Group characters

1. Definitions and basic properties

Let $\varphi: G \rightarrow G L(V)$ be a linear representation of a group G in a finite-dimensional vector space over a field K. For any element $g \in G$ let $A_{\varphi}(g)$ will be the matrix of the operator $\varphi(g)$ with respect to some basis $e=\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ of V. As is well known, the trace of $A_{\varphi}(g)$ does not depend upon a basis, so the function $\chi=\chi_{\varphi}: G \rightarrow K, \chi_{\varphi}(g):=\operatorname{tr} \varphi(g)=\operatorname{tr} A_{\varphi}(g)$ is defined; χ_{φ} is called the character of the representation φ.
Let's establish basic properties of characters.
Proposition 1. 1) $\chi_{\varphi}(1)=\operatorname{dim} V$-degree (dimension) of the representation φ.
2) $\forall g, h \in G, \chi_{\varphi}\left(h^{-1} g h\right)=\chi_{\varphi}(g)$, so χ_{φ} is constant on conjugate classes. (A function on G which is constant on its conjugate classes is called central, or class function.)
3) If $g \in G$ has finite order and $K=\mathbb{C}$ the field of complex numbers, then $\chi_{\varphi}\left(g^{-1}\right)=\overline{\chi_{\varphi}(g)}$ (complex conjugate).
4) The character of the direct sum of representations equals the sum of characters of the summands: $\chi_{\varphi \oplus \psi}=\chi_{\varphi}+\chi_{\psi}$ (and similarly for any finite number of summands).
5) Characters of equivalent representations are equal.

Proofs. 1) $\chi_{\varphi}(1)=\operatorname{tr} E=n=\operatorname{dim} V$.
2),5) follow from the property that $\operatorname{tr}(A B)=\operatorname{tr}(B A)$ (recall that two representations are equivalent iff there is a matrix C such that $\left.A_{\psi}(g)=C^{-1} A_{\psi}(g) C\right)$.
3) If $g^{m}=1$ and λ is an eigenvalue of $\varphi(g)$, then $\lambda^{m}=1 \Rightarrow \lambda^{-1}=\bar{\lambda}$. Now $\operatorname{tr} A_{\varphi}(g)=\sum_{k=1}^{n} \lambda_{k}, \operatorname{tr} A_{\varphi}\left(g^{-1}\right)=\sum_{k=1}^{n} \lambda^{-1}{ }_{k}=\sum_{k=1}^{n} \bar{\lambda}_{k}$, q.e.d.
4) In the basis of the direct sum $V \oplus W$ which is combined of bases of spaces V, W
we have $A_{\varphi \oplus \psi}(g)=\left(\begin{array}{cc}A_{\varphi}(g) & 0 \\ 0 & A_{\psi}(g)\end{array}\right)$ hence $\operatorname{tr} A_{\varphi \oplus \psi}(g)=\operatorname{tr} A_{\varphi}(g)+\operatorname{tr} A_{\psi}(g)$, qed.
Note that the set of central functions $Z F_{G}$ on G is the linear space of dimension r , the number of conjugate classes K_{1}, \ldots, K_{r} of G (its basis consists of functions $\left.\Gamma_{i}: \Gamma_{i}\left(K_{j}\right)=\delta_{i, j}, 1 \leq j \leq r, i=1, \ldots, r\right)$, while the set F_{G} of all the functions on G is the linear space of dimension $n=|G|$ with basis of "delta-functions" $\delta_{g}: \delta_{g}(x)=1, x=g, 0, x \neq g \in G$.

The character of any irreducible representation cannot be decomposed into sum of characters, by 4 , that' s why it is named irreducible character.

