Constructing a Minimal Counterexample in Group Theory
Author(s): Arnold D. Feldman
Source: Mathematics Magazine, Vol. 58, No. 1 (Jan., 1985), pp. 24-29
Published by: Mathematical Association of America
Stable URL: http://www.jstor.org/stable/2690233
Accessed: 23-02-2016 21:17 UTC

Your use of the JSTOR archive indicates your acceptance of the Terms \& Conditions of Use, available at http://www.jstor.org/page/ info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.
http://www.jstor.org

Constructing a Minimal Counterexample in Group Theory

Arnold D. Feldman
Franklin and Marshall College
Lancaster, PA 17604

Desmond MacHale's intriguing article [2] neatly illustrates one mode of interplay between proof and example in group theory by describing the commonly used inductive technique of minimal counterexamples. In this Note, we use some ideas from group theory and linear algebra to lead the reader through a geometric and algebraic construction of one of the minimal counterexamples sought by MacHale.

Recall that a group is called nilpotent if each of its Sylow subgroups is normal. One of MacHale's list of known-to-be-false conjectures is this: if G is a finite group having a fixed-pointfree automorphism ϕ, then G is nilpotent. The true theorem on which the conjecture is based assumes that ϕ is of prime order; it was established by Thompson in his dissertation in 1959 [4]. His proof so excited the mathematical community that even the New York Times reported his result and the reaction to it [3]. MacHale indicates that [1, p. 336] contains details of a counterexample to the conjecture with $|G|=147=7^{2} \cdot 3$ and $|\phi|=4$. In our minimal counterexample to be constructed, $|\phi|=6$ and $|G|=48=2^{4} \cdot 3$.

In what follows, we use some standard conventions of notation in group theory. In particular, we write operators on the right and denote both the action of a group homomorphism and conjugation using superscripts.

Recall that if H and K are subgroups of a group G such that $G=H K, H \cap K=1$, and H is normal in G, then G is called the semidirect product of H by K. In this situation, since H is normal in G, each element of K acts via conjugation as an automorphism of H. Of particular interest here is the situation in which each nontrivial element of K acts as a nontrivial (i.e., nonidentity) automorphism on H. In this case K is isomorphic to a subgroup of aut H, the group of all automorphisms of H.

A well-known geometric example leads directly to an important link between group theory and geometry. If A is the group of rotations of a regular tetrahedron, then A contains eight elements of order 3 , three of order 2, and an identity element. Each element of order 3 is a 120° rotation of the tetrahedron about an axis passing through one of the 4 vertices and perpendicular to the opposite face. Each element of order 2 is a rotation of 180° about one of three axes joining the midpoints of two nonadjacent edges of the tetrahedron. (See Figure 1.) If the vertices are labeled, and each rotation is identified with the permutation of the labels it produces, this identification provides a natural isomorphism between A and A_{4}, the group of even permutations on 4 letters. Thus it is possible to use the algebra of permutations or geometry to analyze A.

Figure 1

It is easy to see that A has a unique subgroup V of order 4, consisting of the identity element and the three elements of order 2. Thus if $x \neq 1$ is an element of V and σ is an element of order 3 in $A, x^{\sigma}=\sigma^{-1} x \sigma=y$ is in V and it is simple to check, using geometry or algebra, that $x \neq y$. Hence $V=\{1, x, y, x y\}$. Since conjugation by σ fixes only the identity element of V, we say that σ is a fixed-point-free automorphism of V. Using $\langle\boldsymbol{\sigma}\rangle$ to denote the cyclic group of order 3 generated by σ, we have $A=V\langle\sigma\rangle$, the semidirect product of V by $\langle\sigma\rangle$.

We can learn more about the automorphism σ by rewriting V as an additive group and considering the 2×2 matrix M_{σ} associated with σ. This we do as follows:

Identify V with $\left(Z_{2}\right)^{2}$, the direct product of two additive groups of order 2 . Identify x with $(1,0)$ and y with $(0,1)$, so that $x y$ corresponds to $(1,1)$ and 1 corresponds to $(0,0)$. Thus in the semidirect product $A,(1,0)^{\sigma}=(0,1),(0,1)^{\sigma}=(1,1)$, and $(1,1)^{\sigma}=(1,0)$. Of course, $(0,0)^{\sigma}=(0,0)$. We obtain the matrix M_{σ} associated with σ by using for its rows the images under σ of the "standard" basis elements $(1,0)$ and $(0,1)$ under conjugation by σ. Thus

$$
M_{\sigma}=\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)
$$

Since $v^{\sigma}=v M_{\sigma}, v^{\sigma}=v$ if and only if $v=v M_{\sigma}$. Thus the fact that σ is fixed-point-free is equivalent to the fact that there exists no element v of V other than $(0,0)$ such that $v M_{\sigma}=v$.

