Пример дифференцирования с бесконечно порождённым ядром, пример в размерности 5

Первый доклад:

Пусть $R_0 = \mathbf{k}[a,s,t,u]$ - кольцо многочленов от четырёх переменных, $D = a \partial_s + s \partial_t + t \partial_u$ - треугольное LND на R_0 и однородное в \mathbb{Z}^2 градуировке со степенью (0,-1), где степени переменных равны $deg\ a = (1,0),\ deg\ s = (1,1),\ deg\ t = (1,2),\ deg\ u = (1,3),\$ определим последовательность $t_n \in \mathbf{k}[a]$ следующим образом $t_1 = a,\ t_2 = 1,\ t_3 = a,\ t_n = t_{n-3},\ n \geq 4$ - периодическая с периодом 3, также определим последовательность степеней

$$\delta_0 = (0,0), \quad \delta_n = (0,n) + \sum_{j=1}^n \deg t_j, n \ge 1$$

Первая важная теорема, она же алгоритм для построения некой вспомогательной последовательности:

Теорема 1: Существует последовательность однородных многочленов $w_n \in R_0$, $n \ge 0$, такая что $w_0 = 1$, $w_1 = s$, $Dw_n = t_n w_{n-1}$, $\forall n \ge 1$ & $deg w_n = \delta_n$, $\forall n$ Доказательство: Индукция — пусть первые w_n уже построены, построим n+1-ый, причём пусть $w_n \in aR_0$, $m \equiv 1 \pmod{3}$, m > 1. Докажем в 3 шага.

Шаг 1: для любого *m*≥1 определим $\lambda_{(m,0)} = \lambda_{(m,m)} = 1$. Докажем, что для каждого m,i, где $3 \le m \le n+1$, $1 \le i \le m-1$, существует единственное $\lambda(m,i) \in \{1,a,a^{-1}\}$, такое что $\lambda_{(m,i)} w_i w_{m-1} \in R_0$ & $deg(\lambda_{(m,i)} w_m w_{m-i}) = \delta_m$. \mathbb{Z}^2 градуировка на R_0 определяет \mathbb{Z}^2 градуировку на $R_0[a^{-1}]$ естественным образом. Распишем чему равна степень многочлена: $deg(\lambda_{(m,i)} w_m w_{m-i}) = \delta_m \Leftrightarrow deg(\lambda_{(m,i)} + \delta_i + \delta_{m-i} = \delta_m \Leftrightarrow ($ после преобразования сумм)

$$\Leftrightarrow$$
 $deg \lambda_{(m,i)} + \sum_{j=1}^{i} deg t_j = \sum_{j=m-i+1}^{m} deg t_j$. Учитывая что последовательность t_n —

периодическая и сумма 3-ёх последовательных членов имеет степень (2,0), мы можем сократить с каждой стороны равное количество групп по 3, более того, с каждой стороны у нас поровну членов суммирования, значит разности сумм отличаются не более чем на (1,0), т. е. $\lambda_{(m,i)} {\in} \{1,a,a^{-1}\}$, причём $\lambda_{(m,i)} {=} a^{-1} \Leftrightarrow i {\equiv} 1 \pmod 3$ & $m {\equiv} 2 \pmod 3$ $\Rightarrow w_{m-i} {\in} aR_0 {\Rightarrow} \Rightarrow \lambda_{(m,i)} w_m w_{m-i} {\in} R_0$

Шаг 2: Рассмотрим множество индексов из $\mathbb{Z}^2 - \{(m,i): 3 \le m \le n+1, 1 \le i \le \frac{m}{2}\} \cup$

 $\cup\{(m,0)\colon 3\leq m\leq n\}$, причём w_i и w_{m-i} определены на этом множестве. Зададим многочлены $\zeta_{(m,i)}=\zeta_{(m,m-i)}=\lambda_{(m,i)}w_iw_{m-i}$, где m и i берутся из определённого выше множества. Заметим так же, что $\zeta_{(m,i)}\in R_0$, $m\equiv 1\ (mod\ 3)$. Дифференцирование D действует на эти многочлены следующим образом $D\zeta_{(m,i)}=t_{m-i}\lambda_{(m,i)}w_iw_{m-i-1}+t_i\lambda_{(m,i)}w_{i-1}w_{m-i}$, $4\leq m\leq n+1\ \&\ 1\leq i\leq m$ Вычисляя степени, можно показать, что $t_{m-i}\lambda_{(m,i)}=t_m\lambda_{(m-1,i)}$, $t_i\lambda_{(m,i)}=t_m\lambda_{(m-1,i-1)}$, так как их степени равны в \mathbb{Z}^2 градуировке на $k[a,a^{-1}]$. Таким образом действие дифференцирования можно переписать в более удобном виде: $D\zeta_{(m,i)}=t_m(\zeta_{(m-1,i)}+\zeta_{(m-1,i-1)})$

Шаг 3: Можно строить последовательность w_m . Первые 7 членов находятся непосредственно, далее будем строить блоками по 6. Пусть у нас есть первые $w_1,...,w_{6m-5}$. Пусть n=6m-4 — чётно, определим

$$w_n = \zeta_{(n,1)} - \zeta_{(n,2)} + \zeta_{(n,3)} - \ldots + \left(-1\right)^{\frac{n}{2}} \zeta_{(n,\frac{n-2}{2})} + \frac{1}{2} \left(-1\right)^{\frac{n+2}{2}} \zeta_{(n,\frac{n}{2})} \quad \text{Применяя дифференцирование } D$$