2. Schur's Lemma and its consequence for finite groups

Let me remind
Schur's Lemma. If $\varphi: G \rightarrow G L(V), \psi: G \rightarrow G L(W)$ are irreducible representations of a group G and $f: V \rightarrow W$ is a homomorphism of representations (i.e. $f \varphi=\psi f$), then $\mathrm{f}=0$ or f is isomorpyism of representations.
Consequence. If the field of definition of V, W is algebraically closed and V, W are finitedimensional then $\mathrm{f}=0$ or (when the representations are isomorphic and the spaces and representations are identified) $f=\lambda E, \lambda \in K$.
In what follows the ground field will be the field of complex numders \mathbb{C}.
Lemma. Let $\varphi: G \rightarrow G L(V), \psi: G \rightarrow G L(W)$ are finite-dimensional irreducible representations of a finite group G and $f: V \rightarrow W$ over \mathbb{C} and $f: V \rightarrow W$ is some linear mapping. Then the average mapping equals
$\tilde{f}=\frac{1}{|G|} \sum_{g \in G} \psi(g) f \varphi(g)^{-1}=\left\{\begin{array}{l}\lambda E, \text { if } V=W, \varphi=\psi, \text { where } \lambda=\frac{\operatorname{trf}}{\operatorname{dim} V}, \\ 0, \text { otherwise }\end{array}\right.$.
Proof. It's evident that \tilde{f} is a homomorphism of representations, so, by Schur Lemma, $\mathrm{f}=0$ or (in the first case) $\tilde{f}=\lambda E, \lambda \in \mathbb{C} \Rightarrow \operatorname{tr} \tilde{f}=\operatorname{trf}=\lambda t r E=\lambda \operatorname{dim} V$.

Matrix yersion of Lemma.

Fix bases in $V, W: V=\left\langle v_{i} \mid i \in I\right\rangle, W=\left\langle w_{j} \mid j \in J\right\rangle V, W$, and the mappings get matrices: $\varphi(g)=\left(\varphi_{i, i}(g)\right), \psi(g)=\left(\psi_{i, i^{\prime}}(g)\right), f=\left(f_{j i}\right), \tilde{f}=\left(\tilde{f}_{j i}\right)$. By definition, $\tilde{f}_{j i}=\frac{1}{|G|} \sum_{g, i^{\prime}, j^{\prime}} \psi_{j j^{\prime}}(g) f_{j^{\prime} i^{\prime}} \varphi_{i^{\prime} i}\left(g^{-1}\right)$.
In particular, taking $f=E_{j_{0} i_{0}}, f_{j_{0} i_{0}}=1, f_{j i}=0\left((j, i) \neq\left(j_{0}, i_{0}\right)\right)$ - the matrix unit - we get

1) If φ, ψ are non-isomorphic, then from (1)

$$
\begin{equation*}
\frac{1}{|G|} \sum_{g \in G} \psi_{j_{j_{0}}}(g) \varphi_{i_{0} i}\left(g^{-1}\right)=0, \forall i, i_{0}, j, j_{0} \tag{2}
\end{equation*}
$$

2) If $V=W, \varphi=\psi$ then $\tilde{f}=\frac{\operatorname{tr} f}{\operatorname{dim} V} E, \operatorname{trf}=\sum_{i} f_{i i}=\sum_{j^{\prime}, i^{\prime}} \delta_{j^{\prime} i^{\prime}} f_{j^{\prime \prime} i^{\prime}} \Rightarrow \tilde{f}_{j i}=\delta_{j i} \frac{\operatorname{trf}}{\operatorname{dim} V}=\frac{\delta_{j i}}{\operatorname{dim} V} \sum_{j^{\prime}, i^{\prime}} \delta_{j i^{\prime}} f_{j^{\prime \prime}}$ In view of (1) we get $\frac{1}{|G|} \sum_{g, i^{\prime}, j^{\prime}} \psi_{j j^{\prime}}(g) f_{j^{\prime} i^{\prime}} \rho_{i^{\prime} i}\left(g^{-1}\right)=\frac{\delta_{j i}}{\operatorname{dim} V} \sum_{j^{\prime}, i^{\prime}} \delta_{j i^{\prime} t^{\prime}} f_{j^{\prime i^{\prime}}}$.
Taking again $f=E_{j_{0}{ }_{0}}$, we finally have

$$
\frac{1}{|G|} \sum_{g \in G} \psi_{j j_{0}}(g) \varphi_{i_{0} i}\left(g^{-1}\right)=\left[\begin{array}{l}
\frac{\delta_{j i}}{\operatorname{dim} V} \text { if } j_{0}=i_{0}, \tag{3}\\
0, \text { otherwise }
\end{array}\right.
$$

