > x^2*z > x*y*z > y^2*z > x*z^2 > y*z^2

> z^3 > x^2 > x*y > y^2 > x*z > y*z > z^2 > x > y > z > 1

Pure Lexicographic on [x,y,z]

x^3 > x^2*y > x^2*z > x^2 > x*y^2 > x*y*z > x*y > x*z^2 > x*z > x

> y^3 > y^2*z > y^2 > y*z^2 > y*z > y > z^3 > z^2 > z > 1

Simple algebraic rankings in rifsimp

The rankings for Groebner basis computations in rifsimp are specified by the grob rank

= [criterion list] option. If all that is needed is an algebraic ranking as described above

(for the indeterminates in the order described by the linear ranking) the criterion list can

simply be given as below:

grob rank=[[1,deg,none],[1,ilex]]

This says to use algebraic total-degree ranking followed by inverse lexicographic ranking

(this is the default).

grob rank=[[1,deg,none],[1,lex]]

Use algebraic total-degree ranking followed by lexicographic ranking.

grob rank=[[1,lex]]

Use pure lexicographic ranking.

The criterion lists may seem a bit verbose for what they need to accomplish, but far more

detailed rankings are available (see Groebner Rankings 2 below).

Though the pure lexicographic ranking produces a more desirable result, total-degree /

inverse lexicographic ranking was chosen as the default as it was in general (by experiment
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on a number of ODE/PDE systems) the least expensive in time and memory.

Groebner Rankings 2: a different point of view

The main thing to note is that all the types of monomial rankings previously discussed can

be viewed as looking at the degree of one or more indeterminates between the two monomials

being compared.

For example, total degree followed by lexicographic ranking (for the x,y,z example) looks at

the degree of the monomials in x,y,z, then in x, then in y, then finally in z. Total degree

followed by inverse lexicographic ranking looks at the degree of the monomials in x,y,z,

then x,y, then x,z, then y,z.

So now that we are dealing with differential systems, it may be desirable to rank inde-

terminates based upon other criteria such as their differential degree, dependent variable,

differentiations, etc. This can be accomplished in rifsimp.

Classification of linear ranking criteria

As a first step, all linear differential ranking criteria are classified.

diffdeg any criterion comparing differentiations of more than one

independent variable

diffvar any criterion involving differentiations of a single independent

variable

depvar any criterion only involving dependent variables

other any criterion which mixes independent and dependent variables

all all possible criteria

none no criteria

For more detail about criteria, please see rifsimp[ranking]. In that help page, an example

of the diffdeg classification is given by criterion 2, diffvar by criterion 3, and depvar by

criterion 1 and 4.



APPENDIX A. THE RIFSIMP IMPLEMENTATION HELP PAGES 284

These classifications, which actually refer to a specific part of the linear ranking, allow the

definition of equivalence classes for the derivatives. The monomial ranking then takes the

degree of each monomial in derivatives of the same equivalence class.

Definition of the criteria for grob rank

With the above information we can now construct a differential monomial ranking as an ex-

ample. Suppose we define our first criterion as [1,deg,diffdeg]. This describes equivalence

classes based upon the differential degree of the derivatives. Consider a system containing

the dependent variable f(x,y) and all derivatives up to second order, and using the default

linear ranking for differential degree (all differentiations have equal weight). This defines

the following equivalence classes:

{f[xx], f[xy], f[yy]}, {f[x], f[y]}, {f}

Now when comparing two monomials, the degree of the monomials in each equivalence class

is considered in turn, and if they are different, the one with greater degree is ranked higher.

Here are a few examples:

f[xx]^2*f[xy]*f[y]*f < f[yy]^4 Degree in second order derivatives

is 3 < 4

f[xy]*f[yy] < f[xx]^3 Degree in second order derivatives

is 2 < 3

f[xy]^2*f[yy]*f[y]*f^20 < Degree in first order derivatives

f[yy]^3*f[x]^2*f^3 is 1 < 2.

This does not fully determine a ranking, since if there were (for example) two terms that

were fourth degree in second order derivatives, this criterion would regard them as equal.

To fully specify the monomial ranking, we could add another criterion of the lex or ilex

type. If we added a lex criterion, namely [1,lex], then we would be looking at the degree of

the monomials in the indeterminates in their linearly ranked order. Again using the default

for the linear ranking, and considering the f(x,y) system up to second order we would get

the following:

{f[xx]},{f[xy]},{f[yy]},{f[x]},{f[y]},{f}
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This is presented in the same manner as the equivalence classes for the degree-type monomial

ranking.

f[xx]^2 f[xy] f[y] f < f[xx]^3 f[x] f Degree in f[xx] is 2 < 3.

f[xx]^2 f[yy] < f[xx]^2 f[xy] Degree in f[xy] is 0 < 1.

f[xy]^2 f[yy] f[x] f[y] f < Degree in f[x] is

f[xy]^2 f[yy] f[x]^2 f 1 < 2.

In summary, one should consider all the criteria as a list of equivalence classes, for which the

degree of the monomial in the indeterminates of the equivalence class determines the relative

monomial ranking. For grob rank=[[1,deg,diffdeg],[1,lex]], and the above examples, the

list of equivalence classes is given as follows:

[{f[xx], f[xy], f[yy]}, {f[x], f[y]}, {f}, {f[xx]}, {f[xy]}, {f[yy]},

{f[x]}, {f[y]}, {f}]}

One final detail – a bit more flexibility

You may have noticed that there is always a 1 present as the first element of each criterion,

but it is not discussed. This allows a bit more flexibility in the specification of the ranking,

as it allows for nesting of the criteria.

Consider again the earlier example where the criterion was specified as [[1,deg,diffdeg],[1,lex]].

Based on the above description, if the higher derivatives are of equal degree in each order of

derivative, then the degree of the lower order derivatives may be used to break the tie. This

may not be what is desired. Suppose one wants to examine the degree in the higher-order

derivatives, and if they are equal, to compare the higher-order derivatives lexicographically.

This can be accomplished through nesting. Any increase in the first element (integer) of a

criterion from the prior criterion indicates that the new criterion should be nested inside

the prior.

Consider our earlier example system with the new nested ranking [[1,deg,diffdeg],[2,lex]].

This would have the effect of changing the order of the combined equivalence classes to the

following:

[{f[xx], f[xy], f[yy]}, {f[xx]}, {f[xy]}, {f[yy]}, {f[x], f[y]},

{f[x]}, {f[y]}, {f}, {f}]
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This tells rifsimp to consider the degree of the monomial in second order derivatives, then

in each second order derivative in turn, then do the same for first order derivatives, etc.

Here are a few examples:

f[xx]^2 f[xy] f[y] f < f[yy]^4 Degree in second order derivatives

is 3 < 4.

f[xy]^2 f[yy] f[y]^6 < f[xx]^3 Degree in f[xx] is 0 < 3*.

f[yy]^3 f[y]^2 f^20 < Degree in first order derivative

f[yy]^3 f[x]^2 f^3 f[x] is 0 < 2*.

The comparisons with * will give different results for the non-nested ranking.

Examples

The following example arises from the parameterization of an ellipse (where we have used

PDEtools[declare] to compact the output and display the derivatives in primed notation.

> with(DEtools): with(PDEtools):

> declare(x(t),y(t),z(t),prime=t);

x (t) will now be displayed as x

y(t) will now be displayed as y

derivatives with respect to : t of functions of one variable will now be displayed wi\
th ′

z (t) will now be displayed as z
> sys1:=[diff(y(t),t)-x(t)^2-x(t),

> y(t)^4-2*y(t)^2*diff(z(t),t)+diff(z(t),t)^2

> -y(t)^2+2*diff(z(t),t),

> diff(x(t),t)^2+2*y(t)*diff(x(t),t)+y(t)^4];

sys1 := [y ′ − x2 − x, y4 − 2 y2 z ′ + z ′2 − y2 + 2 z ′, x ′2 + 2 y x ′ + y4]

Calling with the default ranking gives the following:

> ans1:=rifsimp(sys1);
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ans1 := table([Case = [[x ′ + y 6= 0, x ′′], [−y2 + z ′ + 1 6= 0, z ′′]],

Pivots = [x ′ + y 6= 0, −y2 + z ′ + 1 6= 0],Constraint = [x ′4 + 2 z ′2 x ′2 + z ′4 + 4 x ′3 y

+ 4 z ′2 y x ′ − 8 y3 x ′ + 6 z ′ x ′2 + 6 z ′3 + 12 z ′ y x ′ + 2 x ′2 + 11 z ′2 + 4 y x ′ − 3 y2

+ 6 z ′ = 0,

4 y2 x ′2 + 8 y3 x ′ − 6 z ′ x ′2 − 2 z ′3 − 12 z ′ y x ′ − x ′2 − 7 z ′2 − 2 y x ′ + 3 y2 − 6 z ′ = 0

, x ′2 + 2 y x ′ + y4 = 0, 2 y2 z ′ + x ′2 − z ′2 + 2 y x ′ + y2 − 2 z ′ = 0],

Solved = [x ′′ = −x (2 x + 2) y3 + x (x + 1) x ′

x ′ + y
,

z ′′ = −−x (2 x + 2) y3 − x (−2 x − 2) z ′ y − x (−x − 1) y

y2 − z ′ − 1
, y ′ = x (x + 1)]

])

So we have isolated ODE for y’, x” and z”, and four constraints involving x, y,x’, and z’.

