Group characters 1. Definitions and basic properties

Let $\varphi: G \to GL(V)$ be a linear representation of a group G in a finite-dimensional vector space over a field K. For any element $g \in G$ let $A_{\varphi}(g)$ will be the matrix of the operator $\varphi(g)$ with respect to some basis $e = \{e_1, e_2, ..., e_n\}$ of V. As is well known, the trace of $A_{\varphi}(g)$ does not depend upon a basis, so the function $\chi = \chi_{\varphi}: G \to K, \chi_{\varphi}(g):=tr_V \varphi(g)=trA_{\varphi}(g)$ is defined; χ_{φ} is called the character of the representation φ .

Let's establish basic properties of characters.

Proposition 1. 1) $\chi_{\varphi}(1) = \dim V$ - degree (dimension) of the representation φ .

2) $\forall g, h \in G, \chi_{\varphi}(h^{-1}gh) = \chi_{\varphi}(g)$, so χ_{φ} is constant on conjugate classes. (A function on *G* which is constant on its conjugate classes is called central, or class function.)

3) If $g \in G$ has finite order and $K = \mathbb{C}$ the field of complex numbers, then $\chi_{\varphi}(g^{-1}) = \overline{\chi_{\varphi}(g)}$ (complex conjugate).

4) The character of the direct sum of representations equals the sum of characters of the summands: $\chi_{\varphi \oplus \psi} = \chi_{\varphi} + \chi_{\psi}$ (and similarly for any finite number of summands).

5) Characters of equivalent representations are equal.

Proofs. 1) $\chi_{\varphi}(1) = trE = n = \dim V$.

2),5) follow from the property that tr(AB) = tr(BA) (recall that two representations are equivalent iff there is a matrix C such that $A_{\psi}(g) = C^{-1}A_{\psi}(g)C$).

3) If
$$g^m = 1$$
 and λ is an eigenvalue of $\varphi(g)$, then $\lambda^m = 1 \Longrightarrow \lambda^{-1} = \overline{\lambda}$. Now $trA_{\varphi}(g) = \sum_{k=1}^{n} \lambda_k, trA_{\varphi}(g^{-1}) = \sum_{k=1}^{n} \lambda^{-1}_{k} = \sum_{k=1}^{n} \overline{\lambda_k}$, q.e.d.

4) In the basis of the direct sum $V \oplus W$ which is combined of bases of spaces V, W

we have
$$A_{\varphi \oplus \psi}(g) = \begin{pmatrix} A_{\varphi}(g) & 0 \\ 0 & A_{\psi}(g) \end{pmatrix}$$
 hence $trA_{\varphi \oplus \psi}(g) = trA_{\varphi}(g) + trA_{\psi}(g)$, qed.

Note that the set of central functions ZF_G on G is the linear space of dimension r, the number of conjugate classes $K_1, ..., K_r$ of G (its basis consists of functions $\Gamma_i : \Gamma_i(K_j) = \delta_{i,j}, 1 \le j \le r, i = 1, ..., r$), while the set F_G of all the functions on G is the linear space of dimension n = |G| with basis of "delta-functions" $\delta_g : \delta_g(x) = 1, x = g, 0, x \ne g \in G$.

The character of any *irreducible representation* cannot be decomposed into sum of characters, by 4, that's why it is named *irreducible character*.

2. Schur's Lemma and its consequence for finite groups

Let me remind

Schur's Lemma. If $\varphi: G \to GL(V), \psi: G \to GL(W)$ are irreducible representations of a group G and $f: V \to W$ is a homomorphism of representations (i.e. $f\varphi = \psi f$), then f=0 or f is isomorphysism of representations.

Consequence. If the field of definition of V, W is algebraically closed and V, W are finitedimensional then f=0 or (when the representations are isomorphic and the spaces and representations are identified) $f = \lambda E, \lambda \in K$.

In what follows the ground field will be the field of complex numders $\mathbb C$.