3. Orthogonality relations for characters

Introduce in the space F_{G} of all complex-valued functions on a finite group G the Hermitian form $(\chi, \eta)_{G}=\frac{1}{|G|} \sum_{g \in G} \chi(g) \overline{\eta(g)}=0\left(\chi, \eta \in F_{G}\right)$,
that can be taken as a (Hermitian) scalar product in F_{G}. Taking into account the fact that characters are constant on conjugate classes, we can write the scalar product of two characters χ, η in form

$$
(\chi, \eta)_{G}=\frac{1}{|G|} \sum_{j=1}^{r}\left|K_{j}\right| \chi\left(g_{j}\right) \overline{\eta\left(g_{j}\right)}, g_{j} \in K_{j}
$$

where $K_{j}, j=1, \ldots, r$ are conjugate classes of G .
Theorem 1. (The first orthogonality relation).
Let φ, ψ are (finite-dimensional) irreducible representations of a finite group G. Then
$\left(\chi_{\varphi}, \chi_{\psi}\right)_{G}=\delta_{\varphi, \psi}=\left[\begin{array}{l}1 \text { if } \varphi \cong \psi, \\ 0 \text { otherwise }\end{array}\right.$
Proof. By definition, $\chi_{\varphi}(g)=\sum_{i} \varphi_{i i}(g), \chi_{\psi}(g)=\sum_{j} \psi_{j j}(g)$. Putting $i=i_{0}, j=j_{0}$ in (2) and (3) and sum on i, j we receive in the case 1) of Lemma $\frac{1}{|G|} \sum_{g \in G} \psi_{j j}(g) \varphi_{i i}\left(g^{-1}\right)=\frac{1}{|G|} \sum_{g \in G} \psi_{j j}(g) \overline{\varphi_{i i}(g)}=\left(\chi_{\psi}, \chi_{\varphi}\right)=0$.

In the case 2), $1=\frac{\sum_{j, i} \delta_{j i}}{\operatorname{dim} V}=\frac{1}{|G|} \sum_{g, i, j} \varphi_{j j}(g) \varphi_{i i}\left(g^{-1}\right)=\frac{1}{|G|} \sum_{g \in G}\left(\sum_{j} \varphi_{j j}(g)\right)\left(\sum_{i} \varphi_{i i}\left(g^{-1}\right)\right)=\left(\chi_{\varphi}, \chi_{\psi}\right)_{G}$.
Consequence 1. The number \boldsymbol{s} of equivalence classes of irreducible complex representations of a finite group G is less or equal the number of conjugate classes of $G: s \leq r$.
Really, the characters $\chi_{1}, \ldots, \chi_{s}$ of all nonequivalent irreducible complex representations are pairwise orthogonal, hence, linear independent, in the space $Z F_{G}$ of central functions on G, consequently, $s \leq \operatorname{dim} Z F_{G}=r$.