The Counterexample

We use more geometry to construct our minimal counterexample of a nonnilpotent group G having a fixed-point-free automorphism. First, let T_{1} and T_{2} be congruent regular tetrahedra, with the vertices of T_{1} labeled 1, 2, 3, 4, and the vertices of T_{2} labeled 5, 6, 7, 8. (See Figure 2a.) Also, consider the set S of 8 labeled points in 3 -space depicted in Figure 2b; S consists of two subsets S_{1} and S_{2}, each of which contains the vertices of a tetrahedron the same size as each of T_{1} and T_{2}. For $i=1$ or 2 , if we place T_{i} on S_{i} in such a way that the vertices and labels match, we say T_{i} is in "home position". In Figure 2c, both T_{1} and T_{2} are in home position. In Figure 2d, only T_{2} is in the home position.

There are 12 ways to place T_{1} on S_{1} with vertices on vertices, corresponding to the 1.2 elements of the group of rotations of a tetrahedron. Similarly, there are 12 ways to place T_{2} on S_{2}. Thus there are $12 \cdot 12=144$ ways of placing T_{1} on S_{1} and T_{2} on S_{2}. Similarly, there are 144 ways of placing T_{2} on S_{1} and T_{1} on S_{2}. Thus there are 288 ways of placing the pair of tetrahedra T_{1} and T_{2} onto the framework formed by the subsets S_{1} and S_{2} of S. Each of these 288 positions for T_{1} and T_{2} corresponds to a permutation of the 8 elements of S, with the home position for both T_{1} and T_{2}, depicted in Figure 2c, corresponding to the identity permutation. Any other position for T_{1} and T_{2} corresponds to the unique permutation of S required to take the vertices of T_{1} and T_{2} to this position from the home position. For example, the position of T_{1} and T_{2} in Figure 2d corresponds to the permutation (234).

The set U of permutations of S that corresponds to this set of 288 positions for T_{1} and T_{2} on S is clearly a subgroup of the group of permutations of S. We will show that U has a nonnilpotent subgroup G of order 48 and an element ϕ of order 6 which is a fixed-point-free automorphism of G via conjugation as an element of U. This G and ϕ provide the minimal counterexample described in the introduction. To construct that counterexample we need to introduce several subgroups of U.

Denote by A_{1} the subgroup of elements of U that do not affect S_{2}. Thus if we start with T_{1} and T_{2} in home position as in Figure 2c and apply an element of A_{1}, we obtain a result in which T_{1} is still on S_{1} in one of 12 positions, and T_{2} is still on S_{2} in home position. Thus the elements of A_{1} correspond to the rotations of the tetrahedron T_{1}, so A_{1} is isomorphic to the group $A=V\langle\sigma\rangle$ described above. Similarly, denote by A_{2} the subgroup of elements of U not affecting S_{1}. Thus the elements of A_{2} correspond to the rotations of the tetrahedron T_{2}, and A_{2} is also isomorphic to A. It is easy to see that A_{1} and A_{2} have trivial intersection and that the elements of A_{1} commute with the elements of A_{2}, so U has a subgroup $A_{1} \times A_{2}$. Since the index of $A_{1} \times A_{2}$ in

Figure 2b

Figure 2c

Figure 2d
U is $2, A_{1} \times A_{2}$ is a normal subgroup of U.
There is an element τ of U which corresponds to translating T_{1} to the right and T_{2} to the left from their respective home positions, so that T_{1} is on S_{2} and T_{2} is on S_{1}. Thus, after application of τ, the vertex of T_{1} labeled j will be at the point of S_{2} labeled $(j+4)$, and the vertex of T_{2} labeled k will be at the point of S_{1} labeled $(k-4)$. Since $\tau^{2}=1,\langle\tau\rangle$ is a cyclic group of order 2 . The elements of $A_{1} \times A_{2}$ leave T_{1} on S_{1} and T_{2} on S_{2}, so $A_{1} \times A_{2}$ and $\langle\tau\rangle$ intersect trivially. Thus the semidirect product $\left(A_{1} \times A_{2}\right)\langle\tau\rangle$ has order $144 \cdot 2=288$, so $\left(A_{1} \times A_{2}\right)\langle\tau\rangle=U$.

