Solvability of groups of order pg®

Our main goal is to prove the celebrated Burnside’s theorem (1904) as one of
applications of character theory. Some purely group-theoretic proof was found
approximately 70 years later.

Theorem (Burnside). Let|G|= p“q” where p,q are primes, «, 5>0.Then G is
solvable.

When p = qit is already known but for completeness prove

Lemma 1. Any p-group is solvable.

Proof

By induction on the order |G| = p“. If |G|=p then G is cyclic.

|G| = p“,a>1and G then is non-abelian, then its center Z(G) is proper subgroup of G,
G/Z(G) is solvable by inductive hypothesis, and Z(G) is solvable, hence G is solvable.

Now we need several facts about characters.

Lemma 2. Let ¢:G—>GL(n,C) be a representation of a finite group G with the character y .
Then forany g €G, |7(9)| < (1) =n. Moreover |(g)|=n. if and only if p(g) =AE, 1 eC*.

n

Proof. y(g)= Zn:zk = |2(9)| < D_|A|=n where 2, are characterisnic roots of
k=1

k=1

»(9), so 4% =1 and equality holds only if 4, =...=A =4, say. It means that ¢(g) = AE .

Lemma 3. Let y be an irreducible complex character of G, K is some conjugate class of G
with (K|, (1)) =1 and xe K. Then x(g)=0or |x(g)|=n..

Proof. As |K|, (1) are coprime, there are some integers u,v: u|K|+vz(1))=1 . Suppose

x(g) = 0, then multiply the equality with %:
X

K
u,v: M+v;{(x) :M.
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The left side of this equality is an algebraic integer, by lemmas 3 and 5 of the proof of the
theorem 4 of previous lecture, so z = % is algebraic integer. Therefore, for any

X

automorphism « of the Galois group of the field y(g) = Zﬂk e(@(‘f‘/i) , a(z) - algebraic

k=1
conjugate of z — is algebraic integer, and if z, =z,...,z_ are all algebraic conjugate of z, then all

|| <1, i=1..,m.Itsnorm N(z)=]]z is invariant under all field automorphisms over Q and
i=1



hence is both rational and algebraic integer, so N(z) =0or +1. The case N(z) =0 was
excluded, then N(z) =+1=|z|=1=|z(g)|=n, g.e.d.

Lemma 4. If G has a conjugate class K {1} such that |K|= p°, s>0 for some prime p, then

G is not simple.

Proof. Take some xe K. If s=0, then xeZ(G) <G and G is not simple. Then s>1.

Let {y, =1;,..., x,} be all irreducible characters of G ; we may arrange y,,..., 7, so that
p*Zj(1)1 2<j<l, pIZj(l)a I+1<j<r.

For 2< j<I,(p*, ;@) =1= x(x)=0o0r [¢(X)|=n, by lemms 3. But |7;(x)|=n means (by
lemma 2) that xe Z(G) <G, so G is not simple. It remains that y;(x)=0 for j=1,...,1.

Now y;(X)=pm; for j=1+1..r.

By the orthogonality relation, we get

0=1+ z 2Dy ()=1+ Z pm; z;(x). (%)

j=1+1 j=l+1

The number g = Z m; x;(x) is algebraic integer; from (*) we have g = —% both rational
j=l+1

integer fnd not integer. This contradiction proves that G is not simple. Q.e.d.

Proof of the theorem. We can use induction on |G|= p“q”. It is sufficient to prove that G is

not simple: if 3N, 1<N <G then N <G, G/N are solvable by inductive hypothesis hence G is
solvable.

Let PeSyl (G) and xeZ(P) :CG(X)ZP:|K|:%ZQC, c<b,where Kisthe
G

conjugate class containing x. By lemma 4, G is not simple, and the theorem is proved.