Consequence 2. If two representations have equal characters, then they are equivalent .
Proof. Let $\varphi: G \rightarrow G L(V), \psi: G \rightarrow G L(W)$ two representations and $\chi_{\varphi}=\chi_{\psi}$. Consider_the canonical decomposition of V into direct sum of non-equivalent irreducible representations: $V=n_{1} V_{1} \oplus \ldots \oplus n_{s} V_{s}$ ($n_{i} V_{i}$ means that there are n_{i} invariant subspaces isomorphic with V_{i} as representations. Denote $\chi_{\varphi_{i}}=\chi_{i}, i=1, \ldots, s, \varphi_{i}$ is the full system of irreducible representations.
It follows, that $\chi_{\varphi}=n_{1} \chi_{1} \oplus \ldots \oplus n_{s} \chi_{s}$, and $\left(\chi_{\varphi}, \chi_{i}\right)=n_{1}\left(\chi_{1}, \chi_{i}\right)+\ldots+n_{s}\left(\chi_{s}, \chi_{i}\right)=n_{i}\left(\chi_{i}, \chi_{i}\right)=n_{i}$. Now, if $W=m_{1} W_{1} \oplus \ldots \oplus m_{s} W_{s}$ is canonical decomposition, then $m_{i}=\left(\chi_{\psi}, \chi_{i}\right)=\left(\chi_{\varphi}, \chi_{i}\right)=n_{i}, i=1, \ldots, s$. It shows that that V and W are isomorphic.

Theorem 2. $\mathrm{s}=\mathrm{r}$.
Proof. It is sufficient to prove that the orthogonal system $\chi_{1}, \ldots, \chi_{s}$ is complete in the space $Z F_{G}$ of central functions on G, that is equivalent to the condition: $\forall f \in Z F_{G}$ from $\left(\chi_{i}, f\right)=0, i=1, \ldots, s$ it follows that $f \equiv 0$.
For arbitrary representation (φ, G, V) construct the linear operator $\varphi^{*}(f)=\sum_{g \in G} \bar{f}(g) \varphi(g): V \rightarrow V$.
Note, that $(\varphi \oplus \psi)^{*}(f)=\varphi^{*}(f) \oplus \psi^{*}(f)$.
This is evident in matrix form:
$(\varphi \oplus \psi)(g)=\left\|\begin{array}{cc}\varphi(g) & 0 \\ 0 & \psi(g)\end{array}\right\| \Rightarrow(\varphi \oplus \psi)^{*}(f)=\left\|\begin{array}{cc}\varphi^{*}(f) & 0 \\ 0 & \psi^{*}(f)\end{array}\right\|$.
For any irreducible representation φ_{i} the operator $\varphi_{i}{ }^{*}(f)$ is the endomorphism of φ_{i} because f is central function: $\varphi(h) \varphi^{*}(f) \varphi\left(h^{-1}\right)=\sum_{g \in G} \bar{f}(g) \varphi\left(h g h^{-1}\right)=\sum_{g \in G} \bar{f}\left(h g h^{-1}\right) \varphi\left(h g h^{-1}\right)=\varphi^{*}(f)$.
So by Schur's Lemma $\varphi_{i}{ }^{*}(f)=\lambda_{i} E$. Calculating traces, we find $\lambda_{i} \chi_{i}(1)=\sum_{g \in G} \bar{f}(g) \operatorname{tr} \varphi_{i}(g)=\sum_{g \in G} \bar{f}(g) \chi_{i}(g)=|G|\left(\chi_{i}, f\right)=0$.
But for every representation $\varphi, \chi_{\varphi}=n_{1} \chi_{1}+\ldots+n_{s} \chi_{s} \Rightarrow \varphi^{*}(f)=0$. Apply this for the regular representation $\Lambda: G \rightarrow G L(\mathbb{C} G), \Lambda(g)(x)=g x$ for $x \in G$ and $\mathbb{C} G$.
Namely, $0=\Lambda^{*}(f)(1)=\left(\sum_{g \in G} \bar{f}(g) \Lambda(g)\right)(1)=\sum_{g \in G} \bar{f}(g) g \quad(1 \quad$ is the unit element of \quad G).
By definition of $\mathbb{C} G$,the elements $g \in G$ linearly independent $\Rightarrow f(g)=0, \forall g \in G$, q.e.d.
Consequence. Any irreducible representation of G enters in the regular representation with multiplicity equal to its degree.
Proof. Recall, that the value of the character $\chi(g), g \in G$ of any permutation representation of G considered as a linear representation equals the number of fixed points of g in this action. In the regular representation $\Lambda: G \rightarrow S_{|G|}$ (action of G on itself by left multiplications) non-identity elements have no
fixed points. Therefore $\chi_{\Lambda}(g)=\left[\begin{array}{l}|G|, g=1, \\ 0, g \neq 1\end{array}\right.$, and by the proof of consequence 2 , the multiplicity $n_{i}=\left(\chi_{i}, \chi_{\Lambda}\right)=\frac{1}{|G|} \sum_{g \in G} \chi_{i}(g) \overline{\chi_{\Lambda}(g)}=\frac{\chi_{i}(1)|G|}{|G|}=\chi_{i}(1)$.