Just as A has a unique subgroup V of order 4 , each A_{i} has a unique subgroup V_{i} of order 4. Then $V_{1} \times V_{2}$ is the unique subgroup of order 16 in $A_{1} \times A_{2}$. This uniqueness implies $V_{1} \times V_{2}$ is normal in U, since $A_{1} \times A_{2}$ is normal in U. Therefore, each element of U acts on $V_{1} \times V_{2}$ as an automorphism via conjugation.

Now consider V_{1}, V_{2}, and $V_{1} \times V_{2}$ as additive groups, writing $V_{1} \times V_{2}=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right\}$ $\left.x_{1}, x_{2}, x_{3}, x_{4} \in Z_{2}\right\}$, where $\{(1,0,0,0),(0,1,0,0)\}$ generates V_{1} as a subgroup of $V_{1} \times V_{2}$ and $\{(0,0,1,0),(0,0,0,1)\}$ generates V_{2}. Then we can represent automorphisms of $V_{1} \times V_{2}$ by 4×4 matrices with entries in Z_{2}.

For example, let σ_{1} be the element of A_{1} analogous to the element σ of A described earlier; the position of T_{1} and T_{2} corresponding to σ_{1} is depicted in Figure 2d. The analogy to $A=V\langle\sigma\rangle$ yields $(1,0,0,0)^{\sigma_{1}}=(0,1,0,0)$ and $(0,1,0,0)^{\sigma_{1}}=(1,1,0,0)$. Also, as an element of A_{1}, σ_{1} commutes
with each element of A_{2}, including the generators $(0,0,1,0)$ and $(0,0,0,1)$ of V_{2}. Thus $(0,0,1,0)^{\sigma_{1}}$ $=(0,0,1,0)$ and $(0,0,0,1)^{\sigma_{1}}=(0,0,0,1)$. We use these images of $\{(1,0,0,0),(0,1,0,0)$, $(0,0,1,0),(0,0,0,1)\}$ under σ_{1} as the rows of the matrix $M_{\sigma_{1}}$ for σ_{1}. Therefore,

$$
M_{\sigma_{1}}=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Similarly, we let σ_{2} be the element of A_{2} analogous to σ in A, and obtain the matrix $M_{\sigma_{2}}$ for σ_{2} :

$$
M_{\sigma_{2}}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 1
\end{array}\right)
$$

Also $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)^{\tau}=\left(x_{3}, x_{4}, x_{1}, x_{2}\right)$; this fact follows from the way in which τ interchanges the positions of the tetrahedra T_{1} and T_{2}. Thus the matrix M_{τ} for the action of τ is

$$
M_{\tau}=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right)
$$

Figure 3

These matrices facilitate computation. For instance, the matrix for σ_{1}^{-1} equals $\left(M_{\sigma_{1}}\right)^{-1}$, the inverse of the matrix for σ_{1}, and the matrix of a product is the product of the matrices: $M_{\sigma_{1} \sigma_{2}^{-1}}=\left(M_{\sigma_{1}}\right)\left(M_{\sigma_{2}^{-1}}\right)=M_{\sigma_{1}}\left(M_{\sigma_{2}}\right)^{-1}$. The facts we need about individual automorphisms could be verified geometrically, but instead we simply note that such use of matrices to study automorphisms of certain groups is a common technique of considerable power. See [1, 1.3.2, 2.6.1] for more detail.

