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Constructing a Minimal Counterexample 
in Group Theory 

ARNOLD D. FELDMAN 

Franiklini anid Marshall College 
Latcaster, PA 17604 

Desmond MacHale's intriguing article [2] neatly illustrates one mode of interplay between 
proof and example in group theory by describing the commonly used inductive technique of 
minimal counterexamples. In this Note, we use some ideas from group theory and linear algebra 
to lead the reader through a geometric and algebraic construction of one of the minimal 
counterexamples sought by MacHale. 

Recall that a group is called nilpotent if each of its Sylow subgroups is normal. One of 
MacHale's list of known-to-be-false conjectures is this: if G is a finite group having a fixed-point- 
free automorphism 4, then G is nilpotent. The true theorem on which the conjecture is based 
assumes that 4 is of prime order; it was established by Thompson in his dissertation in 1959 [4]. 
His proof so excited the mathematical community that even the New York Times reported his 
result and the reaction to it [3]. MacHale indicates that [1, p. 336] contains details of a 
counterexample to the conjecture with IGI = 147 = 72 3 and 1j1 = 4. In our minimal counterex- 
ample to be constructed, I4 = 6 and IGI = 48 = 24 43. 

In what follows, we use some standard conventions of notation in group theory. In particular, 
we write operators on the right and denote both the action of a group homomorphism and 
conjugation using superscripts. 

Recall that if H and K are subgroups of a group G such that G = HK, H n K = 1, and H is 
normal in G, then G is called the semidirect product of H by K. In this situation, since H is 
normal in G, each element of K acts via conjugation as an automorphism of H. Of particular 
interest here is the situation in which each nontrivial element of K acts as a nontrivial (i.e., 
nonidentity) automorphism on H. In this case K is isomorphic to a subgroup of Aut H, the group 
of all automorphisms of H. 

A well-known geometric example leads directly to an important link between group theory and 
geometry. If A is the group of rotations of a regular tetrahedron, then A contains eight elements 
of order 3, three of order 2, and an identity element. Each element of order 3 is a 120?rotation of 
the tetrahedron about an axis passing through one of the 4 vertices and perpendicular to the 
opposite face. Each element of order 2 is a rotation of 1800 about one of three axes joining the 
midpoints of two nonadjacent edges of the tetrahedron. (See FIGURE 1.) If the vertices are labeled, 
and each rotation is identified with the permutation of the labels it produces, this identification 
provides a natural isomorphism between A and A4, the group of even permutations on 4 letters. 
Thus it is possible to use the algebra of permutations or geometry to analyze A. 

I 120O 
180~ 

FIGURE I 
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It is easy to see that A has a unique subgroup V of order 4, consisting of the identity element 
and the three elements of order 2. Thus if x * 1 is an element of V and a is an element of order 3 
in A, xa = lxa =y is in V and it is simple to check, using geometry or algebra, that x =Ay. 
Hence V= {1, x, y, xy }. Since conjugation by a fixes only the identity element of V, we say that 
a is a fixed-point-free automorphism of V. Using (K) to denote the cyclic group of order 3 
generated by a, we have A = V(a), the semidirect product of V by (a). 

We can learn more about the automorphism a by rewriting V as an additive group and 
considering the 2 x 2 matrix Ma associated with a. This we do as follows: 

Identify V with (Z2)2, the direct product of two additive groups of order 2. Identify x with 
(1,0) and y with (0,1), so that xy corresponds to (1,1) and 1 corresponds to (0, 0). Thus in the 
semidirect product A, (1, 0)a = (0, 1), (0, 1)a = (1, 1), and (1, 1)a = (1, 0). Of course, (0, 0)a = (0, 0). 
We obtain the matrix Ma associated with a by using for its rows the images under a of the 
"standard" basis elements (1,0) and (0,1) under conjugation by a. Thus 

M 1 1 ) 

Since va = vMs, vU = v if and only if v= vMs. Thus the fact that a is fixed-point-free is 
equivalent to the fact that there exists no element v of V other than (0, 0) such that uMU = v. 