> nops(ans1[Constraint]);

4

If instead we want to perform an elimination of x, then z, then y, we can specify this

through use of a lex ranking for the algebraic problem.

> ans2:=rifsimp(sys1,[[x],[z],[y]],grob_rank=[[1,lex]]);

ans2 := table([Case = [[−2 x − 1 6= 0, x ′], [y ′′ y 6= 0, x], [−y2 + z ′ + 1 6= 0, z ′′],

[(1 + 4 y ′) (4 y4 y ′ + y4 − y ′′2) 6= 0, y ′′′]],

Pivots = [−y ′′2 − y4 − 4 y4 y ′ 6= 0, y ′′ 6= 0, −y2 + z ′ + 1 6= 0, 4 y4 y ′ + y4 − y ′′2 6= 0],

Constraint = [y4 − 2 y2 z ′ + z ′2 − y2 + 2 z ′ = 0,

−16 y ′ y ′′2 y2 − 4 y ′′2 y2 + y ′′4 + 2 y ′′2 y4 + 8 y ′′2 y4 y ′ + y8 + 8 y8 y ′ + 16 y8 y ′2 =

0],

Solved = [x = −1

4

2 y ′′ y + y ′′2 + y4 + 4 y4 y ′

y ′′ y
, z ′′ = −−2 y3 y ′ + 2 y z ′ y ′ + y y ′

y2 − z ′ − 1
,

y ′′′ = −−12 y ′′ y4 y ′2 − 3 y ′′ y4 y ′ + y ′ y ′′3 − 8 y9 y ′ − 6 y ′′2 y5 − 2 y9 + 8 y ′′2 y3

4 y5 y ′ + y5 − y ′′2 y
]

])

so now we have isolated ODE for x and z”, an ODE in y”’ in terms of y alone, and two

constraints involving z’,y”,y’ and y.

For an example of the use of the grobonly and checkempty options we consider the

following algebraic system:
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> sys3:=Groebner[gbasis]([(b+a^2)^2,a^3-c],tdeg(a,b,c));

sys3 := [−3 b a c + b3 − 2 c2, 2 b c + a2 c + a b2, a c + b2 + 2 b a2, a3 − c]

If we call rifsimp with this system, and the inequation aˆ2+b<>0 we get:

> ans3_1:=rifsimp([op(sys3),a^2+b<>0],nopiv=[b],casesplit,grobonly);

ans3 1 := table([Pivots = [b + a2 6= 0],

Constraint =

[a3 − c = 0, a c + b2 + 2 b a2 = 0, 2 b c + a2 c + a b2 = 0, −3 b a c + b3 − 2 c2 = 0]

])

But with the additional option ’checkempty’ we get
> ans3_2:=rifsimp([op(sys3),a^2+b<>0],nopiv=[b],casesplit,grobonly,

> checkempty);

ans3 2 := table([status = “system is inconsistent”])

because ans3 1 represents an empty case.
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A.10 maxdimsystems - determination of maximum dimen-

sional subsystems of systems of PDE

Calling Sequences

maxdimsystems(system, maxdimvars)

maxdimsystems(system, maxdimvars, options)

Parameters

system - list or set of ODE or PDE (may contain inequations)

maxdimvars - list of the dependent variables used for the dimension count

options - (optional) sequence of options to control the behavior of maxdimsystems

Description

The default output of maxdimsystems (modulo *** below) consists of the set of cases

having maximal dimension in maxdimvars, where each member has the form:

[Solved = list, Constraint = list, Pivots = list, dimension = integer]

Solved is a list of the PDE which are in solved form with respect to their highest derivative

(with respect to the given ranking of derivatives), Constraint is a list of the PDEs in

the classvars (any dependent variables not in maxdimvars) which are nonlinear in their

leading derivatives, Pivots is a list of the inequations in the classvars and/or maxdimvars,

and dimension is the maximal degree of arbitrariness in maxdimvars (i.e. the number of

arbitrary constants on which maxdimvars depends).

*** The result is valid provided that the Constraint and Pivots equations have a so-

lution, and also that maxdimvars do not occur in the constraint equations. The user must

check the first condition algebraically (e.g. see Groebner[gsolve], and possibly diffalg).

If the maxdimvars are present in the pivots, then the returned system will have lower

dimension that indicated, and must be handled manually.

Each of the cases is in rifsimp form (a generalization of Gauss normal form to systems of

PDE) and also contains a system of differential equations and inequations in the classvars

characterizing the case. In the same way that the Gauss normal form is determined by a
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ordering of variables, rifsimp form is determined by a ranking of derivatives.

The default ranking is determined by maxdimvars. It can be inferred by the application of

checkrank, and always ranks the classvars and their derivatives lower than all maxdimvars.

The maximal cases can be determined in many applications where a complete analysis

of all cases is not possible. These cases are often the most interesting, with the richest

properties, when compared to the relatively uninteresting (but often difficult to compute)

lower dimensional cases.

The options for maxdimsystems consist of the output option (described below), and a

subset of those for rifsimp, the main subroutine used by maxdimsystems. Of the subset

of rifsimp options available, two that are often used are indep which specifies the inde-

pendent variables, ezcriteria which controls the flow of equations from a fast (ultra-hog)

setting (that can readily lead to memory explosion but sometimes faster calculations), to

a conservative (one equation at a time) setting that can overcome some expression swell

problems. The complete list is given by:

tosolve, indep, arbitrary, clean, fullclean See rifsimp[options]

ezcriteria, faclimit See rifsimp[adv_options]

mindim, pivselect See rifsimp[cases]

grob_rank,grobonly,checkempty See rifsimp[nonlinear]

Many rifsimp options are not supported by maxdimsystems as their use could produce

misleading results. For example, the rifsimp option ctl=time, places a time limit on

rifsimp case computations, and hence could cause maxdimsystems to miss the maximal

case if it takes too long to compute. Conversely, specification of other options are not

supported as they must have a specific value for the maxdimsystems command to function

properly (for example, casesplit must always be on). Other unsupported rifsimp options

include itl, stl, nopiv, unsolved, pivsub, store, storeall, spawn, spoly, and casecount.

output = type

The output type can either be set (default) or rif. Note that set output is easier to read

and manipulate, but cannot be used with the caseplot visualization tool. The rif output

can be used with caseplot, but the output is somewhat more complicated, and is described

in rifsimp[output]. Note that for the class of problems that maxdimsystems simplifies,
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many of the outputs from rifsimp described in the output page ( such as DiffConstraint

and UnSolve) will never be present in the output.

The maxdimsystems command allows a subset of the rankings available for rifsimp.

Specifically those rankings that are controlled by a partition of the dependent variables in

maxdimvars, and those available by the order of the independent variables in indep. See

rifsimp[ranking] and checkrank for an explanation of how to specify rankings based on

these options.

The application of caseplot to the rif -form output of maxdimsystems with the second

argument given as the maxdimvars displays the tree of maximal cases and their dimensions,

also indicating which branches of the tree have less than maximal dimension.

Note that maxdimsystems is essentially a simplified version of the rifsimp interface that

also has the ability to automatically determine the maximum finite dimensional cases or

all infinite dimensional cases for a classification ODE/PDE system. If the dimension of

the solution space is known, multiple conditions on the dimension of the solution space are

needed, or much finer control of the computation is desired, then rifsimp could be used

with the mindim option described in rifsimp[cases].

References:

G.J. Reid and A.D. Wittkopf, ”Determination of Maximal Symmetry Groups of Classes of

Differential Equations”, Proc. ISSAC 2000, pp.272-280

G.W. Bluman and S. Kumei, ”Symmetries and Differential Equations”, Springer-Verlag,

vol. 81.

