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The Identity (XY)= X'Y': Does It Buy Commutativity? 

HOWARD E. BELL 
Brock University 
St. Cathariiies, Oitatrio, Catnada L2S 3A1 

Let (S, *) be a set with an associative binary operation, which we shall think of as 
multiplication; denote the product x* y by xv. If the operation * is also commutative, then S 
satisfies the identity 

(xy)"x = lxy" (1) 
for each positive integer n. Conversely, suppose that S satisfies (1) for one or more n > 1. Need * 
be commutative? If not, under what additional hypotheses will * be commutative? This problem 
is a natural one, and interesting answers can be obtained by using techniques covered in a first 
abstract algebra course. It is, therefore, somewhat surprising that the problem, at least in its 
ring-theory version, has only recently been investigated. 

Let F be any field and consider the set of 3 X 3 matrices 

0 a ]ab cF} 

( 0 o l 
Ordinary matrix multiplication is a binary operation on M, and xvz = 0 for all x, y, Z E M; hence 
M satisfies (1) for every n > 2. Since matrix multiplication on M is clearly noncommutative, it is 
already evident that something more than (1) must be assumed in order to prove commutativity. 

Some results for groups 

The positive result which sparked recent interest in the problem is an easy and probably 
long-known result for groups, which I first encountered as an exercise in Herstein's textbook on 
algebra [10]. 

THEOREM 1. Let G be a group, and suppose that there exist three consecutive positive integers n 
for which G satisfies (1). Then G is a commutative group. 

Proof. Suppose G satisfies (1) for n=k,k+ l,k+2. Making use of (1) for n=k and 
n = k + 1, we obtain, for arbitrary x, y E G, 

xk+1 Ak+I (x)k = (xv) k(xy)Xk V kX ; 

and cancelling x A on the left and y on the right gives 

xyv k V x. (2) 
Repeating the argument with k + 1 and k + 2 gives 

xyk?+1 =Vk+ 'x; (3) 

substituting (2) into (3) we get 
XVk?+I YVk, xvt+ =yxy, 

which implies xv =yx. 
It is almost obvious that a group G satisfying (1) for n 2 must be commutative; and while the 

analogous result for a single n greater than 2 does not hold, groups satisfying (1) for even one 
n > 1 are somewhat restricted in their behavior. (For details, see Alperin's paper [2], the major 
theorem of which is accessible to anyone with a little knowledge of free groups.) 

A careful look at the proof of Theorem 1 yields information about groups satisfying (I.) for two 
consecutive n: specifically, G is commutative if it satisfies (1) for n = k and n = k + I and if every 
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element of G is of the form yk for some y E G. But satisfying (1) for two consecutive n does not by 
itself guarantee commutativity, as we see by considering the following example from [22]. 

EXAMPLE 1. Let Zl0 denote the integers mod 10, with + and denoting the usual operations, 
and let G= {(a, b, c) a, b, c E Z10}. If the operation * is defined on G by (a, b, c) * (a', b', c') = 
(a + a', b + b', c + c' + 2 a * b'), then G is a noncommutative group under *; however it is easily 
verified that G satisfies (1) for n -5 and n = 6. 

The problem for rings 

Since the essential mechanism in the proof of Theorem 1 is cancellation, it is immediate that 
there is a version of Theorem 1 for rings without zero divisors. However, since these constitute a 
relatively small class of rings, it is reasonable to ask what conditions in addition to (1) will yield 
commutativity in more general rings. The first authors to consider this question were Johnsen, 
Outcalt, and Yaqub [13], who proved in 1968 that a ring having a multiplicative identity element 
must be commutative if it satisfies (1) with n = 2. Luh [17] in 1971 established commutativity of 
certain rings having a multiplicative identity element and satisfying (1) for three consecutive n. 
Several years later Anthony Richoux, at that time an undergraduate, and Steve Ligh, one of 
Richoux's professors, succeeded in proving the following ring analogue of Theorem 1 [16]. 

THEOREM 2. Let R be a ring with a multiplicative identity element, and suppose R satisfies the 
identity (1) for three consecutive positive integers n. Then R is commutative. 

In the discussion that follows we shall use the symbol 1 to denote the multiplicative identity 
element of the ring R, and use expressions such as "R has 1" or "a ring R with 1" to indicate that 
R has a multiplicative identity element. We shall also use the term "polynomial function of two 
variables on R " to denote a function such as f(x, y) = x2yX +yXyx +y4x4, where the x and y 
range over elements of R. (Note that since R is not assumed to be commutative, this functionf is 
distinct from the function g(x, y) = x3y + x2y2 + x4y4.) Among the important polynomial 
functions is the commutator function or bracket function, defined by [ x, y] = xy -yx. Clearly, 
[x, y] =0 if and only if the elements x and y commute. Moreover, [, ] is linear in each 
component; hence if R has 1, it follows that [x + 1, y] = [x, y + 1] = [x, y] for all x, y E R. 