The Counterexample 

We use more geometry to construct our minimal counterexample of a nonnilpotent group G 
having a fixed-point-free automorphism. First, let T1 and T2 be congruent regular tetrahedra, 
with the vertices of T1 labeled 1, 2, 3, 4, and the vertices of T2 labeled 5, 6, 7, 8. (See FIGURE 2a.) 
Also, consider the set S of 8 labeled points in 3-space depicted in FIGURE 2b; S consists of two 
subsets SI and S2, each of which contains the vertices of a tetrahedron the same size as each of T1 
and T2. For i = 1 or 2, if we place Ti on S, in such a way that the vertices and labels match, we 
say Ti is in "home position". In FIGURE 2c, both T1 and T2 are in home position. In FIGURE 2d, 
only T2 is in the home position. 

There are 12 ways to place T1 on SI with vertices on vertices, corresponding to the 12 elements 
of the group of rotations of a tetrahedron. Similarly, there are 12 ways to place T2 on S,. Thus 
there are 12 12 = 144 ways of placing T1 on SI and T2 on S2. Similarly, there are 144 ways of 
placing T2 on SI and T1 on S2. Thus there are 288 ways of placing the pair of tetrahedra T1 and 
T2 onto the framework formed by the subsets SI and S2 of S. Each of these 288 positions for T1 
and T2 corresponds to a permutation of the 8 elements of S, with the home position for both T1 
and T2, depicted in FIGURE 2c, corresponding to the identity permutation. Any other position for 
T1 and T2 corresponds to the unique permutation of S required to take the vertices of T1 and T2 
to this position from the home position. For example, the position of T1 and T2 in FIGURE 2d 
corresponds to the permutation (2 3 4). 

The set U of permutations of S that corresponds to this set of 288 positions for T1 and T2 on S 
is clearly a subgroup of the group of permutations of S. We will show that U has a nonnilpotent 
subgroup G of order 48 and an element 4 of order 6 which is a fixed-point-free automorphism of 
G via conjugation as an element of U. This G and 4 provide the minimal counterexample 
described in the introduction. To construct that counterexample we need to introduce several 
subgroups of U. 

Denote by A1 the subgroup of elements of U that do not affect S2. Thus if we start with T1 
and T2 in home position as in FIGURE 2c and apply an element of A1, we obtain a result in which 
T1 is still on S, in one of 12 positions, and T2 is still on S2 in home position. Thus the elements 
of A1 correspond to the rotations of the tetrahedron T1, so A1 is isomorphic to the group 
A = V(a) described above. Similarly, denote by A2 the subgroup of elements of U not affecting 
SI. Thus the elements of A2 correspond to the rotations of the tetrahedron TX, and A2 is also 
isomorphic to A. It is easy to see that A1 and A2 have trivial intersection and that the elements of 
A1 commute with the elements of A2, so U has a subgroup A1 x A2. Since the index of A1 x A2 in 
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FIGURE 2a 
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FIGURE 2b 
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4 T1 on S1 2 TX on S2 

FIGURE 2c 

(1) 1 (5)5 

(4) (2) (8) (6) 
3 T1 on S1 4 8 T, on S, 6 

FIGURE 2d 

U is 2, A1 x A2 is a normal subgroup of U. 
There is an element T of U which corresponds to translating T1 to the right and T2 to the left 

from their respective home positions, so that T1 is on S2 and T2 is on S1. Thus, after application 
of T, the vertex of T1 labeled j will be at the point of S2 labeled (j + 4), and the vertex of T2 
labeled k will be at the point of SI labeled (k - 4). Since T2 = 1, (T) is a cyclic group of order 2. 
The elements of A1 x A2 leave T1 on SI and T2 on S2, so A1 X A2 and (K) intersect trivially. 
Thus the semidirect product (A1 X A2)(K) has order 144 2 = 288, so (A1 X A2)(T) = U. 

Just as A has a unique subgroup V of order 4, each Ai has a unique subgroup Vi of order 4. 
Then V1 x V2 is the unique subgroup of order 16 in A1 x A2. This uniqueness implies V1 x V2 is 
normal in U, since A1 x A2 is normal in U. Therefore, each element of U acts on V1 X V, as an 
automorphism via conjugation. 