Lemma. Let $\varphi: G \to GL(V), \psi: G \to GL(W)$ are finite-dimensional irreducible representations of a finite group G and $f: V \to W$ over \mathbb{C} and $f: V \to W$ is some linear mapping. Then the average mapping equals

$$\tilde{f} = \frac{1}{|G|} \sum_{g \in G} \psi(g) f \varphi(g)^{-1} = \begin{cases} \lambda E, & \text{if } V = W, \varphi = \psi, & \text{where } \lambda = \frac{trf}{\dim V}, \\ 0, & \text{otherwise} \end{cases}$$

Proof. It's evident that \tilde{f} is a homomorphism of representations, so, by Schur Lemma, f=0 or (in the first case) $\tilde{f} = \lambda E, \lambda \in \mathbb{C} \Longrightarrow tr\tilde{f} = trf = \lambda trE = \lambda \dim V$.

Matrix version of lemma. Fix bases in $V,W: V = \langle v_i | i \in I \rangle, W = \langle w_i | j \in J \rangle V, W$, and the mappings get matrices: $\varphi(g) = (\varphi_{i,i'}(g)), \psi(g) = (\psi_{i,i'}(g)), f = (f_{ji}), \tilde{f} = (\tilde{f}_{ji}).$ By definition, $\tilde{f}_{ji} = \frac{1}{|G|} \sum_{\alpha,i',i'} \psi_{jj'}(g) f_{j'i'} \varphi_{i'i}(g^{-1}) .$ (1)

In particular, taking $f = E_{j_0 i_0}$, $f_{j_0 i_0} = 1$, $f_{ji} = 0$ $((j,i) \neq (j_0,i_0))$ - the matrix unit – we get 1) If φ, ψ are non-isomorphic, then from (1)

$$\frac{1}{|G|} \sum_{g \in G} \psi_{jj_0}(g) \varphi_{i_0 i}(g^{-1}) = 0, \forall i, i_0, j, j_0 . \quad (2)$$

2) If
$$V = W$$
, $\varphi = \psi$ then $\tilde{f} = \frac{trf}{\dim V} E$, $trf = \sum_{i} f_{ii} = \sum_{j',i'} \delta_{j'i'} f_{j'i'} \Rightarrow \tilde{f}_{ji} = \delta_{ji} \frac{trf}{\dim V} = \frac{\delta_{ji}}{\dim V} \sum_{j',i'} \delta_{j'i'} f_{j'i'}$

In view of (1) we get $\frac{1}{|G|} \sum_{g,i',j'} \psi_{jj'}(g) f_{j'i'} \varphi_{i'i}(g^{-1}) = \frac{z_{ji}}{\dim V} \sum_{j',i'} \delta_{j'i'} f_{j'i'}$.

Taking again $f = E_{j_0 i_0}$, we finally have

$$\frac{1}{|G|} \sum_{g \in G} \psi_{jj_0}(g) \varphi_{i_0 i}(g^{-1}) = \begin{bmatrix} \frac{\partial_{ji}}{\dim V} if \quad j_0 = i_0, \\ 0, otherwise \end{bmatrix}$$
(3)

3. Orthogonality relations for characters

Introduce in the space F_G of all complex-valued functions on a finite group G the Hermitian

form
$$(\chi, \eta)_G = \frac{1}{|G|} \sum_{g \in G} \chi(g) \overline{\eta(g)} = 0 \ (\chi, \eta \in F_G)$$

that can be taken as a (Hermitian) scalar product in F_{G} . Taking into account the fact that characters are constant on conjugate classes, we can write the scalar product of two characters χ,η in form

$$(\chi,\eta)_G = \frac{1}{|G|} \sum_{j=1}^r |K_j| \chi(g_j) \overline{\eta(g_j)}, g_j \in K_j,$$

where K_i , j = 1, ..., r are conjugate classes of G.

Theorem 1. (The first orthogonality relation).