Burnside's equality. $\sum_{g \in G} \chi_{i}(1)^{2}=|G|$.

4. Character tables.

Every character $\chi=n_{1} \chi_{1} \oplus \ldots \oplus n_{r} \chi_{r}$ of the group G is determined on the values of irreducible characters. Character table X is $r \times r$-matrix the rows of which are labeled with irreducible characters (in some order) and columns with conjugate classes (in some order).
So $\mathrm{X}=\left(x_{i j}\right), x_{i j}=\chi_{i}\left(g_{j}\right), g_{j} \in K_{j}(i, j=1, \ldots, r) .\left(U s u a l l y, \chi_{1}=1_{G}, K_{1}=\{1\}.\right)$
Illustrate this by a simple example.
Example. Character table of $G=S_{3}$.
The group $G=S_{3}$ has three conjugate classes: $K_{1}=\{1\}, K_{2}=\{(1,2),(1,3),(2,3)\}, K_{3}=\{(1,2,3),(3,2,1)\}$ and

	K_{1}	K_{2}	K_{3}
1	1	1	1
ε	1	-1	1
χ	2	0	1

Calculate scalar products: $(\chi, 1)=\frac{1}{6}(a+3 b+2 c)=0,(\chi, \varepsilon)=\frac{1}{6}(a-3 b+2 c)=0 \Rightarrow b=0$;

$$
6(\chi, \chi)=a^{2}+3|b|^{2}+2|c|^{2}=a^{2}+2|c|^{2}=6 \Rightarrow a=2, c= \pm 1 .
$$

From $a+3 b+2 c=0, a=2 \Rightarrow c=-1$. So we can finish the table.
Now rewrite the first orthogonality relation $\left(\chi_{i}, \chi_{k}\right)_{G}=\sum_{j=1}^{r} \frac{\left|K_{j}\right|}{|G|} \chi_{i}\left(g_{j}\right) \overline{\chi_{k}\left(g_{j}\right)}=\delta_{i k}$
in the form $\sum_{j=1}^{r} \frac{\chi_{i}\left(g_{j}\right)}{\sqrt{\left|C_{G}\left(g_{j}\right)\right|}} \cdot \frac{\overline{\chi_{k}\left(g_{j}\right)}}{\sqrt{\left|C_{G}\left(g_{j}\right)\right|}}=\delta_{i k}, g_{j} \in K_{j}$, because of $\left|K_{j}\right|=\frac{|G|}{\left|C_{G}\left(g_{j}\right)\right|}$.
It means that the matrix $M=\left(\frac{\chi_{i}\left(g_{j}\right)}{\sqrt{\left|C_{G}\left(g_{j}\right)\right|}}\right)$ is unitary on rows, namely $M \cdot \bar{M}^{T}=E$.
Then it is unitary on columns: $M^{T} \cdot \bar{M}=E \Rightarrow \sum_{i=1}^{r} \frac{\chi_{i}\left(g_{j}\right)}{\sqrt{\left|C_{G}\left(g_{j}\right)\right|}} \cdot \frac{\overline{\chi_{i}\left(g_{k}\right)}}{\sqrt{\left|C_{G}\left(g_{j}\right)\right|}}=\delta_{j k}$.
We derived