Now consider V1, V2, and V1 x V2 as additive groups, writing V1 x V2 = {(xl, x2, x3, x4)1 
X1, X2,X3,X4 E Z2}, where {(1,0,0,0),(0,1,0,0)} generates V1 as a subgroup of V1 x V2 and 
{(0, 0,1, 0), (0, O, 0,1)} generates V2. Then we can represent automorphisms of V1 x V2 by 4 x 4 
matrices with entries in Z2- 

For example, let a1 be the element of A1 analogous to the element a of A described earlier; the 
position of T1 and T2 corresponding to a is depicted in FIGURE 2d. The analogy to A = V(a) 
yields (1, 0, 0, 0)a (0, 1, 0, 0) and (0,1, 0, 0)a (1, 1, 0, 0). Also, as an element of A1, a1 commutes 
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with each element of A2, including the generators (0, 0, 1, 0) and (0, 0, 0,1) of V2. Thus (0, 0, 1, 0) ' 
= (0, 0,1, 0) and (0, 0, 0, 1)a1 = (0, 0, 0,1). We use these images of {(1, 0, 0, 0), (0,1, 0, 0), 
(0,0,1,0), (0,0,0, 1)} under a1 as the rows of the matrix Ma1 for a1. Therefore, 

0 1 0 0) 
Mal= 1 1I 0 0, 

O O 0 1 

Similarly, we let a2 be the element of A2 analogous to a in A, and obtain the matrix M,2 
for a2 

I 0 0 0 

Ma2= 
O 1 0 0. 

O 0 0 1 

Also (X1, X2, X3, X4)T = (X3, X4, XI, X2); this fact follows from the way in which T interchanges 
the positions of the tetrahedra T1 and T2. Thus the matrix MT for the action of T is 

O 0 1 0 

01 0 O 
O 1 0 0 

(1) 1 (5)5 

(3)3 ~~~~~~(7)7 
(4) (2) (8) (6) 
4 2 8 6 

(1)5 (5)1 

(4) (2) (8) (6) 
8 6 4 2 

(1)5 (5) 1 

(4) (2) (8) (6) 
7 84 2 

(1)1 jj7. ~~~~(5)5 

(3)3 ~~~~~~(7)6 
(4) (2) (8)(6 
4 2 8 

FIGURE 3 
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These matrices facilitate computation. For instance, the matrix for U(1 equals (M1 )-1, the 
inverse of the matrix for (X1, and the matrix of a product is the product of the matrices: 
Mal 2-, 1 = (Mal )( M2- 1) = Ml (Ma2 ) l. The facts we need about individual automorphisms could 
be verified geometrically, but instead we simply note that such use of matrices to study 
automorphisms of certain groups is a common technique of considerable power. See [1, 1.3.2, 
2.6.1] for more detail. 

Now we can define G and 4. First let a = auau-I and let l = u1c2T. Define G as (V1 X V2)(Ka). 
G is a subgroup of U since V1 x V2 is normal in U. Since G is of order 16 3, V1 x V2 is a Sylow 
2-subgroup of G and (a) is a Sylow 3-subgroup of G. If G were nilpotent, then a would 
commute with each element v of V1 x V2 for the following reason. The nilpotence of G would 
imply that V1 x V2 and (a) were normal in G. Thus for v in V1 x V2, (v-la-1v)a = v-1(a-lva) 
is in both V1 x V2 and (a). But the orders of these subgroups are relatively prime, so their 
intersection is the identity. Thus v- la-lv a is the identity, and v a = a v as claimed. 

If a did commute with each element of V1 x V2, then conjugation by a would produce the 
trivial automorphism of V1 x V2, so Ma would be the 4 x 4 identity matrix. But a = ala-2 
implies Ma = Mal(Ma2)1- which is 

0 1 0 0) 
I I 0 0 
O 0 1 1, 
O 0 1 0 

so G is not nilpotent. 
Our first step in establishing that the automorphism 4)= 12T fixes only the identity element 

of G= (V1 x V2)(a) is to show that if an element va' of G is fixed by 4, then a' is trivial and 
therefore v in V1 x V2 is fixed by 4. To do this, we note that uT = u2, for 2 does to the 
tetrahedron on S2 just what a1 does to the tetrahedron on S1. (See FIGURE 3.) Therefore, 
U= (u{) = U1 Since a1 and u2 commute, ao = (au1Ul)a-a27 - ul(u1)T = u2u-1 = a1 Thus if 
a is in (a), (a')O = a-'. 

