Дополнительные главы алгебры. Задачи

2023 - 2024

Оглавление

1	Свободные группы		
	1.1	Свободные абелевы группы	2
	1.2	Свободные группы	
	1.3	Комплексы	2
	1.4	Накрытия комплексов. Теорема Нильсена-Шрайера	
2	Teo	рия Галуа	4
	2.1	Конечные расширения полей	4
	2.2	Конечные поля. Корни из единицы	4
	2.3	Сопряженные элементы. Нормальные и сепарабельные расширения	1
	2.4	Расширения Галуа	1
	2.5	Основная теорема теории Галуа	
	2.6	Разрешимость в радикалах	
3	Модули над кольцами		
	3.1	Модули. Подмодули. Фактормодули	7
		3 1 1 Тензорное произвеление молулей	7

Глава 1

Свободные группы

1.1 Свободные абелевы группы

Задача 1. Докажите, что определение 3 не зависит от выбора порядка на I.

Задача 2. Докажите утверждение 1.

Задача 3. Пусть $X = \{x_i \mid i \in \mathbb{N}\}$. Докажите, что $\mathbb{Q} = \langle X \mid x_1 - 2x_2, x_2 - 3x_3, \dots, x_{n-1} - nx_n, \dots \rangle_a$.

Задача 4. Докажите, что группа $(\mathbb{Q}_{>0},\cdot)$ является свободной абелевой группой. Какой в ней базис?

Задача 5. Является ли группа (\mathbb{Q}^*,\cdot) свободной абелевой группой? Является ли группа $(\mathbb{Q},+)$ свободной абелевой группой?

Задача 6. Пусть $X = \{x_i \mid i \in \mathbb{N}\}$ и p-nростое число. Рассмотрим группу $G = \langle X \mid px_1, x_1-px_2, x_2-px_3, \ldots, x_n-px_{n+1}, \ldots \rangle_a$. Докажите, что G изоморфна группе

$$U_{p^{\infty}} = \{ z \in \mathbb{C}^* \mid \exists k \in \mathbb{N} \ z^{p^k} = 1 \}.$$

1.2 Свободные группы

Задача 7. Докажите, что $D_n = \langle x, y \mid x^n = 1, y^2 = 1, yxy = x^{-1} \rangle$. Здесь x соответствует повороту на угол $\frac{2\pi}{n}$, а y соответствует любой симметрии.

Задача 8. Докажите, что $Q_8 = \langle x, y \mid x^4 = 1, y^2 = x^2, yxy^{-1} = x^{-1} \rangle$. Здесь x соответствует элементу i, y соответствует элементу j.

Задача 9. Докажите, что группа $\mathbb{Z}_2 * \mathbb{Z}_2$ бесконечна.

Задача 10. Пусть F — свободная группа. Докажите, что существует автоморфизм $\varphi: F \to F$, такой что $\varphi^2 = \mathrm{id}_F \ u \ \varphi(x) = x$, только если x = e.

1.3 Комплексы

Задача 11. Рассмотрим равнобедренный треугольник ABC. Пусть E, F, G — середины сторон AB, BC и CA соответственно. Рассмотрим 2-комплекс K, на множестве вершин $\{A, B, C, E, F, G\}$, в который входят 2-симплексы $\{A, E, G\}, \{B, E, F\}$ и $\{F, C, G\}$, а также все их подмножества. C помощью теоремы Титце найдите фундаментальную группу K.

Задача 12. Рассмотрим комплекс K из задачи 11. Рассмотрим комплекс L, полученный из K выбрасыванием всех 2-симплексов. Найдите фундаментальную группу комплекса L.

Задача 13. Пусть есть два связных комплекса K_1 и K_2 . Пусть G_1 — фундаментальная группа K_1 , а G_2 — фундаментальная группа K_2 . Выберем вершину $a \in \text{Vert}(K_1)$ и $b \in \text{Vert}(K_2)$. Рассмотрим комплекс $K = K_1 \sqcup K_2$ и добавим в него ребро $\{a,b\}$. Какая фундаментальная группа у K?

1.4 Накрытия комплексов. Теорема Нильсена-Шрайера

Задача 14. Рассмотрим комплекс K с вершинами $\{1,2,3\}$, который состоит из симплексов $\{1,2\},\{1,3\},\{2,3\}$, а также всех одноэлементных подмножеств. Докажите, что фундаментальная группа K изоморфна \mathbb{Z} . Опишите накрытие K, которое соответствует подгруппе $2\mathbb{Z}$. Опишите накрытие K, которое соответствует произвольной подгруппе \mathbb{Z} .