Examples

> with(DEtools):

Algebraic systems can be examined with maxdimsystems

> maxdimsystems([ u - a*v = 0, u - c*v = 0], [u,v]);

{[Solved = [u = c v, a = c], Constraint = [ ], Pivots = [ ], dimension = 1]}

In the below example, inequations are given in the Pivots list, and the dimension is 2
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> maxdimsystems([ (a(x)-d(x))*diff(u(x),x,x) +

> b(x)*diff(u(x),x) + u(x) = 0],

> [u]);

{[

Solved =

[

∂2

∂x2 u(x) =
−b(x) ( ∂

∂x u(x)) − u(x)

a(x) − d(x)

]

, Pivots = [a(x) − d(x) 6= 0],

dimension = 2, Constraint = [ ]

]}

This next example has a constraint on the classvars present in the result
> maxdimsystems([diff(u(x,y),x) - f(x,y)*u(x,y) = 0,

> diff(u(x,y),y) - g(x,y)*u(x,y) = 0,

> f(x,y)^3 - 1 = 0], [u]);

{[Solved = [ ∂
∂x u(x, y) = f(x, y) u(x, y), ∂

∂y u(x, y) = g(x, y) u(x, y), ∂
∂x f(x, y) = 0,

∂
∂x g(x, y) = 0, ∂

∂y f(x, y) = 0], Constraint = [f(x, y)3 − 1 = 0], Pivots = [ ],

dimension = 1]}
In each of the above examples maxdimsystems picked out the maximum dimensional case.

This is in contrast to rifsimp, with its casesplit option, which obtains all cases.

For the second example, computation with rifsimp using casesplit gives 2-d, 1-d and 0-d

cases, of which the 2-d case is the maximal case from the above example.
> ans := rifsimp([ (a(x)-d(x))*diff(u(x),x,x) +

> b(x)*diff(u(x),x) + u(x) = 0],

> [u], casesplit);
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ans := table([1 = table([Case = [[a(x) − d(x) 6= 0, ∂2

∂x2 u(x)]],

Solved =

[

∂2

∂x2 u(x) =
−b(x) ( ∂

∂x u(x)) − u(x)

a(x) − d(x)

]

,

Pivots = [a(x) − d(x) 6= 0]

]), 2 = table([Case = [[a(x) − d(x) = 0, ∂2

∂x2 u(x)], [b(x) 6= 0, ∂
∂x u(x)]],

Solved = [ ∂
∂x u(x) = −u(x)

b(x)
, a(x) = d(x)],

Pivots = [b(x) 6= 0]

]), 3 = table([Case = [[a(x) − d(x) = 0, ∂2

∂x2 u(x)], [b(x) = 0, ∂
∂x u(x)]],

Solved = [u(x) = 0, a(x) = d(x), b(x) = 0]

]),

casecount = 3
])

from which the caseplot with initial data counts could be viewed by issuing the command:

> caseplot(ans,[u]);

One example of practical use of maxdimsystems is the determination of the forms of f(y’)

(where f(y’) is not identically zero) for which the ode y”=f(y’) has the maximum dimen-

sion.

> ODE:=diff(diff(y(x),x),x)=f(diff(y(x),x));

ODE := ∂2

∂x2 y(x) = f( ∂
∂x y(x))

> symeq:=[DEtools[odepde](ODE, [xi(x,y),eta(x,y)])];

symeq := [(−3 y1 ( ∂
∂y ξ(x, y)) − 2 ( ∂

∂x ξ(x, y)) + ( ∂
∂y η(x, y))) f( y1 )+

(− y1 ( ∂
∂y η(x, y)) + y1 2 ( ∂

∂y ξ(x, y)) + y1 ( ∂
∂x ξ(x, y)) − ( ∂

∂x η(x, y)))

( ∂
∂ y1

f( y1 )) + ( ∂2

∂x2 η(x, y)) + ( ∂2

∂y2 η(x, y)) y1 2 − ( ∂2

∂y2 ξ(x, y)) y1 3

− 2 ( ∂2

∂y ∂x ξ(x, y)) y1 2 + 2 ( ∂2

∂y ∂x η(x, y)) y1 − y1 ( ∂2

∂x2 ξ(x, y))]

where the above symeq is an overdetermined system of PDE in the infinitesimal symmetries

xi(x,y),eta(x,y).

So we compute the maximum dimensional case which, is not displayed as it is quite large:
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> t1 := time():

> msys:= maxdimsystems([op(symeq),f(_y1)<>0],[xi,eta]):

> time()-t1;

3.471

> nops(msys);

1

> length(msys[1]);

5362

> msys[1][4];

dimension = 8

> remove(has,rhs(msys[1][1]),[xi,eta]);

[ ∂4

∂ y14 f( y1 ) = 0]

from which we see that we have one case, of dimension 8, and it occurs when the displayed

ODE in f( y1) is satisfied. This classical result is also explored in the ISSAC Proc. article

listed in the references (the primary reference for this command).

The timing above should be compared to the rifsimp full case analysis that takes signifi-

cantly longer, and has a great number of lower dimensional cases:
> t2 := time():

> rsys:= rifsimp([op(symeq),f(_y1)<>0],[xi,eta],’casesplit’):

> time()-t2;

88.840

> rsys[’casecount’];

11

Consider the nonlinear Heat equation

> diff(u(x,t),t) = diff( k(u(x,t))*diff(u(x,t),x), x);

∂
∂t u(x, t) = D(k)(u(x, t)) ( ∂

∂x u(x, t))2 + k(u(x, t)) ( ∂2

∂x2 u(x, t))

The overdetermined system for it’s symmetries X,T,U is given by



APPENDIX A. THE RIFSIMP IMPLEMENTATION HELP PAGES 295

> sys:= [

> -2*diff(T(u,t,x),x),

> diff(diff(U(u,t,x),u),u)-2*diff(diff(X(u,t,x),u),x)+U(u,t,x)

> *diff(diff(k(u),u),u)/k(u)+1/k(u)*diff(k(u),u)*diff(U(u,t,x),u)

> -U(u,t,x)/k(u)^2*diff(k(u),u)^2,

> 1/k(u)*diff(X(u,t,x),u)*diff(k(u),u)-diff(diff(X(u,t,x),u),u),

> diff(diff(U(u,t,x),x),x)-1/k(u)*diff(U(u,t,x),t),

> 1/k(u)*diff(T(u,t,x),t)+U(u,t,x)/k(u)^2*diff(k(u),u)

> -diff(diff(T(u,t,x),x),x)-2/k(u)*diff(X(u,t,x),x),

> -diff(diff(X(u,t,x),x),x)+2*diff(diff(U(u,t,x),u),x)+1/k(u)

> *diff(X(u,t,x),t)+2*diff(k(u),u)/k(u)*diff(U(u,t,x),x),

> -2*diff(k(u),u)/k(u)*diff(T(u,t,x),x)-2/k(u)*diff(X(u,t,x),u)

> -2*diff(diff(T(u,t,x),u),x),

> -1/k(u)*diff(k(u),u)*diff(T(u,t,x),u)-diff(diff(T(u,t,x),u),u),

> -2*diff(T(u,t,x),u)]:

At the same time as determining maximum dimensional cases, one can request, through

a partitioning of the maxdimvars, that the dependent variables be ranked in a specific

manner. To always isolate derivatives of U(u,t,x) in terms of the other dependent variables,

one could specify maxdimvars=[[U],[X,T]]. For this problem we would obtain

> maxdimsystems([op(sys),diff(k(u),u)<>0],[[U],[X,T]]);










Solved =




U(u, t, x) =

k(u) (−( ∂
∂t T(u, t, x)) + 2 ( ∂

∂x X(u, t, x)))
∂
∂u k(u)

, ∂3

∂x3 X(u, t, x) = 0,

∂2

∂t2
T(u, t, x) = 0, ∂

∂u X(u, t, x) = 0, ∂
∂u T(u, t, x) = 0, ∂

∂t X(u, t, x) = 0,

∂
∂x T(u, t, x) = 0, ∂2

∂u2 k(u) =
7

4

( ∂
∂u k(u))2

k(u)




 , Constraint = [ ], Pivots = [ ∂

∂u k(u) 6= 0],

dimension = 5
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Alternatively we could try to obtain PDE only in U(u,t,x) and the classifying function

k(u) by an elimination ranking:

