
Group characters 
1. Definitions and basic properties 

   Let : ( )G GL Vϕ →  be a linear representation of a group G  in a finite-dimensional vector space 
over a field K . For any element g G∈  let ( )A gϕ  will be the matrix of the operator ( )gϕ with 
respect to some basis 1 2{ , ,..., }ne e e e of V= . As is well known, the trace of ( )A gϕ does not depend 
upon a basis, so the function : , ( ): ( ) ( )VG K g tr g trA gϕ ϕ ϕχ χ χ ϕ= → = = is defined; ϕχ is called the 
character of the representation ϕ . 
   Let’s establish basic properties of characters. 
   Proposition 1. 1) (1) dimVϕχ = - degree (dimension) of the representation ϕ . 

2) 1, , ( ) ( )g h G h gh gϕ ϕχ χ−∀ ∈ = , so ϕχ is constant on conjugate classes. (A function on G  which 
is constant on its conjugate classes is called central, or class function.) 
3) If g G∈  has finite order and K =  the field of complex numbers, then 1( ) ( )g gϕ ϕχ χ− =
(complex conjugate). 
4) The character of the direct sum of representations equals the sum of characters of the 
summands:  ϕ ψ ϕ ψχ χ χ⊕ = + (and similarly for any finite number of summands). 
5) Characters of equivalent representations are equal. 
   Proofs. 1) (1) dimtrE n Vϕχ = = = . 
2),5) follow from the property that  ( ) ( )tr AB tr BA=  (recall that two representations are equivalent 
iff there is a matrix C such that 1( ) ( )A g C A g Cψ ψ

−= ). 

3) If 1mg =  and λ is an eigenvalue of ( )gϕ , then 11mλ λ λ−= ⇒ = . Now 
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4) In the basis of the direct sum V W⊕  which is combined of bases of spaces  ,V W  

we have 
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 hence ( ) ( ) ( )trA g trA g trA gϕ ψ ϕ ψ⊕ = + , qed. 

Note that the set of central functions GZF on G is the linear space of dimension r, the number of 
conjugate classes 1,..., rK K of G  (its basis consists of functions  

,: ( ) ,1 , 1,...,i i j i jK j r i rδΓ Γ = ≤ ≤ = ), while the set GF of all the functions on G is the linear space 

of dimension n G= with basis of “delta-functions” : ( ) 1, , 0,g g x x g x g Gδ δ = = ≠ ∈ . 
    The character of any irreducible representation cannot be decomposed into sum of characters, 
by 4, that’ s why it is named irreducible character. 
 

2. Schur’s Lemma and its consequence for finite groups 
Let me remind 
Schur’s Lemma. If : ( ), : ( )G GL V G GL Wϕ ψ→ →  are irreducible representations of a group G  
and :f V W→ is a homomorphism of representations (i.e. f fϕ ψ= ), then f=0 or f is 
isomorpyism of representations. 
Consequence. If the field of definition of ,V W is algebraically closed and ,V W are finite-
dimensional then f=0 or (when the representations are isomorphic and the spaces and 
representations are identified)  ,f E Kλ λ= ∈ . 
  In what follows the ground field will be the field of complex numders . 
  Lemma. Let : ( ), : ( )G GL V G GL Wϕ ψ→ →  are finite-dimensional irreducible representations of 
a finite group G  and :f V W→ over   and :f V W→ is some linear mapping. Then the average 
mapping equals 
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trfE if V W where
f g f g V

G otherwise
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Proof. It’s evident that f is a homomorphism of representations, so, by Schur Lemma, f=0 or (in 
the first case) , dimf E trf trf trE Vλ λ λ λ= ∈ ⇒ = = = 

 . 
 