Theorem 3. (the second orthogonality relation):

$\sum_{i=1}^{r} \chi_{i}(g) \overline{\chi_{i}(h)}=\left[\begin{array}{l}\left|C_{G}(g)\right|, \text { if } g, h \text { are conjugate, } \\ 0 \text { otherwise }\end{array}\right.$

5. Theorem on the dimension of an irreducible representation.

Theorem 4. The degree of any irreducible complex representation $\varphi: G \rightarrow G L(V)$ of a finite group G divides the order $|G|$ of G.
The proof uses characters and is based on the theory of algebraic numbers.
Let χ be the character of φ.
Note that the values of all complex characters of the group G are contained in the cyclotomic field
$\mathbb{Q}(\sqrt[|G|]{1})$ because $\chi(g)=\sum_{k=1}^{n} \lambda_{k}$, but λ_{k} are the roots $\sqrt[|g|]{1}$ and $|g|\left||G|\right.$, therefore $\chi(g)=\sum_{k=1}^{n} \lambda_{k} \in \mathbb{Q}(\sqrt[|G|]{1})$.
A complex number z is called algebraic if it is a root of a polynomial $p(x)=a_{0} x^{n}+\ldots+a_{n}(n \geq 1)$ with (rational) integer coefficients. It is algebraic integer if $a_{0}=1$.
We need some lemmas.
Lemma 1. The set of all algebraic integer numbers is the ring (denoted O).
Proof. First prove that if $\omega_{1}, \ldots, \omega_{m} \in \mathbb{C}, \omega_{j} \neq 0, j=1, \ldots, m$ and $M=\mathbb{Z} \omega_{1}+\ldots+\mathbb{Z} \omega_{m}$ is a ring, then all numbers of M are algebraic integers. For any $\alpha \in M, \alpha \neq 0$, the products $\alpha \omega_{i}$ are integer linear combinations of $\omega_{1}, \ldots, \omega_{m}: \alpha \omega_{j}=\sum_{i=1}^{m} a_{i j} \omega_{i}, j=1, \ldots, m, a_{i j} \in \mathbb{Z}$ (1)
This is a homogeneous linear system:
$(\alpha E-A)\left(\begin{array}{c}\omega_{1} \\ \vdots \\ \omega_{m}\end{array}\right)=\left(\begin{array}{c}0 \\ \vdots \\ 0\end{array}\right)=0, A=\left(a_{i j}\right)$ and $\omega_{1}, \ldots, \omega_{m}$ is its nonzero solution. It follows that
$\operatorname{det}(\alpha E-A)=0$, but $\operatorname{det}(\alpha E-A)$ is the polynomial with integer coefficients and leading coefficient equal 1. So α is algebraic integer.
For any $\alpha, \beta \in \mathrm{O}, \alpha^{n}+a_{1} \alpha^{n-1}+\ldots+a_{n}=0, \beta^{k}+b_{1} \alpha^{k-1}+\ldots+b_{k}=0, a_{i}, b_{j} \in \mathbb{Z}$ (2),
the set $M=\left\{\sum_{i, j \geq 0} c_{i j} \alpha^{i} \beta^{j}: c_{i j} \in \mathbb{Z}, 0 \leq i<n, 0 \leq j<k\right\}$
is the ring, because relations (2) enable to express $\alpha^{p} \beta^{q}, p \geq n$ or $q \geq k$ through $\alpha^{i} \beta^{j}(0 \leq i<n, 0 \leq j<k)$. Especially, $\alpha \pm \beta, \alpha \beta \in M$, hence, they are algebraic integers. Q.e.d.
Lemma 2. If the number $\alpha \in \mathbb{Q}$ is algebraic integer, then $\alpha \in \mathbb{Z}$.
Proof. Let $\alpha=\frac{p}{q}, p \in \mathbb{Z}, q \in \mathbb{N},(p, q)=1, \alpha^{n}+a_{1} \alpha^{n-1}+\ldots+a_{n}=0, a_{i} \in \mathbb{Z}$
$p^{n}+a_{1} p^{n-1} q+\ldots+a_{n} q^{n}=0 \Rightarrow-p^{n}=a_{1} p^{n-1} q+\ldots+a_{n} q^{n}: q \Rightarrow q=1$, q.e.d.
Return to characters.
Lemma 3. Let χ be the character of the representation of $\varphi: G \rightarrow G L(V)$ over C , then $\forall g \in G: \chi(g)$ is algebraic integer and $|\chi(g)| \leq \chi(1)$.
Proof. We have $\chi(g)=\sum_{k=1}^{n} \lambda_{k}$, where λ_{k} are the roots the polynomial $x^{|g|}-1$, hence are algebraic integers, therefore $\chi(g)=\sum_{k=1}^{n} \lambda_{k}$, is algebraic integer by Lemma 1. Moreover, $|\chi(g)|=\left|\sum_{k=1}^{n} \lambda_{k}\right| \leq \sum_{k=1}^{n}\left|\lambda_{k}\right|=n=\chi(1)$.

