Group characters
1. Definitions and basic properties
Let ¢:G—>GL(V) be a linear representation of a group G in a finite-dimensional vector space

over a field K. For any element ge G let4,(g) will be the matrix of the operator ¢(g)with
respect to some basis e ={¢,e,,...,e,}of V. As is well known, the trace of 4,(g) does not depend
upon a basis, so the function y =y,:G > K, 7,(g)==tr,¢(g) =trd,(g) is defined; y,is called the
character of the representation ¢ .

Let’s establish basic properties of characters.

Proposition 1. 1) y (1) =dimV - degree (dimension) of the representation ¢ .
2) Vg, heG, ;((p(h’1 gh)=x,(g),so0 x,is constant on conjugate classes. (A function on G which
is constant on its conjugate classes is called central, or class function.)
3) If geG has finite order and K =Cthe field of complex numbers, then y, ( g™ =m

(complex conjugate).
4) The character of the direct sum of representations equals the sum of characters of the
summands: ¥ ., = %, + %, (and similarly for any finite number of summands).

5) Characters of equivalent representations are equal.

Proofs. 1) x,(1)=trE=n=dimV .
2),5) follow from the property that #(AB) =tr(BA) (recall that two representations are equivalent
iff there is a matrix C such that 4,(g)= C*IAV(g)C ).

3) If g"=1 and Ais an eigenvalue of ¢(g), then A"=1=1" =1. Now

rd, (g) = zflkat”Agg(g_l) = Z/le = Zﬂ_k, g.e.d.
k=1 k=1 k=1
4) In the basis of the direct sum V" @ W which is combined of bases of spaces V,W
4,(2)
0 4,(2)

Note that the set of central functions ZF,on G is the linear space of dimension r, the number of

we have 4, (g)= [ j hence #r4,,,, (g) =1rd,(g) +1rd,(g) , qed.

conjugate classes K,..K of G (its basis consists of functions
[:T(K)= 5[.’].,1 <j<r,i=1,.,r), while the set F of all the functions on G is the linear space
of dimension n = |G| with basis of “delta-functions” &, :6,(x)=Lx=g,0,x#geG.

The character of any irreducible representation cannot be decomposed into sum of characters,
by 4, that’ s why it is named irreducible character.

2. Schur’s Lemma and its consequence for finite groups
Let me remind
Schur’s Lemma. If ¢:G—>GL(V),y :G—GL(W) are irreducible representations of a group G
and f:V —>Wis a homomorphism of representations (i.e. fo=wf), then =0 or f is

isomorpyism of representations.
Consequence. 1f the field of definition of V,W is algebraically closed and V,W are finite-

dimensional then f=0 or (when the representations are isomorphic and the spaces and
representations are identified) f=AE, A€ K.

In what follows the ground field will be the field of complex numders C.
Lemma. Let ¢ :G—>GL(V),y :G—>GL(W) are finite-dimensional irreducible representations of

a finite group G and f:V — W over C and f:V — W is some linear mapping. Then the average
mapping equals



of
LS o) fotg) = | 1B TV =Wp =y whered=20r,

g<G 0, otherwise

|G

Proof. It’s evident that £ is a homomorphism of representations, so, by Schur Lemma, f=0 or (in

the first case) f = AE,A e C=uf =trf =AtrE =AdimV .
[

Matrix version of lemma.

Fix bases in V,W: V:(vi|ie[>,W:(wf|jeJ> V,W, and the mappings get matrices:

v(g)= (co,- (@)@ =(v.,(®)./ =(/,). =(,). By definition,
L |G| 2 V(@S o) - (1)
In particular, taking f =FE. ., f.