Matrix version of lemma. 
Fix bases in ,V W : ,i jV v i I W w j J=〈 ∈ 〉 =〈 ∈ 〉 ,V W , and the mappings get matrices:  

( ) ( ) ( ) ( ), ,( ) ( ) , ( ) ( ) , ,i i i i ji jig g g g f f f fjj  ψ ψ′ ′= = = =  . By definition,  

1

, ,

1 ( ) ( )ji j j j i i i
g i j

f g f g
G

ψ j −
′ ′ ′ ′

′ ′

= ∑ .  (1) 

In particular, taking 
0 0 0 0 0 0, 1, 0 (( , ) ( , ))j i j i jif E f f j i j i= = = ≠ - the matrix unit – we get 

1) If ,ϕ ψ are non-isomorphic, then from (1) 
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2) If ,V W ϕ ψ= =  then 
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In view of (1) we get 1
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Taking again 
0 0j if E= , we finally have  
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3. Orthogonality relations for characters 
   Introduce in the space GF  of all complex-valued functions on a finite group G the Hermitian 

form 1( , ) ( ) ( ) 0 ( , )G G
g G

g g F
G

χ η χ η χ η
∈

= = ∈∑ ,  

that can be taken as a (Hermitian) scalar product in GF . Taking into account the fact that 
characters are constant on conjugate classes, we can write the scalar product of two characters 

,χ η  in form  

 
1

1( , ) ( ) ( ) ,
r

G j j j j j
j

K g g g K
G
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=

= ∈∑ ,  

where , 1,...,jK j r= are conjugate classes of G. 
Theorem 1. (The first orthogonality relation). 
 Let ,ϕ ψ  are (finite-dimensional) irreducible representations of a finite group G . Then 

,
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Proof. By definition, ( ) ( ) , ( ) ( )ii jj
i j

g g g gj ψχ j χ ψ= =∑ ∑ . Putting 0 0,i i j j= = in (2) and (3) and 

sum on i, j we receive in the case 1) of Lemma
11 1( ) ( ) ( ) ( ) ( , ) 0j j ii j j ii
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G G ψ jψ j ψ j χ χ−

∈ ∈

= = =∑ ∑ . 



In the case 2), , 1 1
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           Consequence 1. The number s of equivalence classes of irreducible complex    
       representations  of a finite group G is less or equal the number of conjugate classes of      
       G : s r≤ . 
      Really, the characters 1,..., sχ χ of all nonequivalent irreducible complex representations are pairwise 
orthogonal, hence, linear independent, in the space  GZF  of central functions on G , consequently, 

dim Gs ZF r≤ = .  
      Consequence 2. If two representations have equal characters, then they are equivalent . 
Proof.  Let : ( ), : ( )G GL V G GL Wϕ ψ→ → two representations and ϕ ψχ χ= . Consider the canonical 
decomposition of V into direct sum of non-equivalent irreducible representations: 1 1 ... s sV nV n V= ⊕ ⊕  (

i inV  means that there are in invariant subspaces isomorphic with iV  as representations. Denote 
, 1,..., ,

i i ii sϕχ χ ϕ= = is the full system of irreducible representations.  
It follows, that  1 1 ... s sn nϕχ χ χ= ⊕ ⊕ , and 1 1( , ) ( , ) ... ( , ) ( , )i i s s i i i i in n n nϕχ χ χ χ χ χ χ χ= + + = = . Now, if 

1 1 ... s sW mW m W= ⊕ ⊕ is canonical decomposition, then ( , ) ( , ) , 1,...,i i i im n i sψ ϕχ χ χ χ= = = = . It shows 
that that V and W are isomorphic. 
    Theorem 2. s = r. 
Proof.  It is sufficient to prove that the orthogonal system 1,..., sχ χ is complete in the space  GZF  of 
central functions on G , that is equivalent to the condition: Gf ZF∀ ∈ from ( , ) 0, 1,...,i f i sχ = = it follows 
that 0f ≡ . 
   For arbitrary representation ( , , )G Vϕ  construct  the linear operator *( ) ( ) ( ):

g G
f f g g V Vϕ ϕ

∈

= →∑ . 

Note, that ( )*( ) *( ) *( )f f fϕ ψ ϕ ψ⊕ = ⊕ . 
This is evident in matrix form:  

( ) 0 *( ) 0
( )( ) ( )*( )

0 ( ) 0 *( )
g f

g f
g f

ϕ ϕ
ϕ ψ ϕ ψ

ψ ψ
⊕ = ⇒ ⊕ = . 