Now we can define G and ϕ. First let $\alpha=\sigma_{1} \sigma_{2}^{-1}$ and let $\phi=\sigma_{1} \sigma_{2} \tau$. Define G as $\left(V_{1} \times V_{2}\right)\langle\alpha\rangle$. G is a subgroup of U since $V_{1} \times V_{2}$ is normal in U. Since G is of order 16•3, $V_{1} \times V_{2}$ is a Sylow 2-subgroup of G and $\langle\alpha\rangle$ is a Sylow 3 -subgroup of G. If G were nilpotent, then α would commute with each element v of $V_{1} \times V_{2}$ for the following reason. The nilpotence of G would imply that $V_{1} \times V_{2}$ and $\langle\alpha\rangle$ were normal in G. Thus for v in $V_{1} \times V_{2},\left(v^{-1} \alpha^{-1} v\right) \alpha=v^{-1}\left(\alpha^{-1} v \alpha\right)$ is in both $V_{1} \times V_{2}$ and $\langle\alpha\rangle$. But the orders of these subgroups are relatively prime, so their intersection is the identity. Thus $v^{-1} \alpha^{-1} v \alpha$ is the identity, and $v \alpha=\alpha v$ as claimed.

If α did commute with each element of $V_{1} \times V_{2}$, then conjugation by α would produce the trivial automorphism of $V_{1} \times V_{2}$, so M_{α} would be the 4×4 identity matrix. But $\alpha=\sigma_{1} \sigma_{2}^{-1}$ implies $M_{\alpha}=M_{\sigma_{1}}\left(M_{\sigma_{2}}\right)^{-1}$, which is

$$
\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0
\end{array}\right),
$$

so G is not nilpotent.
Our first step in establishing that the automorphism $\phi=\sigma_{1} \sigma_{2} \tau$ fixes only the identity element of $G=\left(V_{1} \times V_{2}\right)\langle\alpha\rangle$ is to show that if an element $v \alpha^{i}$ of G is fixed by ϕ, then α^{i} is trivial and therefore v in $V_{1} \times V_{2}$ is fixed by ϕ. To do this, we note that $\sigma_{1}^{\tau}=\sigma_{2}$, for σ_{2} does to the tetrahedron on S_{2} just what σ_{1} does to the tetrahedron on S_{1}. (See Figure 3.) Therefore, $\sigma_{2}^{\tau}=\left(\sigma_{1}^{\tau}\right)^{\tau}=\sigma_{1}$. Since σ_{1} and σ_{2} commute, $\alpha^{\phi}=\left(\sigma_{1} \sigma_{2}^{-1}\right)^{\sigma_{1} \sigma_{2} \tau}=\sigma_{1}^{\tau}\left(\sigma_{2}^{-1}\right)^{\tau}=\sigma_{2} \sigma_{1}^{-1}=\alpha^{-1}$. Thus if α^{i} is in $\langle\alpha\rangle,\left(\alpha^{i}\right)^{\phi}=\alpha^{-i}$.

Now suppose that g is an element of $G=\left(V_{1} \times V_{2}\right)\langle\alpha\rangle$ fixed by ϕ, so $g=v \alpha^{i}$ and $g^{\phi}=g$. Then $v \alpha^{i}=\left(v \alpha^{i}\right)^{\phi}=v^{\phi}\left(\alpha^{i}\right)^{\phi}=v^{\phi} \alpha^{-i}$, so $v^{-1} v^{\phi}=\alpha^{2 i}$. Since $V_{1} \times V_{2}$ and $\langle\alpha\rangle$ have trivial intersection, $\alpha^{2 i}=1$ and $v^{\phi}=v$. Since α is of order 3, $\alpha^{2 i}=1$ implies $\alpha^{i}=\alpha^{4 i}=1$, so $g=v$, a fixed point for ϕ in $V_{1} \times V_{2}$.

Now we show that ϕ has order 6, and show that if ϕ fixes v in $V_{1} \times V_{2}$ then $v=(0,0,0,0)$. Note that $\phi^{2}=\left(\sigma_{1} \sigma_{2} \tau\right)^{2}=\sigma_{1} \sigma_{2} \tau \sigma_{1} \sigma_{2} \tau=\sigma_{1} \sigma_{2}\left(\sigma_{1} \sigma_{2}\right)^{\tau}$; but $\left(\sigma_{1} \sigma_{2}\right)^{\tau}=\sigma_{2} \sigma_{1}$, and σ_{1} commutes with σ_{2}, so $\phi^{2}=\sigma_{1}^{2} \sigma_{2}^{2}$. Therefore, $\phi^{3}=\sigma_{1}^{2} \sigma_{2}^{2} \sigma_{1} \sigma_{2} \tau=\tau$, which has order 2. Hence ϕ is of order 6 .