Let φ, ψ are (finite-dimensional) irreducible representations of a finite group G. Then

$$(\chi_{\varphi}, \chi_{\psi})_{G} = \delta_{\varphi, \psi} = \begin{bmatrix} 1 & \text{if } \varphi \cong \psi, \\ 0 & \text{otherwise} \end{bmatrix}$$
 (I)
Proof. By definition, $\chi_{\varphi}(g) = \sum_{i} \varphi_{ii}(g), \chi_{\psi}(g) = \sum_{j} \psi_{jj}(g)$. Putting $i = i_{0}, j = j_{0}$ in (2) and (3) and

sum on i, j we receive in the case 1) of Lemma
$$\frac{1}{|G|} \sum_{g \in G} \psi_{jj}(g) \varphi_{ii}(g^{-1}) = \frac{1}{|G|} \sum_{g \in G} \psi_{jj}(g) \overline{\varphi_{ii}(g)} = (\chi_{\psi}, \chi_{\varphi}) = 0.$$

In the case 2), $1 = \frac{\sum_{j,i} \delta_{ji}}{\dim V} = \frac{1}{|G|} \sum_{g,i,j} \varphi_{jj}(g) \varphi_{ii}(g^{-1}) = \frac{1}{|G|} \sum_{g \in G} (\sum_{j} \varphi_{jj}(g)) (\sum_{i} \varphi_{ii}(g^{-1})) = (\chi_{\varphi}, \chi_{\psi})_{G}.$

Consequence 1. The number *s* of equivalence classes of irreducible complex representations of a finite group *G* is less or equal the number of conjugate classes of $G: s \le r$.

Really, the characters $\chi_1, ..., \chi_s$ of all nonequivalent irreducible complex representations are pairwise orthogonal, hence, linear independent, in the space ZF_G of central functions on G, consequently, $s \le \dim ZF_G = r$.

Consequence 2. If two representations have equal characters, then they are equivalent .

Proof. Let $\varphi: G \to GL(V), \psi: G \to GL(W)$ two representations and $\chi_{\varphi} = \chi_{\psi}$. Consider_the canonical decomposition of V into direct sum of non-equivalent irreducible representations: $V = n_1 V_1 \oplus ... \oplus n_s V_s$ ($n_i V_i$ means that there are n_i invariant subspaces isomorphic with V_i as representations. Denote $\chi_{\varphi_i} = \chi_i, i = 1, ..., s, \varphi_i$ is the full system of irreducible representations.

It follows, that $\chi_{\varphi} = n_1 \chi_1 \oplus ... \oplus n_s \chi_s$, and $(\chi_{\varphi}, \chi_i) = n_1 (\chi_1, \chi_i) + ... + n_s (\chi_s, \chi_i) = n_i (\chi_i, \chi_i) = n_i$. Now, if $W = m_1 W_1 \oplus ... \oplus m_s W_s$ is canonical decomposition, then $m_i = (\chi_{\psi}, \chi_i) = (\chi_{\varphi}, \chi_i) = n_i$, i = 1, ..., s. It shows that that V and W are isomorphic.

Theorem 2. s = r.

Proof. It is sufficient to prove that the orthogonal system $\chi_1, ..., \chi_s$ is complete in the space ZF_G of central functions on G, that is equivalent to the condition: $\forall f \in ZF_G$ from $(\chi_i, f) = 0, i = 1, ..., s$ it follows that $f \equiv 0$.

For arbitrary representation (φ, G, V) construct the linear operator $\varphi^*(f) = \sum_{g \in G} \overline{f}(g)\varphi(g): V \to V$.

Note, that $(\varphi \oplus \psi)^*(f) = \varphi^*(f) \oplus \psi^*(f)$. This is evident in matrix form:

 $(\varphi \oplus \psi)(g) = \left\| \begin{matrix} \varphi(g) & 0 \\ 0 & \psi(g) \end{matrix} \right\| \Rightarrow (\varphi \oplus \psi)^*(f) = \left\| \begin{matrix} \varphi^*(f) & 0 \\ 0 & \psi^*(f) \end{matrix} \right\|.$

For any irreducible representation φ_i the operator $\varphi_i^*(f)$ is the endomorphism of φ_i because f is central function: $\varphi(h)\varphi^*(f)\varphi(h^{-1}) = \sum_{g \in G} \overline{f}(g)\varphi(hgh^{-1}) = \sum_{g \in G} \overline{f}(hgh^{-1})\varphi(hgh^{-1}) = \varphi^*(f)$.