For any irreducible representation  iϕ  the operator *( )i fϕ  is the endomorphism of iϕ  because f is 
central function: 1 1 1 1( ) *( ) ( ) ( ) ( ) ( ) ( ) *( ).

g G g G
h f h f g hgh f hgh hgh fϕ ϕ ϕ ϕ ϕ ϕ− − − −

∈ ∈

= = =∑ ∑  

So by Schur’s Lemma *( )i if Eϕ λ= . Calculating traces, we find 
(1) ( ) ( ) ( ) ( ) ( , ) 0i i i i i

g G g G
f g tr g f g g G fλ χ ϕ χ χ

∈ ∈

= = = =∑ ∑ .  

But for every representation 1 1, ... *( ) 0s sn n fϕϕ χ χ χ ϕ= + + ⇒ = . Apply this for the regular 
representation : ( ), ( )( )G GL G g x gx for x G and GL → L = ∈  .  
Namely, 0 *( )(1) ( ( ) ( ))(1) ( )

g G g G
f f g g f g g

∈ ∈

= Λ = Λ =∑ ∑  (1 is the unit element of G).  

By definition of G ,the elements g G∈  linearly independent  ( ) 0,f g g G⇒ = ∀ ∈ , q.e.d. 
Consequence.   Any irreducible representation of G enters in the regular representation with multiplicity 
equal to its degree. 
Proof. Recall, that the value of the character ( ),g g Gχ ∈ of any permutation representation of G 
considered as a linear representation  equals  the number of fixed points of g in this action.  In the regular 
representation : GG SΛ → (action of G on itself by left multiplications) non-identity elements have no 



fixed points. Therefore 
, 1,
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G g
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g
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, and by the proof of consequence 2, the multiplicity 
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G
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Burnside’s equality. 2(1)i
g G

Gχ
∈

=∑ . 

 
4. Character tables. 

Every character 1 1 ... r rn nχ χ χ= ⊕ ⊕ of the group G is determined on the values of irreducible 
characters. Character table Χ  is r r× -matrix the rows of which are labeled with irreducible 
characters (in some order) and columns with conjugate classes (in some order).  
So ( ) , ( ), ( , 1,..., )ij ij i j j jx x g g K i j rχΧ = = ∈ = . (Usually, 1 11 , {1}G Kχ = = .) 
 Illustrate this by a simple example. 
 Example. Character table of 3G S= .     
 
The group 3G S=  has three conjugate classes: 

1 2 3{1}, {(1, 2), (1,3), (2,3)}, {(1,2,3), (3, 2,1)}K K K= = =  and hence three 

irreducible characters. Two of them are one-dimensional, because 3 3S A′ = has index two, namely, unit 

1 21 ,G signχ χ ε= = = and sign characters. The third one is two-dimensional, as 12 + 12+ d3
2 = 6. We 

could calculate it from the corresponding representation, as the group of triangle, but let’s invoke 
orthogonality relation. Let 2 3(1) , ( ) , ( )a K b K cccc  = = = .  

Calculate scalar products: 
2 2 22 2

1 1( ,1) ( 3 2 ) 0, ( , ) ( 3 2 ) 0 0;
6 6

6( , ) 3 2 2 6 2, 1.

a b c a b c b

a b c a c a c

cc  ε

cc

= + + = = − + = ⇒ =

= + + = + = ⇒ = = ±
 

From 3 2 0, 2 1a b c a c+ + = = ⇒ = − . So we can finish the table. 
 

Now rewrite the first orthogonality relation 
1
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It means that the matrix 
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i j
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g
M

C g

χ 
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 is unitary on rows, namely TM M E⋅ = .  

Then it is unitary on columns: TM M E⋅ = ⇒
1

( ) ( )

( ) ( )

r
i j i k
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g g

C g C g

χ χ δ
=

⋅ =∑ .  