If ϕ fixes v in $V_{1} \times V_{2}$, then surely ϕ^{4} also fixes v. From the previous calculations, we have $\phi^{4}=\left(\sigma_{1}^{2} \sigma_{2}^{2}\right)^{2}=\sigma_{1}^{4} \sigma_{2}^{4}=\sigma_{1} \sigma_{2}$, so $M_{\phi^{4}}=M_{\sigma_{1} \sigma_{2}}=M_{\sigma_{1}} M_{\sigma_{2}}$, which is

$$
\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 1
\end{array}\right) .
$$

Let $v=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$, so $v M_{\phi^{4}}=v$ implies

$$
\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 1
\end{array}\right)=\left(x_{1}, x_{2}, x_{3}, x_{4}\right),
$$

where all entries are elements of F_{2}, the field of 2 elements. Clearly the only solution to this equation is $(0,0,0,0)$. Hence ϕ^{4}, and also ϕ, is a fixed-point-free automorphism of $V_{1} \times V_{2}$, so ϕ is a fixed-point-free automorphism of G as claimed.

The proof that our counterexample is minimal with respect to the order of G is, unfortunately, too technical to allow its presentation here. The central idea is to use induction to determine as
much as possible the form of a minimal counterexample, then investigate small groups of the appropriate form to see which is the one sought. Specifically, a candidate G must be of the form $G=W S$, where W is a normal subgroup of G that is the direct product of k copies of Z_{r} (a cyclic group of prime order r), while S is a Sylow s-subgroup of G for some prime s other than r. Note that in the actual minimal counterexample, $W=V_{1} \times V_{2}, r=2, k=4, S=\langle\sigma\rangle$, and $s=3$.

This description of the form of a minimal counterexample reminds us that minimality can be defined in a variety of ways. For instance, we might try to determine the pair G_{1}, ϕ_{1} such that the number n of prime factors of the order of G_{1}, counting multiplicities, is minimal. In the counterexample minimizing the order of $G, n=5$, since $48=2 \cdot 2 \cdot 2 \cdot 2 \cdot 3$. However, the smallest possible value for n is actually 3 ; there exists a nonnilpotent group G_{1} of order $75=5 \cdot 5 \cdot 3$ having a fixed-point-free automorphism ϕ_{1} of order 4.

One of the main areas of interest in groups having fixed-point-free automorphisms is the analysis of the situation in which the group and the automorphism are of relatively prime order [1, Chapter 10]. Thus it is interesting to note that G_{1} is also the nonnilpotent group of smallest order having a fixed-point-free automorphism of relatively prime order. Hence G_{1}, ϕ_{1} provides a counterexample minimal with respect to two different criteria. An enterprising reader might wish to refer to MacHale's article [2] and examine more of his examples with respect to various definitions of minimality.

References

[1] D. Gorenstein, Finite Groups, Harper and Row, New York, 1968.
[2] D. MacHale, Minimum counterexamples in group theory, this Magazine, 54 (1981) 23-28.
[3] New York Times, April 24, 1959, p. 29.
[4] J. Thompson, Finite groups with fixed-point-free automorphisms of prime order, Proc. Acad. Sci., 45 (1959) 578-581.

Design of an Oscillating Sprinkler

Bart Braden
Northern Kentucky University
Highland Heights, KY 41076

The common oscillating lawn sprinkler has a hollow curved sprinkler arm, with a row of holes on top, which rocks slowly back and forth around a horizontal axis. Water issues from the holes in a family of streams, forming a curtain of water that sweeps back and forth to cover an approximately rectangular region of lawn. Can such a sprinkler be designed to spread water uniformly on a level lawn?

We break the analysis into three parts:

1. How should the sprinkler arm be curved so that streams issuing from evenly spaced holes along the curved arm will be evenly spaced when they strike the ground?
2. How should the rocking motion of the sprinkler arm be controlled so that each stream will deposit water uniformly along its path?
3. How can the power of the water passing through the sprinkler be used to drive the sprinkler arm in the desired motion?

The first two questions provide interesting applications of elementary differential equations. The third, an excursion into mechanical engineering, leads to an interesting family of plane curves which we've called curves of constant diameter. A serendipitous bonus is the surprisingly simple classification of these curves.