> maxdimsystems([op(sys),diff(k(u),u)<>0],[[X,T],[U]]);









Solved =



 ∂2

∂x2 X(u, t, x) =
1

2

( ∂
∂uk(u)) ( ∂

∂xU(u, t, x))

k(u)
, ∂

∂uX(u, t, x) = 0, ∂
∂uT(u, t, x) = 0,

∂
∂tX(u, t, x) = 0, ∂

∂tT(u, t, x) =
−U(u, t, x) ( ∂

∂uk(u)) + 2 ( ∂
∂xX(u, t, x)) k(u)

k(u)
,

∂
∂xT(u, t, x) = 0, ∂2

∂x2 U(u, t, x) = 0, ∂
∂uU(u, t, x) = −3

4

U(u, t, x) ( ∂
∂uk(u))

k(u)
,

∂
∂tU(u, t, x) = 0, ∂2

∂u2 k(u) =
7

4

( ∂
∂uk(u))2

k(u)



 , Constraint = [ ], Pivots = [ ∂
∂u k(u) 6= 0],

dimension = 5











where you can see from the above that we have three PDE for U(u,t,x) alone (which can

be quite easily solved for U(u,t,x) in terms of a function that is linear in x with coefficients

as integrals in u depending on k(u)).

Both computations show that maximal group is of dimension 5, and occurs when k(u)

satisfies k” = 7/4 (k’)ˆ2/k. This is a known result (see the Bluman/Kumei reference).

In determining how a specific ranking will be used in a system, one should consult the

checkrank help page.

The final example demonstrates how to find near-maximal cases, and how to obtain rif -

style output. Say we want all cases having dimension 3 or greater, and we want the rifsimp

output (so we can display the information in a case plot). This can be done as follows:
> rifans:=maxdimsystems([op(sys),diff(k(u),u)<>0],[X,T,U],mindim=4,

> output=rif);
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rifans := table([1 = table([dimension = 3,UnClass = [0 = U(u, t, x)( ∂
∂u k(u))2

( ∂2

∂u2 k(u)) − 2 U(u, t, x) ( ∂2

∂u2 k(u))2 k(u) + U(u, t, x) ( ∂
∂u k(u)) k(u) ( ∂3

∂u3 k(u))],

Case = [[%4 6= 0, U(u, t, x)]], status = “free count fell below mindim”,

Solved =






∂2

∂x2 X(u, t, x) =
1

2

( ∂
∂u k(u)) ( ∂

∂x U(u, t, x))

k(u)
, ∂

∂u U(u, t, x) =

−U(u, t, x) (%2 − ( ∂
∂u k(u))2)

( ∂
∂u k(u)) k(u)

, ∂
∂t X(u, t, x) =

1

2

( ∂
∂x U(u, t, x)) %3

∂
∂u k(u)

, %1




 ,

DiffConstraint = [0 = 8 ( ∂
∂x U(u, t, x)) ( ∂2

∂u2 k(u)) k(u) ( ∂
∂u k(u))2

+ 4 ( ∂
∂x U(u, t, x)) ( ∂

∂u k(u)) ( ∂3

∂u3 k(u)) k(u)2

−8 ( ∂
∂x U(u, t, x)) ( ∂2

∂u2 k(u))2 k(u)2 − 7 ( ∂
∂x U(u, t, x)) ( ∂

∂u k(u))4],

Pivots = [ ∂
∂u k(u) 6= 0]]),

2 = table([dimension = 4, Case = [[%4 = 0, U(u, t, x)], [%3 6= 0, ∂
∂x U(u, t, x)]],

Solved =






∂2

∂x2 X(u, t, x) = 0, ∂
∂u X(u, t, x) = 0, ∂

∂u T(u, t, x) = 0, ∂
∂u U(u, t, x) =

U(u, t, x) (−%2 + ( ∂
∂u k(u))2)

( ∂
∂u k(u)) k(u)

, ∂
∂t X(u, t, x) = 0, %1, ∂

∂t U(u, t, x) = 0,

∂
∂xT(u, t, x) = 0, ∂

∂xU(u, t, x) = 0, ∂3

∂u3 k(u) = −( ∂2

∂u2 k(u))(( ∂
∂uk(u))2 − 2 %2)

( ∂
∂uk(u))k(u)




 ,

Pivots = [%3 6= 0]]),

3 = table([dimension = 5, Case = [[%4 = 0, U(u, t, x)], [%3 = 0, ∂
∂x U(u, t, x)]],

Solved =



 ∂2

∂x2 X(u, t, x) =
1

2

( ∂
∂u k(u)) ( ∂

∂x U(u, t, x))

k(u)
, ∂2

∂x2 U(u, t, x) = 0,

∂
∂u X(u, t, x) = 0, ∂

∂u T(u, t, x) = 0, ∂
∂u U(u, t, x) = −3

4

U(u, t, x) ( ∂
∂u k(u))

k(u)
,

∂
∂t X(u, t, x) = 0, %1, ∂

∂t U(u, t, x) = 0, ∂
∂x T(u, t, x) = 0,

∂2

∂u2 k(u) =
7

4

( ∂
∂u k(u))2

k(u)



 ,Pivots = [ ∂
∂u k(u) 6= 0]]),

casecount = 3])



APPENDIX A. THE RIFSIMP IMPLEMENTATION HELP PAGES 298

%1 := ∂
∂t T(u, t, x) =

−U(u, t, x) ( ∂
∂u k(u)) + 2 ( ∂

∂x X(u, t, x)) k(u)

k(u)

%2 := ( ∂2

∂u2 k(u)) k(u)

%3 := −7 ( ∂
∂u k(u))2 + 4 %2

%4 := ( ∂
∂u k(u))2 ( ∂2

∂u2 k(u)) − 2 ( ∂2

∂u2 k(u))2 k(u) + ( ∂
∂u k(u)) k(u) ( ∂3

∂u3 k(u))

All cases where the initial data was smaller than the bound are tagged with a status of ”free

count fell below mindim”. This calculation can then be displayed in a caseplot with the

command:

> caseplot(rifans,[X,T,U]);
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A.11 initialdata - find initial data for a solved-form ODE or

PDE system

Calling Sequence

initialdata(system)

initialdata(system,vars)

initialdata(rifresult)

initialdata(rifresult,vars)

Parameters

system - list or set of polynomially nonlinear PDEs or ODEs in solved form

vars - the dependent variables to compute the initial data with respect to

rifresult - a single case result as returned by rifsimp

Description

The initialdata function determines the initial data required to obtain a formal power

series solution for a PDE or ODE system at a point (see rtaylor). The input system

must be in standard or involutive form, so all equations must be of the form derivative

= expression, and there must be no additional relations between the dependent variables

that are not accounted for by the equations of the system. It can be used on any PDE

or ODE system in isolated form, as well as for a single case result output by rifsimp. In

general, all integrability conditions (equality of mixed partials) must be satisfied to obtain

an accurate answer, so it is best to use rifsimp to simplify the system before calculation of

the initial data.

The optional vars argument allows specification of the variables to compute the initial data

of. This option is useful for classification problems, where different dependent variables play

different roles in the system. This option also provides a way to specify the variables of a

problem and their dependencies (in the event that one of the dependent variables does not

appear in the Solved list, for example).

The output is given in table form with the Finite entry containing the required zero di-

mensional initial data (constants), and the Infinite entry containing the required higher
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dimensional data (functions).

When the input to initialdata is a rifresult, then additional information is provided on

output. As well as the infinite and finite initial data, the resulting table may contain a

Pivots and/or Constraint entry (if these entries are present in the rifresult). These

returned lists of equations are given in terms of the initial data.

When Constraint equations are present in the result, these equations must be satisfied by

the initial data for the underlying system to be ’well posed’. These Constraints must be

accounted for manually.

Notes:

When not using the rifresult form of the initialdata call, any nonlinear constraints must

be converted to initial data form and imposed manually.

The initial data required for a system is independent of the right hand side of the solved

form equations, so for the examples below we may simply ignore the right hand side.

Background Information: Formal Power Series and the initialdata algorithm

Being able to obtain a formal power series solution of a PDE or ODE system at a point

essentially means that the values of all derivatives of the solution at that point are known,

or can be found through differential relations from the system.

As a simple example, consider the ODE in u(x), u” = u u’ (where prime notation is used

to denote differentiation). Here the initial data would simply be u(x0) and u’(x0). With

this data and the ODE, we could then determine u”(x0) = u(x0) u’(x0), and from the

derivative of the ODE, we could obtain u”’(x0) = u’(x0)ˆ2+u(x0) u”(x0), and so on.