The Ligh-Richoux proof of Theorem 2, which is astonishingly simple, depends on a limited 
cancellation property in rings with 1. 

LEMMA. Let R be a ring with 1, and suppose f is any polynomial function of two variables on R 
with the property that f(x + 1, y) = f(x, y) for all x, y E R. If there exists a positive integer n such 
that x'f(x,y)=0 for allx, y ER, then f(x,y) =O for all x,y ER. 

Proof. Given that x"f(x, y) = 0, replace x by x + 1, obtaining 

0=(x+ I)f(x+ 1,y)= (xn +nxn + ()xn-2+ +nx+ I)f(x,y), (4) 

where the (n) are the usual binomial coefficients. Left-multiplying (4) by xn- I and using the fact 
that xnf(x, y)= 0, we get xn- f(x, y) =0; and simply repeating the argument finitely many 
times yields f(x, y) = 0. 

Proof of Theorem 2. Suppose R satisfies (1) for n = k, k + 1, and k + 2. We begin as in the 
proof of Theorem 1, noting that the equation xk+ Iykk+I =Xky kxy can be rewritten as xk[X, yk]y 

0. Repeat the argument, using n = k + 1 and n = k + 2 and apply the Lemma to obtain 

[x,yk]y=0 and [x,yk+l]y=o forallx,yER. (5) 

Now left-multiply the first equation in (5) by y, obtaining yxyk+1 =yk+ xy, and note that the 
second equation in (5) may be expressed as xyk+2 =yk+ xy. Therefore, xyk+2 =yxyk+ , which 
says 

[x,y]yk+I=0 forallx,yER. (6) 

166 MATHEMATICS MAGAZINE 

This content downloaded from 176.31.127.168 on Wed, 18 Jun 2014 03:59:22 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


A right-hand version of the Lemma now yields [x, y] -0 for all x, y E R. 

As in the group case, we cannot get by in Theorem 2 with only two consecutive n. 

EXAMPLE 2. Let R, be the set of all ordered 4-tuples with entries from the integers mod 10; 
define addition componentwise and define multiplication by 

(a, b, c, d)(a', b', c, Id') = (aa', ab' + ba', ac' + ca', ad' + da' + 2b'). 

It is readily verified that R, is a noncommutative ring under these operations, and that the 4-tuple 
(I, 0, 0, 0) is a multiplicative identity element, which we denote as usual by 1. Let W be the set of 
4-tuples with first component 0; note that for all w1, w2, w3 C W, we have w1w2W3 =0 and 
5w1w2 =0 . Observe also that every element of R, can be written as kI + w for some integer k and 
some w E W. Now let x =jl + u and y = kl + v be arbitrary elements of R1, where ] and k are 
integers and u, v E W. Then xy =jkl +jv + ku + uv =jk I J wo, where w0 =jv + ku + uv belongs 
to W. Since I commutes multiplicatively with w0, we can use the binomial theorem to obtain 

(y) = (jk) 
" I +n (jk)" wo+ n(n__l1) (jk) 

ii2 
)X 00 ~ ~ ~~~2 (I) W~ 

for any positive integer n. In particular, if n(n - 1)/2 is divisible by 5, we have 

(xy) "= (jk)"l + n(jk)"nIw0= (jk)"l + n(jk)"' ( jv+ ku+ uv). (7) 

Subject to the same restriction on n, we have 

xt' = (j}1 + nj' Iu)(k" I+ nk" -v) = (jk)I +? n(jk)' (jv + ku+ nuv). (8) 

Since n(na - 1)/2, and hence n2 - n, was assumed to be divisible by 5, the right sides of (7) and 
(8) are equal; thus, RI satisfies the identity (1) for any n such that n(n - 1)/2 is divisible by 5. In 
particular, for n = 5 and n = 6, identity (1) is satisfied by RI. 

Despite the existence of examples such as this, we need not give up on the case of two 
consecutive n; instead we can impose hypotheses which are incompatible with the "bad" behavior 
of R 1. The theorem below is due to Harmanci [7]; the proof is based on the proof of Theorem 1 of 
[4]. 

THEOREM 3. Let R be a ring with 1. Suppose that R satisfies (1) for n = k, k + 1, and that R 
contains no nonzero elements x for which k!x = 0. Then R is commutative. 

The basic strategy of the proof is to study a factor ring R = R/J, where I is an ideal chosen so 
that R is more tractable than R, and then to transfer information about R back to R. In our case, 
we take I to be the set N of nilpotent elements of R, defined by 

N {x C R I x i = 0 for some positive integerj }. 