Задача 15. У букета из двух окружностей фундаментальная группа изоморфна свободной группе с базисом x, y, где x соответствует классу замкнутого пути, проходящего по одной из окружностей, а y соответствует классу замкнутого пути, проходящего по второй окружности. Постройте накрытия для подгрупп $\langle x \rangle$ и $\langle xy \rangle$.

Задача 16. (Пинг-понг лемма.)

Пусть группа G действует на множестве X, и элементы $g_1, \ldots, g_k \in G$ имеют бесконечный порядок. Предположим, что существуют непересекающиеся подмножества X_1^+, \ldots, X_k^+ и X_1^-, \ldots, X_k^- , такие что

$$g_i(X \setminus X_i^-) \subseteq X_i^+ \ u \ g_i^{-1}(X \setminus X_i^+) \subseteq X_i^-$$

для всех i. Докажите, что подгруппа в G, порожденная g_1, \ldots, g_k , является свободной группой c базисом $\{g_1, \ldots, g_k\}$.

Задача 17. Пусть F — свободная группа с базисом $\{g_1, \ldots, g_k\}$. Докажите, что всегда найдется действие F на некотором множестве X, удовлетворяющее условиям задачи 16.

Задача 18. Докажите, что свободная группа ранга 2 и более неразрешима. Выведите отсюда, что любая разрешимая группа не содержит свободных подгрупп ранга 2 и более.

Глава 2

Теория Галуа

2.1 Конечные расширения полей

Задача 19. Найдите минимальные многочлены следующих элементов:

- a) $2-3i \ nad \mathbb{R}$;
- 6) $\sqrt{2} + \sqrt{5} \operatorname{nad} \mathbb{Q}$;
- e) $\sqrt{2} + \sqrt{5} \operatorname{nad} \mathbb{Q}(\sqrt{5});$

Задача 20. Докажите, что $\cos \frac{2\pi}{n}$ алгебраическое над $\mathbb Q$ для любого n.

Задача 21. Пусть $f \in K[x]$ и deg f = n. Докажите, что [K(f):K] делит n!.

Задача 22. Постройте поля разложения следующих многочленов:

- a) $x^2 + x + 2 \in \mathbb{Q}[x];$
- $6) \ x^3 + 1 \in \mathbb{Q}[x];$
- $e) \ x^6 + 3 \in \mathbb{Q}[x].$

2.2 Конечные поля. Корни из единицы

Задача 23. 1. Постройте явно поля \mathbb{F}_8 и \mathbb{F}_9 . Найдите порождающие в \mathbb{F}_8^* и \mathbb{F}_9^* .

2. Сколько подполей в поле из p^{2^n} элементов?

Задача 24. Докажите, что конечное поле не может быть алгебраически замкнутым.

Задача 25. 1. Постройте многочлены Φ_8 и $\Phi_{10} \in \mathbb{Z}[x]$.

2. Пусть p-npocmoe число. Найдите $\Phi_p(x)\in\mathbb{Z}[x].$

Задача 26. Докажите, что над полем \mathbb{Z}_p многочлен $\Phi_{p-1}(x)$ приводим при p>3.

2.3 Сопряженные элементы. Нормальные и сепарабельные расширения

Задача 27. 1. Найдите в $\mathbb C$ все элементы сопряженные с $\sqrt{2}+\sqrt{5}$ над $\mathbb Q$.

- 2. Найдите в \mathbb{C} все элементы сопряженные с $\sqrt{2} + \sqrt{5}$ над $\mathbb{Q}(\sqrt{5})$.
- 3. Для поля $\mathbb{F}_4 \simeq \mathbb{Z}[x]/(x^2+x+1)$ найдите сопряженные элементы $c \ \overline{x}$ над \mathbb{Z}_2 . Найдите остальные классы сопряженности над \mathbb{Z}_2 .

Задача 28. Какие из следующих расширений нормальны?

- 1. $\mathbb{Q}(i\sqrt[6]{3})/\mathbb{Q}$;
- 2. $\mathbb{C}(t)/\mathbb{C}(t^4)$;
- 3. $\mathbb{R}(t)/\mathbb{R}(t^4)$;

Задача 29. Найдите в $\mathbb{Z}_p(t)$ все элементы сепарабельные над $\mathbb{Z}_p(t^p)$.

2.4 Расширения Галуа

Задача 30. Какие из следующих расширений L/K являются расширениями Галуа? Найдите соответствующие группы $\mathrm{Aut}_K(L)$.