So by Schur's Lemma $\varphi_i^*(f) = \lambda_i E$. Calculating traces, we find $\lambda_i \chi_i(1) = \sum_{g \in G} \overline{f}(g) tr \varphi_i(g) = \sum_{g \in G} \overline{f}(g) \chi_i(g) = |G|(\chi_i, f) = 0$.

But for every representation φ , $\chi_{\varphi} = n_1 \chi_1 + ... + n_s \chi_s \Rightarrow \varphi^*(f) = 0$. Apply this for the regular representation $\Lambda : G \rightarrow GL(\mathbb{C}G), \Lambda(g)(x) = gx$ for $x \in G$ and $\mathbb{C}G$.

Namely, $0 = \Lambda^*(f)(1) = (\sum_{g \in G} \overline{f}(g)\Lambda(g))(1) = \sum_{g \in G} \overline{f}(g)g$ (1 is the unit element of G).

By definition of $\mathbb{C}G$, the elements $g \in G$ linearly independent $\Rightarrow f(g) = 0, \forall g \in G$, q.e.d.

Consequence. Any irreducible representation of G enters in the regular representation with multiplicity equal to its degree.

Proof. Recall, that the value of the character $\chi(g)$, $g \in G$ of any permutation representation of G considered as a linear representation equals the number of fixed points of g in this action. In the regular representation $\Lambda: G \to S_{|G|}$ (action of G on itself by left multiplications) non-identity elements have no

fixed points. Therefore $\chi_{\Lambda}(g) = \begin{bmatrix} |G|, g = 1, \\ 0, g \neq 1 \end{bmatrix}$, and by the proof of consequence 2, the multiplicity

$$n_{i} = (\chi_{i}, \chi_{\Lambda}) = \frac{1}{|G|} \sum_{g \in G} \chi_{i}(g) \overline{\chi_{\Lambda}(g)} = \frac{\chi_{i}(1)|G|}{|G|} = \chi_{i}(1) .$$

Burnside's equality. $\sum_{g \in G} \chi_{i}(1)^{2} = |G|.$

4. Character tables.

Every character $\chi = n_1 \chi_1 \oplus ... \oplus n_r \chi_r$ of the group G is determined on the values of irreducible characters. *Character table* X is $r \times r$ -matrix the rows of which are labeled with irreducible characters (in some order) and columns with conjugate classes (in some order).

So $X = (x_{ij}), x_{ij} = \chi_i(g_j), g_j \in K_j (i, j = 1, ..., r)$. (Usually, $\chi_1 = I_G, K_1 = \{1\}$.)

Illustrate this by a simple example.

Example. Character table of $G = S_3$.

The group $G = S_3$ has three conjugate classes: $K_1 = \{1\}, K_2 = \{(1, 2), (1, 3), (2, 3)\}, K_3 = \{(1, 2, 3), (3, 2, 1)\}$ and

	K_1	K_2	<i>K</i> ₃	
1	1	1	1	
Е	1	-1	1	
χ	2	0	1	hence

three

irreducible characters. Two of them are one-dimensional, because $S'_3 = A_3$ has index two, namely, unit $\chi_1 = l_G, \chi_2 = \varepsilon = sign$ and sign characters. The third one is two-dimensional, as $1^2 + 1^2 + d_3^2 = 6$. We could calculate it from the corresponding representation, as the group of triangle, but let's invoke orthogonality relation. Let $\chi(1) = a, \chi(K_2) = b, \chi(K_3) = c$.

Calculate scalar products:

$$\begin{aligned}
(\chi, 1) &= \frac{1}{6}(a + 3b + 2c) = 0, \ (\chi, \varepsilon) = \frac{1}{6}(a - 3b + 2c) = 0 \implies b = 0; \\
6(\chi, \chi) &= a^2 + 3|b|^2 + 2|c|^2 = a^2 + 2|c|^2 = 6 \implies a = 2, c = \pm 1.
\end{aligned}$$

From a + 3b + 2c = 0, $a = 2 \Longrightarrow c = -1$. So we can finish the table.