We derived 
Theorem 3. (the second orthogonality relation): 
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 1K  2K  3K  
1 1 1 1 
ε  1 -1 1 
χ  2 0 1 



5. Theorem on the dimension of an irreducible representation. 
Theorem 4. The degree of any irreducible complex representation : ( )G GL Vϕ → of a finite group G
divides the order G of G . 
The proof uses characters and is based on the theory of algebraic numbers.  
Let χ  be the character of ϕ .  
Note that the values of all complex characters of the group G are contained in the cyclotomic field 

( 1)G
  because 

1
( ) ,

n

k
k

gχ λ
=

=∑ but kλ  are the roots 1 |g and g G , therefore 
1

( ) ( 1)
n

G
k

k
gχ λ

=

= ∈∑  . 

A complex number z is called algebraic if it is a root of a polynomial 
0( ) ... ( 1)n

np x a x a n= + + ≥  with (rational) integer coefficients. It is algebraic integer if 0 1a = . 
We need some lemmas.  
  Lemma 1. The set of all algebraic integer numbers is the ring (denoted Ο ). 
  Proof. First prove that if 1,..., , 0, 1,...,m j j mω ω ω∈ ≠ =  and 1 ... mM ω ω= + +  is a ring,  then all 
numbers of M are algebraic integers. For any , 0Mα α∈ ≠ , the products iαω are integer linear 

combinations of 1,..., mω ω : 
1

, 1,..., ,
m

j ij i ij
i

a j m aaω ω
=

= = ∈∑   (1) 

   This is a homogeneous linear system: 

 ( )
1 0

( ) 0,
0

ij

m

E A A a
ω

a
ω

   
   − = = =   
   
   

  and 1,..., mω ω is its nonzero solution. It follows that   

det( ) 0E Aα − = , but det( )E Aα −  is the polynomial with integer coefficients and leading coefficient 
equal 1. So α is algebraic integer.  
For any 1 1

1 1, , ... 0, ... 0, , (2)n n k k
n k i ja a b b a ba b aa  b a− −∈Ο + + + = + + + = ∈ , 

the set 
, 0

{ : ,0 ,0 }i j
ij ij

i j
M c c i n j kα β

≥

= ∈ ≤ < ≤ <∑    

is the ring, because relations (2) enable to express ,p q p n or q kα β ≥ ≥ through 
(0 ,0 )i j i n j kα β ≤ < ≤ < . Especially, , Mα β αβ± ∈ , hence, they are algebraic integers. Q.e.d. 

    Lemma 2. If the number α ∈ is algebraic integer, then α ∈ . 

 Proof. Let 1
1, , , ( , ) 1, ... 0,n n

n i
p p q p q a a a
q

aaa   −= ∈ ∈ = + + + = ∈    

1 1
1 1... 0 ... 1n n n n n n

n np a p q a q p a p q a q q q− −+ + + = ⇒− = + + ⇒ = , q.e.d. 
Return to characters. 
   Lemma 3. Let χ  be the character of the representation of : ( )G GL Vϕ → over C, then : ( )g G gχ∀ ∈  is 
algebraic integer and  ( ) (1)gχ χ≤ . 

  Proof.  We have 
1

( ) ,
n

k
k

gχ λ
=

=∑ where kλ  are the roots the polynomial 1gx − , hence are algebraic 

integers, therefore
1

( ) ,
n

k
k

gχ λ
=

=∑  is algebraic integer by Lemma 1. Moreover, 

1 1
( ) (1)

n n

k k
k k

g nχ λ λ χ
= =

= ≤ = =∑ ∑ . 

 
  Now let’s introduce the group algebra G of the group G over the field C of complex numbers: 

{ | }g g
g G

G gα α
∈

= ∈∑{{  is the linear space of formal linear combinations of elements of G which are 

considered as a basis,  and with multiplication 
 



   1

,
( ) ( ) ( ) ,g h g h x x g g x

g G h G g h G x G g G
g h gh gh x xα β α β g g α β −

∈ ∈ ∈ ∈ ∈

⋅ = = = = =∑ ∑ ∑ ∑ ∑ . 