и пользуясь тем, что $\zeta_{(n-1,\frac{n}{2})} = \zeta_{(n-1,\frac{n-2}{2})}$ получим требуемое условие $Dw_n = t_n w_{n-1}$. Затем строим w_{6m-2} методом неопределённых коэффициентов как многочлен от $\zeta_{(n,i)}$ для $1 \le i \le n/2$. Процесс сложный технически и я его приводить не буду, важно то, что уравнение $D^2 w_n = t_n t_{n-1} w_{n-2} = a w_{n-2}$ имеет решение. Далее рекуррентно строятся члены

последовательности для n=6m-3, 6m-1, 6m+1 и 6m. \square

Следствие: Впоследствии будет полезным - $D^{3m} w_{3m} = a^{2i} w_{3(m-i)}$

Второй доклад:

Ещё нам понадобиться несложная технически, но нетривиальная в понимании лемма:

Лемма (критерий бесконечнопорождённости):

Пусть R – градуированная множеством \mathbb{Z}_+ алгебра, такая что R_0 =k и пусть δ однородное LND дифференцирование на R. Пусть $\alpha \in ker \delta$, $\alpha \notin \delta(R)$, $\overline{\delta}$ — расширение δ на алгебру R[T] определённое как $\overline{\delta}T = \alpha$, где T – переменная над R. Пусть существует $\{\beta_n\}$, $\beta_n \in \ker \overline{\delta}$, $\beta_n \neq 0$, со старшими *T*-коэффициентами $b_n \in R$. Тогда, если $\deg b_n$ ограниченны в R, а $deg_T \beta_n$ – неограниченны, то $ker \overline{\delta}$ – не конечно порождено.

Доказательство:

Пусть M[T] — расширение в R[T] максимально идеала в R, составленного из компонент положительной степени. Пусть $m=deg \ \alpha - deg \ \delta$, и для натурального n определим

$$R[T]_n = \sum_{i \in \mathbb{N}} R_{n-mi} T^i$$
. Тогда $R[T]_n$ – компоненты \mathbb{Z} градуировки на $R[T]$, в которой $\overline{\delta}$ будет однородно.

Пусть $\phi \in \ker \overline{\delta}$ - однородно, тогда $\phi = \sum \phi_i T^i$ для однородных $\phi_i \in R$. Так как $\overline{\delta}(\phi) = 0$ следует, что $\delta(\phi_{i-1}) = -i \alpha \phi_i, i > 0$. Поэтому $\phi_i \not\in \textbf{\textit{k}}^*$, иначе $\alpha = \delta(-i^{-1}\phi_i^{i-1}\phi_{i-1}) \in \text{Im}(\delta)$. Поэтому для i > 0, $\phi_i \in M$ Из того, что $\phi_0 \in k + M$ заключаем, что $\phi \in k + M[T]$. Для неоднородного ψ аналогично (раскладываем на сумму однородных φ). Таким образом $\ker \overline{\delta} \subset \mathbf{k} + M \mid T \mid$

Наконец, пусть $\{\hat{\beta}_n\} \subset k[f_1, ..., f_N], f_i \in ker \overline{\delta}$. Тогда все f_i принадлежат k+M[T] и без потери общности можем считать, что $f_i \in M[T]$. Но тогда $\beta_n \in \langle F \rangle$, где F – конечное множество состоящее из произведений f_i , в противном случае, так как все $f_i \in M[T]$, $deg b_n$ не могут быть ограниченными. Но если F конечно, то $deg_T \beta_n$ напротив будут ограниченны противоречие.

Наконец видим цель:

Теорема 2 (Daigle and Freudenburg):

R = k[x,s,t,u,v] с дифференцированием $\Delta(\sim \overline{\delta}$ в условия леммы) $= x^3 \partial_s + s \partial_t + t \partial_u + x^2 \partial_v$ имеет бесконечно порождённое как k-алгебра ядро.

Доказательство:

Возьмём алгебру R_0 из т.1 и присоединим к ней целый элемент x с решением $x^3=a$ и трансцендентный элемент $v(\sim T$ в условиях леммы), тогда $R_0[x,v]$ эквивалентна R, причём $\Delta|_{R} = D$.

Лемма: Пусть $A = ker \Delta$ и π_v : $S \to A_{\Delta v}$ - отображение Диксмие для Δ , индуцированное локальным слайсом v. Для каждого $m \ge 1$, $(-1)^{3m} (3m)! \pi_v(xw_{3m})$ лежит в Aи имеет вид $xv^{3m} + \sum_{i=0}^{3m-1} b_i v^i$, $(b_i \in \mathbf{k}[x, s, t, u])$

Доказательство: по т.1 и следствию получаем:
$$\Delta^{3i}(xw_{3m}) = x \left(\Delta v\right)^{3i} w_{3(m-i)} \qquad (0 \le i \le m)$$

$$\Delta^{3i+1}(xw_{3m}) = x^2 \left(\Delta v\right)^{3i+1} w_{3(m-i)-1} \qquad (0 \le i \le m)$$

$$\Delta^{3i+2}(xw_{3m}) = (\Delta v)^{3i+2} w_{3(m-i)-2} \qquad (0 \le i \le m)$$

Заметим, что $(\Delta v)^j$ делит $\Delta^j(xw_{3m})$ для любого $0 \le j \le 3m$. Следовательно образ Диксмие для xw_{3m} принадлежит A, ч.т.д.

Завершение доказательства: Отождествив xw_{3n} с β_n и применив лемму-критерий мы получим то что надо.