Jolo > < Jolo

1) If (/),l// are non-isomorphic, then from (1)

Zl//,,o(g)co,o,(g )=0,Yiiy, j. j, - (2)

geG

=L/, =0((/,) # (Jy»i,)) - the matrix unit — we get

|G

trf
2) IfV =W, th ——E o B
) ¢ =y then f Jrf = Zf Z J’f/’ :>f/’ Ji d1mV dll’IlV,Z:

Inv1ew0f(1)weget| |Zwu(g)f,z¢”(g )_d VZ O -

&)

Taking again f = E_ ., we finally have

Joio 2
i ——if

i

LSy (@0, )= dmr ! 70 3)

Gl & .
| g=C 0, otherwise

3. Orthogonality relations for characters
Introduce in the space F, of all complex-valued functions on a finite group G the Hermitian

Z 2(@n(g)=0 (r.neF,),

geG

form (y,17) = ]

that can be taken as a (Hermitian) scalar product in F,. Taking into account the fact that

characters are constant on conjugate classes, we can write the scalar product of two characters
7,1 in form

G = G|Z|K |2(gm(g) g, €K,

where K, j =1,...,rare conjugate classes of G.

Theorem 1. (The first orthogonality relation).

Let ¢,y are (finite-dimensional) irreducible representations of a finite group G . Then
lifp=y,
, = 5 = .
T 23 =00y {0 otherwise

Proof. By definition, z,(g)=Y ¢,(g),,(g)=> ¥ ,(g). Putting i =iy, j = j,in (2) and (3) and
i j
sum on 1, j we receive in the case 1) of Lemma

iG] Zw,,(g)qo,,(g )= ij,(g)(pﬁ(g)=(zwz¢)=0-

geCG |G geG




Zd/i
In the case 2), 1= LY 0@ = D (0, NN = (20 1, e
=

dimy |G| & G| =5 ;
Consequence 1. The number s of equivalence classes of irreducible complex
representations of a finite group G is less or equal the number of conjugate classes of
G:s<r.
Really, the characters y,,..., ¥, of all nonequivalent irreducible complex representations are pairwise

orthogonal, hence, linear independent, in the space ZF, of central functions on G, consequently,
s<dimZF, =r. =
Consequence 2. If two representations have equal characters, then they are equivalent .

Proof. Let ¢:G—>GL(V),y :G—>GL(W)two representations and y, =y, . Consider_the canonical
decomposition of V into direct sum of non-equivalent irreducible representations: V =n}, ®..®&nV, (
nV, means that there are n, invariant subspaces isomorphic with V, as representations. Denote
Xo =Xi» i=L...,s, s the full system of irreducible representations.
It follows, that y, =ny ©..®ny,, and (x,,2) =m0, 1) ++n,(x 2) =n(x,» %) =n;. Now, if
W=mW ®..©&mMW_ is canonical decomposition, then m, =(y,,x)=(%,,x)=n,i=1,...,s. It shows
that that V and W are isomorphic. =

Theorem 2. s =r.
Proof. 1t 1s sufficient to prove that the orthogonal system y,,..., ¥, is complete in the space ZF, of
central functions on G, that is equivalent to the condition: Vf € ZF_ from (y,, /) =0,i=1,...,sit follows
that /' =0.

For arbitrary representation (¢,G,V’) construct the linear operator ¢ * (f) = z f(@)e(g):V >V .

geG
Note, that (0 @y )*(f)=¢*(/) By *(f).
This is evident in matrix form:

»(g) p*(f) 0
® = =(@®W)*(f) =
@y =", v(2) (p@y)*(f) 0w

For any irreducible representation ¢, the operator ¢ *(f) is the endomorphism of ¢, because f is
central function: p(h)p*(f)p(h™) = Z{;f (g)p(hgh™)= Z(‘,;J_” (hgh™)p(hgh™)=@*(f).
So by Schur’s LemmagE o*(f)=AFE g.e Calculating traces, we find
Ax ()= ZGf (g)tro,(g)= Zéf (g)x.(g)=|G|(x.. /)=0.

ge ge

But for every representation ¢, y,=mny +..+ny,=@*(f)=0. Apply this for the regular

representation A :G—GL(CG),A(g)(x)=gx forxe Gand CG.

Namely, 0=A*(D)=0_f(@A)D=> f(gg (1 is the wunit element of G).
geG geG

By definition of CG ,the elements g € G linearly independent = f(g)=0, Vg e G, q.e.d.

Consequence. Any irreducible representation of G enters in the regular representation with multiplicity

equal to its degree.

