Solvability of groups of order $p^{\text {a }} q^{\text {b }}$

Our main goal is to prove the celebrated Burnside's theorem (1904) as one of applications of character theory. Some purely group-theoretic proof was found approximately 70 years later.

Theorem (Burnside). Let $|G|=p^{\alpha} q^{\beta}$ where p, q are primes, $\alpha, \beta \geq 0$. Then G is solvable.

When $p=q$ it is already known but for completeness prove

Lemma 1. Any p-group is solvable.

Proof

By induction on the order $|G|=p^{\alpha}$. If $|G|=p$ then G is cyclic.
$|G|=p^{\alpha}, \alpha>1$ and G then is non-abelian, then its center $Z(G)$ is proper subgroup of G, $G / Z(G)$ is solvable by inductive hypothesis, and $Z(G)$ is solvable, hence G is solvable.

Now we need several facts about characters.
Lemma 2. Let $\varphi: G \rightarrow G L(n, \mathbb{C})$ be a representation of a finite group G with the character χ. Then for any $g \in G,|\chi(g)| \leq \chi(1)=n$. Moreover $|\chi(g)|=n$. if and only if $\varphi(g)=\lambda E, \lambda \in \mathbb{C}^{*}$. Proof. $\chi(g)=\sum_{k=1}^{n} \lambda_{k}, \Rightarrow|\chi(g)| \leq \sum_{k=1}^{n}\left|\lambda_{k}\right|=n$ where λ_{k} are characterisnic roots of $\varphi(g)$, so $\lambda_{k}^{|g|}=1$ and equality holds only if $\lambda_{1}=\ldots=\lambda_{n}=\lambda$, say. It means that $\varphi(g)=\lambda E$.

Lemma 3. Let χ be an irreducible complex character of G, K is some conjugate class of G with $(|K|, \chi(1))=1$ and $x \in K$. Then $\chi(g)=0$ or $|\chi(g)|=n$. .
Proof. As $|K|, \chi(1)$ are coprime, there are some integers $u, v: u|K|+v \chi(1))=1$. Suppose $\chi(g) \neq 0$, then multiply the equality with $\frac{\chi(g)}{\chi(1)}$:
$u, v: \frac{u|K| \chi(x)}{\chi(1)}+v \chi(x)=\frac{\chi(x)}{\chi(1)}$.
The left side of this equality is an algebraic integer, by lemmas 3 and 5 of the proof of the theorem 4 of previous lecture, so $z=\frac{\chi(g)}{\chi(1)}$ is algebraic integer. Therefore, for any automorphism α of the Galois group of the field $\chi(g)=\sum_{k=1}^{n} \lambda_{k} \in \mathbb{Q}(\sqrt[|G|]{1}), \alpha(z)$ - algebraic conjugate of z - is algebraic integer, and if $z_{1}=z, \ldots, z_{m}$ are all algebraic conjugate of z , then all $\left|z_{i}\right| \leq 1, i=1, \ldots, m$. Its norm $N(z)=\prod_{i=1}^{m} z_{i}$ is invariant under all field automorphisms over Q and
hence is both rational and algebraic integer, so $N(z)=0$ or ± 1. The case $N(z)=0$ was excluded, then $N(z)= \pm 1 \Rightarrow|z|=1 \Rightarrow|\chi(g)|=n$, q.e.d.

Lemma 4. If G has a conjugate class $K \neq\{1\}$ such that $|K|=p^{s}, s \geq 0$ for some prime p, then G is not simple.

Proof. Take some $x \in K$. If $s=0$, then $x \in Z(G) \triangleleft G$ and G is not simple. Then $s \geq 1$.
Let $\left\{\chi_{1}=1_{G}, \ldots, \chi_{r}\right\}$ be all irreducible characters of G; we may arrange $\chi_{1}, \ldots, \chi_{r}$ so that $p \nmid \chi_{j}(1), 2 \leq j \leq l, p \mid \chi_{j}(1), l+1 \leq j \leq r$.

For $2 \leq j \leq l,\left(p^{s}, \chi_{j}(1)\right)=1 \Rightarrow \quad \chi(x)=0$ or $|\chi(x)|=n$, by lemms 3 . But $\left|\chi_{j}(x)\right|=n$ means (by lemma 2) that $x \in Z(G) \triangleleft G$, so G is not simple. It remains that $\chi_{j}(x)=0$ for $j=1, \ldots, l$.

Now $\chi_{j}(x)=p m_{j}$ for $j=l+1, \ldots, r$.
By the orthogonality relation, we get
$0=1+\sum_{j=l+1}^{r} \chi_{j}(1) \chi_{j}(x)=1+\sum_{j=l+1}^{r} p m_{j} \chi_{j}(x) .(*)$
The number $\beta=\sum_{j=l+1}^{r} m_{j} \chi_{j}(x)$ is algebraic integer; from $\left(^{*}\right)$ we have $\beta=-\frac{1}{p}$ both rational integer fnd not integer. This contradiction proves that G is not simple. Q.e.d.

Proof of the theorem. We can use induction on $|G|=p^{\alpha} q^{\beta}$. It is sufficient to prove that G is not simple: if $\exists N, 1<N \triangleleft G$ then $N \triangleleft G, G / N$ are solvable by inductive hypothesis hence G is solvable.
Let $P \in \operatorname{Syl}_{p}(G)$ and $x \in Z(P) \Rightarrow C_{G}(x) \geq P \Rightarrow|K|=\frac{|G|}{\left|C_{G}(x)\right|}=q^{c}, c \leq b$, where K is the conjugate class containing x. By lemma $4, G$ is not simple, and the theorem is proved.