Knowledge of all derivatives then allows us to write u(x) = u(x0)+(x-x0) u’(x0)+(x-

x0)ˆ2 u(x0) u’(x0)/2+‘...‘ to any desired order.

As an example of the initialdata algorithm in two dimensions, consider the following sys-

tem:

> sys := [diff(f(x,y),x,x,x)=0,diff(f(x,y),x,y)=0];

sys := [ ∂3

∂x3 f(x, y) = 0, ∂2

∂y ∂x f(x, y) = 0]

> initialdata(sys);
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table([Infinite = [f(x0, y) = F1(y)],

Finite = [D1(f)(x0, y0) = C1 , D1, 1(f)(x0, y0) = C2 ]

])

In this case we have one arbitrary function and two arbitrary constants. Plots can be

used to visualize how the initialdata algorithm calculates this data. Consider an integer-

valued graph where the x-axis represents differentiation by x, and the y-axis represents

differentiation by y. Looking at f[xxx] from our original system, we can place dots at that

value and at all of its derivatives:
> d1:=[3,0],[4,0],[3,1],[4,1],[3,2],[4,2],[3,3],[4,3],[3,

> plot([d1], x=-0.1..4.1, y=-0.1..4.1, style=point,

> xtickmarks=[0,1,2,3,4], ytickmarks=[0,1,2,3,4]);

4 + H H

|

|

3 + H H

|

|

2 + H H

|

|

1 + H H

|

|

-+--------+--------+--------*--------*-

| 1 2 3 4

Note, for example, that the point (4,1) corresponds to f[xxxxy], which can be obtained

from the differentiation of f[xxx] with respect to x and y. Adding in all derivatives that

are known from the f[xy] equation gives the following graph:
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> d2:=[1,1],[2,1],[3,1],[4,1],[1,2],[2,2],[3,2],[4,2],

> [1,3],[2,3],[3,3],[4,3],[1,4],[2,4],[3,4],[4,4]:

> plot([d1,d2], x=-0.1..4.1, y=-0.1..4.1, style=point,

> xtickmarks=[0,1,2,3,4], ytickmarks=[0,1,2,3,4]);

4 + A A A A

|

|

3 + A A A A

|

|

2 + A A A A

|

|

1 + A A A A

|

|

-+--------+--------+--------*--------*-

| 1 2 3 4

Now the objective is simply to fill in all missing points. From our graph we can see that

all points of the form (0,i) are missing, which explains the arbitrary function of y in the

answer. This function describes the data for all y derivatives of f. We still require the points

(1,0) and (2,0), which correspond to the arbitrary constants present in the answer for the

values of f[x] and f[xx], as given in the Finite list.

Examples

> with(DEtools):

> sys1:=[diff(f(x,y,z),x,x)=0,diff(f(x,y,z),y)=0,diff(f(x,y,z),z)=0];

sys1 := [ ∂2

∂x2 f(x, y, z) = 0, ∂
∂y f(x, y, z) = 0, ∂

∂z f(x, y, z) = 0]

This system is fully specified if the following derivatives are known.

> initialdata(sys1);

table([Finite = [f(x0, y0, z0) = C1 , ∂
∂x f(x0, y0, z0) = C2 ], Infinite = []])
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For this next system, the initial data contains a number of arbitrary functions of one variable.
> sys2:=[diff(f(x,y,z),x,y)=0,diff(f(x,y,z),x,z)=0,

> diff(f(x,y,z),y,z)=0];

sys2 := [ ∂2

∂y ∂x f(x, y, z) = 0, ∂2

∂z ∂x f(x, y, z) = 0, ∂2

∂z ∂y f(x, y, z) = 0]

> initialdata(sys2);

table([Finite = [],

Infinite = [f(x, y0, z0) = F1(x), ∂
∂y f(x0, y, z0) = F2(y), ∂

∂z f(x0, y0, z) = F3(z)]

])

For the next system, the initial data contains a number of arbitrary functions of two vari-

ables.

> sys3:=[diff(f(x,y,z),x,y,z)=0];

sys3 := [ ∂3

∂z ∂y ∂x f(x, y, z) = 0]

> initialdata(sys3);

table([Finite = [],

Infinite =

[f(x, y, z0) = F1(x, y), ∂
∂z f(x, y0, z) = F2(x, z), ∂2

∂z ∂y f(x0, y, z) = F3(y, z)]

])

Of course, we must include the one-dimensional heat equation.

> sys4:=[diff(u(x,t),t)=diff(u(x,t),x,x)];

sys4 := [ ∂
∂t u(x, t) = ∂2

∂x2 u(x, t)]

> initialdata(sys4);

table([Finite = [], Infinite = [u(x, t0) = F1(x)]])

This example is a system that contains mixed data:
> sys5:=[diff(f(x,y,z),x,y,y)=0,diff(f(x,y,z),x,z)=0,diff(f(x,y,z),y,z,

> z)=0];

sys5 := [ ∂3

∂y2 ∂x
f(x, y, z) = 0, ∂2

∂z ∂x f(x, y, z) = 0, ∂3

∂z2 ∂y
f(x, y, z) = 0]

> initialdata(sys5);
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table([Finite = [ ∂2

∂z ∂y f(x0, y0, z0) = C1 ],

Infinite = [f(x, y0, z0) = F1(x), ∂
∂y f(x, y0, z0) = F2(x), ∂

∂z f(x0, y0, z) = F3(z),

∂2

∂y2 f(x0, y, z0) = F4(y), ∂3

∂z ∂y2 f(x0, y, z0) = F5(y)]

])

And an example of use of initialdata with a nonlinear rif result:

> sys6:=[diff(u(x),x,x)^2*u(x)+diff(u(x),x)^3];

sys6 := [( ∂2

∂x2 u(x))2 u(x) + ( ∂
∂x u(x))3]

> rif6:=rifsimp(sys6);

rif6 := table([Solved =

[

∂3

∂x3 u(x) =
1

2

−( ∂2

∂x2 u(x)) ( ∂
∂x u(x)) − 3 ( ∂

∂x u(x))2

u(x)

]

,

Pivots = [ ∂2

∂x2 u(x) 6= 0], Constraint = [( ∂2

∂x2 u(x))2 u(x) + ( ∂
∂x u(x))3 = 0],

Case = [[u(x) 6= 0, ( ∂2

∂x2 u(x))2], [ ∂2

∂x2 u(x) 6= 0, ∂3

∂x3 u(x)]]

])
> initialdata(rif6);

table([Pivots = [ C3 6= 0], Constraint = [ C3 2 C1 + C2 3 = 0],

Finite = [u(x0) = C1 , ∂
∂x u(x0) = C2 , ∂2

∂x2 u(x0) = C3 ],

Infinite = []

])

where it is understood that the selected initial data must obey the nonlinear constraint (so

in truth we only have two free parameters) and must not violate the pivots (so C3<>0,

and as a result C2<>0).
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A.12 rtaylor - obtain the Taylor series for an ODE or PDE

system

Calling Sequences

rtaylor(solved, options)

rtaylor(solved, vars, options)

Parameters

solved - system in solved form

vars - (optional) solving variables of the system

options - (optional) sequence of options to specify the ranking for the solved form, initial

data, and the order of the Taylor series

Description

The rtaylor function uses an output rifsimp form to obtain local Taylor series expansions

for all dependent variables in the ODE or PDE system simultaneously. The Taylor series

output is a list containing equations of the form depvar(indepvars)=Taylor series.

The ranking related options that are accepted by rtaylor include the specification of the

vars as a ranking, and the ranking and indep options described in rifsimp[ranking],

rifsimp[options], and rifsimp[adv options].

Note: specification of different vars than those used to obtain the result from rifsimp can

give incomplete results.

The order=n option specifies the order that the Taylor series should be computed to, and

must be a non-negative integer. The default value is 2.

The table resulting from a call to initialdata can be given as an option to rtaylor, in

which case the Taylor series will be given in terms of the functions present in the initial

data.

In general, any Constraint or DiffConstraint relations (see rifsimp[nonlinear]) in the

rif form cannot be used in an automatic way, so they are ignored. These relations must

be accounted for manually after the Taylor series calculation. Special care must be taken
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when DiffConstraint relations are present, because all derivatives of these relations must

be manually accounted for. This is not the case for Constraint relations, as they are purely

algebraic.