Now suppose that g is an element of G = (V1 x V2)(a) fixed by 4, so g = va' and go = g. 
Then va' = (va')4O = vO(a'7)= - V4ai', so v- = a2i. Since V1 x V2 and (a) have trivial inter- 
section, a2i = 1 and vd = v. Since a is of order 3, a2i = 1 implies ai = a4i = 1, So g= v, a fixed 
point for 4 in V1 x V2. 

Now we show that 4 has order 6, and show that if 4 fixes v in V1 x V2 then v = (0, 0, 0, 0). 
Note that p2 = ( 1u2T )2 = U 1U2T'J 1U2T = u1a2 (u1la2 )T; but ( a1 a2 )T = u 1, and a1 commutes with 
a2, so 4)2 =u12a22. Therefore 43 = 12(2u T2 T = T, which has order 2. Hence 4 is of order 6. 

If 4 fixes v in V1 x V2, then surely 44 also fixes v. From the previous calculations, we have 
= 

4 
f U22)2 = 1 424 = 1U SO M4M =Ml MM2 which is 
1 2 12 U1 2, - 

' 
a12 a 

0 1 0 0) 
I I 0 0 

O O O 1. 
O 0 1 1 

Let V = (X1, X2, X3, X4), so vM,4= v implies 

I I 0 0 
(X I1 X2, X3, X4) 0 0=(X1, X2,I X3, X4), 

O 0 1 1 

where all entries are elements of F2, the field of 2 elements. Clearly the only solution to this 
equation is (0, 0, 0, 0). Hence q)4 , and also 4), is a fixed-point-free automorphism of V1 x V2, so ( 
is a fixed-point-free automorphism of G as claimed. 

The proof that our counterexample is minimal with respect to the order of G is, unfortunately, 
too technical to allow its presentation here. The central idea is to use induiction to determine as 
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much as possible the form of a minimal counterexample, then investigate small groups of the 
appropriate form to see which is the one sought. Specifically, a candidate G must be of the form 
G = WS, where W is a normal subgroup of G that is the direct product of k copies of Z,. (a cyclic 
group of prime order r), while S is a Sylow s-subgroup of G for some prime s other than r. Note 
that in the actual minimal counterexample, W= V1 X V2, r = 2, k = 4, S = (a), and s = 3. 

This description of the form of a minimal counterexample reminds us that minimality can be 
defined in a variety of ways. For instance, we might try to determine the pair G1, 4l such that the 
number n of prime factors of the order of G1, counting multiplicities, is minimal. In the 
counterexample minimizing the order of G, n = 5, since 48 = 2 . 2 * 2 .2 .3. However, the smallest 
possible value for n is actually 3; there exists a nonnilpotent group G1 of order 75 = 5 . 5 . 3 
having a fixed-point-free automorphism k1 of order 4. 

One of the main areas of interest in groups having fixed-point-free automorphisms is the 
analysis of the situation in which the group and the automorphism are of relatively prime order [1, 
Chapter 10]. Thus it is interesting to note that G1 is also the nonnilpotent group of smallest order 
having a fixed-point-free automorphism of relatively prime order. Hence G1, k1 provides a 
counterexample minimal with respect to two different criteria. An enterprising reader might wish 
to refer to MacHale's article [2] and examine more of his examples with respect to various 
definitions of minimality. 
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Design of an Oscillating Sprinkler 

BART BRADEN 

Northern1 Kentucky Uniiversity 
Highlanid Heights, KY 41076 

The common oscillating lawn sprinkler has a hollow curved sprinkler arm, with a row of holes 
on top, which rocks slowly back and forth around a horizontal axis. Water issues from the holes in 
a family of streams, forming a curtain of water that sweeps back and forth to cover an 
approximately rectangular region of lawn. Can such a sprinkler be designed to spread water 
uniformly on a level lawn? 

We break the analysis into three parts: 

1. How should the sprinkler arm be curved so that streams issuing from evenly spaced holes 
along the curved arm will be evenly spaced when they strike the ground? 

2. How should the rocking motion of the sprinkler arm be controlled so that each stream will 
deposit water uniformly along its path? 

3. How can the power of the water passing through the sprinkler be used to drive the sprinkler 
arm in the desired motion? 

The first two questions provide interesting applications of elementary differential equations. The 
third, an excursion into mechanical engineering, leads to an interesting family of plane curves 
which we've called curves of constant diameter. A serendipitous bonus is the surprisingly simple 
classification of these curves. 
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