In our arguments, we shall also make use of the center C of R, defined by 

C{fxCeRIxy=yx forallvER}, 

and use the fact that the center of any ring is a subring. For arbitrary rings R, the set N need not 
be an ideal, nor even an additive subgroup; hence, the first step of the proof is to show that the 
hypotheses of Theorem 3 force the inclusion N C C. This inclusion implies that N is an ideal. 
Finally, we shall invoke yet another cancellation property, which we call Property C. 

PROPERTY C. Let R be a ring with no nonzero nilpotent elements, and let f be a polynomial 
function in two variables on R such that every monomial term in f(x, v) contains v. Then if R 
satisfies the identity f(x, y)y = 0, it also satisfies the identity f(x, y) = 0. 

To establish property C, note first that if ab = 0, then (ba)2 = 0. hence ba = 0 = bax for every 
x C R. Repeating the argument now yields axb= 0, so we have an insertion-of-factors property 
(IFP): in a ring with no nonzero nilpotent elements, if a product of finitely many elements is 0, 
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then all products obtained by inserting additional factors in any positions are also 0. (Of course, 
all commutative rings have IFP, but noncommutative rings in general do not.) Suppose now that 
R satisfies the identityf(x, y)y=0, wheref(x, y) 2',pi(x, y) for monomialspi(x, y) having 
y as a factor. Then, because of IFP, R satisfies each of the identities f(x, y)pi(x, y) 0, 
i 1,... , n; consequently R satisfies the identity (f(x, y))2 = 0, which in the absence of nilpotent 
elements implies the identity f(x, y) = 0. 

Proof of Theorem 3. Let R be any ring satisfying the hypotheses of the Theorem and C its 
center. Then, as in the proof of Theorem 2, we have x k[X, yk]y = 0, and applying the Lemma 
gives 

[x,yk]y=0 forallx,yFR. (9) 
If y is not a zero divisor-in particular, if y is invertible (has a multiplicative inverse)-the 
obvious cancellation shows that yk F C. If u F N, u' = 0 implies that (1 + u)(l - u + u2 
- *.. +(- 1)-"Iu'- 1) 1, so that 1 + u is invertible, and hence (1 + u)k F C. 

For arbitrary u E N, let the index of u be the smallest n such that u" = 0. We now proceed, by 
induction on the index of elements of N, to show that N c C. Expanding (1 + u)k by the binomial 
theorem, we have 

I + ku + v F C (10) 

for each u F N, where 

V ( k2 ) 
k 

u3 ) 

Thus, if u has index 2, v = 0 and ku C C, so that 0 = [ku, x] =k[u, x] k![u, x] for all x C R. 
But recalling the hypotheses on R, we then get [u, x] = 0 for all x F R, which says u F C. Now 
suppose all nilpotent elements of index less than n are in C, and consider u of index n. It is easily 
seen that the corresponding v has index less than n, so (10) again yields ku F C and hence u F C. 
Our induction is now complete. 

Since N C C, the set N forms an ideal. (If a, b F N, then a" = b" = [a, b] = 0; the fact that 
a-b E N follows by expanding (a - b)"7+ni-i by the binomial theorem and noting that each 
summand contains either"a" or b"' as a factor.) We consider the factor ring R= R/N, which 
inherits all the original hypotheses and in addition has no nonzero nilpotent elements. Suppose, 
temporarily, that R can be shown to be commutative. Then for every x, y E R, [x, y xy -yx E 
N, hence [x,y]EC. It now follows by an easy induction that [x,y'I]=ny'1-I[x,y] for all 
x, y F R and all positive integers n; and recalling (9), we have 0 = [x, yk]= kyk[x, y]. It follows 
that k!yk[x, y] = 0, and so, by hypothesis,yk[x, y] = 0; hence, by the Lemma, R is commutative. 

The proof of Theorem 3 is not yet complete; it is necessary to justify our temporary 
assumption concerning R. We show, in fact, that any R satisfying the hypotheses of Theorem 3 
and having N= {0} must be commutative. Note first that Property C applied to (9) shows that 
xk C for all x F R. Thus, 

(1 x)k -xk-I-kx+ k(jx2+ +?kxk-I C, 

so that 

kx+ (k)x2+ ... +kXk-I ] 0 for allx,V R (11) 

Replacing x in (1 1) by 2x, 3x,.. . ,( k- l)x in turn, we see that 

1 1 ... 1 [kx,y] 0 
2 22 .. 2A-I k 
3 32 3 |[kx2y] | (12) 

k-I (k- 1)2 ... (k- I)Ak [kxk,y ]I 0 
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for all x, y F R. Now the (k - 1) X (k - 1) matrix A on the left side of (12) is a Vandermonde 
matrix with determinant A equal to ? IJI(i -j), where the factors i -j range over all pairs with 
i, j F {2,3,.. ., k-1 } and i <j (see [18, p. 15-16]); and since all these factors divide k!, it follows 
that lA divides (k !)n for some positive integer m. Left-multiplying both sides of (12) by the matrix 
adj A [15, p. 36] and recalling that (adj A)A is equal to A times the (k - 1) X (k - 1) identity 
matrix, we get 

AX[kx,y]i4(k)x 2,y]Y = A[kx , y]=0 forallx,v yR. 