The requirement that the input solved form be in rif form can be relaxed mildly, but

rtaylor still requires that the equations are in a valid solved form that matches the input

ranking (given in the options), and have no integrability conditions remaining. Only when

these conditions hold is the resulting Taylor series an accurate representation of the local

solution.

Examples

> with(DEtools):

A simple ODE

> rtaylor([diff(f(x),x,x)=-f(x)],order=4);

[f(x) = f(x0) + ( ∂
∂x f(x0)) (x − x0) −

1

2
f(x0) (x − x0)

2 − 1

6
( ∂

∂x f(x0)) (x − x0)
3

+
1

24
f(x0) (x − x0)

4]

A PDE system with a single dependent variable
> rtaylor([diff(f(x,y),y,y)=diff(f(x,y),x)*f(x,y),

> diff(f(x,y),x,x)=2*f(x,y)], order=3);

[f(x, y) = f(x0, y0) + %1 (x − x0) + ( ∂
∂y f(x0, y0)) (y − y0) + f(x0, y0) (x − x0)

2

+ ( ∂2

∂y ∂x f(x0, y0)) (x − x0) (y − y0) +
1

2
%1 f(x0, y0) (y − y0)

2 +
1

3
%1 (x − x0)

3

+ ( ∂
∂y f(x0, y0)) (x − x0)

2 (y − y0) +
1

2
(2 f(x0, y0)

2 + %12) (x − x0) (y − y0)
2

+
1

6
(( ∂2

∂y ∂x f(x0, y0)) f(x0, y0) + %1 ( ∂
∂y f(x0, y0))) (y − y0)

3]

%1 := ∂
∂x f(x0, y0)

A PDE system with two dependent variables
> rtaylor([diff(f(x,y),x,x)=diff(g(x,y),y),

> diff(f(x,y),y,y)=diff(g(x,y),x),

> diff(g(x,y),x)=diff(g(x,y),y)]);
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[f(x, y) = f(x0, y0) + ( ∂
∂x f(x0, y0)) (x − x0) + ( ∂

∂y f(x0, y0)) (y − y0) +
1

2
( ∂

∂y g(x0, y0)) (x − x0)
2

+ ( ∂2

∂y ∂x f(x0, y0)) (x − x0) (y − y0) +
1

2
( ∂

∂x g(x0, y0)) (y − y0)
2, g(x, y) = g(x0, y0)

+ ( ∂
∂y g(x0, y0)) (x − x0) + ( ∂

∂y g(x0, y0)) (y − y0) +
1

2
( ∂2

∂y2 g(x0, y0)) (x − x0)
2

+ ( ∂2

∂y2 g(x0, y0)) (x − x0) (y − y0) +
1

2
( ∂2

∂y2 g(x0, y0)) (y − y0)
2]

An example using initial data

> sys := {diff(f(x,y),x,x)=0,diff(f(x,y),x,y)=0};
sys := { ∂2

∂y ∂x f(x, y) = 0, ∂2

∂x2 f(x, y) = 0}
> id := initialdata(sys);

id := table([Finite = [ ∂
∂x f(x0, y0) = C1 ], Infinite = [f(x0, y) = F1(y)]])

> rtaylor(sys, id, order=3);

[f(x, y) = F1(y0) + C1 (x − x0) + ( ∂
∂y F1(y0)) (y − y0) +

1

2
( ∂2

∂y2 F1(y0)) (y − y0)
2

+
1

6
( ∂3

∂y3 F1(y0)) (y − y0)
3]
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A.13 caseplot - provide a graphical display of binary case

tree output from rifsimp

Calling Sequences

caseplot(rifresult)

caseplot(rifresult, options)

Parameters

rifresult - output from rifsimp with casesplit active

Description

The caseplot function provides a graphical display of the binary case tree resulting from a

rifsimp calculation, or a maxdimsystems calculation using the output=rif option.

Note that rifsimp must have been called with the casesplit option to obtain multiple

cases.

For the graphical display of the case structure to be meaningful, the computation must have

obtained more than a single case. For more information on cases and casesplit options, see

rifsimp[cases]. For information on the output format for rifsimp, see rifsimp[output].

When the rifsimp algorithm splits a system into cases, depending on the complexity of the

original system, the number of cases can be quite large. The caseplot command has been

provided for quick examination of the case tree to allow for more efficient use of the results

of rifsimp.

The case tree is plotted with the cases corresponding to pivot <> 0 on the left, and those

corresponding to pivot = 0 on the right. Numbers are displayed for all cases at the leaves

of the tree, corresponding to each the solution case in the input rifsimp solution.

When the caseplot function is called with the optional argument vars, a list of dependent

variable names, initial data for the system with respect to those dependent variables is also

computed, and displayed on the case tree below each case number. For more information

on computation of initial data for ODE and PDE systems, please see initialdata.

The optional argument pivots tells caseplot to display information on the pivots that rep-

resent the case splittings in the displayed case structure. On the plot each case splitting will
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have a reference of the form p<i>, and a legend will be printed giving the correspondence

between the pivot references (p<i>) and the actual pivots.

The branches of the tree are color coded, using the following conventions:

Black Regular case

Red Inconsistent case: no solution exists for this case.

Yellow Error or timeout case: the error is typically caused by a Maple

"object too large" error, while the timeouts are controlled

using the ctl,stl,itl options (see rifsimp[options]).

Blue Ignored case: use of the casesplit=[...] option told rifsimp

not to explore this case (see rifsimp[adv_options])..

Green Ignored case: specification of mindata=[...] was violated,

so rifsimp ignored this case (see rifsimp[adv_options])..

The yellow cases are important, as they indicate an incomplete calculation. When yellow

cases are present in the plot, a message is printed indicating the status of each of these cases

(for example, ’time expired’ or ’object too large’).

Messages are also produced prior to the display of the plot when an initial data computation

is specified through use of the vars argument. The case and computed dimension of the

initial data is displayed.

Examples

> with(DEtools):

As a first example, we choose the simplest system with a case split:

> sys1:=[f(x)*g(x)=0];

sys1 := [f(x) g(x) = 0]

> ans1:=rifsimp(sys1,casesplit);



APPENDIX A. THE RIFSIMP IMPLEMENTATION HELP PAGES 310

ans1 := table([1 = table([Solved = [f(x) = 0], Pivots = [g(x) 6= 0],

Case = [[g(x) 6= 0, f(x)]]]), 2 = table([Solved = [g(x) = 0], Case = [[g(x) = 0, f(x)]]]),

casecount = 2
])

> caseplot(ans1);

So if you were to run the command (it cannot be run in a help page), you would notice that

we have two cases (cases 1 and 2), and that both give answers (the tree branches are black).
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A.14 checkrank - illustrate ranking to be used for a rifsimp

calculation

Calling Sequences

checkrank(system, options)

checkrank(system, vars, options)

Parameters

system - list or set of polynomially nonlinear PDEs or ODEs (may contain inequations)

vars - (optional) list of the dependent variables to solve for

options - (optional) sequence of options to control the behavior of checkrank

Description

To simplify systems of PDEs or ODEs, a ranking must be defined over all indeterminates

present in the system. The ranking allows the algorithm to select an indeterminate for

which to solve algebraically when looking at an equation. The checkrank function can be

used to understand how the ranking-associated options define a ranking in rifsimp. For

more detailed information about rankings, please see rifsimp[ranking].

The checkrank function takes in the system as input along with the options:

vars List of dependent variables (See Following)

indep=[indep vars] List of independent variables (See Following)

ranking=[...] Specification of exact ranking (See rifsimp[ranking])

degree=n Use all derivatives to differential order n.

The output is a list that contains the derivatives in the system ordered from highest to

lowest rank. If degree is given, all possible derivatives of all dependent variables up to the

specified degree are used; otherwise, only the derivatives present in the input are used.

Default Ranking
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When simplifying a system of PDEs or ODEs, you may want to eliminate higher order

derivatives in favor of lower order derivatives. Do this by using a ranking by differential

order, as is the default for rifsimp. Unfortunately, this says nothing about how ties are

broken, for example, between two third order derivatives.

The breaking of ties is accomplished by first looking at the differentiations of the derivative

with respect to each independent variable in turn. If they are of equal order, then the de-

pendent variable itself is examined. The independent variable differentiations are examined

in the order in which they appear in the dependency lists of the dependent variables, and

the dependent variables are ordered alphabetically.