Now rewrite the first orthogonality relation $(\chi_i, \chi_k)_G = \sum_{j=1}^r \frac{|K_j|}{|G|} \chi_i(g_j) \overline{\chi_k(g_j)} = \delta_{ik}$ in the form $\sum_{j=1}^r \chi_i(g_j) = \overline{\chi_k(g_j)} = \delta_{ik}$

in the form
$$\sum_{j=1}^{r} \frac{\chi_i(g_j)}{\sqrt{|C_G(g_j)|}} \cdot \frac{\chi_k(g_j)}{\sqrt{|C_G(g_j)|}} = \delta_{ik}, g_j \in K_j$$
, because of $|K_j| = \frac{|G|}{|C_G(g_j)|}$.

It means that the matrix $M = \left(\frac{\chi_i(g_j)}{\sqrt{|C_G(g_j)|}}\right)$ is unitary on rows, namely $M \cdot \overline{M}^T = E$.

Then it is unitary on columns: $M^T \cdot \overline{M} = E \Rightarrow \sum_{i=1}^r \frac{\chi_i(g_j)}{\sqrt{|C_G(g_j)|}} \cdot \frac{\overline{\chi_i(g_k)}}{\sqrt{|C_G(g_j)|}} = \delta_{jk}$.

We derived

Theorem 3. (the *second orthogonality relation*):

$$\sum_{i=1}^{r} \chi_{i}(g) \overline{\chi_{i}(h)} = \begin{bmatrix} |C_{G}(g)|, & \text{if } g, h \text{ are conjugate,} \\ 0 \text{ otherwise} \end{bmatrix}$$
(II).

5. Theorem on the dimension of an irreducible representation.

Theorem 4. The degree of any irreducible complex representation $\varphi: G \rightarrow GL(V)$ of a finite group G divides the order |G| of G.

The proof uses characters and is based on the theory of algebraic numbers.

Let χ be the character of φ .

Note that the values of all complex characters of the group G are contained in the cyclotomic field

$$\mathbb{Q}(\sqrt[|G|]{1})$$
 because $\chi(g) = \sum_{k=1}^{n} \lambda_k$, but λ_k are the roots $\sqrt[|g|]{1}$ and $|g| | |G|$, therefore $\chi(g) = \sum_{k=1}^{n} \lambda_k \in \mathbb{Q}(\sqrt[|G|]{1})$.

A complex number z is called algebraic if it is a root of a polynomial $p(x) = a_0 x^n + ... + a_n (n \ge 1)$ with (rational) integer coefficients. It is *algebraic integer* if $a_0 = 1$. We need some lemmas.

Lemma 1. The set of all algebraic integer numbers is the ring (denoted O).

Proof. First prove that if $\omega_1, ..., \omega_m \in \mathbb{C}, \omega_j \neq 0, j = 1, ..., m$ and $M = \mathbb{Z}\omega_1 + ... + \mathbb{Z}\omega_m$ is a ring, then all numbers of M are algebraic integers. For any $\alpha \in M, \alpha \neq 0$, the products $\alpha \omega_i$ are integer linear combinations of $\omega_1, ..., \omega_m$: $\alpha \omega_j = \sum_{i=1}^m a_{ij} \omega_i, j = 1, ..., m, a_{ij} \in \mathbb{Z}$ (1)

This is a homogeneous linear system:

$$(\alpha E - A) \begin{pmatrix} \omega_1 \\ \vdots \\ \omega_m \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix} = 0, A = (a_{ij}) \text{ and } \omega_1, \dots, \omega_m \text{ is its nonzero solution. It follows that}$$

 $det(\alpha E - A) = 0$, but $det(\alpha E - A)$ is the polynomial with integer coefficients and leading coefficient equal 1. So α is algebraic integer.