Now let's introduce the group algebra \mathbb{C} Gof the group G over the field \boldsymbol{C} of complex numbers: $\mathbb{C} G=\left\{\sum_{g \in G} \alpha_{g} g \mid \alpha_{g} \in \mathbb{C}\right\}$ is the linear space of formal linear combinations of elements of G which are considered as a basis, and with multiplication

$$
\left(\sum_{g \in G} \alpha_{g} g\right) \cdot\left(\sum_{h \in G} \beta_{h} h\right)=\sum_{g, h \in G} \alpha_{g} \beta_{h} g h=(g h=x)=\sum_{x \in G} \gamma_{x} x, \gamma_{x}=\sum_{g \in G} \alpha_{g} \beta_{g^{-1} x} .
$$

We may consider that $G \subset \mathbb{C} G$. Let K_{1}, \ldots, K_{r} are all conjugate classes of G. Construct the following elements of $\mathbb{C} G: \bar{K}_{i}=\sum_{g \in K_{i}} g, i=1, \ldots, r$.
Lemma 4. $\left\{\bar{K}_{1}, \ldots, \bar{K}_{r}\right\}$ is the basis of the center of the group algebra $Z(\mathbb{C} G)$. Moreover, $\forall i, j: \bar{K}_{i} \cdot \bar{K}_{j}=\sum_{l=1}^{r} a_{i j}^{l} \bar{K}_{l}$ (1) where $a_{i j}^{l}$ are non-negative integers.
Proof. Find by what condition an element $z=\sum_{g \in G} \alpha_{g} g$ belongs to the center of $\mathbb{C} G$: for any $h \in G$ calculate $h z h^{-1}=\sum_{g \in G} \alpha_{g} h g h^{-1}$. Denote $h g h^{-1}=a$; when g runs over G then a runs over G. So $h z h^{-1}=\sum_{g \in G} \alpha_{g} h g h^{-1}=\sum_{a \in G} \alpha_{h^{-1} a h} a=z \Leftrightarrow \alpha_{h^{-1} a h}=\alpha_{g}, \forall h \in G$, hence α is a central function on G. Therefore, $z=\sum_{g \in G} \alpha_{g} g=\sum_{i=1}^{r} \sum_{g \in K_{i}} \alpha_{g} g=\sum_{i=1}^{r} \alpha_{g_{i}} \sum_{g \in K_{i}} g=\sum_{i=1}^{r} \alpha_{g_{i}} \bar{K}_{i}\left(g_{i} \in K_{i}\right)$.
Note that $K_{i} K_{j}$ is the union of some conjugate classes: namely, if $x \in K_{l}, x=x_{i} x_{j} \in K_{i} K_{j} \Rightarrow \forall g \in G, g x g^{-1}=\left(g x_{i} g^{-1}\right)\left(g x_{j} g^{-1}\right) \in K_{i} K_{j} \Rightarrow K_{l} \subseteq K_{i} K_{j}$. Consequently, every expression $x=x_{i} x_{j}, x \in K_{l}$ contributes one into decomposition of $\bar{K}_{i} \bar{K}_{j}$, and the total coefficient $a_{i j}^{l}$ equals the number of ways to present $x \in K_{l}$ in the form $x=x_{j}, x_{i} \in K_{i}, x_{j} \in K_{j}$. Q.e.d.