Proof. Recall, that the value of the character y(g), g € Gof any permutation representation of G

considered as a linear representation equals the number of fixed points of g in this action. In the regular

representation A:G —>S‘ (action of G on itself by left multiplications) non-identity elements have no

Gl



G|, g=1, T
fixed points. Therefore y,(g)= |0 gl , and by the proof of consequence 2, the multiplicity
8 F
1 —— (|G
= (X 20) =77 2 (@) 2a ()= | |=Zi(1)-
|G geG |G|
Burnside’s equality. Z 7)Y’ = |G|

geG

4. Character tables.
Every character y=ny @..®n g, of the group G is determined on the values of irreducible

characters. Character table X is rxr-matrix the rows of which are labeled with irreducible
characters (in some order) and columns with conjugate classes (in some order).

So X=(x,),x,=7(g,)g €K, (i, j=1...r). (Usually, ,=1,, K, ={1})
[Mlustrate this by a simple example.
Example. Character table of G =;. K | K, | K,

1 |1
The group G=S§, has three conjugate classes: | ¢ |1 -1
2

K, ={1},K, ={(1,2),1,3),(2,3)}, K, ={(1,2,3),(3,2,1)} and [ £

hence three

irreducible characters. Two of them are one-dimensional, because S3' = A, has index two, namely, unit
X =1, %, = € = signand sign characters. The third one is two-dimensional, as 17 + 1*+ ds* = 6. We

could calculate it from the corresponding representation, as the group of triangle, but let’s invoke
orthogonality relation. Let y(1)=a, y(K,)=b, y(K;)=c.

(;(,1)=l(a+3b+2c)=0, (Z,g)zl(a—3b+20)=0 =b=0;
Calculate scalar products: 6 6
6(y,y)=a’ +3|b|2 +2|c|2 =a’ +2|c|2 =6=a=2,c==l.
From a+3b+2c=0,a=2=c=-1. So we can finish the table.

r

Now rewrite the first orthogonality relation (x,, ¥, ). :Z

1o

Xi(g)x(g;)=0,

=[]
| L 7(g)  ulg) i
mtheformz . / =0,,8; €K, because of |K,|= )
Hce) o)) T a Cals))
It means that the matrix M = M is unitary on rows, namely M -M" = E .
|CG(gj)|

. Zi(gj) . pACH) =0,
TCate )] Jcae)]

Then it is unitary on columns: M"-M =E=

We derived
Theorem 3. (the second orthogonality relation):

- — ||C
> 722, {' o)

Lif g,h are conjugate,
if g jugate,

0 otherwise



5. Theorem on the dimension of an irreducible representation.
Theorem 4. The degree of any irreducible complex representation ¢:G— GL(V') of a finite group G

divides the order |G| of G.

The proof uses characters and is based on the theory of algebraic numbers.

Let y be the character of ¢.

Note that the values of all complex characters of the group G are contained in the cyclotomic field

@(‘%) because y(g)= z/lk, but A, are the roots ‘5‘/1 and | g|| |G , therefore y(g)= Zﬂk e@(‘%).
k=1

k=1
A complex number z is called algebraic if it is a root of a polynomial

p(x)=ayx" +...+a, (n>1) with (rational) integer coefficients. It is algebraic integer if a, =1.

We need some lemmas.
Lemma 1. The set of all algebraic integer numbers is the ring (denoted O).

Proof. First prove that if @,...,0, e(C,a)j #0,j=1L..,m and M =Zwo, +...+Zw,is a ring, then all

numbers of M are algebraic integers. For any aeM,a#0, the products aw are integer linear
m

combinations of @,,...,®,,: aw, :Zaija)i,] =L,...,m,a, € Z (1)
i=1

This is a homogeneous linear system:
o, 0
(@E-A)| : |=|:]|=0,4= (aij ) and @,,...,w, is its nonzero solution. It follows that
0] 0
det(aE— A)=0, but det(aE — A4) is the polynomial with integer coefficients and leading coefficient
equal 1. So a is algebraic integer.
Forany a,f€0,a" +aa"" +..+a,=0,8" +ba"" +..+b =0,a,b, € Z (2),
theset M ={> c,a'p’ :c,€Z,0<i<n,0< j<k}
i,j=0
is the ring, because relations (2) enable to express «a’fB?, p>n or q=kthrough
a'p’ (0<i<n,0<j<k).Especially, o+ f,affe M , hence, they are algebraic integers. Q.e.d.
Lemma 2. 1f the number « € Qis algebraic integer, then o € Z.