We may consider that G G⊂ . Let 1,..., rK K are all conjugate classes of G . Construct the following 
elements of G : , 1,...,

i

i
g K

K g i r
∈

= =∑ . 

   Lemma 4. 1{ ,..., }rK K  is the basis of the center of the group algebra ( )Z G . Moreover, 

1
, :

r
l

i j ij l
l

i j K K a K
=

∀ ⋅ =∑  (1) where l
ija are non-negative integers. 

   Proof.  Find by what condition an element g
g G

z gα
∈

= ∑ belongs to the center of G : for any h G∈  

calculate 1 1
g

g G
hzh hg hα− −

∈

= ∑ . Denote 1hg h a− = ; when g runs over G then a  runs over G . So 

1 1
1 1 ,g gh ah h ah

g G a G
hzh hg h a z h Gaaaa   − −

− −

∈ ∈

= = = ⇔ = ∀ ∈∑ ∑ , hence α is a central function on G . Therefore, 

1 1 1
( )

i i
i i

r r r

g g g g i i i
g G i g K i g K i

z g g g K g Kα α α α
∈ = ∈ = ∈ =

= = = = ∈∑ ∑∑ ∑ ∑ ∑ . 

   Note that i jK K is the union of some conjugate classes: namely, if 
1 1 1, , ( )( )l i j i j i j i j l i jx K x x x K K g G gxg gx g gx g K K K K K− − −∈ = ∈ ⇒ ∀ ∈ = ∈ ⇒ ⊆ . Consequently, every 

expression ,i j lx x x x K= ∈  contributes one into decomposition of i jK K , and the total coefficient l
ija

equals the number of ways to present lx K∈ in the form , ,j i i j jx x x K x K= ∈ ∈ . Q.e.d.  
   Lemma 5. Let χ  is an irreducible complex character of the group G , then for any gg K G∈ ⊂ the 

number ( )( , )
(1)g
gg K χω χ

χ
=  ( gK is the conjugate class containing g ) is algebraic integer.  

  Proof. First note: if χ is the character of the representation : ( )G GL Vϕ → , we may extend it to 
representation : ( )G L VΦ → of the group algebra by the rule ( ) ( )g g

g G g G
g gα α ϕ

∈ ∈

Φ =∑ ∑   We receive 

linear operators ( ) ( ), 1,...,
j

j j
g K

K g j rj
∈

Φ = Φ = =∑ . It follows from lemma 4 that jΦ commute with all 

( ),g g Gϕ ∈ , hence, by Schur’s  Lemma, j j EλΦ = . Calculating trace we get   

( )
( ) ( ) (1) ( , ),

(1)
j

j j
j j j j j j j j

g K

K g
tr tr g K g g g K

χ
j χ λ χ λ ω χ

χ∈

Φ = = = ⇒ = = ∈∑ , and 
( )

(1)
j j

j

K g
E

χ

χ
Φ = . 

On the other hand, applying Φ  to the decomposition (1) from Lemma 4, we have 
1

r
l

i j ij l
l

a
=

Φ Φ = Φ∑

whence 
1

( )( ) ( )
(1) (1) (1)

r
j ji i l ll

ij
l

K gK g K g
a

χχ χ
χ χ χ=

⋅ =∑  or
1

( , ) ( , ) ( , )
r

l
i j ij l

l
g g a gω χ ω χ ω χ

=

=∑  . Consequently 

(confer with the proof of Lemma 1) ( , )igω χ  is algebraic integer. Q.e.d. 
    
Proof of Theorem 4. As χ is irreducible, 

  1

1

( , ) ( ) ( ) ( ) ( )

( )
( )

(1) (1)

r

G i i i
g G i
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i i

i
i

G g g K g g G
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χ
χ

χ χ

∈ =

=

= = = ⇒

= ∈Ο∩ =

∑ ∑

∑

ggggg

 

 

by lemmas 1,2 and 5.   The theorem is proved.         
 

 