For any
$$\alpha, \beta \in O, \alpha^{n} + a_{1}\alpha^{n-1} + ... + a_{n} = 0, \beta^{k} + b_{1}\alpha^{k-1} + ... + b_{k} = 0, a_{i}, b_{j} \in \mathbb{Z}$$
 (2),
the set $M = \{\sum_{i,j\geq 0} c_{ij}\alpha^{i}\beta^{j} : c_{ij} \in \mathbb{Z}, 0 \le i < n, 0 \le j < k\}$

express $\alpha^p \beta^q$, $p \ge n$ or $q \ge k$ through the ring, because relations (2)enable to is $\alpha^i \beta^j$ ($0 \le i < n, 0 \le j < k$). Especially, $\alpha \pm \beta, \alpha \beta \in M$, hence, they are algebraic integers. Q.e.d.

Lemma 2. If the number $\alpha \in \mathbb{Q}$ is algebraic integer, then $\alpha \in \mathbb{Z}$.

Proof. Let
$$\alpha = \frac{p}{q}$$
, $p \in \mathbb{Z}$, $q \in \mathbb{N}$, $(p,q) = 1$, $\alpha^n + a_1 \alpha^{n-1} + \ldots + a_n = 0$, $a_i \in \mathbb{Z}$
 $p^n + a_1 p^{n-1} q + \ldots + a_n q^n = 0 \Longrightarrow - p^n = a_1 p^{n-1} q + \ldots + a_n q^n \vdots q \Longrightarrow q = 1$, q.e.d.
Return to characters.

Lemma 3. Let χ be the character of the representation of $\varphi: G \to GL(V)$ over C, then $\forall g \in G: \chi(g)$ is algebraic integer and $|\chi(g)| \leq \chi(1)$.

Proof. We have $\chi(g) = \sum_{k=1}^{n} \lambda_k$, where λ_k are the roots the polynomial $x^{|g|} - 1$, hence are algebraic integers, therefore $\chi(g) = \sum_{k=1}^{n} \lambda_k$, is algebraic integer by Lemma 1. Moreover, $\left|\chi(g)\right| = \left|\sum_{k=1}^{n} \lambda_{k}\right| \le \sum_{k=1}^{n} \left|\lambda_{k}\right| = n = \chi(1).$

Now let's introduce the group algebra $\mathbb{C}G$ of the group G over the field C of complex numbers: $\mathbb{C}G = \{\sum_{g \in \mathbb{C}} \alpha_g g \mid \alpha_g \in \mathbb{C}\}\$ is the linear space of formal linear combinations of elements of G which are

considered as a basis, and with multiplication

$$(\sum_{g\in G}\alpha_g g)\cdot (\sum_{h\in G}\beta_h h) = \sum_{g,h\in G}\alpha_g\beta_h gh = (gh = x) = \sum_{x\in G}\gamma_x x, \ \gamma_x = \sum_{g\in G}\alpha_g\beta_{g^{-1}x} \ .$$

We may consider that $G \subset \mathbb{C}G$. Let $K_1, ..., K_r$ are all conjugate classes of G. Construct the following elements of $\mathbb{C}G$: $\overline{K}_i = \sum_{a \in K} g, i = 1, ..., r$.

Lemma 4. $\{\overline{K}_1,...,\overline{K}_r\}$ is the basis of the center of the group algebra $Z(\mathbb{C}G)$. Moreover, $\forall i, j : \overline{K}_i \cdot \overline{K}_j = \sum_{l=1}^r a_{ij}^l \overline{K}_l$ (1) where a_{ij}^l are non-negative integers.

