
 

Solvability of groups of order p
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   Our main goal is to prove the celebrated Burnside’s theorem (1904) as one of 

applications of character theory. Some purely group-theoretic proof was found 

approximately 70 years later. 

   Theorem (Burnside). Let G p q   where ,p q  are primes, , 0   . Then G is 

solvable. 

 

When p q it is already known but for completeness prove 

 

Lemma 1. Any p-group is solvable. 

 

Proof  

By induction on the order G p . If G p  then G is cyclic. 

, 1G p    and G  then is non-abelian, then its center ( )Z G  is proper subgroup of G , 

/ ( )G Z G  is solvable by inductive hypothesis, and ( )Z G  is solvable, hence G is solvable. 

 

Now we need several facts about characters. 

  

Lemma 2. Let : ( , )G GL n   be a representation of a finite group G  with the character  .  

Then for any , ( ) (1) .g G g n     Moreover ( ) .g n   if and only if ( ) , *g E    . 

Proof. 
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     where k  are characterisnic roots of 

( ), 1
g

kg so    and equality holds only if 1 ... n     , say. It means that ( )g E  . 

 

Lemma 3. Let   be an irreducible complex character of G ,  K is some conjugate class of G

with ( , (1)) 1K    and x K . Then ( ) 0 ( ) .g or g n   . 

Proof. As , (1)K   are coprime, there are some integers , : (1)) 1u v u K v  . Suppose 

( ) 0g  , then multiply the equality with 
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The left side of this equality is an algebraic integer, by lemmas 3 and 5 of the proof of the 

theorem 4 of previous lecture, so  
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  is algebraic integer. Therefore, for any 

automorphism   of the Galois group of the field 
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conjugate of z – is algebraic integer, and if 1 ,..., mz z z  are all algebraic conjugate of z, then all 

1, 1,...,iz i m  . Its norm 
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 is invariant under all field automorphisms over Q and 



hence is both rational and algebraic integer, so ( ) 0 1N z or  . The case ( ) 0N z  was 

excluded, then ( ) 1 1 ( )N z z g n     , q.e.d. 

 

Lemma 4. If G  has a conjugate class {1}K   such that , 0sK p s   for some prime p , then  

G  is not simple.  

Proof. Take some x K . If 0s  , then ( )x Z G G  and G  is not simple. Then 1s  . 

Let 1{ 1 , , }G r   be all irreducible characters of G ; we may arrange 1, , r   so that 

| (1), 2 , | (1), 1j jp j l p l j r      . 

For 2 ,( , (1)) 1s

jj l p       ( ) 0 ( )x or x n   , by lemms 3. But ( )j x n   means (by 

lemma 2) that ( )x Z G G , so G  is not simple. It remains that ( ) 0 1,...,j x for j l   . 

Now  ( ) 1,...,j jx pm for j l r    . 

By the orthogonality relation, we get  
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The number 
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   is algebraic integer; from (*) we have 
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    both rational 

integer fnd not integer. This contradiction proves that G  is not simple. Q.e.d. 

 

Proof of the theorem. We can use induction on G p q  . It is sufficient to prove that G  is 

not simple: if , 1N N G   then , /N G G N  are solvable by inductive hypothesis hence G is 

solvable. 

Let ( )pP Syl G  and ( )x Z P  ( ) ,
( )

c

G

G

G
C x P K q c b

C x
     , where  K is the 

conjugate class containing x . By lemma 4, G  is not simple, and the theorem is proved. 

 