- 1. $L/K = \mathbb{Q}(\sqrt[4]{2})/\mathbb{Q}$.
- 2. $L/K = \mathbb{Q}(\sqrt[4]{2})/\mathbb{Q}(\sqrt{2})$.
- 3. $L/K = \mathbb{Q}(\sqrt[4]{2}, i)/\mathbb{Q}$.

Задача 31. Является ли расширение $L/K=\mathbb{Q}(\sqrt{2+\sqrt{2}})/\mathbb{Q}$ расширением Галуа? Найдите группу $\mathrm{Aut}_K(L)$.

Задача 32. Пусть $\varphi \in \operatorname{Aut}_{\mathbb{Q}}(\mathbb{R})$.

- 1. Докажите, что φ переводит квадраты в квадраты, а положительные числа в положительные. Докажите, что если a < b, то $\varphi(a) < \varphi(b)$.
- 2. Докажите, что если $-\frac{1}{m} < a b < \frac{1}{m}$, где $m \in \mathbb{Z}$, то $-\frac{1}{m} < \varphi(a) \varphi(b) < \frac{1}{m}$. Выведите отсюда, что φ непрерывное отображение.
- 3. Докажите, что группа $\mathrm{Aut}_\mathbb{Q}(\mathbb{R})$ тривиальна.

2.5 Основная теорема теории Галуа

Задача 33. Найдите группу Галуа следующих многочленов над \mathbb{Q} :

- 1. $x^4 14x^2 + 9$;
- 2. $x^4 + 4$;
- 3. $(x^2-2)(x^2-3)(x^2-5)$;
- 4. $(x^3-2)(x^3-3)$;

В каждом случае кажите все подполя в соответствующем поле разложения.

Задача 34. Пусть p-npocmoe. Докажите, что группа Галуа многочлена $x^p-2\in\mathbb{Q}[x]$ изоморфна группе матриц $\begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix}$, где $a\in\mathbb{Z}_p^*, b\in\mathbb{Z}_p$.

2.6 Разрешимость в радикалах

Задача 35. Найдите какой-нибудь корень уравнения $x^3 - 6x^2 - 6x - 2 = 0$.

Задача 36. Найдите какой-нибудь корень уравнения $x^4 + 4x^3 - 4x^2 - 20x - 5 = 0$.

Глава 3

Модули над кольцами

3.1 Модули. Подмодули. Фактормодули

Задача 37. Пусть M — модуль над R. Докажите, что r0 = 0 и 0m = 0 для любых $r \in R$ и $m \in M$.

Задача 38. 1. (Первая теорема о гомоморфизме.) Пусть $f: M \to N$ — гомоморфизм R—модулей. Докажите, что Im $f = M/\ker f$.

2. (Вторая теорема о гомоморфизме.) Пусть $N_1, N_2 - noдмодули R - модуля M$. Тогда

$$(N_1 + N_2)/N_1 \simeq N_2/(N_1 \cap N_2).$$

3. (Третья теорема о гомоморфизме.) Пусть M-R-модуль и $A\subseteq B-$ подмодули M. Тогда

$$(M/A)/(B/A) \simeq M/B;$$

4. (Четвертая теорема о гомоморфизме.) Пусть N- подмодуль R-модуля M. Тогда есть биекция между подмодулями в M/N и подмодулями в M, содержащими N.

Задача 39. Приведите пример модулей M,N и гомоморфизма групп $f:M\to N$, который не является гомоморфизма модулей.

Задача 40. Пусть R — коммутативное ассоциативное кольцо c единицей. Докажите, что модуль $\operatorname{Hom}_R(R,M)$ изоморфен модулю M.

3.1.1 Тензорное произведение модулей

Задача 41. Докажите, что $\mathbb{C} \otimes_{\mathbb{C}} \mathbb{C} \not\simeq \mathbb{C} \otimes_{\mathbb{R}} \mathbb{C}$ как \mathbb{C} -модули.

Задача 42. Докажите, что $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q} \simeq \mathbb{Q} \otimes_{\mathbb{Q}} \mathbb{Q}$ как абелевы \mathbb{Q} -модули и как абелевы группы.

Задача 43. Пусть $n=p^km$, где p-nростое число u (p,m)=1, u пусть A- абелева группа порядка n. Докажите, что группа $\mathbb{Z}_{p^k}\otimes_{\mathbb{Z}} A$ изоморфна силовской p-подгруппе A.

Задача 44. Докажите, что $\mathbb{Z}[i] \otimes_{\mathbb{Z}} \mathbb{R} \simeq \mathbb{C}$ как \mathbb{R} -модули.