Proof. Find by what condition an element $z = \sum_{g \in G} \alpha_g g$ belongs to the center of $\mathbb{C}G$: for any $h \in G$ calculate $hzh^{-1} = \sum_{g \in G} \alpha_g hg h^{-1}$. Denote $hg h^{-1} = a$; when g runs over G then a runs over G. So $hzh^{-1} = \sum_{g \in G} \alpha_g hg h^{-1} = \sum_{a \in G} \alpha_{h^{-1}ah} a = z \Leftrightarrow \alpha_{h^{-1}ah} = \alpha_g, \forall h \in G$, hence α is a central function on G. Therefore, $z = \sum_{g \in G} \alpha_g g = \sum_{i=1}^r \sum_{g \in K_i} \alpha_g g = \sum_{i=1}^r \alpha_{g_i} \sum_{g \in K_i} g = \sum_{i=1}^r \alpha_{g_i} \overline{K}_i (g_i \in K_i).$

Note that K_iK_j is the union of some conjugate classes: namely, if $x \in K_l$, $x = x_ix_j \in K_iK_j \Rightarrow \forall g \in G$, $gxg^{-1} = (gx_ig^{-1})(gx_jg^{-1}) \in K_iK_j \Rightarrow K_l \subseteq K_iK_j$. Consequently, every expression $x = x_ix_j$, $x \in K_l$ contributes one into decomposition of $\overline{K}_i\overline{K}_j$, and the total coefficient a_{ij}^l equals the number of ways to present $x \in K_l$ in the form $x = x_j$, $x_i \in K_i$, $x_j \in K_j$. Q.e.d.

Lemma 5. Let χ is an irreducible complex character of the group G, then for any $g \in K_g \subset G$ the number $\omega(\chi,g) = \left| K_g \right| \frac{\chi(g)}{\chi(1)}$ (K_g is the conjugate class containing g) is algebraic integer.

Proof. First note: if χ is the character of the representation $\varphi: G \to GL(V)$, we may extend it to representation $\Phi: \mathbb{C}G \to L(V)$ of the group algebra by the rule $\Phi(\sum_{g \in G} \alpha_g g) = \sum_{g \in G} \alpha_g \varphi(g)$ We receive linear operators $\Phi_j = \Phi(\overline{K}_j) = \sum_{g \in K_j} \varphi(g), j = 1, ..., r$. It follows from lemma 4 that Φ_j commute with all $\varphi(g), g \in G$, hence, by Schur's Lemma, $\Phi_j = \lambda_j E$. Calculating trace we get

$$tr\Phi_{j} = \sum_{g \in K_{j}} tr\varphi(g) = \left| K_{j} \right| \chi(g_{j}) = \lambda_{j} \chi(1) \Longrightarrow \lambda_{j} = \frac{\left| K_{j} \right| \chi(g_{j})}{\chi(1)} = \omega(\chi, g_{j}), g_{j} \in K_{j}, \text{ and } \Phi_{j} = \frac{\left| K_{j} \right| \chi(g_{j})}{\chi(1)} E$$

On the other hand, applying Φ to the decomposition (1) from Lemma 4, we have $\Phi_i \Phi_j = \sum_{l=1}^{j} a_{lj}^l \Phi_l$

whence $\frac{|K_i|\chi(g_i)}{\chi(1)} \cdot \frac{|K_j|\chi(g_j)}{\chi(1)} = \sum_{l=1}^r a_{ij}^l \frac{|K_l|\chi(g_l)}{\chi(1)} \quad \text{or } \omega(\chi, g_i)\omega(\chi, g_j) = \sum_{l=1}^r a_{ij}^l \omega(\chi, g_l) \quad . \text{ Consequently}$ (confer with the proof of Lemma 1) $\omega(\chi, g_i)$ is algebraic integer. Q.e.d.

Proof of Theorem 4. As χ is irreducible,

$$|G|(\chi,\chi)_{G} = \sum_{g \in G} \chi(g)\overline{\chi(g)} = \sum_{i=1}^{r} |K_{i}|\chi(g_{i})\overline{\chi(g_{i})} = |G| \Rightarrow$$
$$\sum_{i=1}^{r} \frac{|K_{i}|\chi(g_{i})}{\chi(1)} \overline{\chi(g_{i})} = \frac{|G|}{\chi(1)} \in O \cap \mathbb{Q} = \mathbb{Z}$$

by lemmas 1,2 and 5. The theorem is proved.