Lemma 5. Let χ is an irreducible complex character of the group G, then for any $g \in K_{g} \subset G$ the number $\omega(\chi, g)=\left|K_{g}\right| \frac{\chi(g)}{\chi(1)}\left(K_{g}\right.$ is the conjugate class containing $\left.g\right)$ is algebraic integer.
Proof. First note: if χ is the character of the representation $\varphi: G \rightarrow G L(V)$, we may extend it to representation $\Phi: \mathbb{C} G \rightarrow L(V)$ of the group algebra by the rule $\Phi\left(\sum_{g \in G} \alpha_{g} g\right)=\sum_{g \in G} \alpha_{g} \varphi(g)$ We receive linear operators $\Phi_{j}=\Phi\left(\bar{K}_{j}\right)=\sum_{g \in K_{j}} \varphi(g), j=1, \ldots, r$. It follows from lemma 4 that Φ_{j} commute with all $\varphi(g), g \in G$, hence, by Schur's Lemma, $\Phi_{j}=\lambda_{j} E$. Calculating trace we get
$\operatorname{tr} \Phi_{j}=\sum_{g \in K_{j}} \operatorname{tr} \varphi(g)=\left|K_{j}\right| \chi\left(g_{j}\right)=\lambda_{j} \chi(1) \Rightarrow \lambda_{j}=\frac{\left|K_{j}\right| \chi\left(g_{j}\right)}{\chi(1)}=\omega\left(\chi, g_{j}\right), g_{j} \in K_{j}, \quad$ and $\quad \Phi_{j}=\frac{\left|K_{j}\right| \chi\left(g_{j}\right)}{\chi(1)} E$.
On the other hand, applying Φ to the decomposition (1) from Lemma 4, we have $\Phi_{i} \Phi_{j}=\sum_{l=1}^{r} a_{i j}^{l} \Phi_{l}$ whence $\frac{\left|K_{i}\right| \chi\left(g_{i}\right)}{\chi(1)} \cdot \frac{\left|K_{j}\right| \chi\left(g_{j}\right)}{\chi(1)}=\sum_{l=1}^{r} a_{i j}^{l} \frac{\left|K_{l}\right| \chi\left(g_{l}\right)}{\chi(1)} \quad$ or $\omega\left(\chi, g_{i}\right) \omega\left(\chi, g_{j}\right)=\sum_{l=1}^{r} a_{i j}^{l} \omega\left(\chi, g_{l}\right) \quad$. Consequently (confer with the proof of Lemma 1) $\omega\left(\chi, g_{i}\right)$ is algebraic integer. Q.e.d.

Proof of Theorem 4. As χ is irreducible,

$$
\begin{aligned}
& |G|(\chi, \chi)_{G}=\sum_{g \in G} \chi(g) \overline{\chi(g)}=\sum_{i=1}^{r}\left|K_{i}\right| \chi\left(g_{i}\right) \overline{\chi\left(g_{i}\right)}=|G| \Rightarrow \\
& \sum_{i=1}^{r} \frac{\left|K_{i}\right| \chi\left(g_{i}\right)}{\chi(1)} \overline{\chi\left(g_{i}\right)}=\frac{|G|}{\chi(1)} \in \mathrm{O} \cap \mathbb{Q}=\mathbb{Z}
\end{aligned}
$$

by lemmas 1,2 and 5 . The theorem is proved.