Consequently, A k [ x, y] 0 A k![ x, y] (k !)l+ i[x, v ] for all x, v E R. Repeatedly using the 
hypothesis that k !z = 0 implies z = 0, we obtain [x, y] = 0 for all x, y E R; hence R is commuta- 
tive. 

Extensions and related results 

Our choice of theorems has been influenced by a desire to keep the proofs elementary and 
reasonably self-contained. Not surprisingly, by using more elaborate methods, one can obtain 
somewhat better results. 

An examination of the proof of Theorem 3 shows that only in the final stages did we use the 
full force of the hypothesis that k!x 0 implies x 0; usually we employed only the weaker 
hypothesis that kx = 0 implies x = 0. In fact, the conclusion of Theorem 3 remains true if we 
assume only the weaker hypothesis [4]; In this case, we omit the last paragraph of the proof of 
Theorem 3 and show that commutators in R are nilpotent by appealing to a deep theorem of 
Herstein [3], [8], [9]: if the ring R (not necessarily with 1) satisfies (1) for some n > 1, then all 
commutators in R are nilpotent, and the ideal generated by the commutators consists entirely of 
nilpotent elements. 

Clearly Herstein's result implies that a ring with no nonzero nilpotent elements is commutative 
if it satisfies (1) for even one n > 1. There are other one-n theorems available as well, for example, 
the following recent result due to Abu-Khuzam [1]: 

THEOREM 4. Let n > 1 be a positive integer, and let R be a ring with 1. If R satisfies (1) anid 
conttains nio nonlzero x for which n ( n - I)x 0 O, then R is commutative. 

Incidentally, in this theorem the hypothesis that n ( n - l)x 0 implies X= 0 cannot be 
weakened to the hypothesis that nx = 0 implies x = 0. (Consider the ring R1 of Example 2 with 

21.) 
So far we have always assumed the existence of one, two, or three n such that every pair x, y of 

elements satisfies (1) for those n. One possibility of generalization is to assume that the ni varies 
with x and v; and it works-at least sometimes. Indeed, Richoux [21] has recently established 
commutativity of R with 1 under the hypothesis that for each x, y F R there exist three 
consecutive integers n, depending on x and v, for which (1) holds, and his result has been further 
generalized in [12], [19], and [20]. 

Other closely-related theorems assert commutativity of rings satisfying (1) together with other 
identities (see [5, Theorem 2] and [11]). We conclude with a sample of this kind of result. 

THEOREM 5. Let R be a ring with 1, and let ni and m be relative/v prime integers, greater than or 
equal to 2. If R satisfies the identities (xyY)1` x"y (v ) 1 x 11?Iy P1?I,and xvt y?lXl?l h 
R is commutative. 
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Races with Ties 

ELLIO'rr MENDELSON 
Queens College 
Flushing, NY 11367 

When there are n runners in a race, the number of possible outcomes is n! if we assume that 
there are no ties. If any number of the runners are allowed to tie for arbitrarily many positions, 
calculation of the number J,, of outcomes becomes much more complicated. The number J,, has 
other interesting interpretations. It is the number of possible election ballots when there are n 
candidates and the voters are allowed to express equal preference among some of the candidates. 
It is also the number of preferential arrangements of n objects, allowing indifference among some 
of the objects. 

The first few values of J,n are easy to calculate: Jo = I and Jl = 1, while J2 = 3 (either (A, B), 
(B, A) or a tie (AB)). When n = 3, we have the six standard permutations of A, B, C, plus (ABC) 
(all tied for first), (AB, C), (AC, B), (BC, A) (two tied for first), and (C, AB), (B, AC), (A, BC) 
(two tied for second). Thus, J3= 13. We shall derive recursion equations for Jt, several closed 
forms for Jn, and some other methods for calculating Jn. 

Assume that there are n + I runners. If the number of runners who do not finish first is j, then 
those j runners can finish in 2nd, 3rd,... places in Jj ways. Moreover, those j runners can be 

chosen from the n + I runners in (n + ) ways. Hence, the number of possible outcomes is 

(n I 
Jj. Since j can be any number between 0 and n, the value of J,,+ l is 
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