So, for example, given an input system containing f(x,y,z),g(x,y,z),h(x,z), the following

will hold:

[x,y,z] Order of independent variables

[f,g,h] Order of dependent variables

f[x] < g[xx] By differential order

g[xy] < f[xxz] By differential order

f[xy] < g[xx] By differentiation with respect to x (x>y)

Note: differential order is equal

f[xzz] < g[xyz] By differentiation with respect to y

g[xx] < f[xx] By dependent variable

Note: differentiations are exactly equal

h[xz] < f[xz] By dependent variable

Note that, in the above example, the only time the dependent variable comes into play is

when all differentiations are equal.

Changing the Default

To change the default ranking, use the vars, indep=[...], or ranking=[...] options. The

vars can be specified in two distinct ways:

1. Simple List

If the vars are specified as a simple list, this option overrides the alphabetical order of the

dependent variables described in the default ordering section.
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2. Nested List

This option gives a solving order for the dependent variables. For example, if vars were

specified as [[f ],[g,h]], this would tell rifsimp to rank any derivative of f greater than all

derivatives of g and h. Then, and when comparing g and h, the solving order would be

differential order, then differentiations, and then dependent variable name as specified by

the input [g,h]. This would help in obtaining a subset of the system that is independent of

f ; that is, a smaller PDE system in g and h only.

The indep=[...] option provides for the specification of the independent variables for the

problem, as well as the order in which differentiations are examined. So if the option

indep=[x,y] were used, then f[x] would be ranked higher than f[y], but if indep=[y,x]

were specified, then the opposite would be true.

Before using the ranking=[...] option, please read rifsimp[ranking].

Examples

> with(DEtools):

The first example uses the default ranking for a simple system.

> sys:=[diff(g(x),x,x)-g(x)=0,diff(f(x),x)^3-diff(g(x),x)=0];

sys := [( ∂2

∂x2 g(x)) − g(x) = 0, ( ∂
∂x f(x))3 − ( ∂

∂x g(x)) = 0]

> checkrank(sys);

[ ∂2

∂x2 g(x), ∂
∂x f(x), ∂

∂x g(x), g(x)]

By default, the first equation would be solved for the second order derivative in g(x), while

the second equation would be solved for the first order derivative in f(x). Suppose instead

that we always want to solve for g(x) before f(x). We can use vars.

> checkrank(sys,[[g],[f]]);

[ ∂2

∂x2 g(x), ∂
∂x g(x), g(x), ∂

∂x f(x)]

So here g(x) and all derivatives are ranked higher than f(x).

The next example shows the default for a PDE system in f(x,y), g(x,y), h(y) (where we

use the degree=2 option to get all second order derivatives):

> checkrank([f(x,y),g(x,y),h(y)],degree=2);
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[ ∂2

∂x2 f(x, y), ∂2

∂x2 g(x, y), ∂2

∂y ∂x f(x, y), ∂2

∂y ∂x g(x, y), ∂2

∂y2 f(x, y), ∂2

∂y2 g(x, y), ∂2

∂y2 h(y),

∂
∂x f(x, y), ∂

∂x g(x, y), ∂
∂y f(x, y), ∂

∂y g(x, y), ∂
∂y h(y), f(x, y), g(x, y), h(y)]

All second order derivatives are first (first 7 entries), then the first derivatives with respect

to x ahead of the first derivatives with respect to y, and finally f(x,y), then g(x,y), then

h(y).

Suppose we want to eliminate higher derivatives involving y before x. We can use indep

for this as follows:

> checkrank([f(x,y),g(x,y),h(y)],indep=[y,x],degree=2);

[ ∂2

∂y2 f(x, y), ∂2

∂y2 g(x, y), ∂2

∂y2 h(y), ∂2

∂y ∂x f(x, y), ∂2

∂y ∂x g(x, y), ∂2

∂x2 f(x, y), ∂2

∂x2 g(x, y),

∂
∂y f(x, y), ∂

∂y g(x, y), ∂
∂y h(y), ∂

∂x f(x, y), ∂
∂x g(x, y), f(x, y), g(x, y), h(y)]

Now to eliminate f(x,y) and derivatives in terms of g(x,y) and h(y), and to rank y deriva-

tives higher than x, we can combine the options to obtain the following.

> checkrank([f(x,y),g(x,y),h(y)],[[f],[g,h]],indep=[y,x],degree=2);

[ ∂2

∂y2 f(x, y), ∂2

∂y ∂x f(x, y), ∂2

∂x2 f(x, y), ∂
∂y f(x, y), ∂

∂x f(x, y), f(x, y), ∂2

∂y2 g(x, y), ∂2

∂y2 h(y),

∂2

∂y ∂x g(x, y), ∂2

∂x2 g(x, y), ∂
∂y g(x, y), ∂

∂y h(y), ∂
∂x g(x, y), g(x, y), h(y)]
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A.15 rifread - load intermediate computation as saved using

the ’store’ options of rifsimp

Calling Sequences

rifread(filename)

Parameters

filename - (optional) name of the file containing the partial rifsimp computation.

Description

The rifread command loads a partial rifsimp computation that was run using the store

or storeall options (see rifsimp[adv options]).

The storage options are most useful for large or complex computations, where the resources

required to complete the computation may exceed the capability of the machine. The state

of the system at the last iteration (using store), or at all previous iterations and/or cases

(using storeall), can be retrieved using this command.

When called with no arguments, the file ”RifStorage.m” is used. This is the default file

name for use with the store option of rifsimp. If a file name was specified for the rifsimp

run, or if the storeall option was used (storing all iterations and/or cases in separate files),

the file name must be included in the rifread command.

Please note that the system obtained using rifread is not in final form and may have

redundant equations or unresolved integrability conditions.

Examples

> with(DEtools):

Consider the following system, run with rifsimp.
> sys1 := [diff(xi(x,y),y,y),

> diff(eta(x,y),y,y)-2*diff(xi(x,y),x,y),

> -3*y^2*diff(xi(x,y),y)+2*diff(eta(x,y),x,y)-diff(xi(x,y),x,x),

> -2*eta(x,y)*y-2*y^2*diff(xi(x,y),x)

> +y^2*diff(eta(x,y),y)+diff(eta(x,y),x,x)];
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sys1 := [ ∂2

∂y2 ξ(x, y), ( ∂2

∂y2 η(x, y)) − 2 ( ∂2

∂y ∂x ξ(x, y)),

−3 y2 ( ∂
∂y ξ(x, y)) + 2 ( ∂2

∂y ∂x η(x, y)) − ( ∂2

∂x2 ξ(x, y)),

−2 η(x, y) y − 2 y2 ( ∂
∂x ξ(x, y)) + y2 ( ∂

∂y η(x, y)) + ( ∂2

∂x2 η(x, y))]

> ans1:=rifsimp(sys1,[xi,eta],store);

ans1 := table([

Solved =

[ ∂
∂x ξ(x, y) = −1

2

η(x, y)

y
, ∂

∂x η(x, y) = 0, ∂
∂y ξ(x, y) = 0, ∂

∂y η(x, y) =
η(x, y)

y
]

])

Partial results can be obtained using rifread, even if the full computation did not succeed

(notice the presence of the redundant equation eta[yy]=0).

> temp1 := rifread();

temp1 := table([

Solved = [ ∂
∂y ξ(x, y) = 0, ∂2

∂y2 η(x, y) = 0, ∂
∂x η(x, y) = 0, ∂

∂x ξ(x, y) = −1

2

η(x, y)

y
,

∂
∂y η(x, y) =

η(x, y)

y
]

])

Note that the results obtained above were stored in the file ”RifStorage.m”.