Proof. Let a=L2 pe, qgeN, (p,q)=1, a" +aa" +..+a,=0,a €
q

pl+ap'qt..+aq" =0=>-p"=ap'q+..+aq" \q=>q=1,qed.
Return to characters.
Lemma 3. Let y be the character of the representation of @ :G—>GL(V) over C, then Vg e G: y(g) is

algebraic integer and | ;((g)| <x(@.

Proof. We have ;((g)zZﬂk, where A, are the roots the polynomial X —1, hence are algebraic
k=1

integers,  therefore y(g)= Z A is  algebraic integer by Lemma 1.  Moreover,
k=1

@)=Y 4| <D |A] =n=20).

Now let’s introduce the group algebra CG of the group G over the field C of complex numbers:

CG= {Z a,g|a, € Chis the linear space of formal linear combinations of elements of G which are
geG
considered as a basis, and with multiplication



Qa2 QA= apgh=(gh=x)=2 7% =2 ap,

geCG heG g.,heG xeG geG
We may consider that G cCG. Let K,...,K, are all conjugate classes of G. Construct the following

elements of CG: K- = z gi=1..,r

gek;

Lemma 4. {K,.,K ) is the basis of the center of the group algebra Z(CG). Moreover,
Vi, j: K, -IZ}. = Zaé.]?, (1) where afj are non-negative integers.
=1
Proof. Find by what condition an element z= Zag g belongs to the center of CG: for anyhe G

geG
calculate hzh™' =) a,hgh™ . Denote hgh™' =a; when gruns over Gthen a runs over G. So

geG
hzh™' = Z ahgh™ = Zah,]aha =z&a,, =a,,VheG, hence ais a central function on G . Therefore,
geG acG
=Yg -y Y ag- Za 2 8= Za K (g k).
geCG i=l gek; gek;
Note that KK, is the union of  some conjugate classes: namely, if

xekK, x=xx,eKK = VgeG,gxg" =(grg " )gr,g)eKK,= K, cKK,. Consequently, every
expression x=x,x;,x € K, contributes one into decomposition of ]?l.]?j , and the total coefficient aé.
equals the number of ways to present x € K, in the form x=x,,x, € K,,x; €K,. Q.e.d.

Lemma 5. Let y is an irreducible complex character of the group G, then for any ge K, < Gthe

(g)
x (1)

Proof. First note: if yis the character of the representation ¢:G—>GL(V) , we may extend it to
representation @ :CG— L(V') of the group algebra by the rule d)(z a,g)= Za P(g) We receive

geG geG

linear operators @ = (K )= z @(g),j=1,...,r. It follows from lemma 4 that @ commute with all

geK/

number o(y,g)= |K | 4 (K, s the conjugate class containing g ) is algebraic integer.

¢(g),g € G, hence, by Schur’s Lemma, @, =4 E . Calculating trace we get

K| 2(g)
x()

r®, = 3 rp(2) =|K [r(g) = 4,2()=2 —Mﬂ .

.= =w(y,g.),g,€K,, and @ =
Z ; 0 (2.8,), &, €K, ;

On the other hand, applying ® to the decomposition (1) from Lemma 4, we have ®®, :Za;(D

K| 2 |K|2(g) 3 [Kilxte)
x(1) x(1) = x(D
(confer with the proof of Lemma 1) @(y,g;) is algebraic integer. Q.e.d.

whence or o(y,g)w(x,g;)= Zafja)( x.g) . Consequently
=1

Proof of Theorem 4. As y is irreducible,

Gl(xs )6 = 2 2()x(g) = ZlKlz(g,)z(g, =|6|=

geG

r ‘ A G
Z%z(&) |(1|) c0nQ=Z

by lemmas 1,2 and 5. The theorem is proved.