The same example can have results stored under a different name. Here the temp results

are stored in ”tmpstore.m”:

> ans1:=rifsimp(sys1,[xi,eta],store="tmpstore");

ans1 := table([

Solved =

[ ∂
∂x ξ(x, y) = −1

2

η(x, y)

y
, ∂

∂x η(x, y) = 0, ∂
∂y ξ(x, y) = 0, ∂

∂y η(x, y) =
η(x, y)

y
]

])
> temp1 := rifread("tmpstore");
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temp1 := table([

Solved = [ ∂
∂y ξ(x, y) = 0, ∂2

∂y2 η(x, y) = 0, ∂
∂x η(x, y) = 0, ∂

∂x ξ(x, y) = −1

2

η(x, y)

y
,

∂
∂y η(x, y) =

η(x, y)

y
]

])

It is also possible to store the results at the end of each iteration and for each separate case

using storeall. Increasing the infolevel will display the file name as each partial calculation

is saved.
> sys2 := [-diff(xi(x,y),y)*y-diff(xi(x,y),y,y)*y^2,

> eta(x,y)-2*diff(xi(x,y),x,y)*y^2+diff(eta(x,y),y,y)*y^2

> -diff(eta(x,y),y)*y-2*diff(xi(x,y),y)*y

> +2*diff(xi(x,y),y)*a*y^2,

> -2*y*diff(eta(x,y),x)-diff(xi(x,y),x,x)*y^2

> +2*diff(eta(x,y),x,y)*y^2+eta(x,y)-diff(xi(x,y),x)*y

> +diff(xi(x,y),x)*a*y^2+3*y^3*diff(xi(x,y),y)*a^2

> -3*y^4*diff(xi(x,y),y)*b^2-3*y^5*diff(xi(x,y),y)*b^2

> +3*y^2*diff(xi(x,y),y)*a^2,

> diff(eta(x,y),x,x)*y^2+y^2*diff(eta(x,y),x)*a

> -y*diff(eta(x,y),x)+2*y^3*diff(xi(x,y),x)*a^2

> -2*y^4*diff(xi(x,y),x)*b^2-y^3*diff(eta(x,y),y)*a^2

> +y^4*diff(eta(x,y),y)*b^2+eta(x,y)*y^2*a^2

> -2*eta(x,y)*y^3*b^2-y^2*diff(eta(x,y),y)*a^2

> -3*eta(x,y)*y^4*b^2-2*y^5*diff(xi(x,y),x)*b^2

> +2*y^2*diff(xi(x,y),x)*a^2+y^5*diff(eta(x,y),y)*b^2];
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sys2 := [−( ∂
∂y ξ(x, y)) y − ( ∂2

∂y2 ξ(x, y)) y2, η(x, y) − 2 ( ∂2

∂y ∂x ξ(x, y)) y2 + ( ∂2

∂y2 η(x, y)) y2

− ( ∂
∂y η(x, y)) y − 2 ( ∂

∂y ξ(x, y)) y + 2 ( ∂
∂y ξ(x, y)) a y2,−2 y ( ∂

∂x η(x, y))

− ( ∂2

∂x2 ξ(x, y)) y2 + 2 ( ∂2

∂y ∂x η(x, y)) y2 + η(x, y) − ( ∂
∂x ξ(x, y)) y + ( ∂

∂x ξ(x, y)) a y2

+ 3 y3 ( ∂
∂y ξ(x, y)) a2 − 3 y4 ( ∂

∂y ξ(x, y)) b2 − 3 y5 ( ∂
∂y ξ(x, y)) b2

+ 3 y2 ( ∂
∂y ξ(x, y)) a2, ( ∂2

∂x2 η(x, y)) y2 + y2 ( ∂
∂x η(x, y)) a − y ( ∂

∂x η(x, y))

+ 2 y3 ( ∂
∂x ξ(x, y)) a2 − 2 y4 ( ∂

∂x ξ(x, y)) b2 − y3 ( ∂
∂y η(x, y)) a2 + y4 ( ∂

∂y η(x, y)) b2

+ η(x, y) y2 a2 − 2 η(x, y) y3 b2 − y2 ( ∂
∂y η(x, y)) a2 − 3 η(x, y) y4 b2

− 2 y5 ( ∂
∂x ξ(x, y)) b2 + 2 y2 ( ∂

∂x ξ(x, y)) a2 + y5 ( ∂
∂y η(x, y)) b2]

> infolevel[rifsimp]:=1;

infolevel rifsimp := 1

> rr:=rifsimp(sys2,[xi,eta],storeall,casesplit);

Warning, the following denominator was added to ineqns:

1

The system has been identified as follows :

The system has the following dependent variables :

ξ, η

The system has the following independent variables :

x, y

The system has the following constants :

a, b

The following are to be treated as solve variables :

ξ, η, a, b

Storing current system in RifStorage_1_1.m

Storing current system in RifStorage_1_2.m

Storing current system in RifStorage_1_3.m

Storing current system in RifStorage_1_4.m

Storing current system in RifStorage_1_5.m

Storing current system in RifStorage_1_6.m

Storing current system in RifStorage_1_7.m

Storing current system in RifStorage_1_8.m

Storing current system in RifStorage_1_9.m

Storing current system in RifStorage_1_10.m
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Storing current system in RifStorage_1_11.m

Storing current system in RifStorage_1_12.m

Storing current system in RifStorage_1_13.m

Storing current system in RifStorage_1_14.m

Storing current system in RifStorage_2_13.m

Storing current system in RifStorage_2_14.m

Storing current system in RifStorage_2_15.m

Storing current system in RifStorage_3_14.m

Storing current system in RifStorage_3_15.m

Storing current system in RifStorage_3_16.m

Storing current system in RifStorage_4_15.m

rr := table([1 = table([Solved = [ ∂
∂x ξ(x, y) = 0, ∂

∂y ξ(x, y) = 0, η(x, y) = 0],

Case = [[b 6= 0, η(x, y)]],

Pivots = [b 6= 0]

]), 2 = table([Solved = [ ∂
∂x ξ(x, y) = 0, ∂

∂y ξ(x, y) = 0, η(x, y) = 0, b = 0],

Case = [[b = 0, η(x, y)], [a (a − 1) 6= 0, η(x, y)]],

Pivots = [a 6= 0, a − 1 6= 0]

]), 3 = table([Solved = [ ∂
∂x ξ(x, y) = 0, ∂

∂y ξ(x, y) = 0, η(x, y) = 0, a = 1, b = 0],

Case = [[b = 0, η(x, y)], [a (a − 1) = 0, η(x, y)], [a 6= 0, η(x, y)]]

]), 4 = table([Solved = [

∂
∂x ξ(x, y) =

η(x, y)

y
, ∂

∂x η(x, y) = 0, ∂
∂y ξ(x, y) = 0, ∂

∂y η(x, y) =
η(x, y)

y
, a = 0, b = 0],

Case = [[b = 0, η(x, y)], [a (a − 1) = 0, η(x, y)], [a = 0, η(x, y)]] ]),

casecount = 4])
> rifread("RifStorage_2_13");

table([Solved = [ ∂
∂y ξ(x, y) = 0, b = 0, ∂

∂x ξ(x, y) =
η(x, y)

y
,

∂
∂x η(x, y) = a (3 a − 2) η(x, y), ∂

∂y η(x, y) =
η(x, y)

y
],

DiffConstraint = [0 = η(x, y) a (a − 1), 0 = η(x, y) a (a − 1), 0 = η(x, y) a (a − 1),

0 = η(x, y) a (9 a3 y + 4 y a − 9 y a2 − 2 a + 2)]

])

A description of the meaning of each entry appearing in the output tables can be found on

the rifsimp[output] page.



Bibliography

[1] A. Aho, J. Hopcroft, and J. Ullman, Data Structures and Algorithms, Addison-

Wesley, 1983.

[2] T. Becker, V. Weispfenning, and H. Kredel, Gröbner Bases: A Computa-
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[11] G. Carrà Ferro, Gröbner bases and differential ideals, in Proc. AAECC5, Menorca,

Spain, Springer, 1987, pp. 129–140.
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[61] J. Schü, W. Seiler, and J. Calmet, Algorithmic Methods for Lie Pseudogroups, in

Proc. Modern Group Analysis, N. Ibragimov, M. Torrisi, and A. Valenti, eds., Kluwer,

1993, pp. 337–344.

[62] F. Schwarz, Reduction and completion algorithms for partial differential equations, in

Proc. ISSAC ’92, Berkeley, P. Wang, ed., ACM Press, 1992, pp. 49–56.

[63] , Janet Bases of 2nd Order Differential Equations, in Proc. ISSAC ’96, Zurich,

Y. N. Lakshman, ed., ACM Press, 1996, pp. 179–188.

[64] W. Seiler, Analysis and Application of the Formal Theory of Partial Differential

Equations, PhD thesis, Lancaster University, 1994.

[65] , Applying AXIOM to Partial Differential Equations. Technical Report #17, Uni-

versität Karlsruhe: Institut für Algorithmen und Kognitive Systeme, 1995.

[66] C. Sulem and P. L. Sulem, The Nonlinear Schrödinger Equation, Self-Focussing

and Wave Collapse, vol. 139 of Applied Mathematical Sciences, Springer, 1999.

[67] V. Talanov, Focusing of light in cubic media, JETP Lett, 11 (1970), pp. 199–201.
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